(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-12-18
(45)【発行日】2023-12-26
(54)【発明の名称】走行支援装置、走行支援方法、および走行支援プログラム
(51)【国際特許分類】
B60W 30/08 20120101AFI20231219BHJP
B60W 30/10 20060101ALI20231219BHJP
B60W 40/04 20060101ALI20231219BHJP
G08G 1/16 20060101ALI20231219BHJP
【FI】
B60W30/08
B60W30/10
B60W40/04
G08G1/16 C
(21)【出願番号】P 2020028410
(22)【出願日】2020-02-21
【審査請求日】2022-07-07
(73)【特許権者】
【識別番号】000004260
【氏名又は名称】株式会社デンソー
(74)【代理人】
【識別番号】100106149
【氏名又は名称】矢作 和行
(74)【代理人】
【識別番号】100121991
【氏名又は名称】野々部 泰平
(74)【代理人】
【識別番号】100145595
【氏名又は名称】久保 貴則
(72)【発明者】
【氏名】伊藤 章
【審査官】楠永 吉孝
(56)【参考文献】
【文献】特開2019-137189(JP,A)
【文献】特開2009-116790(JP,A)
【文献】特開2009-199532(JP,A)
【文献】特開2018-034709(JP,A)
【文献】特開2010-033441(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B60W 30/00~60/00
G08G 1/00~ 1/16
(57)【特許請求の範囲】
【請求項1】
自車両(A)の走行を支援する走行支援装置であって、
前記自車両の周辺の内領域に存在する移動体に関して、前記自車両の状態に応じた前記移動体の挙動である対自車インタラクションを予測する内領域予測部(130)と、
前記内領域よりも外側の領域である外領域に存在する前記移動体に関して、前記移動体の周辺環境に応じた前記移動体の挙動である対環境インタラクションを予測する外領域予測部(110)と、
前記対環境インタラクションに基づいて、前記自車両に予定される、走行制御によって実現可能な前記自車両のふるまいの類型であ
って、前記自車両の進行に応じた前記自車両の走行位置を規定する将来軌道の取り得る範囲を規定する将来行動を計画する外領域計画部(140)と、
前記将来行動および前記対自車インタラクションに基づいて、前記将来行動に従う前
記将来軌道を計画する内領域計画部(150)と、
を備える走行支援装置。
【請求項2】
前記自車両に搭載された車載センサ(25)の検出範囲外である死角領域に存在する前記移動体に関する死角移動体情報に基づいて、前記移動体の挙動を予測する死角領域予測部を備え、
前記外領域計画部は、前記死角領域予測部にて予測された前記移動体の挙動に基づいて、前記将来行動を計画する請求項1に記載の走行支援装置。
【請求項3】
未検出の前記移動体の存在が予測されるか否かを判定する可能性判定部(120)を備え、
前記外領域計画部は、未検出の前記移動体の存在が予測されると判定された場合に、未検出の前記移動体の挙動を想定した前記将来行動を計画する請求項1または請求項2に記載の走行支援装置。
【請求項4】
前記外領域予測部は、前記外領域における信号機の点灯状態に応じた前記対環境インタラクションを予測する請求項1から請求項3のいずれか1項に記載の走行支援装置。
【請求項5】
前記外領域予測部は、前記外領域における前記移動体と異なる別移動体の状態に応じた前記対環境インタラクションを予測する請求項1から請求項4のいずれか1項に記載の走行支援装置。
【請求項6】
前記内領域予測部は、前記移動体の進行方向に基づいて前記対自車インタラクションを予測する請求項1から請求項5のいずれか1項に記載の走行支援装置。
【請求項7】
自車両(A)の走行を支援するために、プロセッサ(102)によって実行される走行支援方法であって、
前記自車両の周辺の内領域に存在する移動体に関して、前記自車両の状態に応じた前記移動体の挙動である対自車インタラクションを予測する内領域予測プロセス(S70)と、
前記内領域よりも外側の領域である外領域に存在する前記移動体に関して、前記移動体の周辺環境に応じた前記移動体の挙動である対環境インタラクションを予測する外領域予測プロセス(S20)と、
前記対環境インタラクションに基づいて、前記自車両に予定される、走行制御によって実現可能な前記自車両のふるまいの類型であ
って、前記自車両の進行に応じた前記自車両の走行位置を規定する将来軌道の取り得る範囲を規定する将来行動を計画する外領域計画プロセス(S50)と、
前記将来行動および前記対自車インタラクションに基づいて、前記将来行動に従う前
記将来軌道を計画する内領域計画プロセス(S80)と、
を含む走行支援方法。
【請求項8】
前記自車両に搭載された車載センサ(25)の検出範囲外である死角領域に存在する前記移動体に関する死角移動体情報に基づいて、前記移動体の挙動を予測する死角領域予測プロセス(S30)を含み、
前記外領域計画プロセスでは、前記死角領域予測プロセスにて予測された前記移動体の挙動に基づいて、前記将来行動を計画する請求項7に記載の走行支援方法。
【請求項9】
未検出の前記移動体の存在が予測されるか否かを判定する可能性判定プロセス(S40)を含み、
前記外領域計画プロセスでは、未検出の前記移動体の存在が予測されると判定された場合に、未検出の前記移動体の挙動を想定した前記将来行動を計画する請求項7または請求項8に記載の走行支援方法。
【請求項10】
前記外領域予測プロセスでは、前記外領域における信号機の点灯状態に応じた前記対環境インタラクションを予測する請求項7から請求項9のいずれか1項に記載の走行支援方法。
【請求項11】
前記外領域予測プロセスでは、前記外領域における前記移動体と異なる別移動体の状態に応じた前記対環境インタラクションを予測する請求項7から請求項10のいずれか1項に記載の走行支援方法。
【請求項12】
前記内領域予測プロセスでは、前記移動体の進行方向に基づいて前記対自車インタラクションを予測する請求項7から請求項11のいずれか1項に記載の走行支援方法。
【請求項13】
自車両(A)の走行を支援するために、プロセッサ(102)に実行させる命令を含む走行支援プログラムであって、
前記命令は、
前記自車両の周辺の内領域に存在する移動体に関して、前記自車両の状態に応じた前記移動体の挙動である対自車インタラクションを予測させる内領域予測プロセス(S70)と、
前記内領域よりも外側の領域である外領域に存在する前記移動体に関して、前記移動体の周辺環境に応じた前記移動体の挙動である対環境インタラクションを予測させる外領域予測プロセス(S20)と、
前記対環境インタラクションに基づいて、前記自車両に予定される、走行制御によって実現可能な前記自車両のふるまいの類型であ
って、前記自車両の進行に応じた前記自車両の走行位置を規定する将来軌道の取り得る範囲を規定する将来行動を計画させる外領域計画プロセス(S50)と、
前記将来行動および前記対自車インタラクションに基づいて、前記将来行動に従う前
記将来軌道を計画させる内領域計画プロセス(S80)と、
を含む走行支援プログラム。
【請求項14】
前記自車両に搭載された車載センサ(25)の検出範囲外である死角領域に存在する前記移動体に関する死角移動体情報に基づいて、前記移動体の挙動を予測させる死角領域予測プロセス(S30)を含み、
前記外領域計画プロセスでは、前記死角領域予測プロセスにて予測された前記移動体の挙動に基づいて、前記将来行動を計画させる請求項13に記載の走行支援プログラム。
【請求項15】
未検出の前記移動体の存在が予測されるか否かを判定させる可能性判定プロセス(S40)を含み、
前記外領域計画プロセスでは、未検出の前記移動体の存在が予測されると判定された場合に、未検出の前記移動体の挙動を想定した前記将来行動を計画させる請求項13または請求項14に記載の走行支援プログラム。
【請求項16】
前記外領域予測プロセスでは、前記外領域における信号機の点灯状態に応じた前記対環境インタラクションを予測させる請求項13から請求項15のいずれか1項に記載の走行支援プログラム。
【請求項17】
前記外領域予測プロセスでは、前記外領域における前記移動体と異なる別移動体の状態に応じた前記対環境インタラクションを予測させる請求項13から請求項16のいずれか1項に記載の走行支援プログラム。
【請求項18】
前記内領域予測プロセスでは、前記移動体の進行方向に基づいて前記対自車インタラクションを予測する請求項13から請求項17のいずれか1項に記載の走行支援プログラム。
【発明の詳細な説明】
【技術分野】
【0001】
この明細書における開示は、自車両の走行を支援する技術に関する。
【背景技術】
【0002】
特許文献1には、他車両の動作を予測する装置が開示されている。この装置は、運転環境に応じて他車両の運転特性を推定し、当該運転特性に基づいて他車両の動作を予測する。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
他車両を含む移動体の挙動は、状況に応じて自車両からも影響を受け得る。特許文献1には、他車両の挙動予測に関して、自車両の影響を考慮することについては記載されていない。このため、特許文献1の装置は、状況に応じた移動体の挙動予測および予測結果の利用ができない虞がある。
【0005】
開示される目的は、状況に応じた移動体の挙動予測および予測結果の利用が可能な走行支援装置、走行支援方法、および走行支援プログラムを提供することである。
【課題を解決するための手段】
【0006】
この明細書に開示された複数の態様は、それぞれの目的を達成するために、互いに異なる技術的手段を採用する。また、特許請求の範囲およびこの項に記載した括弧内の符号は、ひとつの態様として後述する実施形態に記載の具体的手段との対応関係を示す一例であって、技術的範囲を限定するものではない。
【0007】
開示された走行支援装置のひとつは、自車両(A)の走行を支援する走行支援装置であって、
自車両の周辺の内領域に存在する移動体に関して、自車両の状態に応じた移動体の挙動である対自車インタラクションを予測する内領域予測部(130)と、
内領域よりも外側の領域である外領域に存在する移動体に関して、移動体の周辺環境に応じた移動体の挙動である対環境インタラクションを予測する外領域予測部(110)と、
対環境インタラクションに基づいて、自車両に予定される、走行制御によって実現可能な自車両のふるまいの類型であって、自車両の進行に応じた自車両の走行位置を規定する将来軌道の取り得る範囲を規定する将来行動を計画する外領域計画部(140)と、
将来行動および対自車インタラクションに基づいて、将来行動に従う将来軌道を計画する内領域計画部(150)と、
を備える。
【0008】
開示された走行支援方法のひとつは、自車両(A)の走行を支援するために、プロセッサ(102)によって実行される走行支援方法であって、
自車両の周辺の内領域に存在する移動体に関して、自車両の状態に応じた移動体の挙動である対自車インタラクションを予測する内領域予測プロセス(S70)と、
内領域よりも外側の領域である外領域に存在する移動体に関して、移動体の周辺環境に応じた移動体の挙動である対環境インタラクションを予測する外領域予測プロセス(S20)と、
対環境インタラクションに基づいて、自車両に予定される、走行制御によって実現可能な自車両のふるまいの類型であって、自車両の進行に応じた自車両の走行位置を規定する将来軌道の取り得る範囲を規定する将来行動を計画する外領域計画プロセス(S50)と、
将来行動および対自車インタラクションに基づいて、将来行動に従う将来軌道を計画する内領域計画プロセス(S80)と、
を含む。
【0009】
開示された走行支援プログラムのひとつは、自車両(A)の走行を支援するために、プロセッサ(102)に実行させる命令を含む走行支援プログラムであって、
命令は、
自車両の周辺の内領域に存在する移動体に関して、自車両の状態に応じた移動体の挙動である対自車インタラクションを予測させる内領域予測プロセス(S70)と、
内領域よりも外側の領域である外領域に存在する移動体に関して、移動体の周辺環境に応じた移動体の挙動である対環境インタラクションを予測させる外領域予測プロセス(S20)と、
対環境インタラクションに基づいて、自車両に予定される、走行制御によって実現可能な自車両のふるまいの類型であって、自車両の進行に応じた自車両の走行位置を規定する将来軌道の取り得る範囲を規定する将来行動を計画させる外領域計画プロセス(S50)と、
将来行動および対自車インタラクションに基づいて、将来行動に従う将来軌道を計画させる内領域計画プロセス(S80)と、
を含む。
【0010】
これらの開示によれば、自車両の周辺の内領域に存在する移動体に関しては、自車両の状態に応じた移動体の挙動である対自車インタラクションが予測される。そして、内領域よりも外側の領域である外領域に存在する移動体に関しては、移動体の周辺環境に応じた移動体の挙動である対環境インタラクションが予測される。そして、対環境インタラクションに基づいて自車両の将来行動が計画され、対自車インタラクションに基づいて自車両の将来軌道が計画される。故に、自車両に比較的近く、自車両の影響がより大きくなり易い移動体と、自車両から比較的遠く、自車両の影響がより小さくなり易い移動体とで、それぞれの状況に応じた挙動予測および予測結果の利用が実施され得る。以上により、状況に応じた移動体の挙動予測が可能な走行支援装置、走行支援方法、および走行支援プログラムが提供され得る。
【図面の簡単な説明】
【0011】
【
図1】走行支援ECUを含むシステムを示す図である。
【
図2】走行支援ECUが有する機能の一例を示すブロック図である。
【
図3】走行支援ECUが実行する走行支援方法の一例を示すフローチャートである。
【
図4】対自車インタラクションの予測の一例を説明するための図である。
【
図5】対自車インタラクションの予測の一例を説明するための図である。
【
図6】対自車インタラクションの予測の一例を説明するための図である。
【
図7】対環境インタラクションの予測の一例を説明するための図である。
【
図8】対環境インタラクションの予測の一例を説明するための図である。
【
図9】死角移動体情報に基づく移動体の挙動予測の一例を説明するための図である。
【
図10】死角移動体情報に基づく移動体の挙動予測の一例を説明するための図である。
【
図11】死角移動体情報に基づく移動体の挙動予測の一例を説明するための図である。
【
図12】死角移動体情報に基づく移動体の挙動予測の一例を説明するための図である。
【
図13】未検出の移動体についての存在予測の一例を説明するための図である。
【発明を実施するための形態】
【0012】
(第1実施形態)
第1実施形態の走行支援装置について、
図1~
図13を参照しながら説明する。第1実施形態の走行支援装置は、自車両Aに搭載された電子制御装置である走行支援ECU100によって提供される。自車両Aは、自動運転機能および高度運転支援機能の少なくとも一方を有している。走行支援ECU100は、自車両Aの周辺の移動体の挙動を予測し、予測結果に基づいて自車両Aの走行を支援する。走行支援ECU100は、ロケータ10、周辺監視ECU20、車速センサ30、車載通信器40および車両制御ECU50と通信バス等を介して接続されている。
【0013】
ロケータ10は、複数の取得情報を組み合わせる複合測位により、自車位置情報等を生成する。ロケータ10は、GNSS(Global Navigation Satellite System)受信機11、慣性センサ12、地図データベース(以下、地
図DB)13、およびロケータECU14を備えている。GNSS受信機11は、複数の測位衛星からの測位信号を受信する。慣性センサ12は、自車両Aに作用する慣性力を検出するセンサである。慣性センサ12は、例えば3軸ジャイロセンサおよび3軸加速度センサを備えており、自車両Aに作用する角速度および加速度を検出する。
【0014】
地
図DB13は、不揮発性メモリであって、リンクデータ、ノードデータ、地形、構造物等の地図情報を格納している。地図情報は、例えば、地形および構造物の特徴点の点群からなる三次元地図である。なお、三次元地図は、REM(Road Experience Management)によって撮像画像をもとに生成されたものであってもよい。また、地図情報には、道路標識譲歩、交通規制情報、道路工事情報、および気象情報等が含まれていてもよい。地
図DB13に格納された地図情報は、車載通信器40にて受信される最新の情報に基づいて、定期的または随時に更新される。
【0015】
ロケータECU14は、プロセッサ、メモリ、入出力インターフェース、およびこれらを接続するバス等を備えたマイクロコンピュータを主体として含む構成である。ロケータECU14は、GNSS受信機11で受信する測位信号、地
図DB13の地図データ、および慣性センサ12の計測結果を組み合わせることにより、自車両Aの位置(以下、自車位置)を逐次測位する。自車位置は、例えば緯度経度の座標で表される構成とすればよい。なお、自車位置の測位には、自車両Aに搭載された車速センサ30から逐次出力される信号から求めた走行距離を用いる構成としてもよい。地図データとして、道路形状および構造物の特徴点の点群からなる三次元地図を用いる場合、ロケータECU14は、GNSS受信機11を用いずに、この三次元地図と、周辺監視センサ25での検出結果とを用いて、自車位置を特定する構成としてもよい。ロケータECU14は、自車位置情報、自車両Aの加速度情報、自車両A周辺の地図情報等を、走行支援ECU100へと逐次提供する。
【0016】
周辺監視ECU20は、プロセッサ、メモリ、入出力インターフェース、およびこれらを接続するバスを備えるマイクロコンピュータを主体として構成され、メモリに格納された制御プログラムを実行することで各種の処理を実行する。周辺監視ECU20は、自車両Aに搭載された周辺監視センサ25から検出結果を取得し、当該検出結果に基づいて自車両Aの走行環境を認識する。
【0017】
周辺監視センサ25は、自車両Aの周辺環境を監視する自律センサであり、地物の特徴点の点群を検出するLiDAR(Light Detection and Ranging/Laser Imaging Detection and Ranging)、および自車両Aの前方を含んだ所定範囲を撮像する周辺監視カメラ等を含む。また、周辺監視センサ25は、ミリ波レーダおよびソナー等を含んでいてもよい。周辺監視センサ25は、「車載センサ」の一例である。
【0018】
周辺監視ECU20は、例えば、LiDARから取得した点群画像や周辺監視カメラから取得した撮像画像等を解析処理することで、自車両Aの進行経路上の障害物や、自車両Aの周辺に存在する移動体の有無およびその位置、進行方向等を認識する。ここで、自車両Aの周辺に存在する移動体は、自動車および軽車両等の他車両や、歩行者等を含む。周辺監視ECU20は、上述の障害物に関する情報や、移動体に関する情報(移動体情報)等を、走行支援ECU100へと逐次提供する。
【0019】
車載通信器40は、自車両Aに搭載される通信モジュールである。車載通信器40は、LTE(Long Term Evolution)および5G等の通信規格に沿ったV2N(Vehicle to cellular Network)通信の機能を少なくとも有しており、自車両Aの周囲の基地局との間で電波を送受信する。車載通信器40は、路車間(Vehicle to roadside Infrastructure)通信および車車間(Vehicle to Vehicle)通信等の機能をさらに有していてもよい。車載通信器40は、交通情報センタまたは路側機等の外部施設から、渋滞情報、事故情報、道路工事などに伴う交通規制情報といった交通情報、および信号機、路側カメラ等の道路設備に関するインフラ情報等を取得する。車載通信器40は、V2N通信により、クラウドと車載システムとの連携(Cloud to Car)を可能にする。車載通信器40の搭載により、自車両Aは、インターネットに接続可能なコネクテッドカーとなる。
【0020】
車両制御ECU50は、自車両Aの加減速制御および操舵制御を行う電子制御装置である。車両制御ECU50としては、操舵制御を行う操舵ECU、加減速制御を行うパワーユニット制御ECUおよびブレーキECU等がある。車両制御ECU50は、自車両Aに搭載された舵角センサ、車速センサ等の各センサから出力される検出信号を取得し、電子制御スロットル、ブレーキアクチュエータ、EPS(Electric Power Steering)モータ等の各走行制御デバイスへ制御信号を出力する。車両制御ECU50は、後述の軌道計画を走行支援ECU100から取得することで、各計画に応じた自動運転または高度運転支援を実現するように、各走行制御デバイスを制御する。
【0021】
走行支援ECU100は、上述の各構成要素からの情報に基づき、自車両Aの周辺に存在する移動体の挙動を予測する。加えて、走行支援ECU100は、予測した挙動に基づいて、自車両Aの将来行動および将来軌道を生成する。走行支援ECU100は、メモリ101、プロセッサ102、入出力インターフェース、およびこれらを接続するバス等を備えたコンピュータを主体として含む構成である。プロセッサ102は、演算処理のためのハードウェアである。プロセッサ102は、例えばCPU(Central Processing Unit)、GPU(Graphics Processing Unit)およびRISC(Reduced Instruction Set Computer)-CPU等のうち、少なくとも一種類をコアとして含む。
【0022】
メモリ101は、コンピュータにより読み取り可能なプログラムおよびデータ等を非一時的に格納または記憶する、例えば半導体メモリ、磁気媒体および光学媒体等のうち、少なくとも一種類の非遷移的実体的記憶媒体(non-transitory tangible storage medium)である。メモリ101は、後述の走行支援プログラム等、プロセッサ102によって実行される種々のプログラムを格納している。
【0023】
プロセッサ102は、メモリ101に格納された走行支援プログラムに含まれる複数の命令を、実行する。これにより走行支援ECU100は、自車両の周囲に存在する移動体の挙動を予測し、予測した挙動に基づいて自車両の走行を支援するための機能部を、複数構築する。このように走行支援ECU100では、メモリ101に格納されたプログラムが複数の命令をプロセッサ102に実行させることで、複数の機能部が構築される。具体的に、走行支援ECU100には、
図2に示すように、外領域予測部110、死角領域予測部120、内領域予測部130、行動計画部140、および軌道計画部150等の機能部が構築される。外領域予測部110は、後述の内領域よりも外側の領域である外領域に存在する移動体に関して、移動体の周辺環境に応じた移動体の挙動である対環境インタラクションを予測する。外領域予測部110は、対環境インタラクションの予測のために、車載通信器40、ロケータECU14、周辺監視ECU20等の車載機器を介して移動体の周辺環境に関する周辺環境情報を取得する。周辺環境情報には、例えば、インフラ情報、交通情報、地図情報、予測対象となる移動体の周辺の別の移動体情報等が含まれる。外領域予測部110は、予測対象となる移動体に関する移動体情報と周辺環境情報とを組み合わせて、対環境インタラクションの予測に利用する。
【0024】
対環境インタラクションには、例えば、信号機の点灯状態に応じた移動体の進行または停止等が含まれる。さらに、対環境インタラクションには、渋滞や工事、事故の発生等に応じた他車両の停止、減速、車線変更等が含まれる。加えて、対環境インタラクションには、予測対象となる移動体の周辺の別移動体の挙動に応じた、予測対象の移動体の速度変更、停止、進路変更等が含まれる。外領域予測部110は、対環境インタラクションの予測結果を、行動計画部140へと逐次提供する。
【0025】
死角領域予測部120は、自車両Aの死角領域に存在する移動体に関する死角移動体情報に基づいて、当該移動体の挙動を予測する。ここで死角領域とは、自車両Aに搭載された周辺監視センサ25の検出範囲外となる領域、または検出精度が悪化する領域である。死角領域は、地図情報および自車位置情報等に基づいて判別される。
【0026】
死角領域予測部120は、例えば路側カメラの撮像データに基づく死角移動体情報を取得する。死角移動体情報には、移動体の移動方向に関する情報が少なくとも含まれている。また、死角移動体情報には、移動体の位置、速度、加速度等の情報が含まれていてもよい。なお、死角領域予測部120は、路上カメラ以外の路側センサの検出データに基づく死角移動体情報を取得してもよい。または、死角領域予測部120は、車車間通信により死角領域の他車両またはその周囲の別他車両から、死角移動体情報を取得してもよい。
【0027】
死角移動体情報に基づき、死角領域予測部120は、自車両Aに対する移動体の接近有無を予測する。なお、死角領域予測部120は、移動体の将来行動および将来軌道等、より詳細な挙動を予測してもよい。死角領域予測部120は、予測結果を行動計画部140へと逐次提供する。
【0028】
加えて、死角領域予測部120は、未検出の移動体について存在を予測する。例えば、死角領域予測部120は、死角移動体情報が無く、移動体が存在するか否かが判別困難な死角領域が有る場合、未検出の移動体の存在を予測する。死角領域予測部120は、存在可能性の判定結果を、行動計画部140へと逐次提供する。死角領域予測部120は、「可能性判定部」の一例である。
【0029】
内領域予測部130は、自車両Aの周辺の内領域に存在する移動体に関して、自車両Aの状態に応じた移動体の挙動である対自車インタラクションを予測する。内領域は、自車両Aの位置を含む領域であり、外領域よりも内側の領域である。すなわち、外領域は、内領域の外縁よりも自車両Aから見て遠い側となる。内領域予測部130は、対自車インタラクションの予測のために、ロケータECU14および車速センサ30を介して自車両Aの状態に関する自車情報を取得する。自車情報には、例えば、自車位置、速度、進行方向、姿勢、および加速度等が含まれる。また、自車情報には、自車両Aの行動計画、軌道計画等が含まれていてもよい。加えて、内領域予測部130は、対自車インタラクションの予測のために、周辺監視ECU20等を介して移動体の状態に関する移動体情報を取得する。移動体情報には、例えば、移動体の位置、速度、進行方向、姿勢、および加速度等が含まれる。内領域予測部130は、自車情報および移動体情報を組み合わせて、対自車インタラクションの予測に利用する。
【0030】
対自車インタラクションには、例えば、狭隘道路における自車両Aとのすれ違いに応じた他車両の譲り運転、自車両Aの車線変更に応じた車線変更先の他車両の速度調整等が含まれる。内領域予測部130は、対自車インタラクションの予測結果を、軌道計画部150へと逐次提供する。
【0031】
行動計画部140は、外領域予測部110からの対環境インタラクションおよび死角領域予測部120からの予測結果に基づいて、自車両Aが将来実行する将来行動を生成する。将来行動とは、進行経路上で走行制御によって実現可能な自車両Aのふるまいの類型であって、後述の将来軌道の取り得る範囲を規定する。将来行動には、直進、右左折、停止、車線変更、徐行等がある。例えば、行動計画部140は、他車両が自車両Aの進行を阻害し得る場合に、停止や徐行といった他車両の通過を待機する将来行動を計画する。または、行動計画部140は、未検出の他車両の存在可能性が有ることに基づいて、徐行等の他車両の出現に備えた将来行動を計画する。行動計画部140は、「外領域計画部」の一例である。
【0032】
軌道計画部150は、内領域予測部130からの挙動予測結果に応じて、自車両Aの辿る将来軌道を生成する。将来軌道は、将来行動に従う走行予定軌跡であり、自車両Aの進行に応じた自車両Aの走行位置を規定する。加えて、将来軌道は、各走行位置における自車両Aの速度を規定するものであってもよい。軌道計画部150は、生成した軌道計画を、車両制御ECU50へと逐次提供する。軌道計画部150は、「内領域計画部」の一例である。
【0033】
次に、走行支援ECU100が走行支援プログラムを実行することにより実現される走行支援方法のフローを、
図2を参照しつつ、
図3に従って以下に説明する。なお、後述するフローにおいて「S」とは、プログラムに含まれた複数命令によって実行される、フローの複数ステップを意味する。
【0034】
まずS10では、外領域予測部110が、周辺環境情報を取得する。次に、S20では、外領域予測部110が、周辺環境情報に基づいて対環境インタラクションを予測する。そして、S30では、死角領域予測部120が、死角移動体情報に基づき、死角領域における移動体の挙動を予測する。なお、死角移動体情報が無い場合には、S30を省略してよい。
【0035】
さらに、S40では、死角領域予測部120が、未検出の移動体について存在可能性を予測する。そして、S50では、行動計画部140が、S20、S30およびS40での予測結果に基づき、自車両Aの将来行動を計画する。
【0036】
次に、S60では、自車情報および移動体情報を取得する。続くS70では、自車情報および移動体情報に基づいて自車インタラクションを予測する。そして、S80では、軌道計画部150が、自車インタラクションの予測結果および行動計画に基づいて、将来軌道に関する軌道計画を生成する。生成された軌道計画は車両制御ECU50へと出力され、一連の処理が終了する。走行支援ECU100は、以上の一連の処理を自車両Aの走行中に繰り返し実行し、周辺に存在する移動体の挙動に応じた自車両Aの走行支援を逐次実施する。
【0037】
なお、上述のS20が「外領域予測プロセス」、S30が「死角領域予測プロセス」、S40が「可能性判定プロセス」、S50が「外領域計画プロセス」、S70が「内領域予測プロセス」、S80が「内領域計画プロセス」の一例である。
【0038】
次に、具体的な走行シーンにおける走行支援の例について、
図4~13を参照して説明する。まずは、内領域に存在する移動体の挙動予測と、それに伴う軌道計画について説明する。
【0039】
図4は、自車両Aの車線変更シーンを示している。このシーンでは、自車両Aの車線変更先の車線(変更先車線)に移動体である他車両B1,B2が走行している。自車両Aは、この他車両B1と他車両B2との間に割り込みをして、車線変更を行うものとする。
【0040】
このシーンにおいて、内領域予測部130は、自車両Aの割り込みに対する他車両B2の反応を、対自車インタラクションとして予測する。具体的には、内領域予測部130は、自車両Aの割り込みに対する他車両B2の減速度を予測する。自車両Aの割り込みに対する減速度は、自車両Aによる前方への割り込みに対して車間距離を空ける譲り行動を後続車が取ると仮定した場合に、その譲り行動により期待される減速度である。
【0041】
軌道計画部150は、内領域予測部130にて予測された他車両B2の減速度に基づいて、車線変更する自車両Aの将来軌道を計画する。具体的には、軌道計画部150は、自車両Aの車線変更開始時刻、開始位置、開始速度、車線変更完了までの時間等を含む将来軌道を生成する。
【0042】
図5,6は、自車両Aと対向車である他車両Bとのすれ違いシーンを示している。このすれ違いシーンでは、自車両Aの現在車線上に駐車車両Cが存在しており、現在車線に隣接する対向車線には、内領域に移動体としての他車両Bが走行している。
【0043】
このシーンにおいて、軌道計画部150は、駐車車両Cを右方に回避しつつ進行する回避軌道を生成する(
図5の破線矢印参照)。軌道計画部150は、生成した回避軌道を内領域予測部130へと提供する。内領域予測部130は、回避軌道を走行する自車両Aに対して、他車両Bが返す対自車インタラクションを予測する。対自車インタラクションとしては、譲り運転および直進運転がある。譲り運転は、
図5に示すように、他車両Bが対向車線の左側(紙面右側)に寄り、自車両Aに対して走行スペースを譲る運転である。直進運転は、
図6に示すように、自車両Aに対して走行スペースを譲ることなく、直線的に走行する運転である。
【0044】
内領域予測部130は、他車両Bの進行方向に基づいて、対自車インタラクションを予測する。具体的には、内領域予測部130は、他車両Bのヨー角が直進方向に対して所定角度以上となっている場合に、他車両Bが譲り運転をすると予測する。そして内領域予測部130は、他車両Bの速度および進行方向に基づいて、譲り運転を行う他車両Bの走行軌道を推定する。譲り軌道は、例えば路肩側に膨らむ弧状の形状となる。一方、内領域予測部130は、他車両Bが譲り運転をせず、直進運転をすると予測した場合、現在の他車両Bの位置から車線に平行に延びる走行軌道を推定する。内領域予測部130は、予測した対自車インタラクションを、軌道計画部150へと提供する。
【0045】
軌道計画部150は、取得した対自車インタラクションに基づいて実際に走行する回避軌道を確定させる。例えば、他車両Bが譲り運転をすると予測された場合、軌道計画部150は、他車両Bおよび駐車車両Cの両方と所定の距離間隔を保って走行可能な回避軌道を生成し、車両制御ECU50へと出力する(
図5参照)。一方で、他車両Bが直進運転をすると予測された場合には、軌道計画部150は、駐車車両Cの手前での停止情報を回避軌道に対して設定する(
図6参照)。これにより、他車両Bの通過を待機してから駐車車両Cの側方を通過することができる。
【0046】
次に、外領域に存在する移動体の挙動予測と、それに伴う行動計画について説明する。
図7は、交差点での自車両Aの右折シーンを示している。この右折シーンでは、交差点を挟んだ対向車線に対向車としての他車両Bが走行している。交差点には、信号機Sが設置されている。
【0047】
このシーンにおいて、外領域予測部110は、他車両Bの速度および位置を含む移動体情報を取得する。加えて、外領域予測部110は、インフラ情報として外領域における信号機Sの点灯状態を取得する。信号機Sの点灯状態には、例えば、現在および将来の灯色と、各灯色の継続時間等が含まれる。外領域予測部110は、以上の情報により、信号機Sの状態に対する他車両Bの対環境インタラクションを予測する。
【0048】
具体的には、外領域予測部110は、他車両Bが交差点の手前で停止するか否かを予測する。例えば、外領域予測部110は、他車両Bが現在の速度で走行して交差点に接近した際に、信号機Sが進行を示す灯色であると予測される場合には、他車両Bが交差点へと進入すると予測する。一方で、外領域予測部110は、他車両Bが現在の速度で走行して交差点に接近した際に、信号機Sが停止を示す灯色であると予測される場合には、他車両Bが交差点手前で停止すると予測する。
【0049】
行動計画部140は、以上の対環境インタラクションの予測結果に基づき、自車両Aの将来行動を計画する。具体的には、行動計画部140は、他車両Bの交差点への進入が予測される場合、自車両Aの交差点手前での停止行動を計画し、他車両Bの交差点手前での停止が予測される場合、自車両Aの右折行動を計画する。
【0050】
図8は、渋滞車列への接近シーンを示している。このシーンでは、移動体である先行車Bが、渋滞により低速走行または停止している。
【0051】
このシーンにおいて、外領域予測部110は、周辺環境情報として渋滞情報を取得する。外領域予測部110は、先行車Bと異なる別他車両に関する情報である渋滞情報と先行車Bの位置情報とに基づいて、渋滞状態に対する先行車Bの対環境インタラクションを予測する。
【0052】
具体的には、外領域予測部110は、先行車Bが渋滞に加わっているか否かを予測する。例えば、外領域予測部110は、先行車Bの位置が渋滞情報に基づく渋滞区間に含まれていると判断できる場合には、先行車Bが渋滞に加わっていると予測する。行動計画部140は、対環境インタラクションの予測結果に基づき、自車両Aの将来行動を計画する。具体的には、行動計画部140は、先行車Bが渋滞に加わっていると予測される場合、渋滞が発生していない車線への自車両Aの車線変更行動を計画する。
【0053】
次に、死角領域に存在する他車両の挙動予測と、それに伴う行動計画について説明する。
図9は、死角領域からの他車両Bの接近シーンを示している。このシーンにおける走行地形は、第1道路R1に対して第2道路R2および第3道路R3が互い違いに接続されたものとなっている。第2道路R2には、移動体としての他車両Bが走行しており、第3道路R3には、自車両Aが走行している。第2道路R2は、第3道路R3から死角領域となっている。すなわち、第2道路R2を走行する他車両Bは、第3道路R3を走行する自車両Aの周辺監視センサ25では検出不可能である。道路脇には第2道路R2を撮像可能な路側カメラRCが設置されている。自車両Aは、第3道路R3と第1道路R1との交差点で右折予定であるとする。
【0054】
死角領域予測部120は、路側カメラRCによる他車両Bの検出情報を取得する。検出情報は、例えば、路側カメラRCの撮像データをセンタにて解析した解析結果であり、他車両Bの速度ベクトルに関する情報を少なくとも含んでいる。死角領域予測部120は、速度ベクトルの方向によって、他車両Bが自車両Aへ接近しているか否かを予測する。行動計画部140は、死角領域予測部120による他車両Bの接近予測に基づいて、自車両Aの行動計画を生成する。具体的には、行動計画部140は、他車両Bが接近していると予測される場合、第1道路R1への合流地点手前での他車両B通過の待機行動および待機行動後の右折行動を計画する。一方で、他車両Bが接近していないと予測される場合、待機行動を計画することなく右折行動を計画する。
【0055】
図10は、道路Raを走行する自車両Aと、道路Raに略直角に接続する接続道路Rbを走行する他車両Bとの鉢合わせシーンを示している。このシーンでは、接続道路Rbが自車両Aの死角領域であるとする。そして、接続道路Rbを撮像範囲とする路側カメラRCが、道路脇に設置されている。道路Raにおける接続道路Rbとの接続部分付近には、一時停止線が設けられている。
【0056】
このシーンでは、死角領域予測部120は、接近シーンと同様に路側カメラRCによる他車両Bの検出情報を取得し、他車両Bの接近挙動を予測する。行動計画部140は、他車両Bの接近が予測される場合、他車両Bが接近していないと予測される場合よりも自車両Aの停止位置を手前側に設定した停止行動と、他車両B通過後の右折行動とを計画する。なお、行動計画部140は、停止行動において、他車両Bが存在しない場合よりもより路肩側に寄った停止位置を設定してもよい。これにより、他車両Bの進路を確保した停止行動が可能となる。
【0057】
図11は、横断歩道を自車両Aが通過する横断歩道通過シーンを示している。このシーンにおいて、自車両Aは、横断歩道を通過してその先の道路へと進入予定である。横断歩道に接続する歩道の両脇には、複数の支柱が並んで設置されている。これらの支柱により、歩道を歩行する移動体としての歩行者Pは、自車両Aの死角領域に位置している。加えて、自車両Aが進入予定の車道も、支柱によって死角領域となっている。このエリアには、歩道および車道のそれぞれを撮像範囲とする2つの路側カメラRCが設けられている。自車両Aは、横断歩道の手前にて一時停止しているものとする。また、歩行者Pは、自車両Aの発進を許可できる程度には横断歩道から離れているものとする。
【0058】
このシーンでは、死角領域予測部120は、路側カメラRCによる歩行者Pの検出情報を取得する。死角領域予測部120は、当該検出情報に基づいて歩行者Pの挙動を予測する。具体的には、死角領域予測部120は、歩行者Pの横断歩道への接近有無と、接近している場合の横断歩道への到達時間を予測する。
【0059】
行動計画部140は、以上の挙動予測結果に基づいて、歩行者Pの挙動に応じた行動計画を生成する。例えば、歩行者Pが横断歩道に接近していない場合、または、歩行者Pが横断歩道に接近しており且つ横断歩道への到達時間が所定時間を上回る場合、行動計画部140は、走行速度を制限した徐行行動を計画する。一方、歩行者Pが横断歩道に接近しており且つ横断歩道への到達時間が所定時間を下回る場合、行動計画部140は、走行速度を上述の徐行行動よりもさらに制限した最徐行速度を計画する。
【0060】
なお、行動計画部140は、横断歩道通過後の車道進入での行動について、
図9等と同様に、路側カメラRCの検出情報に基づき他車両の接近が予測される場合には一時停止行動を計画し、他車両の接近が予測されない場合には右折行動を計画すればよい。
【0061】
図12は、自車両Aが右折して横断歩道を通過する右折通過シーンを示している。このシーンにおいて、自車両Aの走行位置以外は
図11と同様の状況であるとする。
【0062】
このシーンでは、死角領域予測部120は、路側カメラRCからの情報に基づき、自車両Aの死角領域における歩行者Pの挙動を予測する。行動計画部140は、歩行者Pの横断歩道への接近が予測された場合には、一時停止して歩行者Pの通過を待機する待機行動を計画する。ここで待機行動は、右折中の行動ではなく、右折開始前の行動として計画される。これにより、行動計画部140は、横断歩道へ過度に接近した状態での一時停止を回避し、自車両Aの存在が歩行者Pへ与える心理的な圧迫感を低減する。
【0063】
図13は、交差点を直進して通過する交差点通過シーンを示している。このシーンでは、交差道路の一部が自車両Aの死角領域となる。これまで説明したシーンとは異なり、死角領域の移動体を検出可能な路側カメラ等は設置されていない。換言すれば、死角領域に移動体が存在するか否かを、死角領域予測部120は判断不可能である。自車両Aは、交差点を直進して進行予定であるとする。
【0064】
このシーンでは、死角領域予測部120は、自車位置情報および地形情報に基づいて、未検出の移動体の存在可能性の有無を判定する。具体的には、死角領域予測部120は、自車両Aの死角領域が周辺の道路上にあり、当該死角領域における死角移動体情報が存在しない場合に、未検出の移動体の存在可能性が有ると判定する。
【0065】
行動計画部140は、未検出の移動体の存在可能性が有る判定された場合、死角領域にて仮想的な他車両(以下、仮想他車両)の走行を想定し、仮想他車両の交差点への進行を想定した徐行行動を計画する。行動計画部140は、徐行行動の計画において、自車両Aの走行速度の上限に関する速度条件を設定する。行動計画部140は、死角領域から実際に他車両が出現した場合に衝突することなく停止可能な速度条件を、設定する。
【0066】
速度条件の設定方法について以下に説明する。行動計画部140は、自車両Aの将来軌道と、仮想他車両に仮定される仮定軌道との交点CPを設定する。なお、将来軌道および仮定軌道は、それぞれ走行中の道路に沿った形状(
図13の場合は直線)であるとする。ここで、仮想他車両の位置から交点CPまでの距離をxとする。なお、距離xは、交点CPを基準とした自車両Aからの交差車線の認識範囲ということもできる。そして、死角領域の境界線上で自車両Aに最も近い点である境界点BPと、境界点BPに対する将来軌道上の最近接点Pαとの間の距離をl
αとする。また、自車位置から最近接点Pαまでの距離をl
1、最近接点Pαから交点CPまでの距離をl
2とする。現在の自車位置での自車両Aの速度をv
A、仮想他車両の交点CP到達までの時間をt
c、自車両Aに許容される最大減速度をa
Aとすると、自車両Aが交点CPへの到達前に停止するために必要な条件は、以下の数式(1)で表される。
【数1】
【0067】
仮想他車両の仮定速度をv
Bとすると、自車両Aの速度条件は、数式(1)と、以下の数式(2)で表される関係とに基づいて、数式(3)で表される。
【数2】
【数3】
【0068】
ここで、距離xは、自車位置、仮想他車両位置、および交点CPを頂点とする三角形と、自車位置、境界点BPおよび最近接点Pαを頂点とする三角形との相似比により、以下の数式(4)で表される。
【数4】
【0069】
数式(3)および(4)に基づき、速度条件は、以下の数式(5)で表される。
【数5】
【0070】
行動計画部140は、以上の速度条件を、徐行行動の計画に伴い設定する。なお、仮想他車両の仮定速度vBは、仮想他車両の走行が想定される車線の制限速度に基づいて設定されればよい。また、自車両Aに許容される最大減速度をaAは、予め設定された数値(例えば0.3G程度)とすればよい。軌道計画部150は、速度条件に基づいて、自車両Aの速度変化を含む軌道計画を生成する。
【0071】
次に第1実施形態のもたらす作用効果について説明する。
【0072】
第1実施形態によれば、自車両Aの周辺の内領域に存在する移動体に関しては、自車両Aの状態に応じた移動体の挙動である対自車インタラクションが予測される。そして、内領域よりも外側の領域である外領域に存在する移動体に関しては、移動体の周辺環境に応じた移動体の挙動である対環境インタラクションが予測される。そして、対環境インタラクションに基づいて自車両Aの将来行動が計画され、対自車インタラクションに基づいて自車両Aの将来軌道および将来速度の少なくとも一方が計画される。故に、自車両Aに比較的近く、自車両Aの影響がより大きくなり易い移動体と、自車両Aから比較的遠く、自車両Aの影響がより小さくなり易い移動体とで、それぞれの状況に応じた挙動の予測および予測結果の利用が実施され得る。以上により、状況に応じた移動体の挙動予測および予測結果の利用が可能となり得る。
【0073】
また、第1実施形態によれば、自車両Aの死角領域に存在する移動体に関する死角移動体情報に基づいて、移動体の挙動が予測され、予測された移動体の挙動に基づいて、将来行動が計画される。故に、自車両Aの死角領域に存在する移動体の挙動予測を考慮に入れた将来行動が可能となる。したがって、状況に応じた走行支援がより適切に実施され得る。
【0074】
加えて、第1実施形態によれば、未検出の移動体について存在可能性の有無が判定され、存在可能性が有ると判定された場合に、未検出の移動体の挙動を想定した将来行動が計画される。故に、未検出の移動体の挙動を想定した自車両Aの走行支援が実現され得る。したがって、未検出の移動体が実在した場合であっても、それに対応した走行が可能となる。
【0075】
(他の実施形態)
この明細書における開示は、例示された実施形態に制限されない。開示は、例示された実施形態と、それらに基づく当業者による変形態様を包含する。例えば、開示は、実施形態において示された部品および/または要素の組み合わせに限定されない。開示は、多様な組み合わせによって実施可能である。開示は、実施形態に追加可能な追加的な部分をもつことができる。開示は、実施形態の部品および/または要素が省略されたものを包含する。開示は、ひとつの実施形態と他の実施形態との間における部品および/または要素の置き換え、または組み合わせを包含する。開示される技術的範囲は、実施形態の記載に限定されない。開示されるいくつかの技術的範囲は、特許請求の範囲の記載によって示され、さらに特許請求の範囲の記載と均等の意味及び範囲内での全ての変更を含むものと解されるべきである。
【0076】
上述の実施形態において、外領域予測プロセスの実行後に内領域予測プロセスが実行されるとしたが、外領域予測プロセスの実行前に内領域予測プロセスが実行されてもよいし、これらのプロセスが並行して実行されてもよい。また、外領域計画プロセスおよび内領域計画プロセスは、それぞれ対応する予測プロセスが実行されていれば、どちらが先に実行されてもよく、また、並行して実行されてもよい。
【0077】
上述の実施形態において、外領域予測部110は、信号機の点灯状態、渋滞や工事、事故等の発生および別移動体の挙動に応じた対環境インタラクションを予測するとしたが、これらの対環境インタラクションのうちで予測しないものがあってもよい。また、上述の対環境インタラクション以外の対環境インタラクションが予測されてもよい。
【0078】
上述の実施形態において、内領域予測部130は、対自車インタラクションには、例えば、狭隘道路における自車両Aとのすれ違い、および自車両Aの車線変更に応じた対自車インタラクションを予測するとしたが、これらの対自車インタラクションのうちで予測しないものがあってもよい。また、上述の対自車インタラクション以外の対自車インタラクションが予測されてもよい。
【0079】
走行支援ECU100は、デジタル回路およびアナログ回路のうち少なくとも一方をプロセッサとして含んで構成される、専用のコンピュータであってもよい。ここで特にデジタル回路とは、例えば、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、SOC(System on a Chip)、PGA(Programmable Gate Array)、およびCPLD(Complex Programmable Logic Device)等のうち、少なくとも一種類である。またこうしたデジタル回路は、プログラムを格納したメモリを、備えていてもよい。
【0080】
走行支援ECU100は、1つのコンピュータ、またはデータ通信装置によってリンクされた一組のコンピュータ資源によって提供され得る。例えば、上述の実施形態における走行支援ECU100の提供する機能の一部は、他のECUによって実現されてもよい。
【0081】
上述の実施形態における説明は、左側通行が法制化されている地域に対応したものであり、右側通行が法制化されている地域では、各走行シーンにおいて左右が逆になる。
【符号の説明】
【0082】
100 走行支援ECU(走行支援装置)、 102 プロセッサ、 110 外領域予測部、 120 死角領域予測部(可能性判定部)、 130 内領域予測部、 140 行動計画部(外領域計画部)、 150 軌道計画部(内領域計画部)、 25 周辺監視センサ(車載センサ)、 A 自車両。