(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-12-15
(45)【発行日】2023-12-25
(54)【発明の名称】異なる座標フレームからのカテーテル可視化の組み合わせ
(51)【国際特許分類】
A61B 34/20 20160101AFI20231218BHJP
A61M 25/095 20060101ALI20231218BHJP
A61M 25/10 20130101ALI20231218BHJP
A61B 18/14 20060101ALI20231218BHJP
【FI】
A61B34/20
A61M25/095
A61M25/10
A61B18/14
【外国語出願】
(21)【出願番号】P 2019222729
(22)【出願日】2019-12-10
【審査請求日】2022-10-21
(32)【優先日】2018-12-11
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】511099630
【氏名又は名称】バイオセンス・ウエブスター・(イスラエル)・リミテッド
【氏名又は名称原語表記】Biosense Webster (Israel), Ltd.
(74)【代理人】
【識別番号】100088605
【氏名又は名称】加藤 公延
(74)【代理人】
【識別番号】100130384
【氏名又は名称】大島 孝文
(72)【発明者】
【氏名】アハロン・ツルゲマン
(72)【発明者】
【氏名】ウリ・ヤロン
(72)【発明者】
【氏名】アビグドール・ローゼンバーグ
【審査官】槻木澤 昌司
(56)【参考文献】
【文献】米国特許出願公開第2012/0150022(US,A1)
【文献】特開2015-100706(JP,A)
【文献】特開2016-147059(JP,A)
【文献】欧州特許第03666184(EP,B1)
【文献】米国特許第11324556(US,B2)
(58)【調査した分野】(Int.Cl.,DB名)
A61B 34/00-34/37
A61M 25/095
A61M 25/10
A61B 18/14
(57)【特許請求の範囲】
【請求項1】
医療用プローブ追跡システムであって、
生存被験者の皮膚表面に貼付されるように構成された複数の身体表面電極と、
前記生存被験者の身体に挿入されるように構成されており、第1のプローブ電極を含む、第1のプローブと、
前記生存被験者の前記身体に挿入されるように構成されており、第2のプローブ電極と磁場センサとを含む、第2のプローブと、
前記生存被験者の前記身体内に磁場を発生させるように構成された磁場発生器と、
ディスプレイと、
処理回路であって、
前記身体表面電極と前記身体内の前記第1及び第2のプローブ電極との間の第1及び第2の電流をそれぞれ測定することと、
前記第1の電流の分布に応じて、
独立電流位置(ICL)座標フレーム内の前記第1のプローブの第1の位置座標を計算することと、
前記磁場に応答して、前記磁場センサから磁気位置信号を受信することと、
前記
ICL座標フレーム内の前記第1のプローブの初期3次元(3D)表現を前記ディスプレイにレンダリングし、次いで、前記第2の電流の分布と前記磁場発生器によって画定された
有効電流位置(ACL)座標フレームに対する前記磁気位置信号との間で電流-位置マップ(CPM)を計算することと、
前記
ICL座標フレームと前記
ACL座標フレームとの間の変換を求めることと、
前記変換を前記第1の位置座標に適用して、前記
ACL座標フレーム内の前記第1のプローブの第2の位置座標を生成することと、
前記
ACL座標フレーム内の前記第2の位置座標に従って前記第1のプローブの修正3D表現を前記ディスプレイにレンダリングすることと、
を行うように構成された処理回路と、
を備える、システム。
【請求項2】
前記処理回路は、前記CPMの計算前に、前記
ICL座標フレームに従って前記第1のプローブの前記初期3D表現をレンダリングし、前記CPMの計算後に、前記
ACL座標フレームに従って前記第1のプローブの前記修正3D表現をレンダリングするように構成されている、請求項1に記載のシステム。
【請求項3】
前記変換は、回転及び並進要素を含み、前記第1の位置座標は位置及び配向を有し、前記第2の位置座標は位置及び配向を有し、前記処理回路は、前記第2の位置座標の前記位置及び前記配向に基づいて、前記第1のプローブの前記修正3D表現をレンダリングするように構成されている、請求項1に記載のシステム。
【請求項4】
前記第2のプローブは、シャフトと、前記シャフトの遠位端に装着された膨張可能バルーンと、前記膨張可能バルーン上に配設された前記第2のプローブ電極の複数の電極と、を有するバルーンカテーテルを含み、前記磁場センサは前記シャフトの近位端に配設されており、前記処理回路は、前記複数の電極によって画定された第1の平面と、バルーンカテーテルモデル内の電極によって画定された第2の平面との間の回転からバルーン回転行列を求め、前記バルーン回転行列に基づいて前記変換を求めるように構成されている、請求項3に記載のシステム。
【請求項5】
前記第2の位置座標は、前記CPMがマッピングを行う体積外に位置する、請求項1に記載のシステム。
【請求項6】
前記処理回路は、前記変換された第2の位置座標に従った前記第1のプローブの前記修正3D表現と、前記CPMから導出された磁気位置及び前記磁場センサによって検出された前記磁場から導出された磁気位置のうちの任意の1つ以上に少なくとも基づく前記第2のプローブの3D表現と、をレンダリングするように構成されている、請求項1に記載のシステム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、概して、生体内のプローブ位置を計算することに関し、具体的には、異なる座標フレーム内のプローブ位置を計算することに関する。
【背景技術】
【0002】
挿入管、カテーテル、及びインプラントなどの体内プローブの位置を追跡することは、多くの医療処置に必要とされている。例えば、米国特許出願公開第2014/0095105号は、1つ以上の全体的な変換関数若しくは補間関数、及び/又は1つ以上の局所変換関数の決定を含むことができる、電流ベースの座標系を補正及び/又はスケーリングするためのアルゴリズムについて記載している。全体的及び局所変換関数は、全体的な計量テンソル及びいくつかの局所計量テンソルを計算することにより決定され得る。計量テンソルは、カテーテルにおける空間が近いセンサ間の所定の距離及び測定された距離に基づいて計算され得る。
【0003】
Malininらの米国特許公開第2016/0367168号は、複数の基準点の位置の計算について記載している。基準点は、カテーテル上に配設された電極の、インピーダンスベースの座標系内のインピーダンス位置と、カテーテル上に配設された磁気位置センサの、磁気ベース座標系内の磁気位置と、を含むことができる。インピーダンスベースの座標系内の電極のインピーダンス位置は、磁気ベースの座標系内の電極の変換インピーダンス位置に変換することができる。磁気ベースの座標系内の電極の磁気位置を判定することができる。磁気ベース座標系内の電極の変換インピーダンス位置と、磁気ベース座標系内の電極の磁気位置との間にインピーダンスシフトが存在するかどうかを判定することができる。インピーダンスシフトに基づいて、インピーダンスベースの座標系と磁気ベースの座標系との間で電磁力学的登録を生成することができる。
【0004】
Mollらの米国特許公開第2011/0238083号は、可撓性シース器具、可撓性ガイド器具、及びツールから構成される装置について記載している。可撓性シース器具は、器具ドライバに取り外し可能に結合可能な第1の器具ベースを備え、シース器具作業内腔を画定する。可撓性ガイド器具は、器具ドライバに取り外し可能に結合可能な第2の器具ベースを備え、シース器具作業内腔にねじ込まれる。ガイド器具は、ガイド器具作業内腔も画定する。ツールは、ガイド器具の作業内腔にねじ込まれる。本実施形態では、装置のシース器具及びガイド器具は、互いに独立して制御可能である。
【0005】
Belsonの米国特許公開第2007/0135803号は、経管腔処置で使用される装置について記載している。本装置は、例えば、ハウジングであって、ガイド内腔と、ハウジングの遠位端に近接し、ガイド内腔を横切って延在してガイド内腔を完全に封止する封止部と、を有するハウジングと、ハウジングの遠位端を組織に固定するように適合された、ハウジング内の固定要素と、ハウジングの側壁を通って延在し、封止部の遠位の内腔と連通する出口を有するチャネルと、を備える。方法も提供される。例えば、本方法は、データ及び位置インジケータを標的内腔の壁に固定することによって、経管腔処置を実行することと、壁に開口部を形成することと、開口部を通じて器具を前進させることと、データ及び位置インジケータによって器具の前進を追跡することと、を含む。
【発明の概要】
【課題を解決するための手段】
【0006】
本開示の一実施形態によれば、医療用プローブ追跡システムであって、生存被験者の皮膚表面に貼付されるように構成された複数の身体表面電極と、生存被験者の体内に挿入されるように構成されており、第1のプローブ電極を含む、第1のプローブと、生存被験者の身体に挿入されるように構成されており、第2のプローブ電極と磁場センサとを含む、第2のプローブと、生存被験者の身体内に磁場を発生させるように構成されている、磁場発生器と、ディスプレイと、処理回路であって、身体表面電極と身体内の第1及び第2のプローブ電極との間の第1及び第2の電流をそれぞれ測定することと、第1の電流の分布に応じて、第1の座標フレーム内の第1のプローブの第1の位置座標を計算することと、磁場に応答して、磁場センサから磁気位置信号を受信することと、第1の座標フレーム内の第1のプローブの初期3次元(3D)表現をディスプレイにレンダリングし、次いで、第2の電流の分布と磁場発生器によって画定された第2の座標フレームに対する磁気位置信号との間で電流-位置マップ(CPM)を計算することと、第1の座標フレームと第2の座標フレームとの間の変換を求めることと、変換を第1の位置座標に適用して、第2の座標フレーム内で第1のプローブの第2の位置座標を生成することと、第2の座標フレーム内の第2の位置座標に従って第1のプローブの修正3D表現をディスプレイにレンダリングすることと、を行うように構成された処理回路と、を含む、システムが開示される。
【0007】
更に、本開示の一実施形態によれば、処理回路は、CPMの計算前に、第1の座標フレームに従って第1のプローブの初期3D表現をレンダリングし、CPMの計算後に、第2の座標フレームに従って第1のプローブの修正3D表現をレンダリングするように構成されている。
【0008】
更に、本開示の一実施形態によれば、変換は、回転及び並進要素を含み、第1の位置座標は位置及び配向を有し、第2の位置座標は位置及び配向を有し、処理回路は、第2の位置座標の位置及び配向に基づいて、第1のプローブの修正3D表現をレンダリングするように構成されている。
【0009】
更に、本開示の実施形態によれば、第2のプローブは、シャフトと、シャフトの遠位端に装着された膨張可能バルーンと、膨張可能バルーン上に配設された第2のプローブ電極の複数の電極と、を有するバルーンカテーテルを含み、磁場センサはシャフトの近位端に配設されており、処理回路は、複数の電極によって画定された第1の平面と、バルーンカテーテルモデル内の電極によって画定された第2の平面との間の回転からバルーン回転行列を求め、バルーン回転行列に基づいて変換を求めるように構成されている。
【0010】
更に、本開示の一実施形態によれば、第2の位置座標は、CPMがマッピングを行う体積外に位置する。
【0011】
更に、本開示の一実施形態によれば、処理回路は、変換された第2の位置座標に従った第1のプローブの修正3D表現と、CPMから導出された磁気位置及び磁場センサによって検出された磁場から導出された磁気位置のうちの任意の1つ以上に少なくとも基づく第2のプローブの3D表現と、をレンダリングするように構成されている。
【0012】
本開示の更に別の実施形態によれば、医療用プローブ追跡システムであって、生存被験者の皮膚表面に貼付されるように構成された複数の身体表面電極と、生存被験者の身体に挿入されるように構成されており、プローブ電極と磁場センサとを含む、プローブと、生存被験者の身体内に磁場を発生させるように構成された磁場発生器と、ディスプレイと、処理回路であって、身体表面電極と身体内のプローブ電極との間の電流をそれぞれ測定し、電流の第1の多重度の分布に応じて、第1の座標フレーム内のプローブの第1の位置座標を計算することと、磁場に応答して、磁場センサから磁気位置信号を受信することと、第1の座標フレーム内のプローブの初期3次元(3D)表現をディスプレイにレンダリングし、次いで、電流の第2の多重度の分布と磁場発生器によって画定された第2の座標フレームに対する磁気位置信号との間で電流-位置マップ(CPM)を計算することと、第1の座標フレームと第2の座標フレームとの間の変換を求めることと、変換を第1の位置座標に適用して、第2の座標フレーム内のプローブの第2の位置座標を生成することと、第2の座標フレーム内の第2の位置座標に従ったプローブの修正3D表現をディスプレイにレンダリングすることと、を行うように構成された処理回路と、を備える、システムが提供される。
【0013】
更に、本開示の一実施形態によれば、処理回路は、CPMの計算前に、第1の座標フレームに従ってプローブの初期3D表現をレンダリングし、CPMの計算後に、第2の座標フレームに従ってプローブの修正3D表現をレンダリングするように構成されている。
【0014】
加えて、本開示の一実施形態によれば、変換は、回転及び並進要素を含み、第1の位置座標は位置及び配向を有し、第2の位置座標は位置及び配向を有し、処理回路は、第2の位置座標の位置及び配向に基づいて、プローブの修正3D表現をレンダリングするように構成されている。
【0015】
更に、本開示の実施形態によれば、プローブは、シャフトと、シャフトの遠位端に装着された膨張可能バルーンと、膨張可能バルーン上に配設されたプローブ電極の複数の電極と、を有するバルーンカテーテルを含み、磁場センサはシャフトの近位端に配設されており、処理回路は、複数の電極によって画定された第1の平面と、バルーンカテーテルモデル内の電極によって画定された第2の平面との間の回転からバルーン回転行列を求め、バルーン回転行列に基づいて変換を求めるように構成されている。
【0016】
更に、本開示の一実施形態によれば、第2の位置座標は、CPMがマッピングを行う体積外に位置する。
【0017】
更に、本開示の一実施形態によれば、処理回路は、電流の第3の多重度の分布に基づいてCPMから導出された磁気位置及び磁場センサによって検出された磁場から導出された磁気位置のうちの任意の1つ以上に少なくとも基づいて、体積内に位置する第3の位置座標に従ってプローブの更なる修正3D表現をレンダリングするように構成されている。
【0018】
本開示の更に別の実施形態によれば、医療用プローブ追跡方法であって、複数の身体表面電極を生存被験者の皮膚表面に貼付することと、第1のプローブ電極を含む第1のプローブを生存被験者の身体に挿入することと、第2のプローブ電極と磁場センサとを含む第2のプローブを生存被験者の身体に挿入することと、磁場発生器によって、生存被験者の身体内に磁場を発生させることと、身体表面電極と身体内の第1及び第2のプローブ電極との間の第1及び第2の電流をそれぞれ測定することと、第1の電流の分布に応じて、第1の座標フレーム内の第1のプローブの第1の位置座標を計算することと、磁場に応答して、磁場センサから磁気位置信号を受信することと、第1の座標フレーム内の第1のプローブの初期3次元(3D)表現をディスプレイにレンダリングし、次いで、第2の電流の分布と磁場発生器によって画定された第2の座標フレームに対する磁気位置信号との間で電流-位置マップ(CPM)を計算することと、第1の座標フレームと第2の座標フレームとの間の変換を求めることと、変換を第1の位置座標に適用して、第2の座標フレーム内の第1のプローブの第2の位置座標を生成することと、第2の座標フレーム内の第2の位置座標に従った第1のプローブの修正3D表現をディスプレイにレンダリングすることと、を含む、方法が提供される。
【0019】
更に、本開示の一実施形態によれば、初期3D表現のレンダリングは、CPMの計算前に実行され、修正3D表現のレンダリングは、CPMの計算後に実行される。
【0020】
更に、本開示の一実施形態によれば、変換は、回転及び並進要素を含み、第1の位置座標は位置及び配向を有し、第2の位置座標は位置及び配向を有し、修正3D表現のレンダリングは、第2の位置座標の位置及び配向に基づいて、第1のプローブの修正3D表現をレンダリングすることを含む。
【0021】
更に、本開示の実施形態によれば、第2のプローブは、シャフトと、シャフトの遠位端に装着された膨張可能バルーンと、膨張可能バルーン上に配設された第2のプローブ電極の複数の電極と、を有するバルーンカテーテルを含み、磁場センサはシャフトの近位端に配設されており、方法は、複数の電極によって画定された第1の平面と、バルーンカテーテルモデル内の電極によって画定された第2の平面との間の回転からバルーン回転行列を求めることと、バルーン回転行列に基づいて変換を求めることと、を更に含む。
【0022】
更に、本開示の一実施形態によれば、第2の位置座標は、CPMがマッピングを行う体積外に位置する。
【0023】
加えて、本開示の一実施形態によれば、本方法は、変換された第2の位置座標に従った第1のプローブの修正3D表現と、CPMから導出された磁気位置及び磁場センサによって検出された磁場から導出された磁気位置のうちの任意の1つ以上に少なくとも基づく第2のプローブの3D表現と、をレンダリングすることを含む。
【0024】
本開示の更に別の実施形態によれば、医療用プローブ追跡方法であって、複数の身体表面電極を生存被験者の皮膚表面に貼付することと、プローブ電極と磁場センサとを含むプローブを生存被験者の身体内に挿入することと、磁場発生器によって、生存被験者の身体内に磁場を発生させることと、身体表面電極と身体内のプローブ電極との間の電流をそれぞれ測定することと、電流の第1の多重度の分布に応じて、第1の座標フレーム内のプローブの第1の位置座標を計算することと、磁場に応答して、磁場センサから磁気位置信号を受信することと、第1の座標フレーム内のプローブの初期3次元(3D)表現をディスプレイにレンダリングし、次いで、電流の第2の多重度の分布と磁場発生器によって画定される第2の座標フレームに対する磁気位置信号との間の電流位置マップ(CPM)を計算することと、第1の座標フレームと第2の座標フレームとの間の変換を求めることと、変換を第1の位置座標に適用して、第2の座標フレーム内のプローブの第2の位置座標を生成することと、第2の座標フレーム内の第2の位置座標に従ってプローブの修正3D表現をレンダリングすることと、を含む、方法が提供される。
【0025】
更に、本開示の一実施形態によれば、初期3D表現のレンダリングは、CPMの計算前に実行され、修正3D表現のレンダリングは、CPMの計算後に実行される。
【0026】
更に、本開示の一実施形態によれば、変換は、回転及び並進要素を含み、第1の位置座標は位置及び配向を有し、第2の位置座標は位置及び配向を有し、修正3D表現のレンダリングは、第2の位置座標の位置及び配向に基づいて、第1のプローブの修正3D表現をレンダリングすることを含む。
【0027】
また更に、本開示の一実施形態によれば、プローブは、シャフトと、シャフトの遠位端に装着された膨張可能なバルーンと、膨張可能なバルーン上に配設されたプローブ電極の複数の電極と、を含み、磁場センサはシャフトの近位端に配設されており、本方法は、複数の電極によって画定された第1の平面と、バルーンカテーテルモデル内の電極によって画定された第2の平面との間の回転からバルーン回転行列を求めることと、バルーン回転行列に基づいて変換を求めることと、を更に含む。
【0028】
更に、本開示の一実施形態によれば、第2の位置座標は、CPMがマッピングを行う体積外に位置する。
【0029】
更に、本開示の実施形態によれば、本方法は、電流の第3の多重度の分布に基づいてCPMから導出された磁気位置及び磁場センサによって検出された磁場から導出された磁気位置のうちの任意の1つ以上に少なくとも基づいて、体積内に位置する第3の位置座標に従ってプローブの更なる修正3D表現をレンダリングすることを含む。
【図面の簡単な説明】
【0030】
本発明は、添付の図面と併せると、以下の詳細な説明から理解されよう。
【
図1】本発明の一実施形態による、カテーテルベースの位置追跡システムの概略図である。
【
図2】
図1のシステムで使用されるバルーンカテーテルの概略図である。
【
図3】
図2のバルーンカテーテル上の様々なデータ点の概略図である。
【
図4】
図1のシステムにおける位置追跡を示す概略部分ブロック図である。
【
図5】
図1のシステムで使用される電流分布ベースの位置追跡方法における例示的なステップを含むフローチャートである。
【
図6】
図1のシステムで使用される磁気ベースの位置追跡方法における例示的なステップを含むフローチャートである。
【
図7】
図1のシステムで使用されるハイブリッド磁気-電流分布ベースの位置追跡方法における例示的なステップを含むフローチャートである。
【
図8】
図1のシステムにおける電流-位置行列体積を示す概略部分ブロック図である。
【
図9】
図1のシステムで使用される座標フレーム変換方法における例示的なステップを含むフローチャートである。
【
図10】
図1のシステムで使用される第2の座標フレーム内のレンダリングを示すユーザインタフェース画面の概略図である。
【
図11】
図1のシステムで使用される第1の座標フレーム内のバルーン位置行列を計算する方法における例示的なステップを含むフローチャートである。
【
図12】
図1のシステムで使用される変換行列を計算する方法における例示的なステップを含むフローチャートである。
【発明を実施するための形態】
【0031】
概説
Carto(登録商標)3システムは、有効電流位置(ACL)ハイブリッド位置追跡技術を適用する。ACL技術において、プローブ電極に関連して測定された電流の分布は、電流-位置行列(CPM)と相関され、CPMは、電流分布と、磁気位置較正位置信号から以前に取得された位置とをマッピングするものである。ACL技術は、磁気センサを有するカテーテルによって、CPMが計算された体積(単数又は複数)においてだけでなく、カテーテル(磁場センサを有さないカテーテルであっても)の位置特定及び可視化を可能にする。CPMを構築するための前提条件は、身体の体積に関するCPMを計算するために、磁場センサを備えたカテーテルを身体内に挿入し、その体積内でカテーテルを移動させることである。
【0032】
CPM体積外のカテーテルは、ACLを使用するときに追跡不能であり、可視化されない。例えば、冠状静脈洞カテーテルは、CPM体積外に位置するために可視化されない場合がある。また、近位磁場センサを有するバルーンカテーテルは、カテーテルの膨張可能バルーン上に配設された電極と磁場センサとの距離により、可視化が困難であり得る。Lasso(登録商標)ガイドワイヤカテーテルは、任意の他の磁場センサを備えたカテーテルが心腔内に存在する前に心腔に入るバルーンカテーテルと共に使用され、ACLを使用する可視化は行われない。CPM体積外でACLを使用できないという事実は、バルーンカテーテル及び磁場センサを有さないLasso(登録商標)ガイドワイヤカテーテルを用いるPVI(肺静脈隔離)ワークフローなど、いくつかの臨床ワークフローを複雑にする可能性がある。
【0033】
独立電流位置(ICL)技術を使用して、磁場センサを含まないカテーテルを可視化してもよい。ICLは、カテーテル電極と身体表面パッチとの間の電流分布に従ってカテーテルの位置を特定することに基づく。ICLは、カテーテル可視化を可能にするために、磁場センサを備えたカテーテルを必要としない。ICL技術によると、磁場センサを備えたカテーテルによってCPMを事前に取得する必要なく、カテーテルを可視化することができる。ICL技術では、例えば、別のカテーテルによってCPMを事前に取得する必要なく、Lasso(登録商標)ガイドワイヤカテーテルがシースを出た直後にLasso(登録商標)ガイドワイヤカテーテルの可視化が可能である。ICLは、バルーンカテーテル電極の可視化も可能にする。ICLでは、カテーテルを可視化する必要がある身体内の体積の各ボクセル又はセルに対して局所スケーリングファクタを適用することができる。このファクタは、投げ縄状カテーテルのような、既知の空間関係を有する複数の電極を備えたカテーテルを使用して決定され得る。スケーリングファクタは、純粋な電流分布ベースの位置の精度を改善するために使用される。
【0034】
スケーリングファクタの適用後でも、ICL技術は精度に制限がある。ICLは、磁気追跡又はACLほど正確ではない。加えて、ICLによって使用される座標フレームは、ACLによって使用される座標フレームとは異なり、2つの座標フレームは変位、回転、及びスケーリングの際に位置合わせされない。上記の制限により、ICLベースの可視化及びマッピングは、ACLベースの可視化及びマッピングに上手く重ね合わせることができない。
【0035】
本発明の実施形態では、ICL及びACLが選択的に組み合わされて、ICLとACLの両方の利点を提供する。磁場センサを備えていないカテーテルと磁場センサを備えたカテーテルの両方を追跡するために、ICL追跡技術はCPM計算の前に使用される。カテーテルはまず、ICL座標フレームに基づいて可視化されてもよい。
【0036】
磁場センサを備えたカテーテルからの測定値に基づいてCPMが計算された後、ICL座標系とACL座標フレームとの間の局所変換が求められる。次いで、CPMの計算前に計算された位置を含め、ICL座標フレーム内の位置に変換を適用することができる。次に、変換された位置を使用して、ACL座標フレーム内のカテーテルを可視化することができる。
【0037】
更に、CPMの計算後、ICLは、CPMの体積外に位置するプローブに関して引き続き使用されてもよい。CPM体積内に位置するプローブの場合、ACL又はICLを使用することができる。その後、ICL座標フレーム内の計算された位置は、ACL座標フレームに変換され得る。次いで、プローブの3D表現はディスプレイにレンダリングされ、ICL座標フレームから変換されたACL位置、並びに/あるいはCPM及び/又は磁場ベースの追跡から導出されたACL位置に基づくACL座標フレームに従って、プローブの位置を示し得る。
【0038】
システムの説明
参照により本明細書に援用される文書は本出願の一体部分とみなされるべきであり、いずれかの用語が、それらの援用された文書内で、本明細書で明示的又は暗示的に行われる定義と相反するように定義される場合を除き、本明細書における定義のみが考慮されるべきである。
【0039】
ここで、本発明の一実施形態によるカテーテルベースの位置追跡システム20の概略図である
図1を参照する。本発明の一実施形態によるバルーンカテーテル40の概略図である
図2も参照する。例として、バルーンカテーテルが使用されている。カテーテル又はプローブが切除に使用されるか、又は別の目的のために使用されるかに関わらず、任意の好適なカテーテル又はプローブをシステム20と共に使用してもよい。
【0040】
位置追跡システム20は、
図1のインセット25に示され、かつ、更に詳細に
図2に示されるバルーンカテーテル40の位置を判定するために使用される。バルーンカテーテル40は、シャフト22と、シャフト22の遠位端に装着される膨張可能バルーン45と、を含む。典型的には、バルーンカテーテル40は、例えば、左心房における心臓組織の空間的切除などの治療処置に使用される。
【0041】
位置追跡システム20は、膨張可能バルーン45の両側でシャフト22に装着された感知電極52(近位電極52a及び遠位電極52b)、近位電極52aのすぐ近位に装着された磁気センサ50、及び任意で以下より詳細に記載する切除電極55に基づいて、バルーンカテーテル40のシャフト22の位置及び配向を判定することができる。近位電極52a、遠位電極52b、及び磁気センサ50は、シャフト22を通って延びるワイヤによって、コンソール24内の様々なドライバ回路に接続されている。いくつかの実施形態では、遠位電極52bは省略されてもよい。
【0042】
シャフト22は、長手方向軸51を画定する。軸51上の中心点58は、膨張可能バルーン45の球体形状の原点であり、膨張可能バルーン45の公称位置を画定する。切除電極55は、膨張可能バルーン45の周囲に配設され、感知電極52a及び52bよりも大きな面積を占めている。心臓組織を切除するために、高周波電力が切除電極55に供給されてもよい。
【0043】
典型的には、配設された切除電極55は、膨張可能バルーン45の赤道に沿って均等に分布され、この赤道は、シャフト22の遠位端の長手方向軸51に対して略垂直に位置合わせされている。
【0044】
図2に示されている図は、単に概念を明確化する目的のために選択されている。感知電極52及び切除電極55の他の構成も可能である。磁気センサ50には、追加の機能が含まれてもよい。明確にするために、洗浄ポートなど、本発明の開示された実施形態に関連しない要素は省略されている。
【0045】
医師30は、カテーテル40の近位端の近傍のマニピュレータ32を使用してシャフト22を操作すること及び/又はシース23からの偏向によって、バルーンカテーテル40を患者28の心臓26内の標的位置に誘導する。バルーンカテーテル40がシース23に挿入されている間、膨張可能バルーン45は収縮しており、バルーンカテーテル40がシース23から後退した後にのみ、膨張可能バルーン45は膨張し、意図した機能的形状に復帰する。バルーンカテーテル40を収縮構成で収容することにより、シース23は、標的位置へ向かう間の血管外傷を最小限に抑える役割を果たす。
【0046】
コンソール24は、処理回路41、典型的には汎用コンピュータと、ケーブル39を通って患者28の胸部及び患者の背側に延びるワイヤによって取り付けられた身体表面電極49において信号を生成する、及び/又は身体表面電極49から信号を受信する好適なフロントエンド及びインタフェース回路44と、を含む。身体表面電極49は、生存被験者(例えば、患者28)の皮膚表面に貼付されるように構成されている。
【0047】
コンソール24は、磁気感知サブシステムを更に備える。患者28は、磁場発生コイル42を含むパッドによって生成された磁場内に置かれ、この磁場発生コイルは、コンソール24に配設されたユニット43によって駆動される。コイル42によって発生した磁場は、磁気センサ50内に指向性信号を生成し、次いで、この信号は対応する電気入力として処理回路41に供給される。
【0048】
いくつかの実施形態では、処理回路41は、感知電極52、磁気センサ50、及び切除電極55から受信した位置信号を使用して、心室内などの器官内のバルーンカテーテル40の位置を推定する。いくつかの実施形態では、処理回路41は、電極52、55から受信した位置信号と以前に取得した磁気位置較正位置信号と相関させて、心室内のバルーンカテーテル40の位置を推定する。感知電極52及び切除電極55の位置座標は、他の入力の中でも、電極52、55と表面電極49との間で測定されるインピーダンス、電圧、又は電流分布の割合に基づいて、処理回路41によって判定され得る。コンソール24は、心臓26内のカテーテル位置の遠位端を示すディスプレイ27を駆動する。
【0049】
電流分布測定値及び/又は外部磁場を使用する位置感知方法は、様々な医療用途で、例えば、Biosense Webster Inc.(カリフォルニア州アーバイン)により製造されるCarto(登録商標)システムに実装されており、米国特許第5,391,199号、同第6,690,963号、同第6,484,118号、同第6,239,724号、同第6,618,612号、同第6,332,089号、同第7,756,576号、同第7,869,865号、及び同第7,848,787号、国際公開第96/05768号、並びに米国特許出願公開第2002/0065455(A1)号、同第2003/0120150(A1)号、及び同第2004/0068178(A1)号に詳述されており、これらの開示は参照により本明細書に全文を組み込む。
【0050】
Carto(登録商標)3システムは、ハイブリッド電流分布及び磁気ベース位置追跡技術である有効電流位置(ACL)を適用する。いくつかの実施形態では、ACLを使用して、処理回路41は、感知電極52及び切除電極55の位置を推定する。いくつかの実施形態では、電極52、55から受信された信号は、電流分布比(又は別の電気値)と、磁気位置較正位置信号から以前に取得された位置とをマッピングする電流-位置行列(CPM)と相関される。電流分布比は、電極52、55から身体表面電極49に流れる電流に関する身体表面電極49の測定値に基づく。
【0051】
いくつかの実施形態では、磁気センサを含まないカテーテルを可視化するために、処理回路41は、独立電流位置(ICL)技術と称される電気信号ベースの方法を適用することができる。ICLでは、処理回路41は、カテーテルが可視化される体積の各ボクセルに関する局所スケーリングファクタを計算する。このファクタは、投げ縄状カテーテルのような、既知の空間的関係を有する複数の電極を備えたカテーテルを使用して決定される。しかしながら、ICLは、正確な局所スケーリング(例えば、数ミリメートルにわたる)を生成するものの、サイズがセンチメートルオーダーである心腔全体の体積に適用されるときにはさほど正確ではない。電流分布比に基づいて位置が計算されるICL方法は、電流ベースのICL空間の非線形的性質のせいで、誤差を有する可能性があり、歪んだ形状のバルーンカテーテル40を示す場合がある。いくつかの実施形態では、処理回路41は、開示されたICL方法を適用し、投げ縄状カテーテルの電極間の既知の小スケール距離だけでなく、膨張可能バルーン45の端部における感知電極52間の既知の距離に基づく大スケール距離に基づいて、ICL空間及びバルーンカテーテルの形状を正確な形状にスケーリングする。
【0052】
処理回路41は、本明細書に記載される機能を実行するために、典型的にはソフトウェアでプログラムされる。ソフトウェアは、例えば、ネットワーク上で、コンピュータに電子形態でダウンロードすることができるか、又は代替として、又は更には、磁気メモリ、光学メモリ若しくは電子メモリなどの、非一時的実体的媒体上で提供及び/若しくは記憶されてもよい。
【0053】
図1は、簡潔性かつ明瞭性のため、開示技法に関連する要素のみを示す。システム20は、典型的には、開示される技術には直接関連しないために
図1及び対応する説明から意図的に省略されている、追加のモジュール及び要素を備える。
【0054】
ここでは、本発明の一実施形態による
図2のバルーンカテーテル40上の様々なデータ点の概略図である
図3を参照する。
図2も参照する。データ点の位置は、例えば、処理回路41に記憶された電気解剖学的マップに画定された座標フレーム内に提示されてもよく、システム20はその位置にバルーン40の空間内の位置を相関させる。
【0055】
図3は、近位電極52aが位置62aに位置する一方、遠位電極52bが位置62bに位置していることを示す。磁気センサ50は位置60aに位置する一方、上述したように、シャフト22の方向に平行(即ち、軸51に平行)である方向60bを示すことができる。大きな面積の切除電極55にもかかわらず、空間内の電極55は、軸51に直交する平面内に埋め込まれた円64(膨張可能バルーン45の赤道を形成する)上の電極位置65の形態で、矛盾なくかつ有用に表現することができる。換言すれば、バルーンが完全に膨張すると、電極位置65は、理想的には、膨張可能バルーン45の最大横断直径を有する円64上に配置されるはずである(
図2)。膨張可能バルーン45の公称位置は、理想的には円64の中心でもある中心点58によって画定される。電極位置65が切除電極55の位置の正確かつ有意義なデータを提供すると仮定すると、それらが画定する電極位置65及び円64を使用して、膨張可能バルーン45の位置及び配向を計算することができる。電極位置は、ACL技術に基づいて、又はICL技術を使用して計算され得る。上述したように、ACLとICLの座標フレームは異なるため、ACL又は磁気ベースの位置(位置60aなど)でICL位置を使用するために、ICL位置はまず、下記
図9~
図12を参照して詳細に説明されるACL座標空間に変換される。
【0056】
ICL追跡技術、磁気的な追跡技術、及びACL追跡技術について、
図4~
図8を参照してより詳細に以下説明する。
【0057】
ここで、
図1のシステム20における位置追跡を示す概略部分ブロック図である
図4を参照する。表面電極49が、患者28の胸部及び背部に貼付される。磁場発生コイル42は磁場発生器を形成し、患者28の下に配設され、患者28の身体内に磁場69を発生させる。
図4は、心臓26の心腔内の2つのカテーテルであるバルーンカテーテル40と投げ縄状カテーテル71を示す。バルーンカテーテル40は磁気センサ50を含むが、投げ縄状カテーテル71は磁場センサを含まない。
図4は、バルーンカテーテル40の近位電極52a(
図2)と表面電極49との間の電流の流れを表す線73も示す。
【0058】
ここで、例えば、
図1のシステム20で使用される、ICLを使用する電流分布ベースの位置追跡方法における例示的なステップを含むフローチャート100である
図5を参照する。
図4も参照する。
図5の追跡方法は、生存被験者の身体に挿入されるように構成された第1のプローブを参照して説明される。第1のプローブは、切除カテーテル、例えばバルーンカテーテル40、又は非切除カテーテル若しくはプローブ、例えば投げ縄状カテーテル71であってもよい。加えて、第1のプローブは、生存被験者の心臓又は身体の任意の他の身体部分で使用されてもよい。第1のプローブは、第1のプローブ電極、例えば、投げ縄状カテーテル71の感知電極を含む。一実施形態によれば、第1のプローブは磁場センサを含まない。別の実施形態によれば、第1のプローブは、磁場センサ、例えば、磁気センサ50を含む。
【0059】
処理回路41(
図1)は、身体内の第1のプローブ電極と身体表面電極49との間の電流を測定する(ブロック102)ように構成される。処理回路41は、第1のプローブの電流分布から第1のプローブの初期位置座標を計算する(ブロック105)ように構成される。処理回路41はまた、局所スケーリングセルを生成し、その局所スケーリングセルを組み合わせて、第1のプローブの機械的モデル103に基づいて、例えば、第1のプローブ電極(例えば、投げ縄状カテーテル71の感知電極)間の既知の間隔に基づく空間スケーリング行列を構築し(ブロック104)、体積全体に対して空間スケーリング行列の局所スケーリングセルから外挿することによって、体積全体の拡張スケーリング関数を計算する(ブロック106)ように構成される。
【0060】
処理回路41は、測定電流の分布に応じて第1の座標フレーム(例えば、ICL座標フレーム)内の第1のプローブの第1の(補正された)位置座標を計算する(ブロック108)ように構成される。処理回路41は、第1の座標フレーム内の第1のプローブの初期3次元(3D)表現をディスプレイ27にレンダリングする(ブロック110)ように構成される。
【0061】
いくつかの実施形態では、処理回路41は、
図9を参照してより詳細に説明するように、CPMの計算前に、第1の座標フレームに従って第1のプローブの初期3D表現をレンダリングし、CPMの計算後に、第2の座標フレーム(例えば、ACL座標フレーム)に従って第1のプローブの修正3D表現をレンダリングするように構成される。ICLを使用する利点は、第1の座標フレーム(例えば、ICL座標フレーム)でのレンダリングがCPM体積に限定されないことである。
【0062】
ここで、
図1のシステム20で使用される磁気ベースの位置追跡方法の例示的なステップを含むフローチャート120である
図6を参照する。
図4も参照する。
図6の追跡方法は、生存被験者の身体に挿入されるように構成された第2のプローブを参照して説明される。第2のプローブは、切除カテーテル、例えばバルーンカテーテル40、又は非切除カテーテル若しくはプローブ、例えば投げ縄状カテーテル71であってもよい。加えて、第2のプローブは、生存被験者の心臓又は身体の任意の他の身体部分に使用されてもよい。第2のプローブは、第2のプローブ電極、例えば、感知電極52及び/又は切除電極55を含む。第2のプローブは、磁場センサ、例えば、磁気センサ50を含む。
【0063】
いくつかの実施形態では、第1のプローブと第2のプローブは2つの異なるプローブであるが、2つのプローブは身体部分内の空間的制約の影響を受ける同じタイプのプローブであってもよい。いくつかの実施形態では、2つのプローブは、身体部分内で相互作用してもよく、例えば、第1のプローブは第2のプローブの内腔を通過してもよい。他の実施形態では、第1のプローブ及び第2のプローブは、同じ単一プローブである。
【0064】
処理回路41(
図1)は、身体内の第2のプローブ電極と身体表面電極49との間の電流を測定する(ブロック122)ように構成される。処理回路41は、磁場69に応答して第2のプローブの磁場センサ(例えば、磁気センサ50)から磁気位置信号を受信する(ブロック124)ように構成される。処理回路41は、磁気位置信号に応じて第2のプローブの磁気位置座標を計算する(ブロック126)ように構成される。処理回路41は、(ブロック122のステップの)測定電流の分布と磁場発生器によって画定される第2の座標フレーム(例えば、磁気位置座標)に対する磁気位置信号との間の電流-位置マップ(又は行列)(CPM)を計算する(ブロック128)ように構成される。第2のプローブが移動すると、CPMがマッピングを提供する体積は、ブロック122~128のステップを繰り返す(ライン130)ことによって拡張され得る。
【0065】
ここで、例えば、
図1のシステム20で使用されるACLを使用する、ハイブリッド磁気-電流分布ベースの位置追跡方法における例示的なステップを含むフローチャート140である
図7を参照する。
図4も参照する。
図7の追跡方法は、生存被験者の身体に挿入されるように構成された第3のプローブを参照して説明される。第3のプローブは、第1のプローブ、第2のプローブ、又は別のプローブであってもよい。第3のプローブは、切除カテーテル、例えばバルーンカテーテル40、又は非切除カテーテル若しくはプローブ、例えば投げ縄状カテーテル71であってもよい。加えて、第3のプローブは、生存被験者の心臓又は身体の任意の他の身体部分に使用されてもよい。第3のプローブは、磁場センサ、例えば磁気センサ50を含んでもよい。いくつかの実施形態では、第3のプローブは磁場センサを含まない。
【0066】
処理回路41(
図1)は、第3のプローブの第3のプローブ電極と身体表面電極49との間の電流を測定する(ブロック142)ように構成される。処理回路41は、CPMを(ブロック142のステップで測定された)測定電流の分布に適用し、第3のプローブの測定電流の分布に基づいて第3のプローブの磁気位置座標を計算する(ブロック144)ように構成される。処理回路41は、計算された磁気位置座標の座標フレーム内、即ち、ACL座標フレームでもある第2の座標フレーム内に、第3のプローブの3D表現をレンダリングする(ブロック146)ように構成されてもよい。第3のプローブが磁気センサ50又は別の磁場センサを含む場合、第3のプローブの3D表現は、磁場センサの磁気位置及び/又は測定電流の分布へのCPMの適用から計算される磁気位置座標に基づいてレンダリングされてもよい。CPMの使用と、CPMからの位置座標の計算とは、概して、
図8に示すようにCPMが計算された体積に制限されることに留意されたい。
【0067】
ここで、
図1のシステム20におけるCPM体積148を示す概略部分ブロック図である
図8を参照する。
図8は、バルーンカテーテル40が、感知電極52a及び磁気センサ50からの信号に基づいてCPMの計算用のデータを提供しているが、切除電極55はCPM体積148外にあることを示す。したがって、切除電極55の位置は、ACLを使用して判定することができない。しかしながら、切除電極55の位置は、第1の座標フレーム内のICLを使用して判定されてもよい。
図8は、投げ縄状カテーテル71の電極がCPM体積148内にあり、したがって、投げ縄状カテーテル71の位置が、第2の座標フレーム内のACLを使用して計算され得ることも示す。上記のシナリオでは、バルーンカテーテル40及び投げ縄状カテーテル71は、カテーテルの位置が異なる座標フレームにおいて既知であるため、同じ画像で一緒にレンダリングされない。
【0068】
ここで、
図1のシステム20で使用される座標フレーム変換方法における例示的なステップを含むフローチャート150である
図9を参照する。処理回路41(
図1)は、第1の座標フレームと第2の座標フレームとの間(即ち、ICL座標フレームとACL座標フレームとの間)の変換を求める(ブロック152)ように構成される。変換は、CPM体積148内の1つ以上の位置において同じプローブによって測定されたICL座標及びACL座標の使用に基づいてもよい。変換は概して、回転及び並進要素を含む。バルーンカテーテル40に基づく変換を求める例示的な方法を、
図11及び
図12を参照してより詳細に説明する。
【0069】
処理回路41は、変換を第1の座標フレーム(即ち、ICL座標フレーム)内の第1のプローブの第1の位置座標に適用して、第2の座標フレーム(即ち、ACL座標フレーム)内の第1のプローブの第2の位置座標を生成する(ブロック154)ように構成される。第1の位置座標は、第1の座標フレーム内の第1のプローブの位置及び配向を含んでもよい。第2の位置座標は、第2の座標フレーム内の第1のプローブの位置及び配向を含んでもよい。第2の位置座標は、ICL位置座標からの変換を使用することなく、ACLの使用がCPM体積148内でのみ可能である場合であっても、CPMがマッピングを提供するCPM体積148外に位置してもよい。
【0070】
処理回路41は、第2の座標フレーム(即ち、ACL座標フレーム)内の第2の位置座標(例えば、位置及び配向)に従って第1のプローブの修正3D表現をディスプレイ27にレンダリングする(ブロック156)ように構成される。いくつかの実施形態では、第1の座標フレーム(即ち、ICL座標フレーム)内の第1のプローブの第1の位置座標(ここではICL座標フレームからACL座標フレームへと変換されている)がCPM計算前に計算されていても、ブロック156のレンダリングステップはCPM計算後に実行される。
【0071】
いくつかの実施形態では、処理回路は、CPMの計算後に計算されたICL座標から変換されたACL座標であり得る追加の位置座標に従って、又はACLを用いて電流分布に基づきCPMから導出された磁気位置及び/又は第1のプローブの磁場センサによって検出された磁場から導出された磁気位置に基づくCPM体積148内に位置する位置座標に従って、第1のプローブの更なる修正3D表現をレンダリングするように構成されてもよい。
【0072】
第1のプローブは、任意の好適な画像レンダリング技術を使用してレンダリングされてもよい。例として、バルーンカテーテル40は、任意の好適な方法に基づいて、グラフィック処理ユニット(GPU)を使用してレンダリングされてもよく、限定するものではないが、参照により本明細書に組み込まれるZarらの米国特許公開第2018/0182157号に記載されている画像化方法を使用してレンダリングされてもよい。具体的にはZar,らの段落31~48は、電気解剖学的マップ上に二次曲面をレンダリングすることを記載している。二次曲面の例には、球体、楕円体、円筒体、円錐体、双曲放物面、放物面、及び双極面が挙げられる。画像化は、膨張可能バルーン45のスプラインの機械的データ(
図2)を使用することを含んでもよく、膨張可能バルーン45のスプライン間に物質が存在し、様々な二次曲面を組み合わせてバルーンカテーテル40の画像を形成することを想定してもよい。
【0073】
ここで、
図1のシステム20で使用される第2の座標フレーム内のレンダリングを示すユーザインタフェース画面158の概略図である
図10を参照する。いくつかの実施形態では、処理回路41(
図1)は、変換された第2の位置座標に従ってレンダリングされた第1のプローブの修正3D表現と、ACLを用いてCPMから導出された磁気位置、及び/又は第2のプローブの磁場センサによって検出された磁場から導出された磁気位置、及び/又は
図9のブロック154のステップを使用してICLからACLに変換された座標から導出された磁気位置に従ってレンダリングされた第2のプローブの3D表現と、を含むディスプレイ27にユーザインタフェース画面158をレンダリングするように構成されている。したがって、ディスプレイにレンダリングされた画像は、統合されたハイブリッドICL-ACLベースの可視化及びマッピングである。
図10は、上記の位置追跡方法により、ユーザインタフェース画面158内の心臓26の3D表現でレンダリングされている投げ縄状カテーテル71及びバルーンカテーテル40を示す。
【0074】
ここで、
図1のシステム20で使用される第1の(ICL)座標フレーム内のバルーン位置行列を計算する方法における例示的なステップを含むフローチャート160である
図11を参照する。
図2も参照する。
【0075】
較正ステップの一部として、バルーンカテーテル40は、バルーンカテーテル40の位置及び配向を登録するために、所与の位置及び所与の配向、典型的には身体の外側の所与の位置(原点位置)に配置され、近位電極52aは0,0,0デカルト座標に位置し、シャフト22はデカルト座標系のx軸に沿って方向付けられる。次いで、バルーンカテーテル40を、点ICL及びACL位置が計算される身体内の新しい位置に移動させる。ICL位置の処理は
図11を参照して説明し、ACL位置の処理は
図12を参照して説明する。デカルト座標は、例として使用され、任意の好適な座標系が使用されてもよい。
【0076】
処理回路41(
図1)は、ICL位置(即ち、ICL座標フレーム内の位置座標)を受信する(ブロック162)ように構成されている。ICL位置は、各切除電極55に対する(x,y,z)座標を有する10個の切除電極55の位置を含む。
【0077】
処理回路41は、切除電極55のICL位置によって画定される平面と、切除電極55のICL位置によって画定される円の中心とを、任意の好適な平面及び円形最良適合方法を用いて求める(ブロック164)ように構成される。あるいは、切除電極55のICL位置によって画定される円の中心は、切除電極55のICL位置を平均化することによって計算されてもよい。処理回路41は、見出された平面を回転させることなく、実測面の実測中心を0,0,0座標に並進させる(ブロック166)ように構成される。
【0078】
処理回路41は、座標0,0,0の原点位置に近位電極52aを有するバルーンカテーテル40のモデルを受信する(ブロック168)ように構成される。処理回路41は、モデルの平面を並進させる(ブロック170)ように構成されており、近位電極52aが0,0,0座標の原点位置に置かれる代わりに、モデルの平面を回転させることなく、モデルの切除電極の中心が0,0,0座標と位置合わせされる。
【0079】
ここで、バルーンカテーテル40の切除電極55によって画定される平面の中心と、バルーンモデルの切除電極55によって画定される平面の中心は、どちらも0,0,0座標に位置する。処理回路41は、2つの平面間の回転を求めることによってバルーンの回転を計算して、ICL座標フレーム内のバルーン回転行列RICL-sclを求める(ブロック172)ように構成される。
【0080】
上記の計算されたバルーン回転行列は、ICLの位置がICL技術に従ってスケーリングされる際にスケーリング要素を含む。処理回路41は、スケーリングなしにバルーン回転行列を求める(ブロック174)ように構成される。
【0081】
【数1】
式中、[U,S,V]=svd(R
ICL-scl)であり、Det[V.U
T]は[V.U
T]の決定子であり、m×n行列Mに関しては、M=U
*S
*V
Tの形の因数分解(Mの「特異値分解」と称される)が存在し、ただし、Uはm×mのユニタリ行列(直交行列)であり、Sは対角上の非負の実数を有する対角m×n行列であり、Vはn×nのユニタリ行列であり、V
TはVの共役転置である。Sの対角成分はMの単一値として知られている。共通の規則は、単一値を降順で列挙することである。いくつかの実施形態では、対角行列SはMによって一意に決定される。特殊だが共通である場合、Mが正の決定子を有するm×mの実正方行列であるとき、U、V
T、及びSも実m×m行列である。Sはスケーリング行列とみなすことができ、U、V
Tは回転行列とみなすことができる。したがって、表現U、S、V
Tは、回転又は反射、スケーリング、別の回転又は反射を含む3つの幾何学的変換の合成として直感的に解釈され得る。
【0082】
処理回路41は、身体内のバルーンカテーテル40の新しい位置で近位電極52aのICL位置[X
ICL,Y
ICL,Z
ICL]を受信する(ブロック176)ように構成される。近位電極52aのICL位置は、近位電極52aが(バルーンカテーテル40の)磁気センサ50と略同じ位置にあるため、バルーンICL位置行列を求めるのに使用され、
図12を参照してより詳細に説明するバルーンACL位置行列を計算する際に使用される。近位電極52aの位置は、0,0,0の原点から近位電極52aの電流位置への、近位電極52aの並進ベクトル
【0083】
【0084】
処理回路41は、以下のように、RICL及び近位電極52aのICL並進ベクトル
【0085】
【数3】
に基づく回転と並進に関して、バルーン位置行列M
ICLを求める(ブロック178)ように構成される。
【0086】
【0087】
ここで、
図1のシステム20で使用される変換行列を計算する方法における例示的なステップを含むフローチャート180である
図12を参照する。
図2も参照する。
【0088】
処理回路41は、第2の(ACL)座標フレーム内の位置(
図11を参照してICL値を計算するために使用されるのと同じ位置)で、バルーンカテーテル40の磁気センサ50の位置(位置及び配向)を受信する(ブロック182)ように構成される。
【0089】
処理回路41は、第2の(ACL)座標フレーム内のブロック182のステップで受信された磁気センサ50の配向から3×3のバルーン回転行列RACLを求める(ブロック184)ように構成される。
【0090】
処理回路41は、ブロック182のステップで受信した位置データから第2の(ACL)座標フレーム内の磁気センサ50のバルーン磁気センサ並進ベクトル
【0091】
【数5】
を求める(ブロック186)ように構成される。
【0092】
処理回路41は、RACL及び
【0093】
【数6】
からの回転及び並進を含む、バルーンACL位置行列M
ACLを求める(ブロック188)ように構成されている。
【0094】
【0095】
処理回路41は、ICL位置行列MICL及びACL位置行列MACLでの動作の実行に基づいて、ICL座標フレームからACL座標フレームへの変換行列TICL-ACL(回転及び並進要素を含む)を求める(ブロック190)ように構成される。ブロック190のプロセスについては、以下でより詳細に説明する。
【0096】
ICL配向からACL配向への回転変換を提供する回転変換行列RICL-ACLは、以下のように定義される。
RACL=RICL-ACL
*RICL
RICL-ACL=RACL
*RICL
-1
【0097】
近位電極52aのICL座標フレームとACL座標フレームとの間の並進は、以下のように表される。
【0098】
【0099】
ICL座標フレームからACL座標フレームに変換する変換行列は、4×4行列であり、以下のような回転及び並進要素を含む。
【0100】
【0101】
変換は、TICL-ACL
*PICL=PACLに基づいてICL座標フレームからACL座標フレームへの任意の好適なプローブ可視化を伝達するために使用され、ただし、PICLはICL座標フレーム内の位置行列であり、PACLはACL座標フレーム内の位置行列である。
【0102】
本発明の様々に異なる特徴が、明確性のために複数の別個の実施形態として記載されているが、これらが単一の実施形態中に組み合わせて提示されてもよい。逆に、説明を簡単にするために単一の実施形態として記載されている本発明の様々に異なる特徴が、別々に又は任意の適切な部分的組み合わせとして提示されてもよい。
【0103】
上述の実施形態は、例として引用されており、本発明は、上述に特に示され、記載されたものによって限定されない。むしろ、本発明の範囲は、上述の様々な特徴の組み合わせ及び副組み合わせの両方、並びに前述の記載を読むと当業者が思い付くであろう先行技術に開示されていないその変形及び修正を含む。
【0104】
〔実施の態様〕
(1) 医療用プローブ追跡システムであって、
生存被験者の皮膚表面に貼付されるように構成された複数の身体表面電極と、
前記生存被験者の身体に挿入されるように構成されており、第1のプローブ電極を含む、第1のプローブと、
前記生存被験者の前記身体に挿入されるように構成されており、第2のプローブ電極と磁場センサとを含む、第2のプローブと、
前記生存被験者の前記身体内に磁場を発生させるように構成された磁場発生器と、
ディスプレイと、
処理回路であって、
前記身体表面電極と前記身体内の前記第1及び第2のプローブ電極との間の第1及び第2の電流をそれぞれ測定することと、
前記第1の電流の分布に応じて、第1の座標フレーム内の前記第1のプローブの第1の位置座標を計算することと、
前記磁場に応答して、前記磁場センサから磁気位置信号を受信することと、
前記第1の座標フレーム内の前記第1のプローブの初期3次元(3D)表現を前記ディスプレイにレンダリングし、次いで、前記第2の電流の分布と前記磁場発生器によって画定された第2の座標フレームに対する前記磁気位置信号との間で電流-位置マップ(CPM)を計算することと、
前記第1の座標フレームと前記第2の座標フレームとの間の変換を求めることと、
前記変換を前記第1の位置座標に適用して、前記第2の座標フレーム内の前記第1のプローブの第2の位置座標を生成することと、
前記第2の座標フレーム内の前記第2の位置座標に従って前記第1のプローブの修正3D表現を前記ディスプレイにレンダリングすることと、
を行うように構成された処理回路と、
を備える、システム。
(2) 前記処理回路は、前記CPMの計算前に、前記第1の座標フレームに従って前記第1のプローブの前記初期3D表現をレンダリングし、前記CPMの計算後に、前記第2の座標フレームに従って前記第1のプローブの前記修正3D表現をレンダリングするように構成されている、実施態様1に記載のシステム。
(3) 前記変換は、回転及び並進要素を含み、前記第1の位置座標は位置及び配向を有し、前記第2の位置座標は位置及び配向を有し、前記処理回路は、前記第2の位置座標の前記位置及び前記配向に基づいて、前記第1のプローブの前記修正3D表現をレンダリングするように構成されている、実施態様1に記載のシステム。
(4) 前記第2のプローブは、シャフトと、前記シャフトの遠位端に装着された膨張可能バルーンと、前記膨張可能バルーン上に配設された前記第2のプローブ電極の複数の電極と、を有するバルーンカテーテルを含み、前記磁場センサは前記シャフトの近位端に配設されており、前記処理回路は、前記複数の電極によって画定された第1の平面と、バルーンカテーテルモデル内の電極によって画定された第2の平面との間の回転からバルーン回転行列を求め、前記バルーン回転行列に基づいて前記変換を求めるように構成されている、実施態様3に記載のシステム。
(5) 前記第2の位置座標は、前記CPMがマッピングを行う体積外に位置する、実施態様1に記載のシステム。
【0105】
(6) 前記処理回路は、前記変換された第2の位置座標に従った前記第1のプローブの前記修正3D表現と、前記CPMから導出された磁気位置及び前記磁場センサによって検出された前記磁場から導出された磁気位置のうちの任意の1つ以上に少なくとも基づく前記第2のプローブの3D表現と、をレンダリングするように構成されている、実施態様1に記載のシステム。
(7) 医療用プローブ追跡システムであって、
生存被験者の皮膚表面に貼付されるように構成された複数の身体表面電極と、
前記生存被験者の身体に挿入されるように構成されており、プローブ電極と磁場センサとを含む、プローブと、
前記生存被験者の前記身体内に磁場を発生させるように構成された磁場発生器と、
ディスプレイと、
処理回路であって、
前記身体表面電極と前記身体内の前記プローブ電極との間の電流をそれぞれ測定することと、
前記電流の第1の多重度の分布に応じて、第1の座標フレーム内の前記プローブの第1の位置座標を計算することと、
前記磁場に応答して、前記磁場センサから磁気位置信号を受信することと、
前記第1の座標フレーム内の前記プローブの初期3次元(3D)表現を前記ディスプレイにレンダリングし、次いで、前記電流の第2の多重度の分布と前記磁場発生器によって画定された第2の座標フレームに対する前記磁気位置信号との間で電流-位置マップ(CPM)を計算することと、
前記第1の座標フレームと前記第2の座標フレームとの間の変換を求めることと、
前記変換を前記第1の位置座標に適用して、前記第2の座標フレーム内の前記プローブの第2の位置座標を生成することと、
前記第2の座標フレーム内の前記第2の位置座標に従った前記プローブの修正3D表現を前記ディスプレイにレンダリングすることと、
を行うように構成された処理回路と、
を備える、システム。
(8) 前記処理回路は、前記CPMの計算前に、前記第1の座標フレームに従って前記プローブの前記初期3D表現をレンダリングし、前記CPMの計算後に、前記第2の座標フレームに従って前記プローブの前記修正3D表現をレンダリングするように構成されている、実施態様7に記載のシステム。
(9) 前記変換は、回転及び並進要素を含み、前記第1の位置座標は位置及び配向を有し、前記第2の位置座標は位置及び配向を有し、前記処理回路は、前記第2の位置座標の前記位置及び前記配向に基づいて、前記プローブの前記修正3D表現をレンダリングするように構成されている、実施態様7に記載のシステム。
(10) 前記プローブは、シャフトと、前記シャフトの遠位端に装着された膨張可能バルーンと、前記膨張可能バルーン上に配設された前記プローブ電極の複数の電極と、を有するバルーンカテーテルを含み、前記磁場センサは前記シャフトの近位端に配設されており、前記処理回路は、前記複数の電極によって画定された第1の平面と、バルーンカテーテルモデル内の電極によって画定された第2の平面との間の回転からバルーン回転行列を求め、前記バルーン回転行列に基づいて前記変換を求めるように構成されている、実施態様9に記載のシステム。
【0106】
(11) 前記第2の位置座標は、前記CPMがマッピングを行う体積外に位置する、実施態様7に記載のシステム。
(12) 前記処理回路は、前記電流の第3の多重度の分布に基づいて前記CPMから導出された磁気位置及び前記磁場センサによって検出された前記磁場から導出された磁気位置のうちの任意の1つ以上に少なくとも基づいて、前記体積内に位置する第3の位置座標に従って前記プローブの更なる修正3D表現をレンダリングするように構成されている、実施態様11に記載のシステム。
(13) 医療用プローブ追跡方法であって、
複数の身体表面電極を生存被験者の皮膚表面に貼付することと、
第1のプローブ電極を含む第1のプローブを前記生存被験者の身体内に挿入することと、
第2のプローブ電極と磁場センサとを含む第2のプローブを前記生存被験者の前記身体内に挿入することと、
磁場発生器によって、前記生存被験者の前記身体内に磁場を発生させることと、
前記身体表面電極と前記身体内の前記第1及び第2のプローブ電極との間の第1及び第2の電流をそれぞれ測定することと、
前記第1の電流の分布に応じて、第1の座標フレーム内の前記第1のプローブの第1の位置座標を計算することと、
前記磁場に応答して、前記磁場センサから磁気位置信号を受信することと、
前記第1の座標フレーム内の前記第1のプローブの初期3次元(3D)表現を前記ディスプレイにレンダリングし、次いで、前記第2の電流の分布と前記磁場発生器によって画定された第2の座標フレームに対する前記磁気位置信号との間で電流-位置マップ(CPM)を計算することと、
前記第1の座標フレームと前記第2の座標フレームとの間の変換を求めることと、
前記変換を前記第1の位置座標に適用して、前記第2の座標フレーム内の前記第1のプローブの第2の位置座標を生成することと、
前記第2の座標フレーム内の前記第2の位置座標に従った前記第1のプローブの修正3D表現を前記ディスプレイにレンダリングすることと、
を含む、方法。
(14) 前記初期3D表現の前記レンダリングは、前記CPMの前記計算前に実行され、前記修正3D表現の前記レンダリングは、前記CPMの前記計算後に実行される、実施態様13に記載の方法。
(15) 前記変換は、回転及び並進要素を含み、前記第1の位置座標は位置及び配向を有し、前記第2の位置座標は位置及び配向を有し、前記修正3D表現の前記レンダリングは、前記第2の位置座標の前記位置及び前記配向に基づいて、前記第1のプローブの前記修正3D表現をレンダリングすることを含む、実施態様13に記載の方法。
【0107】
(16) 前記第2のプローブは、シャフトと、前記シャフトの遠位端に装着された膨張可能バルーンと、前記膨張可能バルーン上に配設された前記第2のプローブ電極の複数の電極と、を有するバルーンカテーテルを含み、前記磁場センサは前記シャフトの近位端に配設されており、前記方法は、前記複数の電極によって画定された第1の平面と、バルーンカテーテルモデル内の電極によって画定された第2の平面との間の回転からバルーン回転行列を求めることと、前記バルーン回転行列に基づいて前記変換を求めることと、を更に含む、実施態様15に記載の方法。
(17) 前記第2の位置座標は、前記CPMがマッピングを行う体積外に位置する、実施態様13に記載の方法。
(18) 前記変換された第2の位置座標に従った前記第1のプローブの前記修正3D表現と、前記CPMから導出された磁気位置及び前記磁場センサによって検出された前記磁場から導出された磁気位置のうちの任意の1つ以上に少なくとも基づく前記第2のプローブの3D表現と、をレンダリングすることを更に含む、実施態様13に記載の方法。
(19) 医療用プローブ追跡方法であって、
複数の身体表面電極を生存被験者の皮膚表面に貼付することと、
プローブ電極と磁場センサとを含むプローブを前記生存被験者の身体内に挿入することと、
磁場発生器によって、前記生存被験者の前記身体内に磁場を発生させることと、
前記身体表面電極と前記身体内の前記プローブ電極との間の電流をそれぞれ測定することと、
前記電流の第1の多重度の分布に応じて、第1の座標フレーム内の前記プローブの第1の位置座標を計算することと、
前記磁場に応答して、前記磁場センサから磁気位置信号を受信することと、
前記第1の座標フレーム内の前記プローブの初期3次元(3D)表現を前記ディスプレイにレンダリングし、次いで、前記電流の第2の多重度の分布と前記磁場発生器によって画定された第2の座標フレームに対する前記磁気位置信号との間で電流-位置マップ(CPM)を計算することと、
前記第1の座標フレームと前記第2の座標フレームとの間の変換を求めることと、
前記変換を前記第1の位置座標に適用して、前記第2の座標フレーム内の前記プローブの第2の位置座標を生成することと、
前記第2の座標フレーム内の前記第2の位置座標に従って前記プローブの修正3D表現を前記ディスプレイにレンダリングすることと、
を含む、方法。
(20) 前記初期3D表現の前記レンダリングは、前記CPMの前記計算前に実行され、前記修正3D表現の前記レンダリングは、前記CPMの前記計算後に実行される、実施態様19に記載の方法。
【0108】
(21) 前記変換は、回転及び並進要素を含み、前記第1の位置座標は位置及び配向を有し、前記第2の位置座標は位置及び配向を有し、前記修正3D表現の前記レンダリングは、前記第2の位置座標の前記位置及び前記配向に基づいて、前記第1のプローブの前記修正3D表現をレンダリングすることを含む、実施態様19に記載の方法。
(22) 前記プローブは、シャフトと、前記シャフトの遠位端に装着された膨張可能バルーンと、前記膨張可能バルーン上に配設された前記プローブ電極の複数の電極と、を有するバルーンカテーテルを含み、前記磁場センサは前記シャフトの近位端に配設されており、前記方法は、前記複数の電極によって画定された第1の平面と、バルーンカテーテルモデル内の電極によって画定された第2の平面との間の回転からバルーン回転行列を求めることと、前記バルーン回転行列に基づいて前記変換を求めることと、を更に含む、実施態様21に記載の方法。
(23) 前記第2の位置座標は、前記CPMがマッピングを行う体積外に位置する、実施態様19に記載の方法。
(24) 前記電流の第3の多重度の分布に基づいて前記CPMから導出された磁気位置及び前記磁場センサによって検出された前記磁場から導出された磁気位置のうちの任意の1つ以上に少なくとも基づいて、前記体積内に位置する第3の位置座標に従って前記プローブの更なる修正3D表現をレンダリングすることを更に含む、実施態様23に記載の方法。