(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-12-15
(45)【発行日】2023-12-25
(54)【発明の名称】偏心測定装置及び偏心測定方法
(51)【国際特許分類】
G01M 11/00 20060101AFI20231218BHJP
【FI】
G01M11/00 L
(21)【出願番号】P 2019164576
(22)【出願日】2019-09-10
【審査請求日】2022-04-08
(73)【特許権者】
【識別番号】000000376
【氏名又は名称】オリンパス株式会社
(74)【代理人】
【識別番号】110002147
【氏名又は名称】弁理士法人酒井国際特許事務所
(72)【発明者】
【氏名】市川 良一
【審査官】平田 佳規
(56)【参考文献】
【文献】特開平04-181140(JP,A)
【文献】特開2013-036898(JP,A)
【文献】特開2012-118066(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01M 11/00- G01M 11/02
G01B 9/00- G01B 9/10
G01B 11/00- G01B 11/30
G02B 7/00- G02B 7/24
(57)【特許請求の範囲】
【請求項1】
光源から照射された光を光軸上に集光する集光光学系と、
前記光軸上に配置されており、前記集光光学系が集光した光を透過するピンホールが形成されているピンホール板と、
前記ピンホールを透過した光を参照光と測定光とに分岐するビームスプリッタと、
前記参照光を再帰性反射する第1の光学系と、
前記測定光を被検体に照射し、前記被検体からの戻り光を集光する第2の光学系と、
前記第1の光学系に導かれた前記参照光、及び前記第2の光学系に導かれた前記測定光を撮像する撮像部と、
前記ピンホール板、前記ビームスプリッタ、前記第1の光学系、及び前記撮像部を前記光軸に沿って移動させるステージと、
前記ピンホール板を前記光軸と直交する方向に駆動する駆動部と、
を備え、
前記ピンホールは、
光源から照射された光の波長と前記集光光学系の光学特性とによって定まるエアリーディスク径より径が大きい第1のピンホールと、
径が前記エアリーディスク径以下である第2のピンホールと、
を含
み、
前記駆動部は、前記光軸と前記第1のピンホール及び前記第2のピンホールとの位置を調整する偏心測定装置。
【請求項2】
前記参照光の光路上に挿抜可能なシャッターを備える請求項1に記載の偏心測定装置。
【請求項3】
光源から照射された光を集光光学系により光軸上に集光し、
光源から照射された光の波長と前記集光光学系の光学特性とによって定まるエアリーディスク径より径が大きい第1のピンホールと、径が前記エアリーディスク径以下である第2のピンホールと、を含むピンホールが形成されているピンホール板を前記光軸上に配置し、前記集光光学系が集光した光を透過し、
前記ピンホールを透過した光をビームスプリッタにより参照光と測定光とに分岐し、
前記参照光を第1の光学系により再帰性反射し、
前記測定光を第2の光学系により被検体に照射して前記被検体からの戻り光を集光し、
前記第1のピンホールに透過され、前記ビームスプリッタに分岐された前記参照光
が撮像部上に形成する第1のスポット中心位置を記録し、
前記第2のピンホールに透過され、前記ビームスプリッタに分岐された前記参照光が前記撮像部上に形成する第2のスポット中心位置を前記第1のスポット中心位置に一致させ、
前記第2のピンホールに透過され、前記第2の光学系に導かれた前記測定光を
前記撮像部により撮像し、
前記ピンホール板、前記ビームスプリッタ、前記第1の光学系、及び前記撮像部をステージにより前記光軸に沿って移動し、
前記ステージを移動して撮像された前記測定光の前記参照光に対する偏心量に基づいて、前記被検体の偏心を算出する偏心測定方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、偏心測定装置及び偏心測定方法に関する。
【背景技術】
【0002】
従来、複数のレンズを備える組み上がりレンズ等のレンズ系の偏心測定にオートコリメーション法が用いられている。オートコリメーション法を用いた偏心測定装置では、光源から照射された測定光を被検体であるレンズ系の各被検面の見かけ上の球心位置に照射するために、光源を含む可動部を光軸方向に沿って駆動する必要がある。可動部を駆動するステージにがたつきがあると、可動部と被検体との相対的な位置がずれるため、同一の条件で各被検面を測定することができない。
【0003】
特許文献1には、被検体を回転させることにより、ステージのがたつきによる影響を低減する技術が開示されている。この技術によれば、被検体を回転させた際に測定光が描く回転軌跡の中心位置を基準として測定結果を補正することにより、各被検面を同一の基準で評価することができる。
【先行技術文献】
【特許文献】
【0004】
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかしながら、特許文献1の技術では、各被検面において被検体を回転させて測定する必要があるため、測定が効率的でなかった。
【0006】
本発明は、上記に鑑みてなされたものであって、測定が効率的な偏心測定装置及び偏心測定方法を提供することを目的とする。
【課題を解決するための手段】
【0007】
上述した課題を解決し、目的を達成するために、本発明の一態様に係る偏心測定装置は、光源から照射された光を光軸上に集光する集光光学系と、前記光軸上に配置されており、前記集光光学系が集光した光を選択的に透過するピンホールが形成されているピンホール板と、前記ピンホールを透過した光を参照光と測定光とに分岐するビームスプリッタと、前記参照光を再帰性反射する第1の光学系と、前記測定光を被検体に照射し、前記被検体からの戻り光を集光する第2の光学系と、前記第1の光学系に導かれた前記参照光、及び前記第2の光学系に導かれた前記測定光を撮像する撮像部と、前記ピンホール板、前記ビームスプリッタ、前記第1の光学系、及び前記撮像部を前記光軸に沿って移動させるステージと、を備える。
【0008】
また、本発明の一態様に係る偏心測定装置は、前記参照光の光路上に挿抜可能なシャッターを備える。
【0009】
また、本発明の一態様に係る偏心測定装置は、前記ピンホールの径は、光源から照射された光の波長と前記集光光学系の光学特性とによって定まるエアリーディスク径より大きい。
【0010】
また、本発明の一態様に係る偏心測定装置は、前記ピンホール板を前記光軸と直交する方向に駆動する駆動部を備え、前記ピンホールは、光源から照射された光の波長と前記集光光学系の光学特性とによって定まるエアリーディスク径より径が大きい第1のピンホールと、径が前記エアリーディスク径以下である第2のピンホールと、を含む。
【0011】
また、本発明の一態様に係る偏心測定方法は、光源から照射された光を集光光学系により光軸上に集光し、ピンホールが形成されているピンホール板を前記光軸上に配置し、前記集光光学系が集光した光を選択的に透過し、前記ピンホールを透過した光をビームスプリッタにより参照光と測定光とに分岐し、前記参照光を第1の光学系により再帰性反射し、前記測定光を第2の光学系により被検体に照射して前記被検体からの戻り光を集光し、前記第1の光学系に導かれた前記参照光、及び前記第2の光学系に導かれた前記測定光を撮像部により撮像し、前記ピンホール板、前記ビームスプリッタ、前記第1の光学系、及び前記撮像部をステージにより前記光軸に沿って移動し、前記ステージを移動して撮像された前記被検体の複数の撮像結果に基づいて、前記被検体の偏心を算出する。
【0012】
また、本発明の一態様に係る偏心測定方法は、前記ピンホールは、光源から照射された光の波長と前記集光光学系の光学特性とによって定まるエアリーディスク径より径が大きい第1のピンホールと、径が前記エアリーディスク径以下である第2のピンホールと、を含み、前記第1のピンホールに透過され、前記ビームスプリッタに分岐された前記参照光が前記撮像部上に形成する第1のスポット中心位置を記録し、前記第2のピンホールに透過され、前記ビームスプリッタに分岐された前記参照光が前記撮像部上に形成する第2のスポット中心位置を前記第1のスポット中心位置に一致させる。
【発明の効果】
【0013】
本発明によれば、測定が効率的な偏心測定装置及び偏心測定方法を提供することができる。
【図面の簡単な説明】
【0014】
【
図1】
図1は、実施の形態1に係る偏心測定装置の構成を示す模式図である。
【
図2】
図2は、ピンホールの位置と被検レンズとの関係を説明するための図である。
【
図3】
図3は、
図1に示す偏心測定装置が実行する処理を示すフローチャートである。
【
図4】
図4は、撮像部が撮像する画像の一例を表す図である。
【
図5】
図5は、実施の形態2に係る偏心測定装置の構成を示す模式図である。
【
図6】
図6は、
図5に示すピンホール板を点光源側から見た拡大図である。
【
図7】
図7は、
図5に示す偏心測定装置が実行する処理を示すフローチャートである。
【
図8】
図8は、第1のピンホールが光を透過する様子を表す図である。
【
図9】
図9は、第1のピンホールに透過され、ビームスプリッタに分岐された参照光が撮像部上に形成するスポットを表す図である。
【
図10】
図10は、光軸上に第2のピンホールを配置した様子を表す図である。
【
図11】
図11は、第2のピンホールに透過され、ビームスプリッタに分岐された参照光が撮像部上に形成するスポットを表す図である。
【
図12】
図12は、第2のピンホールが光を透過する様子を表す図である。
【発明を実施するための形態】
【0015】
以下に、図面を参照して本発明に係る偏心測定装置及び偏心測定方法の実施の形態を説明する。なお、これらの実施の形態により本発明が限定されるものではない。本発明は、偏心測定装置及び偏心測定方法一般に適用することができる。
【0016】
また、図面の記載において、同一又は対応する要素には適宜同一の符号を付している。また、図面は模式的なものであり、各要素の寸法の関係、各要素の比率などは、現実と異なる場合があることに留意する必要がある。図面の相互間においても、互いの寸法の関係や比率が異なる部分が含まれている場合がある。
【0017】
(実施の形態1)
〔偏心測定装置の構成〕
図1は、実施の形態1に係る偏心測定装置の構成を示す模式図である。
図1に示すように、本実施の形態1に係る偏心測定装置1は、光源としての点光源2と、コリメータレンズ3と、集光光学系としてのアキシコンレンズ4と、ピンホール板5と、ビームスプリッタ6と、第1の光学系としてのコリメータレンズ7及びコーナーキューブ8と、シャッター9と、モーター10と、第2の光学系としての対物レンズ11と、リレーレンズ12と、撮像部13と、ステージとしての自動ステージ14と、を備える。偏心測定装置1は、被検体としての被検レンズ20の偏心測定に用いられる。
【0018】
点光源2は、所定の波長の光を出射する。点光源2は、例えばレーザダイオードであってよいが特に限定されない。
【0019】
コリメータレンズ3は、点光源2からの光を略平行光とする。
【0020】
アキシコンレンズ4は、点光源2から照射されてコリメータレンズ3により平行光とされた光を光軸O上に集光する。アキシコンレンズ4は、点光源2側の面が平面であり、この平面と反対側の面が円錐面である。そして、アキシコンレンズ4を透過した光は、円錐面の中心軸からの距離によらず同一の角度で屈折されるため、円錐面の頂点から光軸O上の所定の範囲にライン状に集光される。
【0021】
ピンホール板5は、光軸O上に配置されている。ピンホール板5には、ピンホール5aが形成されており、アキシコンレンズ4が集光した光を選択的に透過する。換言すると、ピンホール板5は、アキシコンレンズ4が光軸O上にライン状に集光した光のうち、光軸O上の所定の位置に集光された光のみを選択的に透過する。ピンホール5aの径は、点光源2から照射された光の波長とアキシコンレンズ4の光学特性とによって定まるエアリーディスク径より大きいことが好ましく、例えばエアリーディスク径の2倍の大きさである。なお、アキシコンレンズ4の光学特性とは、アキシコンレンズ4の屈折率やアキシコンレンズ4の円錐面の光軸に対する傾斜角等を指す。
【0022】
また、ピンホール5aの径が大きくなると、被写界深度が大きくなるため、見かけ上の球心位置が近接した被検面を別々に測定することができなくなる。そのため、ピンホール5aの径は、例えばエアリーディスク径の2倍以下とされていることが好ましい。
【0023】
ビームスプリッタ6は、ピンホール5aを透過した光を参照光と測定光とに分岐する。
【0024】
コリメータレンズ7は、ビームスプリッタ6からの光を略平行光とする。
【0025】
コーナーキューブ8は、コーナーキューブ8に入射した光軸と逆にたどるように参照光を反射(再帰性反射)する。コーナーキューブ8は、例えば90%以上の反射率で参照光を反射する。そして、コーナーキューブ8により反射された参照光は、ピンホール5aと共役な点Pに集光される。ただし、参照光を反射する構成として、コリメータレンズ7及びコーナーキューブ8に替えて、参照光を再帰性反射する構成を配置してもよい。具体的には、例えば凸レンズと平面ミラーとの組み合わせを配置してもよい。
【0026】
シャッター9は、参照光の光路上に挿抜可能である。ただし、偏心測定装置1がシャッターを備えていなくてもよい。その場合、適宜参照光の光路に遮光部材を配置すればよい。
【0027】
モーター10は、シャッター9を駆動し、シャッター9を参照光の光路上に挿抜する。
【0028】
対物レンズ11は、ピンホール5a及びビームスプリッタ6を透過した測定光を被検レンズ20に照射し、被検レンズ20の戻り光を集光する。
【0029】
リレーレンズ12は、コーナーキューブ8により反射された参照光、及び被検レンズ20により反射された測定光を集光する。ピンホール板5と共役な点Pに集光された参照光、及び測定光は、リレーレンズ12により撮像部13上にスポット像を形成する。ただし、撮像部13をピンホール板5と共益な点Pに直接配置できる場合には、リレーレンズ12を省略してもよい。
【0030】
撮像部13は、コーナーキューブ8に導かれた参照光、及び被検レンズ20に導かれた測定光を撮像する。撮像部13は、例えばCCD(Charge Coupled Device)カメラである。
【0031】
自動ステージ14は、ピンホール板5、ビームスプリッタ6、コリメータレンズ7、コーナーキューブ8、シャッター9、モーター10、リレーレンズ12、及び撮像部13を含む可動部15を光軸Oに沿って移動させるステージである。
【0032】
被検レンズ20は、照射された測定光の一部を反射する。被検レンズ20は、複数のレンズからなり、通常は全ての面を測定してから偏心を求める。ここでは、簡単のために被検面20a、20b、20cを例にとって説明する。被検面20a、20b、20cは、測定光が照射されるとその一部を反射する。被検面20a、20b、20cにおいて反射した光は、入射した光と略同一の光路をたどるが、被検面20a、20b、20cの偏心量に応じて若干異なる光路を進み、ピンホール5aと共役な点Pに集光される。被検レンズ20は、通常可視光領域の波長において反射率を低くするため、反射防止コーティングがなされている。そのため、被検面20a、20b、20cにおいて反射される光の光強度は小さい。
【0033】
〔ピンホールの位置〕
次に、ピンホール5aの位置について説明する。
図2は、ピンホールの位置と被検レンズとの関係を説明するための図である。
図2に示すように、光軸Oに沿った方向のピンホール5aの位置をZとする。また、ピンホール5aから対物レンズ11の主点までの距離をA、対物レンズ11の主点から被検面の見かけ上の球心位置Pまでの距離をBとする。
【0034】
図2の(a)に示す位置Z=Z1の場合、アキシコンレンズ4が光軸O上にライン状に集光した光のうち、1/A1+1/B1=1/Fが成り立つ測定光のみがピンホール5aに透過され、この測定光は被検面20aの見かけ上の球心位置P1に集光される。換言すると、ピンホール板5を位置Z=Z1となるように調整すると、測定光が被検面20aの見かけ上の球心位置P1に集光するように照射される。その結果、測定光の一部は、被検面20aにより反射されて撮像部13に入射する。
【0035】
続いて、
図2の(b)に示す位置Z=Z2の場合、アキシコンレンズ4が光軸O上にライン状に集光した光のうち、1/A2+1/B2=1/Fが成り立つ測定光のみがピンホール板5に透過され、この測定光は被検面20bの見かけ上の球心位置P2に集光される。換言すると、ピンホール板5を位置Z=Z2となるように調整すると、測定光が被検面20bの見かけ上の球心位置P2に集光するように照射される。その結果、測定光の一部は、被検面20bに反射されて撮像部13に入射する。
【0036】
続いて、
図2の(c)に示す位置Z=Z3の場合、アキシコンレンズ4が光軸O上にライン状に集光した光のうち、1/A3+1/B3=1/Fが成り立つ測定光のみがピンホール板5に透過され、この測定光は被検面20cの見かけ上の球心位置P3に集光される。換言すると、ピンホール板5を位置Z=Z3となるように調整すると、測定光が被検面20cの見かけ上の球心位置P3に集光するように照射される。その結果、測定光の一部は、被検面20cに反射されて撮像部13に入射する。
【0037】
以上説明したように、光軸Oに沿った方向におけるピンホール板5の位置Zを変化させることにより、アキシコンレンズ4が光軸O上にライン状に集光した光のうち、被検面20a、20b、又は20cのいずれかの見かけ上の球心位置P1~P3に集光する測定光を選択することにより、被検面20a、20b、又は20cのいずれかの面からの反射光を選択して撮像部13により撮像することが可能となる。
【0038】
なお、見かけ上の球心位置とは、目的の被検面の前方(光源側)にあるレンズにおける光の屈折を考慮した球心位置である。すなわち、目的の被検面の前方にレンズがある場合、目的の被検面の見かけ上の球心位置に集光する光を照射することにより、その前方にあるレンズで測定光が屈折し、目的の被検面の実際の球心位置に光を集光することができる。見かけ上の球心位置は、目的の被検面の曲率半径とその前方にあるレンズの各面の曲率半径、各レンズの屈折率、各面の間隔から算出することができる。
【0039】
〔偏心測定方法〕
次に、偏心測定装置1を用いた偏心測定方法を説明する。
図3は、
図1に示す偏心測定装置が実行する処理を示すフローチャートである。
図3に示すように、被検レンズ20の各被検面(被検面20a、20b、20c)の見かけ上の球心位置を計算する(ステップS1)。上述したように各被検面の見かけ上の球心位置は、被検レンズ20の設計データに基づく光線追跡等により算出することができる。
【0040】
続いて、初期設定として変数i=1に設定する(ステップS2)。
【0041】
そして、i>Nであるか否かを判定する(ステップS3)。なお、Nは、被検レンズ20の被検面の数である。被検面の数は、ここでは3として説明するが、特に限定されない。
【0042】
i>Nではない場合(ステップS3:No)、ピンホール板5を通過した測定光がi番目の被検面の見かけ上の球心位置に集光されるように可動部15を移動する(ステップS4)。
【0043】
続いて、モーター10を駆動させ参照光の光路上からシャッター9を退避させる(ステップS5)。また、参照光の光強度に応じて撮像部13のシャッター速度等を調整する。
【0044】
そして、撮像部13により参照光のスポット中心位置を記録する(ステップS6)。このとき、撮像部13には、参照光と測定光との双方が入射するが、上述した通り、コーナーキューブ8の反射率が90%以上であるのに対して、被検レンズ20の被検面からの反射光は十分弱いため、撮像部13のシャッター速度を参照光の明るさに合わせて調整することにより、参照光のみを選択的に観察することができる。
【0045】
続いて、モーター10を駆動させ参照光の光路上にシャッター9を挿入する(ステップS7)。また、測定光の光強度に応じて撮像部13のシャッター速度等を調整する。
【0046】
そして、撮像部13により測定光のスポット中心位置を記録する(ステップS8)。このとき、参照光はシャッター9により遮光されているため、測定光のみを選択的に観察することができる。
【0047】
その後、変数iをインクリメント(i=i+1)し(ステップS9)、ステップS3に戻り処理を繰り返す。
【0048】
ステップS3において、i>Nである場合(ステップS3:Yes)、被検レンズ20の各被検面の見かけ上の偏心量を算出する(ステップS10)。
【0049】
被検レンズ20の各被検面の実際の偏心量を算出する(ステップS11)。
【0050】
図4は、撮像部が撮像する画像の一例を表す図である。
図4は、i番目の被検面に対してそれぞれ撮像された参照光と測定光とを重ねて表示した画像Imiを表す。
図4に示すように、撮像部13により、i番目の被検面に対して撮像された参照光のスポット中心位置PRi(Rxi,Ryi)と、i番目の被検面に対して撮像された測定光のスポット中心位置PMi(Mxi,Myi)と、が記録される。なお、参照光のスポット中心位置PRi(Rxi,Ryi)及び測定光のスポット中心位置PMi(Mxi,Myi)は、撮像部13上における位置をピクセルで表す。
【0051】
〔スポット光の大きさ〕
次に、撮像部13上におけるスポット像の大きさについて説明する。アキシコンレンズ4を透過した光のNAは、光軸O方向の位置によらず一定であるため、ピンホール5aを透過するスポットの大きさ(エアリーディスク直径)は、1.22×λ/NAとなる。λは点光源2が照射する光の波長(nm)であり、開口数NAは、アキシコンレンズ4で屈折した光と光軸Oとのなす角をθとしてNA=sinθである。ピンホール5aの大きさは、エアリーディスク直径の2倍であるから、ピンホール5aが配置されている位置に集光された光全体がピンホール5aに透過される。
【0052】
ピンホール5aを通過した光は、対物レンズ11により被検面の見かけ上の球心位置に集光するように照射され、一部が被検面において反射される。被検面において反射された光は、ピンホール5aと共役な点Pの近傍に集光される。このとき、対物レンズ11により被検面の球心位置にできるスポットの大きさは、エアリーディスク径のB/A倍である。そして、被検面において反射され、点Pの近傍にできるスポットの大きさは、さらにA/B倍される。従って、測定光は、被検面との間を往復することにより1倍とされ、エアリーディスク径と同じ大きさに集光される。また、撮像部13上でのスポット像は、さらにリレーレンズ12の焦点距離と撮像部13の位置とにより定まる観察倍率に拡大される。以上説明したように、撮像部13上で観察されるスポットの大きさは、被検面によらず同じ大きさになる。
【0053】
参照光のスポットの大きさも同様に、往復することにより点Pにおいて1倍とされる。
【0054】
〔偏心量の計算方法〕
次に、偏心量の計算方法について説明する。偏心は、被検面の横ずれによって生じる測定光のスポットの横ずれであるので、被検面に入射する光の入射条件にはよらず、A/B倍となる。また、撮像部13上での倍率は、スポット像と同様にさらにリレーレンズ12の焦点距離と撮像部13の位置とにより定まる観察倍率に拡大される。
【0055】
観察倍率をβとすると、i番目の被検面におけるX軸成分とY軸成分との見かけ上の偏心量Δxi、Δyiは、以下のように表すことができる。
Δxi=(Mxi-Rxi)×画素サイズ/(β×(A/B)×2)
Δyi=(Myi-Ryi)×画素サイズ/(β×(A/B)×2)
なお、反射の場合、被検面の傾きに対して2倍の感度となるため2で割る必要がある。また、画素サイズとは、撮像部13の1画素(ピクセル)の大きさを表す。
【0056】
各被検面の見かけ上の偏心量を計算した後、従来の偏心計算アルゴリズムに基づいて、各被検面の実際の偏心量、各レンズの偏心量等を用途に応じて算出することができる。
【0057】
以上説明したように、実施の形態1によれば、光源を駆動するオートコリメーション法と異なり、点光源2と被検レンズ20との位置関係が変化しないため、各被検面を同一の条件で評価することができる。従って、被検レンズ20を回転させる必要も無いため、測定が効率的になる。さらに、被検レンズ20を回転駆動させる構成も不要であるため、装置を簡易にすることができ、装置の製造コストを抑えることができる。
【0058】
(実施の形態2)
図5は、実施の形態2に係る偏心測定装置の構成を示す模式図である。
図5に示すように、本実施の形態2に係る偏心測定装置1Aは、ピンホール板5Aを光軸Oと直交する方向に駆動する駆動部としてのXYステージ16Aを備える。ピンホール板5A及びXYステージ16A以外の構成は、実施の形態1と同様であるから適宜説明を省略する。
【0059】
図6は、
図5に示すピンホール板を点光源側から見た拡大図である。
図6に示すように、ピンホール板5Aは、第1のピンホール5Aaと、第2のピンホール5Abと、を有する。
【0060】
第1のピンホール5Aaは、エアリーディスク径より径が大きいことが好ましい。第1のピンホール5Aaの径がエアリーディスク径より大きいと、ピンホール板5Aが配置されている位置に集光された光全体が第1のピンホール5Aaに透過される。さらに、自動ステージ14には、ピッチ、ヨー、走り平行度等の走り誤差があるため、走り誤差が生じた場合にもピンホール板5Aが配置されている位置に集光された光全体が第1のピンホール5Aaに透過されることが好ましい。具体的には、第1のピンホール5Aaの径は、例えばエアリーディスク径の2倍の大きさである。
【0061】
アキシコンレンズ4を透過した光のエアリーディスク直径が50μmであるとし、第1のピンホール5Aaの径がエアリーディスク径の2倍の100μmであるとする。このとき、自動ステージ14の光軸と直交する方向への走り誤差が±10μmであったとすると、(第1のピンホール5Aaの直径100μm-エアリーディスク径50μm-走り誤差20μm)/2=15μmの余裕があるため、自動ステージ14を移動させても、アキシコンレンズ4が集光した光全体が第1のピンホール5Aaに透過される。そのため、スポット像が欠けてしまうことを防止することができる。
【0062】
第2のピンホール5Abは、径がエアリーディスク径以下であることが好ましい。第2のピンホール5Abの径は、例えばエアリーディスク径の半分である。第2のピンホール5Abの径が小さいほど、被写界深度を小さくすることができ、光軸Oに沿った方向の被検面の分解能が向上する。また、エアリーディスク径より第2のピンホール5Abが小さいと、第2のピンホール5Abの全域を光が通過し、スポット像の中心を第2のピンホール5Abの中心とみなすことができる。
【0063】
XYステージ16Aは、ピンホール板5Aを光軸Oと直交する方向に駆動し、光軸Oと第1のピンホール及び第2のピンホールとの位置を調整する。
【0064】
〔偏心測定方法〕
次に、偏心測定装置を用いた偏心測定方法を説明する。
図7は、
図5に示す偏心測定装置が実行する処理を示すフローチャートである。
図7に示すように、実施の形態1と同様にステップS1~S5を行った後、XYステージ16Aを操作して、光軸O上に第1のピンホール5Aaを配置する(ステップS21)。
【0065】
図8は、第1のピンホールが光を透過する様子を表す図である。
図8に示すように、光軸O上に第1のピンホール5Aaを配置すると、第1のピンホール5Aaがエアリーディスク径より十分大きいため、第1のピンホール5Aaが配置されている位置に集光された光のスポットSP全体が第1のピンホール5Aaに透過される。
【0066】
そして、撮像部13を用いて、第1のピンホール5Aaに透過され、ビームスプリッタ6に分岐された参照光が撮像部13上に形成する第1のスポット中心位置を記録する(ステップS22)。
【0067】
図9は、第1のピンホールに透過され、ビームスプリッタに分岐された参照光が撮像部上に形成するスポットを表す図である。
図8のスポットSP全体が第1のピンホール5Aaに透過されるため、
図9に示すように、撮像部13上に形成されるスポットSP1は、外周が欠けておらず円形である。従って、スポットSP1の中心である第1のスポット中心位置C1は、参照光の光軸Oと一致している。
【0068】
続いて、XYステージ16Aを操作して、光軸O上に第2のピンホール5Abを配置する(ステップS23)。
図10は、光軸上に第2のピンホールを配置した様子を表す図である。
図10に示すように、光軸O上に第2のピンホール5Abを配置すると、第2のピンホール5Abよりエアリーディスク径の方が大きく、第2のピンホール5Abの中心と光軸O(スポットSPの中心)とが一致していない。
【0069】
図11は、第2のピンホールに透過され、ビームスプリッタに分岐された参照光が撮像部上に形成するスポットを表す図である。第2のピンホール5Abに透過され、ビームスプリッタ6に分岐された参照光が撮像部13上に形成するスポットSP2の中心である第2のスポット中心位置がC2である。
【0070】
その後、撮像部13を用いて、第2のピンホール5Abに透過され、ビームスプリッタ6に分岐された参照光が撮像部13上に形成する第2のスポット中心位置C2を、ステップS22において記録した第1のスポット中心位置C1に一致させる(ステップS24)。具体的には、第2のスポット中心位置C2の第1のスポット中心位置C1からのずれ量を測定し、このずれ量を補償するようにXYステージ16Aを移動する。すると、第1のスポット中心位置C1と参照光の光軸Oとが一致しているため、第2のスポット中心位置C2と参照光の光軸Oとが一致する。
【0071】
図12は、第2のピンホールが光を透過する様子を表す図である。第2のスポット中心位置C2と参照光の光軸Oとが一致すると、第2のピンホール5Abの中心と第2のピンホール5Abが配置されている位置に集光された光のスポットSPの中心とが一致する。その結果、光軸O上にエアリーディスク径より径が小さい第2のピンホール5Abを配置する際に、光軸Oの中心と第2のピンホール5Abの中心とがずれ、測定の精度が低下することを防止することができる。
【0072】
その後、実施の形態1と同様にステップS7~S11の処理を行う。
【0073】
以上説明したように、実施の形態2によれば、エアリーディスク径以下の第2のピンホール5Abを透過した光により測定を行うことにより、被写界深度を小さくすることができ、目的の被検面のみを測定することができる。
【0074】
なお、上述した実施の形態2では、ピンホール板5Aに大きさの異なる2つのピンホール(第1のピンホール5Aa、第2のピンホール5Ab)が形成されている例を説明したが、これに限られない。ピンホール板5Aに替えて、虹彩絞りや液晶等の電子的に制御される絞り等のピンホールの径を変更することができる構成を配置してもよい。
【0075】
さらなる効果や変形例は、当業者によって容易に導き出すことができる。よって、本発明のより広範な態様は、以上のように表し、かつ記述した特定の詳細及び代表的な実施の形態に限定されるものではない。従って、添付のクレーム及びその均等物によって定義される総括的な発明の概念の精神又は範囲から逸脱することなく、様々な変更が可能である。
【符号の説明】
【0076】
1、1A 偏心測定装置
2 点光源
3、7 コリメータレンズ
4 アキシコンレンズ
5、5A ピンホール板
5a ピンホール
5Aa 第1のピンホール
5Ab 第2のピンホール
6 ビームスプリッタ
8 コーナーキューブ
9 シャッター
10 モーター
11 対物レンズ
12 リレーレンズ
13 撮像部
14 自動ステージ
15 可動部
16A XYステージ
20 被検レンズ
20a、20b、20c 被検面