IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 味の素株式会社の特許一覧

<>
  • 特許-樹脂組成物 図1
  • 特許-樹脂組成物 図2
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-12-18
(45)【発行日】2023-12-26
(54)【発明の名称】樹脂組成物
(51)【国際特許分類】
   C08L 63/00 20060101AFI20231219BHJP
   B32B 27/38 20060101ALI20231219BHJP
   C08K 3/013 20180101ALI20231219BHJP
   C08K 9/06 20060101ALI20231219BHJP
   C08L 71/02 20060101ALI20231219BHJP
   C08K 5/29 20060101ALI20231219BHJP
   C08L 101/00 20060101ALI20231219BHJP
   C08G 59/62 20060101ALI20231219BHJP
   H05K 1/03 20060101ALI20231219BHJP
【FI】
C08L63/00 C
B32B27/38
C08K3/013
C08K9/06
C08L71/02
C08K5/29
C08L101/00
C08G59/62
H05K1/03 610L
H05K1/03 610R
【請求項の数】 14
(21)【出願番号】P 2022069476
(22)【出願日】2022-04-20
(62)【分割の表示】P 2018042163の分割
【原出願日】2018-03-08
(65)【公開番号】P2022105508
(43)【公開日】2022-07-14
【審査請求日】2022-04-20
(31)【優先権主張番号】P 2017066054
(32)【優先日】2017-03-29
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000000066
【氏名又は名称】味の素株式会社
(74)【代理人】
【識別番号】110002147
【氏名又は名称】弁理士法人酒井国際特許事務所
(72)【発明者】
【氏名】阪内 啓之
(72)【発明者】
【氏名】西嶋 千晴
【審査官】山口 俊樹
(56)【参考文献】
【文献】特表2015-505333(JP,A)
【文献】特表2015-526559(JP,A)
【文献】特表2008-519885(JP,A)
【文献】特開2016-027097(JP,A)
【文献】特表2012-519761(JP,A)
【文献】国際公開第2011/138865(WO,A1)
【文献】特開2011-178858(JP,A)
【文献】特表2010-535278(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B32B 1/00 - 43/00
C09J 1/00 - 5/10
C09J 7/00 - 7/50
C09J 9/00 - 201/10
C08G 59/00 - 59/72
C08K 3/00 - 13/08
C08L 1/00 - 101/14
C08C 19/00 - 19/44
C08F 6/00 - 246/00
C08F 301/00
H01L 23/28 - 23/31
H05K 1/03
(57)【特許請求の範囲】
【請求項1】
支持体と、該支持体上に設けられた、樹脂組成物を含む樹脂組成物層と、を有する樹脂シートであって、
樹脂組成物が、
(A)エポキシ樹脂、
(B)無機充填材、
(C)硬化剤、及び
(D)両親媒性ポリエーテルブロックコポリマー、を含有し、
(D)成分の含有量が、樹脂組成物中の不揮発成分を100質量%とした場合、0.3質量%以上15質量%以下であり、
樹脂組成物を180℃で90分間熱硬化させた硬化物の25℃~150℃における線熱膨張係数が11ppm/℃以上30ppm/℃以下であり、当該硬化物の硬化収縮率が0.27%以下である、樹脂シート。
【請求項2】
(B)成分の含有量が、樹脂組成物中の不揮発成分を100質量%とした場合、50質量%以上95質量%以下である、請求項1に記載の樹脂シート。
【請求項3】
(B)成分が、窒素原子含有シランカップリング剤で処理されている、請求項1に記載の樹脂シート。
【請求項4】
(D)成分が、少なくとも一つのエポキシ樹脂混和性ポリエーテルブロックセグメントと、少なくとも一つのエポキシ樹脂非混和性ポリエーテルブロックセグメントとを含むブロックコポリマーである、請求項1に記載の樹脂シート。
【請求項5】
エポキシ樹脂混和性ポリエーテルブロックセグメントが、ポリエチレンオキシドブロック、ポリプロピレンオキシドブロック、ポリ(エチレンオキシド-co-プロピレンオキシド)ブロック、ポリ(エチレンオキシド-ran-プロピレンオキシド)ブロック、及びそれらの混合物から選択される1種以上のポリアルキレンオキシドブロックであり、
エポキシ樹脂非混和性ポリエーテルブロックセグメントが、ポリブチレンオキシドブロック、ポリヘキシレンオキシドブロック、ポリドデシレンオキシドブロック、及びそれらの混合物から選択される1種以上のポリアルキレンオキシドブロックである、請求項4に記載の樹脂シート。
【請求項6】
さらに、(E)カルボジイミド化合物を含有する、請求項1に記載の樹脂シート。
【請求項7】
さらに、(F)熱可塑性樹脂を含有する、請求項1に記載の樹脂シート。
【請求項8】
(C)成分が、トリアジン骨格含有フェノール系硬化剤、及び活性エステル系硬化剤から選ばれる1種以上である、請求項1に記載の樹脂シート。
【請求項9】
(A)成分が、縮合環構造を有するエポキシ樹脂を含有する、請求項1に記載の樹脂シート。
【請求項10】
半導体チップパッケージの絶縁層用である、請求項1に記載の樹脂シート。
【請求項11】
セミアディティブプロセス法によって回路形成する回路基板の絶縁層用である、請求項1に記載の樹脂シート。
【請求項12】
請求項1~11のいずれか1項に記載の樹脂シートの樹脂組成物層の硬化物により形成された絶縁層を含む、回路基板。
【請求項13】
請求項12に記載の回路基板と、前記回路基板上に搭載された半導体チップとを含む、半導体チップパッケージ。
【請求項14】
請求項1~11のいずれか1項に記載の樹脂シートにより封止された、半導体チップを含む半導体チップパッケージ。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、樹脂組成物に関する。さらには、当該樹脂組成物を用いて得られる、樹脂シート、回路基板、及び半導体チップパッケージに関する。
【背景技術】
【0002】
近年、電子機器の小型化、高性能化が進み、半導体パッケージ基板においては、ビルドアップ層が複層化され、配線の微細化及び高密度化が求められている。さらに、スマートフォン、タブレット型PCの普及に伴って薄型化の要求が強まり、コア材の薄型化、さらにはコアレス構造などの薄型パッケージ基板が求められている。これに伴い、絶縁層を形成する際に発生する反りの抑制が求められる。
【0003】
例えば、特許文献1では、硬化収縮による反りが少なく、柔軟性に優れる樹脂組成物を提供している。しかしながら近年の高性能化の要求に対応すべく、さらに高機能の樹脂組成物が求められている。
【先行技術文献】
【特許文献】
【0004】
【文献】特表2000-64960号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
本発明は、高密度化、薄型化、またはコアレス化された配線板のビルドアップ層、ウエハレベルチップサイズパッケージ等に使用される絶縁層を形成するために適した樹脂組成物を提供するものであり、具体的には、絶縁層を形成する際に発生する反りを抑制することができ、さらには、熱膨張係数、熱伝導率、銅メッキとの密着強度、表面粗度などの物性に優れた絶縁層を得ることができる樹脂組成物;該樹脂組成物を用いて得られる、樹脂シート、回路基板、及び半導体チップパッケージを提供することにある。
【課題を解決するための手段】
【0006】
本発明者らは、上記課題を解決すべく鋭意検討した結果、エポキシ樹脂、無機充填材、硬化剤、及び両親媒性ポリエーテルブロックコポリマーを樹脂組成物に含有させることで、絶縁層を形成する際に発生する反りを抑制することができることを見出し、本発明を完成するに至った。
【0007】
すなわち、本発明は以下の内容を含む。
[1] (A)エポキシ樹脂、
(B)無機充填材、
(C)硬化剤、及び
(D)両親媒性ポリエーテルブロックコポリマー、を含有する樹脂組成物。
[2] (B)成分の含有量が、樹脂組成物中の不揮発成分を100質量%とした場合、50質量%以上95質量%以下である、[1]に記載の樹脂組成物。
[3] (B)成分が、窒素原子含有シランカップリング剤で処理されている、[1]又は[2]に記載の樹脂組成物。
[4] (D)成分の含有量が、樹脂組成物中の不揮発成分を100質量%とした場合、0.3質量%以上15質量%以下である、[1]~[3]のいずれかに記載の樹脂組成物。
[5] (D)成分が、少なくとも一つのエポキシ樹脂混和性ポリエーテルブロックセグメントと、少なくとも一つのエポキシ樹脂非混和性ポリエーテルブロックセグメントとを含むブロックコポリマーである、[1]~[4]のいずれかに記載の樹脂組成物。
[6] エポキシ樹脂混和性ポリエーテルブロックセグメントが、ポリエチレンオキシドブロック、ポリプロピレンオキシドブロック、ポリ(エチレンオキシド-co-プロピレンオキシド)ブロック、ポリ(エチレンオキシド-ran-プロピレンオキシド)ブロック、及びそれらの混合物から選択される1種以上のポリアルキレンオキシドブロックであり、
エポキシ樹脂非混和性ポリエーテルブロックセグメントが、ポリブチレンオキシドブロック、ポリヘキシレンオキシドブロック、ポリドデシレンオキシドブロック、及びそれらの混合物から選択される1種以上のポリアルキレンオキシドブロックである、[5]に記載の樹脂組成物。
[7] さらに、(E)カルボジイミド化合物を含有する、[1]~[6]のいずれかに記載の樹脂組成物。
[8] さらに、(F)熱可塑性樹脂を含有する、[1]~[7]のいずれかに記載の樹脂組成物。
[9] (C)成分が、トリアジン骨格含有フェノール系硬化剤、及び活性エステル系硬化剤から選ばれる1種以上である、[1]~[8]のいずれかに記載の樹脂組成物。
[10] (A)成分が、縮合環構造を有するエポキシ樹脂を含有する、[1]~[9]のいずれかに記載の樹脂組成物。
[11] 樹脂組成物を180℃で90分間熱硬化させた硬化物の硬化収縮率が0.27%以下である、[1]~[10]のいずれかに記載の樹脂組成物。
[12] 樹脂組成物を180℃で90分間熱硬化させた硬化物の25℃~150℃における線熱膨張係数が3ppm/℃以上30ppm/℃以下である、[1]~[11]のいずれかに記載の樹脂組成物。
[13] 半導体チップパッケージの絶縁層用樹脂組成物である、[1]~[12]のいずれかに記載の樹脂組成物。
[14] セミアディティブプロセス法によって回路形成する回路基板の絶縁層用樹脂組成物である、[1]~[13]のいずれかに記載の樹脂組成物。
[15] 支持体と、該支持体上に設けられた、[1]~[14]のいずれかに記載の樹脂組成物を含む樹脂組成物層と、を有する樹脂シート。
[16] [1]~[14]のいずれかに記載の樹脂組成物の硬化物により形成された絶縁層を含む、回路基板。
[17] [16]に記載の回路基板と、前記回路基板上に搭載された半導体チップとを含む、半導体チップパッケージ。
[18] [1]~[14]のいずれかに記載の樹脂組成物または[15]に記載の樹脂シートにより封止された、半導体チップを含む半導体チップパッケージ。
【発明の効果】
【0008】
本発明によれば、絶縁層を形成する際に発生する反りを抑制することができ、さらには熱膨張係数、熱伝導率、銅メッキとの密着強度、表面粗度などの物性に優れた絶縁層を得ることができる樹脂組成物;該樹脂組成物を用いて得られる、樹脂シート、回路基板、及び半導体チップパッケージを提供することができる。
【図面の簡単な説明】
【0009】
図1図1は、本発明の半導体チップパッケージ(Fan-out型WLP)の一例を示した概略断面図である。
図2図2は、硬化収縮率を測定する際の樹脂シートの一例を示した概略図である。
【発明を実施するための形態】
【0010】
以下、本発明の樹脂組成物、樹脂シート、回路基板、及び半導体チップパッケージについて詳細に説明する。
【0011】
[樹脂組成物]
本発明の樹脂組成物は、(A)エポキシ樹脂、(B)無機充填材、(C)硬化剤、及び(D)両親媒性ポリエーテルブロックコポリマー、を含有する。
【0012】
(A)成分、(B)成分、(C)成分、及び(D)成分を樹脂組成物に含有させることで、反りを抑制することができる絶縁層を得ることが可能となる。樹脂組成物は、必要に応じて、さらに(E)カルボジイミド化合物、(F)熱可塑性樹脂、(G)分子内に、ポリブタジエン構造、ポリシロキサン構造、ポリ(メタ)アクリレート構造、ポリアルキレン構造、ポリアルキレンオキシ構造、ポリイソプレン構造、ポリイソブチレン構造、及びポリカーボネート構造から選択される1種以上の構造を有する樹脂、(H)ゴム粒子、(I)硬化促進剤、(K)難燃剤を含み得る。
【0013】
本明細書において「樹脂成分」とは、樹脂組成物を構成する不揮発成分のうち、(B)無機充填材を除いた成分をいう。以下、樹脂組成物に含まれる各成分について詳細に説明する。
【0014】
<(A)エポキシ樹脂>
樹脂組成物は、(A)エポキシ樹脂を含有する。エポキシ樹脂としては、本発明の樹脂組成物を熱硬化させることができるものであれば特に限定は無いが、例えば、ナフタレン型エポキシ樹脂、ナフタレン型4官能エポキシ樹脂、ナフトール型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、アントラセン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ナフタレン型エポキシ樹脂、ナフタレン型4官能エポキシ樹脂、ナフトール型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂等の縮合環構造を有するエポキシ樹脂;ビスフェノールA型エポキシ樹脂;ビスフェノールF型エポキシ樹脂;ビスフェノールS型エポキシ樹脂;ビスフェノールAF型エポキシ樹脂;トリスフェノール型エポキシ樹脂;ノボラック型エポキシ樹脂;ナフトールノボラック型エポキシ樹脂;フェノールノボラック型エポキシ樹脂;tert-ブチル-カテコール型エポキシ樹脂;グリシジルアミン型エポキシ樹脂;グリシジルエステル型エポキシ樹脂;クレゾールノボラック型エポキシ樹脂;ビフェニル型エポキシ樹脂;線状脂肪族エポキシ樹脂;ブタジエン構造を有するエポキシ樹脂;脂環式エポキシ樹脂;複素環式エポキシ樹脂;スピロ環含有エポキシ樹脂;シクロヘキサンジメタノール型エポキシ樹脂;トリメチロール型エポキシ樹脂;テトラフェニルエタン型エポキシ樹脂等が挙げられる。エポキシ樹脂は1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。(A)成分は、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビフェニル型エポキシ樹脂、及び縮合環構造を有するエポキシ樹脂から選択される1種以上であることが好ましい。中でも、(A)成分としては、低熱膨張係数、熱伝導率、銅メッキとの密着強度、表面粗度などの物性に優れた絶縁層を得る観点から、縮合環構造を有するエポキシ樹脂を含有することがより好ましい。縮合環構造を有するエポキシ樹脂としては、上記例示したもののうち、ナフタレン型エポキシ樹脂、ナフタレン型4官能エポキシ樹脂、ナフトール型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、アントラセン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂が好ましく、ナフタレン型エポキシ樹脂、ナフトール型エポキシ樹脂が特に好ましい。
【0015】
エポキシ樹脂は、1分子中に2個以上のエポキシ基を有するエポキシ樹脂を含むことが好ましい。また、エポキシ樹脂は、芳香族構造を有することが好ましく、2種以上のエポキシ樹脂を用いる場合は少なくとも1種が芳香族構造を有することがより好ましい。エポキシ樹脂の不揮発成分を100質量%とした場合に、少なくとも50質量%以上は1分子中に2個以上のエポキシ基を有するエポキシ樹脂であるのが好ましい。中でも、1分子中に2個以上のエポキシ基を有し、温度20℃で液状のエポキシ樹脂(以下「液状エポキシ樹脂」という。)と、1分子中に3個以上のエポキシ基を有し、温度20℃で固体状のエポキシ樹脂(以下「固体状エポキシ樹脂」という。)とを含むことが好ましい。エポキシ樹脂として、液状エポキシ樹脂と固体状エポキシ樹脂とを併用することで、優れた可撓性を有する樹脂組成物が得られる。また、樹脂組成物の硬化物の破断強度も向上する。芳香族構造とは、一般に芳香族と定義される化学構造であり、多環芳香族及び芳香族複素環をも含む。
【0016】
液状エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAF型エポキシ樹脂、ナフタレン型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、エステル骨格を有する脂環式エポキシ樹脂、シクロヘキサンジメタノール型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、及びブタジエン構造を有するエポキシ樹脂が好ましく、グリシジルアミン型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAF型エポキシ樹脂及びナフタレン型エポキシ樹脂がより好ましい。液状エポキシ樹脂の具体例としては、DIC社製の「HP4032」、「HP4032D」、「HP4032SS」(ナフタレン型エポキシ樹脂)、三菱化学社製の「828US」、「jER828EL」(ビスフェノールA型エポキシ樹脂)、「jER807」(ビスフェノールF型エポキシ樹脂)、「jER152」(フェノールノボラック型エポキシ樹脂)、「630」、「630LSD」(グリシジルアミン型エポキシ樹脂)、新日鉄住金化学社製の「ZX1059」(ビスフェノールA型エポキシ樹脂とビスフェノールF型エポキシ樹脂の混合品)、ナガセケムテックス社製の「EX-721」(グリシジルエステル型エポキシ樹脂)、ダイセル社製の「セロキサイド2021P」(エステル骨格を有する脂環式エポキシ樹脂)、「PB-3600」(ブタジエン構造を有するエポキシ樹脂)、新日鉄住金化学社製の「ZX1658」、「ZX1658GS」(液状1,4-グリシジルシクロヘキサン)、三菱化学社製の「630LSD」(グリシジルアミン型エポキシ樹脂)、ADEKA社製の「EP-3980S」(グリシジルアミン型エポキシ樹脂)等が挙げられる。これらは1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
【0017】
固体状エポキシ樹脂としては、ノボラック型エポキシ樹脂、ナフタレン型4官能エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、トリスフェノール型エポキシ樹脂、ナフトール型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、アントラセン型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、テトラフェニルエタン型エポキシ樹脂が好ましく、ノボラック型エポキシ樹脂、ナフタレン型4官能エポキシ樹脂、ナフトール型エポキシ樹脂、及びビフェニル型エポキシ樹脂がより好ましい。固体状エポキシ樹脂の具体例としては、DIC社製の「HP4032H」(ナフタレン型エポキシ樹脂)、「HP-4700」、「HP-4710」(ナフタレン型4官能エポキシ樹脂)、「N-690」(クレゾールノボラック型エポキシ樹脂)、「N-695」(クレゾールノボラック型エポキシ樹脂)、「HP-7200」(ジシクロペンタジエン型エポキシ樹脂)、「HP-7200HH」、「HP-7200H」、「EXA-7311」、「EXA-7311-G3」、「EXA-7311-G4」、「EXA-7311-G4S」、「HP6000」(ナフチレンエーテル型エポキシ樹脂)、日本化薬社製の「EPPN-502H」(トリスフェノール型エポキシ樹脂)、「NC7000L」(ナフトールノボラック型エポキシ樹脂)、「NC3000H」、「NC3000」、「NC3000L」、「NC3100」(ビフェニル型エポキシ樹脂)、新日鉄住金化学社製の「ESN475V」(ナフタレン型エポキシ樹脂)、「ESN485」(ナフトールノボラック型エポキシ樹脂)、三菱化学社製の「YX4000H」、「YL6121」(ビフェニル型エポキシ樹脂)、「YX4000HK」(ビキシレノール型エポキシ樹脂)、「YX8800」(アントラセン型エポキシ樹脂)、大阪ガスケミカル社製の「PG-100」、「CG-500」、三菱化学社製の「YL7760」(ビスフェノールAF型エポキシ樹脂)、「YL7800」(フルオレン型エポキシ樹脂)、三菱化学社製の「jER1010」(固体状ビスフェノールA型エポキシ樹脂)、「jER1031S」(テトラフェニルエタン型エポキシ樹脂)、「157S70」(ノボラック型エポキシ樹脂)等が挙げられる。これらは1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
【0018】
エポキシ樹脂として、液状エポキシ樹脂と固体状エポキシ樹脂とを併用する場合、それらの量比(液状エポキシ樹脂:固体状エポキシ樹脂)は、質量比で、1:0.1~1:15の範囲が好ましい。液状エポキシ樹脂と固体状エポキシ樹脂との量比を斯かる範囲とすることにより、i)樹脂シートの形態で使用する場合に適度な粘着性がもたらされる、ii)樹脂シートの形態で使用する場合に十分な可撓性が得られ、取り扱い性が向上する、並びにiii)十分な破断強度を有する硬化物を得ることができる等の効果が得られる。上記i)~iii)の効果の観点から、液状エポキシ樹脂と固体状エポキシ樹脂の量比(液状エポキシ樹脂:固体状エポキシ樹脂)は、質量比で、1:0.3~1:10の範囲がより好ましく、1:0.6~1:8の範囲がさらに好ましい。
【0019】
樹脂組成物中のエポキシ樹脂の含有量は、良好な機械強度、絶縁信頼性を示す絶縁層を得る観点から、樹脂組成物中の不揮発成分を100質量%とした場合、好ましくは1質量%以上、より好ましくは2質量%以上、さらに好ましくは5質量%以上である。エポキシ樹脂の含有量の上限は、本発明の効果が奏される限りにおいて特に限定されないが、好ましくは20質量%以下、より好ましくは15質量%以下、さらに好ましくは10質量%以下である。
【0020】
エポキシ樹脂のエポキシ当量は、好ましくは50~5000、より好ましくは50~3000、さらに好ましくは80~2000、さらにより好ましくは110~1000である。この範囲となることで、硬化物の架橋密度が十分となり表面粗さの小さい絶縁層をもたらすことができる。なお、エポキシ当量は、JIS K7236に従って測定することができ、1当量のエポキシ基を含む樹脂の質量である。
【0021】
エポキシ樹脂の重量平均分子量は、好ましくは100~5000、より好ましくは250~3000、さらに好ましくは400~1500である。ここで、エポキシ樹脂の重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法により測定されるポリスチレン換算の重量平均分子量である。
【0022】
エポキシ樹脂の数平均分子量は、好ましくは5000未満、より好ましくは4000以下、さらに好ましくは3000以下である。下限は、好ましくは100以上、より好ましくは300以上、さらに好ましくは500以上である。数平均分子量(Mn)は、GPC(ゲル浸透クロマトグラフィー)を使用して測定されるポリスチレン換算の数平均分子量である。
【0023】
エポキシ樹脂のガラス転移温度(Tg)は、好ましくは25℃を超え、より好ましくは30℃以上、さらに好ましくは35℃以上である。上限は、好ましくは500℃以下、より好ましくは400℃以下、さらに好ましくは300℃以下である。
【0024】
<(B)無機充填材>
樹脂組成物は、(B)無機充填材を含有する。無機充填材の材料は特に限定されないが、例えば、シリカ、アルミナ、ガラス、コーディエライト、シリコン酸化物、硫酸バリウム、炭酸バリウム、タルク、クレー、雲母粉、酸化亜鉛、ハイドロタルサイト、ベーマイト、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、酸化マグネシウム、窒化ホウ素、窒化アルミニウム、窒化マンガン、ホウ酸アルミニウム、炭酸ストロンチウム、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸マグネシウム、チタン酸ビスマス、酸化チタン、酸化ジルコニウム、チタン酸バリウム、チタン酸ジルコン酸バリウム、ジルコン酸バリウム、ジルコン酸カルシウム、リン酸ジルコニウム、及びリン酸タングステン酸ジルコニウム等が挙げられる。これらの中でもシリカが特に好適である。またシリカとしては球形シリカが好ましい。無機充填材は1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
【0025】
無機充填材の平均粒径は、表面粗度の低い絶縁層を得る観点から、好ましくは12μm以下、より好ましくは10μm以下、より好ましくは8μm以下、より好ましくは5.0μm以下、より好ましくは2.5μm以下、さらに好ましくは2.2μm以下、より好ましくは2μm以下である。該平均粒径の下限は、特に限定されないが、好ましくは0.01μm以上、より好ましくは0.05μm以上、さらに好ましくは0.1μm以上である。このような平均粒径を有する無機充填材の市販品としては、例えば、アドマテックス社製「YC100C」、「YA050C」、「YA050C-MJE」、「YA010C」、電気化学工業社製「UFP-30」、トクヤマ社製「シルフィルNSS-3N」、「シルフィルNSS-4N」、「シルフィルNSS-5N」、アドマテックス社製「SC2500SQ」、「SO-C6」、「SO-C4」、「SO-C2」、「SO-C1」、デンカ社製の「DAW-03」、「FB-105FD」等が挙げられる。
【0026】
無機充填材の平均粒径はミー(Mie)散乱理論に基づくレーザー回折・散乱法により測定することができる。具体的にはレーザー回折散乱式粒度分布測定装置により、無機充填材の粒度分布を体積基準で作成し、そのメディアン径を平均粒径とすることで測定することができる。測定サンプルは、無機充填材を超音波により水中に分散させたものを好ましく使用することができる。レーザー回折散乱式粒度分布測定装置としては、堀場製作所社製「LA-500」等を使用することができる。
【0027】
無機充填材は、マトリックス樹脂との濡れ性改善の観点から、アミノシラン系カップリング剤、エポキシシラン系カップリング剤、メルカプトシラン系カップリング剤、シラン系カップリング剤、アルコキシシラン化合物、オルガノシラザン化合物、チタネート系カップリング剤等の1種以上の表面処理剤で処理されていてもよい。表面処理剤の市販品としては、例えば、信越化学工業社製「KBM403」(3-グリシドキシプロピルトリメトキシシラン)、信越化学工業社製「KBM803」(3-メルカプトプロピルトリメトキシシラン)、信越化学工業社製「KBE903」(3-アミノプロピルトリエトキシシラン)、信越化学工業社製「KBM573」(N-フェニル-3-アミノプロピルトリメトキシシラン)、信越化学工業社製「KBM5783」(N-フェニル-3-アミノオクチルトリメトキシシラン)、信越化学工業社製「SZ-31」(ヘキサメチルジシラザン)、信越化学工業社製「KBM103」(フェニルトリメトキシシラン)、信越化学工業社製「KBM-4803」(長鎖エポキシ型シランカップリング剤)等が挙げられる。なかでも、N-フェニル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノオクチルトリメトキシシランをはじめとするN-フェニル-3-アミノアルキルトリメトキシシラン等の、窒素原子含有シランカップリング剤が好ましく、フェニル基を含有するアミノシラン系カップリング剤がより好ましく、N-フェニル-3-アミノプロピルトリメトキシシランがより好ましい。
【0028】
樹脂組成物中の無機充填材の含有量は、熱膨張率が低い絶縁層を得る観点から、樹脂組成物中の不揮発成分を100質量%としたとき、好ましくは50質量%以上、より好ましくは60質量%以上、さらに好ましくは65質量%以上である。上限は、絶縁層の機械強度、特に伸びの観点から、好ましくは95質量%以下、より好ましくは93質量%以下、さらに好ましくは90質量%以下である。
【0029】
<(C)硬化剤>
樹脂組成物は、(C)硬化剤を含有する。(C)硬化剤としては、(A)成分等の樹脂を硬化する機能を有する限り特に限定されず、例えば、フェノール系硬化剤、ナフトール系硬化剤、活性エステル系硬化剤、ベンゾオキサジン系硬化剤、及びシアネートエステル系硬化剤などが挙げられる。硬化剤は1種単独で用いてもよく、又は2種以上を併用してもよい。(C)成分は、フェノール系硬化剤、ナフトール系硬化剤、活性エステル系硬化剤及びシアネートエステル系硬化剤から選択される1種以上であることが好ましく、フェノール系硬化剤、及び活性エステル系硬化剤から選択される1種以上であることが好ましく、一態様として、フェノール系硬化剤及び活性エステル系硬化剤から選ばれる1種以上であることがさらに好ましい。
【0030】
フェノール系硬化剤及びナフトール系硬化剤としては、硬化物が十分な強度を得る観点から、ノボラック構造を有するフェノール系硬化剤、又はノボラック構造を有するナフトール系硬化剤が好ましい。また、導体層との密着性の観点から、含窒素フェノール系硬化剤が好ましく、トリアジン骨格含有フェノール系硬化剤がより好ましい。
【0031】
フェノール系硬化剤及びナフトール系硬化剤の具体例としては、明和化成社製の「MEH-7700」、「MEH-7810」、「MEH-7851」、日本化薬社製の「NHN」、「CBN」、「GPH」、新日鉄住金化学社製の「SN170」、「SN180」、「SN190」、「SN475」、「SN485」、「SN495V」、「SN375」、「SN395」、DIC社製の「TD2090」、「TD2090-60M」、「LA-7052」、「LA-7054」、「LA-1356」、「LA-3018」、「LA-3018-50P」、「EXB-9500」、「HPC-9500」、「KA-1160」、「KA-1163」、「KA-1165」、群栄化学社製の「GDP-6115L」、「GDP-6115H」、「ELPC75」等が挙げられる。
【0032】
活性エステル系硬化剤としては、特に制限はないが、一般にフェノールエステル類、チオフェノールエステル類、N-ヒドロキシアミンエステル類、複素環ヒドロキシ化合物のエステル類等の反応活性の高いエステル基を1分子中に2個以上有する化合物が好ましく用いられる。当該活性エステル系硬化剤は、カルボン酸化合物及び/又はチオカルボン酸化合物とヒドロキシ化合物及び/又はチオール化合物との縮合反応によって得られるものが好ましい。特に耐熱性向上の観点から、カルボン酸化合物とヒドロキシ化合物とから得られる活性エステル系硬化剤が好ましく、カルボン酸化合物とフェノール化合物及び/又はナフトール化合物とから得られる活性エステル系硬化剤がより好ましい。カルボン酸化合物としては、例えば安息香酸、酢酸、コハク酸、マレイン酸、イタコン酸、フタル酸、イソフタル酸、テレフタル酸、ピロメリット酸等が挙げられる。フェノール化合物又はナフトール化合物としては、例えば、ハイドロキノン、レゾルシン、ビスフェノールA、ビスフェノールF、ビスフェノールS、フェノールフタリン、メチル化ビスフェノールA、メチル化ビスフェノールF、メチル化ビスフェノールS、フェノール、o-クレゾール、m-クレゾール、p-クレゾール、カテコール、α-ナフトール、β-ナフトール、1,5-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン、ジヒドロキシベンゾフェノン、トリヒドロキシベンゾフェノン、テトラヒドロキシベンゾフェノン、フロログルシン、ベンゼントリオール、ジシクロペンタジエン型ジフェノール化合物、フェノールノボラック等が挙げられる。ここで、「ジシクロペンタジエン型ジフェノール化合物」とは、ジシクロペンタジエン1分子にフェノール2分子が縮合して得られるジフェノール化合物をいう。
【0033】
具体的には、ジシクロペンタジエン型ジフェノール構造を含む活性エステル化合物、ナフタレン構造を含む活性エステル化合物、フェノールノボラックのアセチル化物を含む活性エステル化合物、フェノールノボラックのベンゾイル化物を含む活性エステル化合物が好ましく、中でもナフタレン構造を含む活性エステル化合物、ジシクロペンタジエン型ジフェノール構造を含む活性エステル化合物がより好ましい。「ジシクロペンタジエン型ジフェノール構造」とは、フェニレン-ジシクロペンチレン-フェニレンからなる2価の構造を表す。
【0034】
活性エステル系硬化剤の市販品としては、ジシクロペンタジエン型ジフェノール構造を含む活性エステル化合物として、「EXB9451」、「EXB9460」、「EXB9460S」、「HPC-8000」、「HPC-8000H」、「HPC-8000-65T」、「EXB-8000L」(DIC社製)、ナフタレン構造を含む活性エステル化合物として「EXB9416-70BK」(DIC社製)、フェノールノボラックのアセチル化物を含む活性エステル化合物として「DC808」(三菱化学社製)、フェノールノボラックのベンゾイル化物を含む活性エステル化合物として「YLH1026」(三菱化学社製)、フェノールノボラックのアセチル化物である活性エステル系硬化剤として「DC808」(三菱化学社製)、フェノールノボラックのベンゾイル化物である活性エステル系硬化剤として「YLH1026」(三菱化学社製)、「YLH1030」(三菱化学社製)、「YLH1048」(三菱化学社製)等が挙げられる。
【0035】
ベンゾオキサジン系硬化剤の具体例としては、昭和高分子社製の「HFB2006M」、四国化成工業社製の「P-d」、「F-a」が挙げられる。
【0036】
シアネートエステル系硬化剤としては、例えば、ビスフェノールAジシアネート、ポリフェノールシアネート、オリゴ(3-メチレン-1,5-フェニレンシアネート)、4,4’-メチレンビス(2,6-ジメチルフェニルシアネート)、4,4’-エチリデンジフェニルジシアネート、ヘキサフルオロビスフェノールAジシアネート、2,2-ビス(4-シアネート)フェニルプロパン、1,1-ビス(4-シアネートフェニルメタン)、ビス(4-シアネート-3,5-ジメチルフェニル)メタン、1,3-ビス(4-シアネートフェニル-1-(メチルエチリデン))ベンゼン、ビス(4-シアネートフェニル)チオエーテル、及びビス(4-シアネートフェニル)エーテル等の2官能シアネート樹脂、フェノールノボラック及びクレゾールノボラック等から誘導される多官能シアネート樹脂、これらシアネート樹脂が一部トリアジン化したプレポリマーなどが挙げられる。シアネートエステル系硬化剤の具体例としては、ロンザジャパン社製の「PT30」及び「PT60」(いずれもフェノールノボラック型多官能シアネートエステル樹脂)、「BA230」、「BA230S75」(ビスフェノールAジシアネートの一部又は全部がトリアジン化され三量体となったプレポリマー)等が挙げられる。
【0037】
(C)成分の含有量は、樹脂組成物中の樹脂成分を100質量%とした場合、好ましくは30質量%以下、より好ましくは20質量%以下、さらに好ましくは15質量%以下である。また、下限は、好ましくは1質量%以上、より好ましくは3質量%以上、さらに好ましくは5質量%以上である。(C)成分の含有量を斯かる範囲内とすることにより、絶縁層を形成する際に発生する反りを抑制することができ、さらには熱膨張係数、熱伝導率、銅メッキとの密着強度、表面粗度などの物性に優れた絶縁層を得ることができる。
【0038】
<(D)両親媒性ポリエーテルブロックコポリマー>
樹脂組成物は、(D)両親媒性ポリエーテルブロックコポリマーを含有する。本願明細書において、両親媒性ポリエーテルブロックコポリマーとは、少なくとも一つのエポキシ樹脂混和性ポリエーテルブロックセグメントと、少なくとも一つのエポキシ樹脂非混和性ポリエーテルブロックセグメントとを含むブロックコポリマーを言う。(D)成分を含有することで樹脂組成物の靱性向上、応力緩和性能を向上させることができ、これにより樹脂組成物の硬化物の反り量を低減することができる。
【0039】
エポキシ樹脂混和性ポリエーテルブロックセグメントとしては、例えばアルキレンオキシドから誘導されるエポキシ樹脂混和性ポリエーテルブロックセグメントが挙げられる。アルキレンオキシドから誘導されるエポキシ樹脂混和性ポリエーテルブロックセグメントとしては、ポリエチレンオキシドブロック、ポリプロピレンオキシドブロック、ポリ(エチレンオキシド-co-プロピレンオキシド)ブロック、ポリ(エチレンオキシド-ran-プロピレンオキシド)ブロック、及びそれらの混合物から選択される1種以上を含むポリアルキレンオキシドブロックが好ましく、ポリエチレンオキシドブロックがより好ましい。
【0040】
エポキシ樹脂非混和性ブロックセグメントとしては、例えば、アルキレンオキシドから誘導される少なくとも一つのエポキシ樹脂非混和性ポリエーテルブロックセグメントが挙げられる。アルキレンオキシドから誘導される少なくとも一つのエポキシ樹脂非混和性ポリエーテルブロックセグメントとしては、例えば、ポリブチレンオキシドブロック、1,2-エポキシヘキサンから誘導されるポリヘキシレンオキシドブロック、1,2-エポキシドデカンから誘導されるポリドデシレンオキシドブロック、及びそれらの混合物から選択される1種以上のポリアルキレンオキシドが好ましく、ポリブチレンオキシドブロックがより好ましい。
【0041】
本発明で使用する両親媒性ポリエーテルブロックコポリマーは、1種以上のエポキシ樹脂混和性ブロックセグメントを有することが好ましく、2種以上のエポキシ樹脂混和性ブロックセグメントを有することより好ましい。同様に、1種以上のエポキシ樹脂非混和性ブロックセグメントを有することが好ましく、2種以上のエポキシ樹脂非混和性ブロックセグメントを有することがより好ましい。従って、(D)成分は、例えば、ジブロック、直鎖トリブロック、直鎖テトラブロック、高次マルチブロック構造、分岐ブロック構造、星型ブロック構造、及びそれらの組合せから成る群から選択されるエポキシ樹脂混和性ブロックセグメント、又はエポキシ樹脂非混和性ブロックセグメントを有することが好ましい。
【0042】
両親媒性ポリエーテルブロックコポリマーは、その効果を損なわない範囲で、分子中に他のセグメントを含有してもよい。他のセグメントとしては、例えば、ポリエチレンプロピレン(PEP)、ポリブタジエン、ポリイソプレン、ポリジメチルシロキサン、ポリブチレンオキシド、ポリヘキシレンオキシド、ポリエチルヘキシルメタクリレート等のポリアルキルメチルメタクリレート、及びそれらの混合物等が挙げられる。
【0043】
両親媒性ポリエーテルブロックコポリマーの数平均分子量は、好ましくは3,000~20,000である。数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法により測定されるポリスチレン換算の重量平均分子量である。
【0044】
両親媒性ポリエーテルブロックコポリマーは、例えば、ポリ(エチレンオキシド)-b-ポリ(ブチレンオキシド)(PEO-PBO);ポリ(エチレンオキシド)-b-ポリ(ブチレンオキシド)-b-ポリ(エチレンオキシド)(PEO-PBO-PEO)等の両親媒性ポリエーテルトリブロックコポリマー等が挙げられる。両親媒性ブロックコポリマーは市販品を用いることもできる。市販品としては、例えばThe Dow Chemical Company社製の「Fortegra100」(PEO-PBO-PEO)等が挙げられる。
【0045】
(D)成分の含有量は、樹脂組成物中の不揮発成分を100質量%とした場合、割れ性等を向上させる観点から、好ましくは0.3質量%以上、より好ましくは0.4質量%以上、さらに好ましくは0.5質量%以上である。上限は、本発明の効果が奏される限りにおいて特に限定されないが、好ましくは15質量%以下、より好ましくは10質量%以下、さらに好ましくは5質量%以下である。
【0046】
<(E)カルボジイミド化合物>
本発明の樹脂組成物は、(E)成分として、カルボジイミド化合物を含むことができる。カルボジイミド化合物は、1分子中にカルボジイミド基(-N=C=N-)を1個以上有する化合物であり、(E)成分を含有させることで導体層との密着性に優れる絶縁層をもたらすことができる。カルボジイミド化合物としては、1分子中にカルボジイミド基を2個以上有する化合物が好ましい。カルボジイミド化合物は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
【0047】
一実施形態において、本発明の樹脂組成物に含まれるカルボジイミド化合物は、下記式(1)で表される構造を含有する。
【0048】
【化1】
(式中、Xは、アルキレン基、シクロアルキレン基又はアリーレン基を表し、これらは置換基を有していてもよい。pは1~5の整数を表す。Xが複数存在する場合、それらは同一でも相異なってもよい。*は結合手を表す。)
【0049】
Xで表されるアルキレン基の炭素原子数は、好ましくは1~20、より好ましくは1~10、さらに好ましくは1~6、1~4、又は1~3である。該炭素原子数に置換基の炭素原子数は含まれない。該アルキレン基の好適な例としては、メチレン基、エチレン基、プロピレン基、ブチレン基が挙げられる。
【0050】
Xで表されるシクロアルキレン基の炭素原子数は、好ましくは3~20、より好ましくは3~12、さらに好ましくは3~6である。該炭素原子数に置換基の炭素原子数は含まれない。該シクロアルキレン基の好適な例としては、シクロプロピレン基、シクロブチレン基、シクロペンチレン基、シクロヘキシレン基が挙げられる。
【0051】
Xで表されるアリーレン基は、芳香族炭化水素から芳香環上の水素原子を2個除いた基である。該アリーレン基の炭素原子数は、好ましくは6~24、より好ましくは6~18、さらに好ましくは6~14、さらにより好ましくは6~10である。該炭素原子数に置換基の炭素原子数は含まれない。該アリーレン基の好適な例としては、フェニレン基、ナフチレン基、アントラセニレン基が挙げられる。
【0052】
Xで表されるアルキレン基、シクロアルキレン基又はアリール基は置換基を有していてもよい。該置換基としては、特に限定されないが、例えば、ハロゲン原子、アルキル基、アルコキシ基、シクロアルキル基、シクロアルキルオキシ基、アリール基、アリールオキシ基、アシル基及びアシルオキシ基が挙げられる。置換基として用いられるハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。置換基として用いられるアルキル基、アルコキシ基は、直鎖状、分岐状のいずれであってもよく、その炭素原子数は、好ましくは1~20、より好ましくは1~10、さらに好ましくは1~6、1~4、又は1~3である。置換基として用いられるシクロアルキル基、シクロアルキルオキシ基の炭素原子数は、好ましくは3~20、より好ましくは3~12、さらに好ましくは3~6である。置換基として用いられるアリール基は、芳香族炭化水素から芳香環上の水素原子を1個除いた基であり、その炭素原子数は、好ましくは6~24、より好ましくは6~18、さらに好ましくは6~14、さらにより好ましくは6~10である。置換基として用いられるアリールオキシ基の炭素原子数は、好ましくは6~24、より好ましくは6~18、さらに好ましくは6~14、さらにより好ましくは6~10である。置換基として用いられるアシル基は、式:-C(=O)-Rで表される基(式中、Rはアルキル基又はアリール基を表す。)をいう。Rで表されるアルキル基は、直鎖状、分岐状のいずれであってもよく、その炭素原子数は、好ましくは1~20、より好ましくは1~10、さらに好ましくは1~6、1~4、又は1~3である。Rで表されるアリール基の炭素原子数は、好ましくは6~24、より好ましくは6~18、さらに好ましくは6~14、さらにより好ましくは6~10である。置換基として用いられるアシルオキシ基は、式:-O-C(=O)-Rで表される基(式中、Rは上記と同じ意味を表す。)をいう。中でも、置換基としては、アルキル基、アルコキシ基、及びアシルオキシ基が好ましく、アルキル基がより好ましい。
【0053】
式(1)中、pは1~5の整数を表す。耐熱性、レーザービア信頼性、及び導体層との密着性に一層優れる絶縁層を実現する観点から、pは、好ましくは1~4、より好ましくは2~4、さらに好ましくは2又は3である。
【0054】
式(1)中、Xが複数存在する場合、それらは同一でも相異なっていてもよい。好適な一実施形態において、少なくとも1つのXは、アルキレン基又はシクロアルキレン基であり、これらは置換基を有していてもよい。
【0055】
好適な一実施形態において、カルボジイミド化合物は、カルボジイミド化合物の分子全体の質量を100質量%としたとき、好ましくは50質量%以上、より好ましくは60質量%以上、さらに好ましくは70質量%以上、さらにより好ましくは80質量%以上又は90質量%以上にて、式(1)で表される構造を含有する。カルボジイミド化合物は、末端構造を除いて、式(1)で表される構造から実質的になってもよい。カルボジイミド化合物の末端構造としては、特に限定されないが、例えば、アルキル基、シクロアルキル基及びアリール基が挙げられ、これらは置換基を有していてもよい。末端構造として用いられるアルキル基、シクロアルキル基、アリール基は、Xで表される基が有していてもよい置換基について説明したアルキル基、シクロアルキル基、アリール基と同じであってよい。また、末端構造として用いられる基が有していてもよい置換基は、Xで表される基が有していてもよい置換基と同じであってよい。
【0056】
樹脂組成物を硬化する際のアウトガスの発生を抑制し得る観点から、カルボジイミド化合物の重量平均分子量は、好ましくは500以上、より好ましくは600以上、さらに好ましくは700以上、さらにより好ましくは800以上、特に好ましくは900以上又は1000以上である。また、良好な相溶性を得る観点から、カルボジイミド化合物の重量平均分子量の上限は、好ましくは5000以下、より好ましくは4500以下、さらに好ましくは4000以下、さらにより好ましくは3500以下、特に好ましくは3000以下である。カルボジイミド化合物の重量平均分子量は、例えば、ゲルパーミエーションクロマトグラフィー(GPC)法(ポリスチレンン換算)で測定することができる。
【0057】
なお、カルボジイミド化合物は、その製法に由来して、分子中にイソシアネート基(-N=C=O)を含有する場合がある。良好な保存安定性を示す樹脂組成物を得る観点、ひいては所期の特性を示す絶縁層を実現する観点から、カルボジイミド化合物中のイソシアネート基の含有量(「NCO含有量」ともいう。)は、好ましくは5質量%以下、より好ましくは4質量%以下、さらに好ましくは3質量%以下、さらにより好ましくは2質量%以下、特に好ましくは1質量%以下又は0.5質量%以下である。
【0058】
カルボジイミド化合物は、市販品を使用してもよい。市販のカルボジイミド化合物としては、例えば、日清紡ケミカル社製のカルボジライト(登録商標)V-02B、V-03、V-04K、V-07及びV-09、ラインケミー社製のスタバクゾール(登録商標)P、P400、及びハイカジル510が挙げられる。
【0059】
樹脂組成物が(E)成分を含有する場合、(E)成分の含有量は、耐熱性、レーザービア信頼性、及び導体層との密着性のいずれの特性にも優れる絶縁層を得る観点から、樹脂成分を100質量%とした場合、0.1質量%以上が好ましく、0.3質量%以上がより好ましく、0.5質量%以上がさらに好ましい。カルボジイミド化合物の含有量の上限は特に限定されないが、10質量%以下が好ましく、8質量%以下がより好ましく、5質量%以下がさらに好ましい。
【0060】
<(F)熱可塑性樹脂>
樹脂組成物は、熱可塑性樹脂を含有し得る。熱可塑性樹脂としては、例えば、フェノキシ樹脂、ポリビニルアセタール樹脂、ポリオレフィン樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリフェニレンエーテル樹脂、ポリエーテルエーテルケトン樹脂、ポリエステル樹脂が挙げられる。
【0061】
フェノキシ樹脂のポリスチレン換算の重量平均分子量は8,000~70,000の範囲が好ましく、10,000~60,000の範囲がより好ましく、20,000~60,000の範囲がさらに好ましい。フェノキシ樹脂のポリスチレン換算の重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法で測定される。具体的には、フェノキシ樹脂のポリスチレン換算の重量平均分子量は、測定装置として島津製作所社製LC-9A/RID-6Aを、カラムとして昭和電工社製Shodex K-800P/K-804L/K-804Lを、移動相としてクロロホルム等を用いて、カラム温度を40℃にて測定し、標準ポリスチレンの検量線を用いて算出することができる。同様に、熱可塑性樹脂のポリスチレン換算の重量平均分子量は8,000~70,000の範囲が好ましく、10,000~60,000の範囲がより好ましく、20,000~60,000の範囲がさらに好ましい。
【0062】
フェノキシ樹脂の具体例としては、三菱化学社製の「1256」及び「4250」(いずれもビスフェノールA構造含有フェノキシ樹脂)、「YX8100」(ビスフェノールS骨格含有フェノキシ樹脂)、及び「YX6954」(ビスフェノールアセトフェノン構造含有フェノキシ樹脂)が挙げられ、その他にも、新日鉄住金化学社製の「FX280」及び「FX293」、三菱化学社製の「YX7180」、「YX6954」、「YX7553」、「YX7553BH30」、「YL7769」、「YL6794」、「YL7213」、「YL7290」、「YL7891」及び「YL7482」等が挙げられる。なかでもポリアルキレンオキシ構造を有するフェノキシ樹脂が好ましく、具体例としては三菱化学社製の「YX7180」、「YX7553BH30」が挙げられる。
【0063】
ポリビニルアセタール樹脂の具体例としては、例えば、電気化学工業社製の「電化ブチラール4000-2」、「電化ブチラール5000-A」、「電化ブチラール6000-C」、「電化ブチラール6000-EP」、積水化学工業社製のエスレックBHシリーズ、BXシリーズ(例えばBX-5Z)、KSシリーズ(例えばKS-1)、BLシリーズ、BMシリーズ等が挙げられる。
【0064】
ポリイミド樹脂の具体例としては、新日本理化社製の「リカコートSN20」及び「リカコートPN20」が挙げられる。
【0065】
ポリアミドイミド樹脂の具体例としては、東洋紡社製の「バイロマックスHR11NN」及び「バイロマックスHR16NN」、日立化成社製の「KS9100」及び「KS9300」等が挙げられる。
【0066】
ポリエーテルスルホン樹脂の具体例としては、住友化学社製の「PES5003P」等が挙げられる。
【0067】
ポリスルホン樹脂の具体例としては、ソルベイアドバンストポリマーズ社製のポリスルホン「P1700」及び「P3500」等が挙げられる。
【0068】
樹脂組成物が(F)成分を含有する場合、(F)成分の含有量は、柔軟性付与の観点から、樹脂成分を100質量%とした場合、好ましくは1質量%以上、より好ましくは3質量%以上、さらに好ましくは5質量%以上、さらにより好ましくは50質量%以上、55質量%以上、60質量%以上である。上限は、好ましくは85質量%以下、より好ましくは80質量%以下、さらに好ましくは75質量%以下、20質量%以下、15質量%以下、又は10質量%以下である。
【0069】
<(G)分子内に、ポリブタジエン構造、ポリシロキサン構造、ポリ(メタ)アクリレート構造、ポリアルキレン構造、ポリアルキレンオキシ構造、ポリイソプレン構造、ポリイソブチレン構造、及びポリカーボネート構造から選択される1種以上の構造を有する樹脂>
樹脂組成物は、(G)成分として、(G)分子内に、ポリブタジエン構造、ポリシロキサン構造、ポリ(メタ)アクリレート構造、ポリアルキレン構造、ポリアルキレンオキシ構造、ポリイソプレン構造、ポリイソブチレン構造、及びポリカーボネート構造から選択される1種以上の構造を有する樹脂を含有していてもよい。(G)成分は、(F)熱可塑性樹脂とは区別される樹脂である。
(G)成分としては、ポリブタジエン構造、ポリ(メタ)アクリレート構造、ポリアルキレンオキシ構造、ポリイソプレン構造、ポリイソブチレン構造、及びポリカーボネート構造から選択される1種または2種以上の構造を有することが好ましく、ポリブタジエン構造、及びポリカーボネート構造から選択される1以上の構造を有することがより好ましい。樹脂組成物が(G)成分を含むことで絶縁層が低弾性となり、シェア強度、破断曲げひずみ、及び割れ性に優れるようになり、さらに反りの発生を抑制することがきる。なお、「(メタ)アクリレート」とは、メタクリレート及びアクリレートを指す。これらの構造は主鎖に含まれていても側鎖に含まれていてもよい。
【0070】
(G)成分は、樹脂組成物が硬化した際の反りを低下させるために高分子量であることが好ましい。数平均分子量(Mn)は、好ましくは1,000以上、より好ましくは1500以上、さらに好ましくは3000以上、5000以上である。上限は、好ましくは1,000,000以下、より好ましくは900,000以下である。数平均分子量(Mn)は、GPC(ゲル浸透クロマトグラフィー)を使用して測定されるポリスチレン換算の数平均分子量である。
【0071】
(G)成分は、硬化物の機械的強度を向上させる観点から、(A)成分と反応し得る官能基を有することが好ましい。なお、(A)成分と反応し得る官能基としては、加熱によって現れる官能基も含めるものとする。
【0072】
好適な一実施形態において、(A)成分と反応し得る官能基は、ヒドロキシ基、カルボキシ基、酸無水物基、フェノール性水酸基、エポキシ基、イソシアネート基及びウレタン基からなる群から選択される1種以上の官能基である。中でも、当該官能基としては、ヒドロキシ基、酸無水物基、フェノール性水酸基、エポキシ基、イソシアネート基及びウレタン基が好ましく、ヒドロキシ基、酸無水物基、フェノール性水酸基、エポキシ基がより好ましく、フェノール性水酸基が特に好ましい。ただし、官能基としてエポキシ基を含む場合、数平均分子量(Mn)は、5,000以上であることが好ましい。
【0073】
(G)成分の好適な実施形態は、ポリブタジエン構造を含有する樹脂であり、ポリブタジエン構造は主鎖に含まれていても側鎖に含まれていてもよい。なお、ポリブタジエン構造は、一部又は全てが水素添加されていてもよい。ポリブタジエン構造を含有する樹脂をポリブタジエン樹脂という。
ポリブタジエン樹脂の具体例としては、クレイバレー社製の「Ricon 130MA8」、「Ricon 130MA13」、「Ricon 130MA20」、「Ricon 131MA5」、「Ricon 131MA10」、「Ricon 131MA17」、「Ricon 131MA20」、「Ricon 184MA6」(酸無水物基含有ポリブタジエン)、日本曹達社製の「GQ-1000」(水酸基、カルボキシル基導入ポリブタジエン)、「G-1000」、「G-2000」、「G-3000」(両末端水酸基ポリブタジエン)、「GI-1000」、「GI-2000」、「GI-3000」(両末端水酸基水素化ポリブタジエン)、ナガセケムテックス社製の「FCA-061L」(水素化ポリブタジエン骨格エポキシ樹脂)等が挙げられる。一実施形態として、ヒドロキシル基末端ポリブタジエン、ジイソシアネート化合物及び四塩基酸無水物を原料とする線状ポリイミド(特開2006-37083号公報、国際公開第2008/153208号に記載のポリイミド)等が挙げられる。該ポリイミドのブタジエン構造の含有率は、好ましくは60質量%~95質量%、より好ましくは75質量%~85質量%である。該ポリイミドの詳細は、特開2006-37083号公報、国際公開第2008/153208号の記載を参酌することができ、この内容は本明細書に組み込まれる。
【0074】
(G)成分の好適な実施形態は、ポリ(メタ)アクリレート構造を含有する樹脂である。ポリ(メタ)アクリレート構造を含有する樹脂をポリ(メタ)アクリル樹脂という。
ポリ(メタ)アクリル樹脂としては、ナガセケムテックス社製のテイサンレジン、根上工業社製の「ME-2000」、「W-116.3」、「W-197C」、「KG-25」、「KG-3000」等が挙げられる。
【0075】
(G)成分の好適な実施形態は、ポリカーボネート構造を含有する樹脂である。ポリカーボネート構造を含有する樹脂をポリカーボネート樹脂という。
ポリカーボネート樹脂としては、旭化成ケミカルズ社製の「T6002」、「T6001」(ポリカーボネートジオール)、クラレ社製の「C-1090」、「C-2090」、「C-3090」(ポリカーボネートジオール)等が挙げられる。また、(G)成分として、ヒドロキシル基末端ポリカーボネート、ジイソシアネート化合物及び四塩基酸無水物を原料とする線状ポリイミドを使用することもできる。該ポリイミドのカーボネート構造の含有率は、好ましくは60質量%~95質量%、より好ましくは75質量%~85質量%である。該ポリイミドの詳細は、国際公開第2016/129541号の記載を参酌することができ、この内容は本明細書に組み込まれる。
【0076】
また、(G)成分の他の具体例としては、シロキサン構造を含有する樹脂である。シロキサン構造を含有する樹脂をシロキサン樹脂という。シロキサン樹脂としては、例えば、信越シリコーン社製の「SMP-2006」、「SMP-2003PGMEA」、「SMP-5005PGMEA」、アミン基末端ポリシロキサンおよび四塩基酸無水物を原料とする線状ポリイミド(国際公開第2010/053185号、特開2002-12667号公報及び特開2000-319386号公報等)等が挙げられる。
【0077】
(G)成分の他の具体例としては、アルキレン構造、アルキレンオキシ構造を含有する樹脂である。アルキレン構造を含有する樹脂をアルキレン樹脂といい、アルキレンオキシ構造を含有する樹脂をアルキレンオキシ樹脂という。ポリアルキレンオキシ構造は、炭素原子数2~15のポリアルキレンオキシ構造が好ましく、炭素原子数3~10のポリアルキレンオキシ構造がより好ましく、炭素原子数5~6のポリアルキレンオキシ構造がさらに好ましい。アルキレン樹脂、アルキレンオキシ樹脂の具体例としては、旭化成せんい社製の「PTXG-1000」、「PTXG-1800」等が挙げられる。
【0078】
(G)成分の他の具体例としては、イソプレン構造を含有する樹脂である。イソプレン構造を含有する樹脂をイソプレン樹脂という。イソプレン樹脂の具体例としては、クラレ社製の「KL-610」、「KL613」等が挙げられる。
【0079】
(G)成分の他の具体例としては、イソブチレン構造を含有する樹脂である。イソブチレン構造を含有する樹脂をイソブチレン樹脂という。イソブチレン樹脂の具体例としては、カネカ社製の「SIBSTAR-073T」(スチレン-イソブチレン-スチレントリブロック共重合体)、「SIBSTAR-042D」(スチレン-イソブチレンジブロック共重合体)等が挙げられる。
【0080】
樹脂組成物が(G)成分を含有する場合、(G)成分の含有量は、柔軟性付与の観点から、樹脂成分を100質量%とした場合、好ましくは1質量%以上、より好ましくは3質量%以上、さらに好ましくは5質量%以上、さらにより好ましくは50質量%以上、55質量%以上、60質量%以上である。上限は、好ましくは85質量%以下、より好ましくは80質量%以下、さらに好ましくは75質量%以下、15質量%以下、10質量%以下、又は5質量%以下である。
【0081】
<(H)ゴム粒子>
樹脂組成物は、(H)ゴム粒子を含有し得る。ゴム粒子は、(F)及び(G)成分とは異なり粒子状であるので有機溶剤に溶解せず、エポキシ樹脂や硬化剤などの他の成分とも相溶しない。
ゴム粒子の具体例としては、アクリルゴム粒子、ポリアミド微粒子、シリコーン微粒子などのゴム粒子が挙げられる。アクリルゴム粒子の具体例としては、アクリロニトリルブタジエンゴム、ブタジエンゴム、アクリルゴムなどのゴム弾性を示す樹脂に化学的架橋処理を施し、有機溶剤に不溶かつ不融とした樹脂の微粒子体が挙げられ、具体的にはガンツ化成社製の「AC3832」等が挙げられる。
【0082】
樹脂組成物が(H)成分を含有する場合、(H)成分の含有量は、柔軟性付与の観点から、樹脂成分を100質量%とした場合、好ましくは1質量%以上、より好ましくは3質量%以上、さらに好ましくは5質量%以上、さらにより好ましくは50質量%以上、55質量%以上、60質量%以上である。上限は、好ましくは85質量%以下、より好ましくは80質量%以下、さらに好ましくは75質量%以下、15質量%以下、10質量%以下、又は5質量%以下である。
【0083】
<(I)硬化促進剤>
樹脂組成物は、(I)硬化促進剤を含有し得る。硬化促進剤としては、例えば、リン系硬化促進剤、アミン系硬化促進剤、イミダゾール系硬化促進剤、グアニジン系硬化促進剤、金属系硬化促進剤等が挙げられ、リン系硬化促進剤、アミン系硬化促進剤、イミダゾール系硬化促進剤、金属系硬化促進剤が好ましく、アミン系硬化促進剤、イミダゾール系硬化促進剤、金属系硬化促進剤がより好ましい。硬化促進剤は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
【0084】
リン系硬化促進剤としては、例えば、トリフェニルホスフィン、ホスホニウムボレート化合物、テトラフェニルホスホニウムテトラフェニルボレート、n-ブチルホスホニウムテトラフェニルボレート、テトラブチルホスホニウムデカン酸塩、(4-メチルフェニル)トリフェニルホスホニウムチオシアネート、テトラフェニルホスホニウムチオシアネート、ブチルトリフェニルホスホニウムチオシアネート等が挙げられ、トリフェニルホスフィン、テトラブチルホスホニウムデカン酸塩が好ましい。
【0085】
アミン系硬化促進剤としては、例えば、トリエチルアミン、トリブチルアミン等のトリアルキルアミン、4-ジメチルアミノピリジン、ベンジルジメチルアミン、2,4,6,-トリス(ジメチルアミノメチル)フェノール、1,8-ジアザビシクロ(5,4,0)-ウンデセン等が挙げられ、4-ジメチルアミノピリジン、1,8-ジアザビシクロ(5,4,0)-ウンデセンが好ましい。
【0086】
イミダゾール系硬化促進剤としては、例えば、2-メチルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、1,2-ジメチルイミダゾール、2-エチル-4-メチルイミダゾール、1,2-ジメチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾリウムトリメリテイト、1-シアノエチル-2-フェニルイミダゾリウムトリメリテイト、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-ウンデシルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-エチル-4’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンイソシアヌル酸付加物、2-フェニルイミダゾールイソシアヌル酸付加物、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、2,3-ジヒドロ-1H-ピロロ[1,2-a]ベンズイミダゾール、1-ドデシル-2-メチル-3-ベンジルイミダゾリウムクロライド、2-メチルイミダゾリン、2-フェニルイミダゾリン等のイミダゾール化合物及びイミダゾール化合物とエポキシ樹脂とのアダクト体が挙げられ、2-エチル-4-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾールが好ましい。
【0087】
イミダゾール系硬化促進剤としては、市販品を用いてもよく、例えば、三菱化学社製の「P200-H50」等が挙げられる。
【0088】
グアニジン系硬化促進剤としては、例えば、ジシアンジアミド、1-メチルグアニジン、1-エチルグアニジン、1-シクロヘキシルグアニジン、1-フェニルグアニジン、1-(o-トリル)グアニジン、ジメチルグアニジン、ジフェニルグアニジン、トリメチルグアニジン、テトラメチルグアニジン、ペンタメチルグアニジン、1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン、7-メチル-1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン、1-メチルビグアニド、1-エチルビグアニド、1-n-ブチルビグアニド、1-n-オクタデシルビグアニド、1,1-ジメチルビグアニド、1,1-ジエチルビグアニド、1-シクロヘキシルビグアニド、1-アリルビグアニド、1-フェニルビグアニド、1-(o-トリル)ビグアニド等が挙げられ、ジシアンジアミド、1,5,7-トリアザビシクロ[4.4.0]デカ-5-エンが好ましい。
【0089】
金属系硬化促進剤としては、例えば、コバルト、銅、亜鉛、鉄、ニッケル、マンガン、スズ等の金属の、有機金属錯体又は有機金属塩が挙げられる。有機金属錯体の具体例としては、コバルト(II)アセチルアセトナート、コバルト(III)アセチルアセトナート等の有機コバルト錯体、銅(II)アセチルアセトナート等の有機銅錯体、亜鉛(II)アセチルアセトナート等の有機亜鉛錯体、鉄(III)アセチルアセトナート等の有機鉄錯体、ニッケル(II)アセチルアセトナート等の有機ニッケル錯体、マンガン(II)アセチルアセトナート等の有機マンガン錯体等が挙げられる。有機金属塩としては、例えば、オクチル酸亜鉛、オクチル酸錫、ナフテン酸亜鉛、ナフテン酸コバルト、ステアリン酸スズ、ステアリン酸亜鉛等が挙げられる。
【0090】
樹脂組成物が(I)成分を含有する場合、(I)成分の含有量は、樹脂組成物の樹脂成分を100質量%とした場合、0.01質量%~3質量%が好ましく、0.03~1.5質量%がより好ましく、0.05~1質量%がさらに好ましい。
【0091】
<(J)難燃剤>
樹脂組成物は、(J)難燃剤を含有し得る。難燃剤としては、例えば、有機リン系難燃剤、有機系窒素含有リン化合物、窒素化合物、シリコーン系難燃剤、金属水酸化物等が挙げられる。難燃剤は1種単独で用いてもよく、又は2種以上を併用してもよい。
【0092】
難燃剤としては、市販品を用いてもよく、例えば、三光社製の「HCA-HQ」、大八化学工業社製の「PX-200」等が挙げられる。難燃剤としては加水分解しにくいものが好ましく、例えば、10-(2,5-ジヒドロキシフェニル)-10-ヒドロ-9-オキサ-10-フォスファフェナンスレン-10-オキサイド等が好ましい。
【0093】
樹脂組成物が難燃剤を含有する場合、難燃剤の含有量は特に限定されないが、樹脂組成物中の不揮発成分を100質量%としたとき、好ましくは0.5質量%~20質量%、より好ましくは0.5質量%~15質量%、さらに好ましくは0.5質量%~10質量%がさらに好ましい。
【0094】
<(K)任意の添加剤>
樹脂組成物は、さらに必要に応じて、他の添加剤を含んでいてもよく、斯かる他の添加剤としては、例えば、有機銅化合物、有機亜鉛化合物及び有機コバルト化合物等の有機金属化合物、並びに、バインダー、増粘剤、消泡剤、レベリング剤、密着性付与剤、及び着色剤等の樹脂添加剤等が挙げられる。
【0095】
<樹脂組成物の物性>
本発明の樹脂組成物を180℃で90分間熱硬化させた硬化物は、硬化収縮率が低いという特性を示す。即ち、硬化収縮が抑えられ、これにより反りを抑制することができる絶縁層をもたらす。硬化収縮率としては、好ましくは0.27%以下、より好ましくは0.25%以下、さらに好ましくは0.2%以下である。硬化収縮率の下限値は特に限定されないが、0.01%以上等とし得る。硬化収縮率は、後述する<硬化収縮率の測定>に記載の方法に従って測定することができる。
【0096】
本発明の樹脂組成物を180℃で30分間熱硬化させた硬化物は、反りを抑制するという特性を示す。具体的には、絶対値が20mm未満であることが好ましく、10mm未満であることがより好ましい。反りの評価は、後述する<反り試験>に記載の方法に従って評価することができる。
【0097】
本発明の樹脂組成物を180℃で90分間熱硬化させた硬化物は、線熱膨張係数(熱膨張率)が低いという特性を示す。即ち、熱膨張率が低い絶縁層をもたらす。30℃~150℃における線熱膨張係数の上限値は30ppm/℃以下が好ましく、25ppm/℃以下がより好ましく、20ppm/℃以下が更に好ましく、15ppm/℃以下が更に一層好ましく、10ppm/℃以下が特に好ましい。一方、線熱膨張係数の下限値は特に限定されず、3ppm/℃以上、4ppm/℃以上、5ppm/℃以上などし得る。熱膨張率の測定は、後述する<平均線熱膨張係数(熱膨張率)の測定>に記載の方法に従って測定することができる。
【0098】
本発明の樹脂組成物を180℃で30分間、さらに180℃で60分間熱硬化させた硬化物は、金属層、特にメッキにより形成された金属層とのピール強度に優れるという特性を示す。即ちピール強度に優れた絶縁層をもたらす。ピール強度としては、好ましくは0.4kgf/cm以上、より好ましくは0.45kgf/cm以上、さらに好ましくは0.5kgf/cm以上である。一方、ピール強度の上限値は特に限定されないが、1.5kgf/cm以下、1kgf/cm以下等とし得る。ピール強度の評価は、後述する<金属層の引き剥がし強さ(ピール強度)、及び粗化処理後の絶縁層表面の表面粗さ(Ra)の測定>に記載の方法に従って測定することができる。金属層としては、好ましくは銅を含む金属層であり、より好ましくはメッキにより形成された金属層である。
【0099】
本発明の樹脂組成物を180℃で90分間熱硬化させた硬化物は、熱伝導率に優れるという特性を示す。即ち熱伝導率に優れる絶縁層をもたらす。熱伝導率としては、好ましくは0.5W/m・K以上である。熱伝導率の上限は5.0W/m・K以下、4.0W/m・K以下、又は3.5W/m・K以下とし得る。熱伝導率の評価は、後述する<硬化物の熱伝導率の測定>に記載の方法に従って測定することができる。
【0100】
本発明の樹脂組成物は、絶縁層を形成する際に発生する反りを抑制することができる絶縁層をもたらすことができる。さらには熱膨張係数、熱伝導率、銅メッキとの密着強度、表面粗度などの物性に優れた絶縁層をもたらすことができる。したがって、本発明の樹脂組成物は、半導体チップパッケージの絶縁層を形成するための樹脂組成物(半導体チップパッケージの絶縁層用樹脂組成物)、回路基板(プリント配線板を含む)の絶縁層を形成するための樹脂組成物(回路基板の絶縁層用樹脂組成物)として好適に使用することができ、その上にメッキにより導体層が形成される層間絶縁層を形成するための樹脂組成物(メッキにより導体層を形成する回路基板の層間絶縁層用樹脂組成物、すなわち、セミアディティブプロセス法によって回路形成する回路基板の層間絶縁層用樹脂組成物)としてさらに好適に使用することができる。また、半導体チップを封止するための樹脂組成物(半導体チップ封止用樹脂組成物)、半導体チップに配線を形成するための樹脂組成物(半導体チップ配線形成用樹脂組成物)としても好適に使用することができる。
【0101】
[樹脂シート]
本発明の樹脂シートは、支持体と、該支持体上に設けられた、本発明の樹脂組成物で形成された樹脂組成物層とを含む。
【0102】
樹脂組成物層の厚さは、薄型化の観点から、好ましくは200μm以下、より好ましくは150μm以下、さらに好ましくは100μm以下、80μm以下、60μm以下、50μm以下又は40μm以下である。樹脂組成物層の厚さの下限は、特に限定されないが、通常、1μm以上、5μm以上、10μm以上等とし得る。
【0103】
支持体としては、例えば、プラスチック材料からなるフィルム、金属箔、離型紙が挙げられ、プラスチック材料からなるフィルム、金属箔が好ましい。
【0104】
支持体としてプラスチック材料からなるフィルムを使用する場合、プラスチック材料としては、例えば、ポリエチレンテレフタレート(以下「PET」と略称することがある。)、ポリエチレンナフタレート(以下「PEN」と略称することがある。)等のポリエステル、ポリカーボネート(以下「PC」と略称することがある。)、ポリメチルメタクリレート(PMMA)等のアクリル、環状ポリオレフィン、トリアセチルセルロース(TAC)、ポリエーテルサルファイド(PES)、ポリエーテルケトン、ポリイミド等が挙げられる。中でも、ポリエチレンテレフタレート、ポリエチレンナフタレートが好ましく、安価なポリエチレンテレフタレートが特に好ましい。
【0105】
支持体として金属箔を使用する場合、金属箔としては、例えば、銅箔、アルミニウム箔等が挙げられ、銅箔が好ましい。銅箔としては、銅の単金属からなる箔を用いてもよく、銅と他の金属(例えば、スズ、クロム、銀、マグネシウム、ニッケル、ジルコニウム、ケイ素、チタン等)との合金からなる箔を用いてもよい。
【0106】
支持体は、樹脂組成物層と接合する面にマット処理、コロナ処理を施してあってもよい。
【0107】
また、支持体としては、樹脂組成物層と接合する面に離型層を有する離型層付き支持体を使用してもよい。離型層付き支持体の離型層に使用する離型剤としては、例えば、アルキド樹脂、ポリオレフィン樹脂、ウレタン樹脂、及びシリコーン樹脂からなる群から選択される1種以上の離型剤が挙げられる。離型層付き支持体は、市販品を用いてもよく、例えば、アルキド樹脂系離型剤を主成分とする離型層を有するPETフィルムである、リンテック社製の「SK-1」、「AL-5」、「AL-7」、東レ社製の「ルミラーT60」、帝人社製の「ピューレックス」、ユニチカ社製の「ユニピール」等が挙げられる。
【0108】
支持体の厚みとしては、特に限定されないが、5μm~75μmの範囲が好ましく、10μm~60μmの範囲がより好ましい。なお、離型層付き支持体を使用する場合、離型層付き支持体全体の厚さが上記範囲であることが好ましい。
【0109】
樹脂シートは、例えば、有機溶剤に樹脂組成物を溶解した樹脂ワニスを調製し、この樹脂ワニスを、ダイコーター等を用いて支持体上に塗布し、更に乾燥させて樹脂組成物層を形成させることにより製造することができる。
【0110】
有機溶剤としては、例えば、アセトン、メチルエチルケトン(MEK)及びシクロヘキサノン等のケトン類、酢酸エチル、酢酸ブチル、セロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート及びカルビトールアセテート等の酢酸エステル類、セロソルブ及びブチルカルビトール等のカルビトール類、トルエン及びキシレン等の芳香族炭化水素類、ジメチルホルムアミド、ジメチルアセトアミド(DMAc)及びN-メチルピロリドン等のアミド系溶媒等を挙げることができる。有機溶剤は1種単独で使用してもよく、2種以上を組み合わせて使用してもよい。
【0111】
乾燥は、加熱、熱風吹きつけ等の公知の方法により実施してよい。乾燥条件は特に限定されないが、樹脂組成物層中の有機溶剤の含有量が10質量%以下、好ましくは5質量%以下となるように乾燥させる。樹脂ワニス中の有機溶剤の沸点によっても異なるが、例えば30質量%~60質量%の有機溶剤を含む樹脂ワニスを用いる場合、50℃~150℃で3分間~10分間乾燥させることにより、樹脂組成物層を形成することができる。
【0112】
樹脂シートにおいて、樹脂組成物層の支持体と接合していない面(即ち、支持体とは反対側の面)には、支持体に準じた保護フィルムをさらに積層することができる。保護フィルムの厚さは、特に限定されるものではないが、例えば、1μm~40μmである。保護フィルムを積層することにより、樹脂組成物層の表面へのゴミ等の付着やキズを防止することができる。樹脂シートは、ロール状に巻きとって保存することが可能である。樹脂シートが保護フィルムを有する場合、保護フィルムを剥がすことによって使用可能となる。
【0113】
樹脂シートは、半導体チップパッケージの製造において絶縁層を形成するため(半導体チップパッケージの絶縁用樹脂シート)に好適に使用することができる。例えば、樹脂シートは、回路基板の絶縁層を形成するため(回路基板の絶縁層用樹脂シート)に好適に使用することができ、その上にメッキにより導体層が形成される層間絶縁層を形成するため(メッキにより導体層を形成する回路基板の層間絶縁層用)にさらに好適に使用することができる。このような基板を使ったパッケージの例としては、FC-CSP、MIS-BGAパッケージ、ETS-BGAパッケージが挙げられる。
【0114】
また樹脂シートは、半導体チップを封止するため(半導体チップ封止用樹脂シート)、または半導体チップに配線を形成するため(半導体チップ配線形成用樹脂シート)に好適に使用することができ、例えばFan-out型WLP(Wafer Level Package)、Fan-in型WLP、Fan-out型PLP(Panel Level Package)、Fan-in型PLP等に好適に使用することができる。また、半導体チップを基板に接続した後に用いるMUF(Molding Under Filling)材料等にも好適に使用することができる。また、樹脂シートは高い絶縁信頼性が要求される他の広範な用途、例えば、プリント配線板等の回路基板の絶縁層を形成するために好適に使用することができる。
【0115】
樹脂シートの代わりに、シート状繊維基材に本発明の樹脂組成物を含浸させて形成されたプリプレグを用いてもよい。
【0116】
プリプレグに用いるシート状繊維基材は特に限定されず、ガラスクロス、アラミド不織布、液晶ポリマー不織布等のプリプレグ用基材として常用されているものを用いることができる。薄型化の観点から、シート状繊維基材の厚さは、好ましくは900μm以下であり、より好ましくは800μm以下、さらに好ましくは700μm以下、さらにより好ましくは600μm以下である。シート状繊維基材の厚さの下限は特に限定されないが、通常、1μm以上、1.5μm以上、2μm以上等とし得る。
【0117】
プリプレグは、ホットメルト法、ソルベント法等の公知の方法により製造することができる。
【0118】
プリプレグの厚さは、上述の樹脂シートにおける樹脂組成物層と同様の範囲とし得る。
【0119】
[回路基板]
本発明の回路基板は、本発明の樹脂組成物の硬化物により形成された絶縁層を含む。
本発明の回路基板の製造方法は、
(1)基材と、該基材の少なくとも一方の面に設けられた配線層とを有する配線層付き基材を準備する工程、
(2)本発明の樹脂シートを、配線層が樹脂組成物層に埋め込まれるように、配線層付き基材上に積層し、熱硬化させて絶縁層を形成する工程、
(3)配線層を層間接続する工程を含む。また、回路基板の製造方法は、(4)基材を除去する工程、を含んでいてもよい。
【0120】
工程(3)は、配線層を層間接続することができれば特に限定されないが、絶縁層にビアホールを形成し、配線層を形成する工程、及び絶縁層を研磨又は研削し、配線層を露出させる工程の少なくともいずれかの工程であることが好ましい。
【0121】
<工程(1)>
工程(1)は、基材と、該基材の少なくとも一方の面に設けられた配線層とを有する配線層付き基材を準備する工程である。通常、配線層付き基材は、基材の両面に基材の一部である第1金属層、第2金属層をそれぞれ有し、第2金属層の基材側の面とは反対側の面に配線層を有する。詳細は、基材上にドライフィルム(感光性レジストフィルム)を積層し、フォトマスクを用いて所定の条件で露光、現像しパターンドライフィルムを形成する。現像したパターンドライフィルムをめっきマスクとして電解めっき法により配線層を形成した後、パターンドライフィルムを剥離する。なお、第1金属層、第2金属層は有していなくてもよい。
【0122】
基材としては、例えば、ガラスエポキシ基板、金属基板(ステンレスや冷間圧延鋼板(SPCC)など)、ポリエステル基板、ポリイミド基板、BTレジン基板、熱硬化型ポリフェニレンエーテル基板等の基板が挙げられ、基板表面に銅箔等の金属層が形成されていてもよい。また、表面に剥離可能な第1金属層及び第2金属層(例えば、三井金属鉱業社製のキャリア銅箔付極薄銅箔、商品名「Micro Thin」)等の金属層が形成されていてもよい。
【0123】
ドライフィルムとしては、フォトレジスト組成物からなる感光性のドライフィルムである限り特に限定されず、例えば、ノボラック樹脂、アクリル樹脂等のドライフィルムを用いることができる。ドライフィルムは市販品を用いてもよい。
【0124】
基材とドライフィルムとの積層条件は、後述する工程(2)の樹脂シートを配線層に埋め込まれるように積層させる際の条件と同様であり、好ましい範囲も同様である。
【0125】
ドライフィルムを基材上に積層後、ドライフィルムに対して所望のパターンを形成するためにフォトマスクを用いて所定の条件で露光、現像を行う。
【0126】
配線層のライン(回路幅)/スペース(回路間の幅)比は特に制限されないが、好ましくは20/20μm以下(即ちピッチが40μm以下)、より好ましくは10/10μm以下、さらに好ましくは5/5μm以下、よりさらに好ましくは1/1μm以下、特に好ましくは0.5/0.5μm以上である。ピッチは、配線層の全体にわたって同一である必要はない。配線層の最小ピッチは、40μm以下、36μm以下、又は30μm以下であってもよい。
【0127】
ドライフィルムのパターンを形成後、配線層を形成し、ドライフィルムを剥離する。ここで、配線層の形成は、所望のパターンを形成したドライフィルムをめっきマスクとして使用し、めっき法により実施することができる。
【0128】
配線層に使用する導体材料は特に限定されない。好適な実施形態では、配線層は、金、白金、パラジウム、銀、銅、アルミニウム、コバルト、クロム、亜鉛、ニッケル、チタン、タングステン、鉄、スズ及びインジウムからなる群から選択される1種以上の金属を含む。配線層は、単金属層であっても合金層であってもよく、合金層としては、例えば、上記の群から選択される2種以上の金属の合金(例えば、ニッケル・クロム合金、銅・ニッケル合金及び銅・チタン合金)から形成されたものが挙げられる。中でも、配線層形成の汎用性、コスト、パターニングの容易性等の観点から、クロム、ニッケル、チタン、アルミニウム、亜鉛、金、パラジウム、銀若しくは銅の単金属層、又はニッケル・クロム合金、銅・ニッケル合金、銅・チタン合金の合金層が好ましく、クロム、ニッケル、チタン、アルミニウム、亜鉛、金、パラジウム、銀若しくは銅の単金属層、又はニッケル・クロム合金の合金層がより好ましく、銅の単金属層が更に好ましい。
【0129】
配線層の厚みは、所望の配線板のデザインによるが、好ましくは3μm~35μm、より好ましくは5μm~30μm、さらに好ましくは10~20μm、又は15~20μmである。工程(3)において絶縁層を研磨又は研削し、配線層を露出させて配線層を層間接続する工程を採用する場合は、層間接続する配線と、接続しない配線の厚みは異なっていることが好ましい。配線層の厚みは、前述のパターン形成を繰り返すことで調整することができる。各配線層のうち、最も厚みがある配線層(導電性ピラー)の厚みは、所望の配線板のデザインによるが、好ましくは2μm以上100μm以下である。また層間接続する配線は凸型となっていてもよい。
【0130】
配線層を形成後、ドライフィルムを剥離する。ドライフィルムの剥離は、例えば、水酸化ナトリウム溶液等のアルカリ性の剥離液を使用して実施することができる。必要に応じて、不要な配線パターンをエッチング等により除去して、所望の配線パターンを形成することもできる。形成する配線層のピッチについては、先述のとおりである。
【0131】
<工程(2)>
工程(2)は、本発明の樹脂シートを、配線層が樹脂組成物層に埋め込まれるように、配線層付き基材上に積層し、熱硬化させて絶縁層を形成する工程である。詳細は、前述の工程(1)で得られた配線層付き基材の配線層を、樹脂シートの樹脂組成物層に埋め込まれるように積層させ、樹脂シートの樹脂組成物層を熱硬化させ絶縁層を形成する。
【0132】
配線層と樹脂シートの積層は、樹脂シートの保護フィルムを除去後、例えば、支持体側から樹脂シートを配線層に加熱圧着することにより行うことができる。樹脂シートを配線層に加熱圧着する部材(以下、「加熱圧着部材」ともいう。)としては、例えば、加熱された金属板(SUS鏡板等)又は金属ロール(SUSロール)等が挙げられる。なお、加熱圧着部材を樹脂シートに直接プレスするのではなく、配線層の表面凹凸に樹脂シートが十分に追随するよう、耐熱ゴム等の弾性材を介してプレスするのが好ましい。
【0133】
配線層と樹脂シートの積層は、樹脂シートの保護フィルムを除去後、真空ラミネート法により実施してよい。真空ラミネート法において、加熱圧着温度は、好ましくは60℃~160℃、より好ましくは80℃~140℃の範囲であり、加熱圧着圧力は、好ましくは0.098MPa~1.77MPa、より好ましくは0.29MPa~1.47MPaの範囲であり、加熱圧着時間は、好ましくは20秒間~400秒間、より好ましくは30秒間~300秒間の範囲である。積層は、好ましくは圧力13hPa以下の減圧条件下で実施する。
【0134】
積層の後に、常圧下(大気圧下)、例えば、加熱圧着部材を支持体側からプレスすることにより、積層された樹脂シートの平滑化処理を行ってもよい。平滑化処理のプレス条件は、上記積層の加熱圧着条件と同様の条件とすることができる。なお、積層と平滑化処理は、上記の市販の真空ラミネーターを用いて連続的に行ってもよい。
【0135】
樹脂組成物層を、配線層が埋め込まれるように配線層付き基材上に積層した後、樹脂組成物層を熱硬化して絶縁層を形成する。例えば、樹脂組成物層の熱硬化条件は、樹脂組成物の種類等によっても異なるが、硬化温度は120℃~240℃の範囲、硬化時間は5分間~120分間の範囲とすることができる。樹脂組成物層を熱硬化させる前に、樹脂組成物層を硬化温度よりも低い温度にて予備加熱してもよい。
【0136】
樹脂シートの支持体は、配線層付き基材上に樹脂シートを積層し熱硬化した後に剥離してもよく、配線層付き基材上に樹脂シートを積層する前に支持体を剥離してもよい。また、後述する粗化処理工程の前に、支持体を剥離してもよい。
【0137】
樹脂組成物層を熱硬化して絶縁層を形成した後、絶縁層表面を研磨してもよい。研磨方法は特に限定されず、公知の方法にて研磨すればよく、例えば平面研削盤を用いて絶縁層表面を研磨することができる。
【0138】
<工程(3)>
工程(3)は、配線層を層間接続する工程である。詳細は、絶縁層にビアホールを形成し、導体層を形成して配線層を層間接続する工程である。または絶縁層を研磨又は研削し、配線層を露出させて配線層を層間接続する工程である。
【0139】
絶縁層にビアホールを形成し、導体層を形成して配線層を層間接続する工程を採用する場合、ビアホールの形成は特に限定されないが、レーザー照射、エッチング、メカニカルドリリング等が挙げられるが、レーザー照射によって行われることが好ましい。このレーザー照射は、光源として炭酸ガスレーザー、YAGレーザー、エキシマレーザー等を用いる任意好適なレーザー加工機を用いて行うことができる。詳細は、樹脂シートの支持体の面側からレーザー照射を行って、支持体及び絶縁層を貫通して配線層を露出させるビアホールを形成する。
【0140】
レーザー照射の条件は特に限定されず、レーザー照射は選択された手段に応じた常法に従う任意好適な工程により実施することができる。
【0141】
ビアホールの形状、すなわち延在方向でみたときの開口の輪郭の形状は特に限定されないが、一般的には円形(略円形)とされる。
【0142】
ビアホール形成後、ビアホール内のスミア除去工程である、いわゆるデスミア工程を行なってもよい。後述する導体層の形成をめっき工程により行う場合には、ビアホールに対して、例えば湿式のデスミア処理を行ってもよく、導体層の形成をスパッタ工程により行う場合には、例えばプラズマ処理工程などのドライデスミア工程を行ってもよい。また、デスミア工程は粗化処理工程を兼ねていてもよい。
【0143】
導体層を形成する前に、ビアホール及び絶縁層に対して粗化処理を行ってもよい。粗化処理は通常行われる公知の手順、条件を採用することができる。乾式の粗化処理の例としてはプラズマ処理等が挙げられ、湿式の粗化処理の例としては膨潤液による膨潤処理、酸化剤による粗化処理及び中和液による中和処理をこの順に行う方法が挙げられる。
【0144】
本発明の回路基板は、本発明の樹脂組成物の硬化物により形成された絶縁層を含むことから、表面粗さ(Ra)を低くすることができる。即ち、粗化処理後の絶縁層表面の表面粗さ(Ra)が小さいという特性を示す。表面粗さ(Ra)としては、好ましくは100nm以上、より好ましくは150nm以上、さらに好ましくは200nm以上である。上限は、好ましくは700nm以下、より好ましくは650nm以下、さらに好ましくは600nm以下である。表面粗さ(Ra)は、後述する<金属層の引き剥がし強さ(ピール強度)、及び粗化処理後の絶縁層表面の表面粗さ(Ra)の測定>の記載に従って測定することができる。
【0145】
ビアホールを形成後、導体層を形成する。導体層を構成する導体材料は特に限定されず、導体層は、めっき、スパッタ、蒸着等従来公知の任意好適な方法により形成することができ、めっきにより形成することが好ましい。好適な一実施形態は、例えば、セミアディティブ法、フルアディティブ法等の従来公知の技術により絶縁層の表面にめっきして、所望の配線パターンを有する導体層を形成することができる。また、樹脂シートにおける支持体が金属箔である場合、サブトラクティブ法等の従来公知の技術により、所望の配線パターンを有する導体層を形成することができる。導体層は、単層構造であっても、異なる種類の金属若しくは合金からなる単金属層又は合金層が2層以上積層した複層構造であってもよい。
【0146】
詳細は、絶縁層の表面に、無電解めっきによりめっきシード層を形成する。次いで、形成されためっきシード層上に、所望の配線パターンに対応してめっきシード層の一部を露出させるマスクパターンを形成する。露出しためっきシード層上に、電解めっきにより電解めっき層を形成する。その際、電解めっき層の形成とともに、ビアホールを電解めっきにより埋め込んでフィルドビアを形成してもよい。電解めっき層を形成した後、マスクパターンを除去する。その後、不要なめっきシード層をエッチング等により除去して、所望の配線パターンを有する導体層を形成することができる。なお、導体層を形成する際、マスクパターンの形成に用いるドライフィルムは、上記ドライフィルムと同様である。
【0147】
導体層は、線状の配線のみならず、例えば外部端子が搭載され得る電極パッド(ランド)なども含み得る。また導体層は、電極パッドのみから構成されていてもよい。
【0148】
また、導体層は、めっきシード層形成後、マスクパターンを用いずに電解めっき層及びフィルドビアを形成し、その後、エッチングによるパターニングを行うことにより形成してもよい。
【0149】
絶縁層を研磨又は研削し、配線層を露出させて配線層を層間接続する工程を採用する場合、絶縁層の研磨方法又は研削方法としては、配線層を露出させることができ、研磨又は研削面が水平であれば特に限定されず、従来公知の研磨方法又は研削方法を適用することができ、例えば、化学機械研磨装置による化学機械研磨方法、バフ等の機械研磨方法、砥石回転による平面研削方法等が挙げられる。絶縁層にビアホールを形成し、導体層を形成して配線層を層間接続する工程と同様に、スミア除去工程、粗化処理を行う工程を行ってもよく、導体層を形成してもよい。また、全ての配線層を露出させる必要はなく、配線層の一部を露出させてもよい。
【0150】
<工程(4)>
工程(4)は、基材を除去し、本発明の回路基板を形成する工程である。基材の除去方法は特に限定されない。好適な一実施形態は、第1及び第2金属層の界面で回路基板から基材を剥離し、第2金属層を例えば塩化銅水溶液などでエッチング除去する。必要に応じて、導体層を保護フィルムで保護した状態で基材を剥離してもよい。
【0151】
他の実施形態において、回路基板は、上述のプリプレグを用いて製造することができる。製造方法は基本的に樹脂シートを用いる場合と同様である。
【0152】
[半導体チップパッケージ]
本発明の半導体チップパッケージの第1の態様は、上記回路基板上に、半導体チップが搭載された、半導体チップパッケージである。上記回路基板に、半導体チップを接合することにより半導体チップパッケージを製造することができる。
【0153】
半導体チップの端子電極が回路基板の回路配線と導体接続する限り、接合条件は特に限定されず、半導体チップのフリップチップ実装において使用される公知の条件を使用してよい。また、半導体チップと回路基板間に絶縁性の接着剤を介して接合してもよい。
【0154】
好適な一実施形態は、半導体チップを回路基板に圧着する。圧着条件としては、例えば、圧着温度は120℃~240℃の範囲(好ましくは130℃~200℃の範囲、より好ましくは140℃~180℃の範囲)、圧着時間は1秒間~60秒間の範囲(好ましくは5秒間~30秒間)とすることができる。
【0155】
また、他の好適な一実施形態は、半導体チップを回路基板にリフローして接合する。リフロー条件としては、例えば、120℃~300℃の範囲とすることができる。
【0156】
半導体チップを回路基板に接合した後、例えば、半導体チップをモールドアンダーフィル材で充填することで半導体チップパッケージを得ることも可能である。モールドアンダーフィル材で充填する方法は公知の方法で実施することができる。本発明の樹脂組成物または樹脂シートはモールドアンダーフィル材としても使用することができる。
【0157】
本発明の半導体チップパッケージの第2の態様は、例えば、図1に一例を示すような半導体チップパッケージ(Fan-out型WLP)である。図1に一例を示すような半導体チップパッケージ(Fan-out型WLP)100は、封止層120を、本発明の樹脂組成物または樹脂シートで製造した半導体チップパッケージである。半導体チップパッケージ100は、半導体チップ110、半導体チップ110の周囲を覆うように形成された封止層120、半導体チップ110の封止層に覆われている側とは反対側の面に再配線形成層(絶縁層)130、導体層(再配線層)140、ソルダーレジスト層150、及びバンプ160を備える。このような半導体チップパッケージの製造方法は、
(A)基材に仮固定フィルムを積層する工程、
(B)半導体チップを、仮固定フィルム上に仮固定する工程、
(C)本発明の樹脂シートの樹脂組成物層を、半導体チップ上に積層、又は本発明の樹脂組成物を半導体チップ上に塗布し、熱硬化させて封止層を形成する工程、
(D)基材及び仮固定フィルムを半導体チップから剥離する工程、
(E)半導体チップの基材及び仮固定フィルムを剥離した面に再配線形成層(絶縁層)を形成する工程、
(F)再配線形成層(絶縁層)上に導体層(再配線層)を形成する工程、及び
(G)導体層上にソルダーレジスト層を形成する工程、を含む。また、半導体チップパッケージの製造方法は、(H)複数の半導体チップパッケージを個々の半導体チップパッケージにダイシングし、個片化する工程を含み得る。
【0158】
<工程(A)>
工程(A)は、基材に仮固定フィルムを積層する工程である。基材と仮固定フィルムの積層条件は、回路基板の製造方法における工程(2)における配線層と樹脂シートとの積層条件と同様であり、好ましい範囲も同様である。
【0159】
基材に使用する材料は特に限定されない。基材としては、シリコンウェハー;ガラスウェハー;ガラス基板;銅、チタン、ステンレス、冷間圧延鋼板(SPCC)等の金属基板;FR-4基板等のガラス繊維にエポキシ樹脂等をしみこませ熱硬化処理した基板;BT樹脂等のビスマレイミドトリアジン樹脂からなる基板などが挙げられる。
【0160】
仮固定フィルムは、後述する工程(D)において半導体チップから剥離することができるとともに、半導体チップを仮固定することができれば材料は特に限定されない。仮固定フィルムは市販品を用いることができる。市販品としては、日東電工社製のリヴァアルファ等が挙げられる。
【0161】
<工程(B)>
工程(B)は、半導体チップを、仮固定フィルム上に仮固定する工程である。半導体チップの仮固定は、フリップチップボンダー、ダイボンダー等の公知の装置を用いて行うことができる。半導体チップの配置のレイアウト及び配置数は、仮固定フィルムの形状、大きさ、目的とする半導体パッケージの生産数等に応じて適宜設定することができ、例えば、複数行で、かつ複数列のマトリックス状に整列させて仮固定することができる。
【0162】
<工程(C)>
工程(C)は、本発明の樹脂シートの樹脂組成物層を、半導体チップ上に積層、又は本発明の樹脂組成物を半導体チップ上に塗布し、熱硬化させて封止層を形成する工程である。工程(C)では、樹脂シートの樹脂組成物層を、半導体チップ上に積層し、熱硬化させて封止層を形成することが好ましい。
【0163】
半導体チップと樹脂シートの積層は、樹脂シートの保護フィルムを除去後、例えば、支持体側から樹脂シートを半導体チップに加熱圧着することにより行うことができる。樹脂シートを半導体チップに加熱圧着する部材(以下、「加熱圧着部材」ともいう。)としては、例えば、加熱された金属板(SUS鏡板等)又は金属ロール(SUSロール)等が挙げられる。なお、加熱圧着部材を樹脂シートに直接プレスするのではなく、半導体チップの表面凹凸に樹脂シートが十分に追随するよう、耐熱ゴム等の弾性材を介してプレスするのが好ましい。
【0164】
また、半導体チップと樹脂シートの積層は、樹脂シートの保護フィルムを除去後、真空ラミネート法により実施してもよい。真空ラミネート法における積層条件は、回路基板の製造方法における工程(2)における配線層と樹脂シートとの積層条件と同様であり、好ましい範囲も同様である。
【0165】
樹脂シートの支持体は、半導体チップ上に樹脂シートを積層し熱硬化した後に剥離してもよく、半導体チップ上に樹脂シートを積層する前に支持体を剥離してもよい。
【0166】
樹脂組成物の塗布条件としては、本発明の樹脂シートにおける樹脂組成物層を形成する際の塗布条件と同様であり、好ましい範囲も同様である。
【0167】
<工程(D)>
工程(D)は、基材及び仮固定フィルムを半導体チップから剥離する工程である。剥離する方法は、仮固定フィルムの材質等に応じて適宜変更することができ、例えば、仮固定フィルムを加熱、発泡(又は膨張)させて剥離する方法、及び基材側から紫外線を照射させ、仮固定フィルムの粘着力を低下させ剥離する方法等が挙げられる。
【0168】
仮固定フィルムを加熱、発泡(又は膨張)させて剥離する方法において、加熱条件は、通常、100℃~250℃で1秒間~90秒間又は5分間~15分間である。また、基材側から紫外線を照射させ、仮固定フィルムの粘着力を低下させ剥離する方法において、紫外線の照射量は、通常、10mJ/cm~1000mJ/cmである。
【0169】
<工程(E)>
工程(E)は、半導体チップの基材及び仮固定フィルムを剥離した面に再配線形成層(絶縁層)を形成する工程である。
【0170】
再配線形成層(絶縁層)を形成する材料は、再配線形成層(絶縁層)形成時に絶縁性を有していれば特に限定されず、半導体チップパッケージの製造のしやすさの観点から、感光性樹脂、熱硬化性樹脂が好ましい。熱硬化性樹脂としては、本発明の樹脂シートを形成するための樹脂組成物と同じ組成の樹脂組成物を用いてもよい。
【0171】
再配線形成層(絶縁層)を形成後、半導体チップと後述する導体層を層間接続するために、再配線形成層(絶縁層)にビアホールを形成してもよい。
【0172】
ビアホールを形成するにあたって、再配線形成層(絶縁層)を形成する材料が感光性樹脂である場合、まず、再配線形成層(絶縁層)の表面にマスクパターンを通して活性エネルギー線を照射し、照射部の最配線層を光硬化させる。
【0173】
活性エネルギー線としては、例えば、紫外線、可視光線、電子線、X線等が挙げられ、特に紫外線が好ましい。紫外線の照射量、照射時間は、感光性樹脂に応じて適宜変更することができる。露光方法としては、マスクパターンを再配線形成層(絶縁層)に密着させて露光する接触露光法と、マスクパターンを再配線形成層(絶縁層)に密着させずに平行光線を使用して露光する非接触露光法のいずれを用いてもよい。
【0174】
次に、再配線形成層(絶縁層)を現像し、未露光部を除去することで、ビアホールを形成する。現像は、ウェット現像、ドライ現像のいずれも好適である。ウェット現像で用いる現像液は公知の現像液を用いることができる。
【0175】
現像の方式としては、例えば、ディップ方式、パドル方式、スプレー方式、ブラッシング方式、スクラッピング方式等が挙げられ、解像性の観点から、パドル方式が好適である。
【0176】
再配線形成層(絶縁層)を形成する材料が熱硬化性樹脂である場合、ビアホールの形成は特に限定されないが、レーザー照射、エッチング、メカニカルドリリング等が挙げられるが、レーザー照射によって行われることが好ましい。レーザー照射は、光源として炭酸ガスレーザー、UV-YAGレーザー、エキシマレーザー等を用いる任意好適なレーザー加工機を用いて行うことができる。
【0177】
レーザー照射の条件は特に限定されず、レーザー照射は選択された手段に応じた常法に従う任意好適な工程により実施することができる。
【0178】
ビアホールの形状、すなわち延在方向でみたときの開口の輪郭の形状は特に限定されないが、一般的には円形(略円形)とされる。ビアホールのトップ径(再配線形成層(絶縁層)表面の開口の直径)は、好ましくは50μm以下、より好ましくは30μm以下、さらに好ましくは20μm以下である。下限は特に限定されないが、好ましくは10μm以上、より好ましくは15μm以上、さらに好ましくは20μm以上である。
【0179】
<工程(F)>
工程(F)は、再配線形成層(絶縁層)上に導体層(再配線層)を形成する工程である。再配線形成層(絶縁層)上に導体層を形成する方法は、回路基板の製造方法における工程(3)の絶縁層にビアホールを形成した後の導体層を形成する方法と同様であり、好ましい範囲も同様である。なお、工程(E)及び工程(F)を繰り返し行い、導体層(再配線層)及び再配線形成層(絶縁層)を交互に積み上げて(ビルドアップ)もよい。
【0180】
<工程(G)>
工程(G)は、導体層上にソルダーレジスト層を形成する工程である。
【0181】
ソルダーレジスト層を形成する材料は、ソルダーレジスト層形成時に絶縁性を有していれば特に限定されず、半導体チップパッケージの製造のしやすさの観点から、感光性樹脂、熱硬化性樹脂が好ましい。熱硬化性樹脂としては、本発明の樹脂シートを形成するための樹脂組成物と同じ組成の樹脂組成物を用いてもよい。
【0182】
また、工程(G)では、必要に応じて、バンプを形成するバンピング加工を行ってもよい。バンピング加工は、半田ボール、半田めっきなど公知の方法で行うことができる。また、バンピング加工におけるビアホールの形成は工程(E)と同様に行うことができる。
【0183】
<工程(H)>
半導体チップパッケージの製造方法は、工程(A)~(G)以外に工程(H)を含んでいてもよい。工程(H)は、複数の半導体チップパッケージを個々の半導体チップパッケージにダイシングし、個片化する工程である。
【0184】
半導体チップパッケージを個々の半導体チップパッケージにダイシングする方法は特に限定されず、公知の方法を用いることができる。
【0185】
本発明の半導体チップパッケージの第3の態様は、例えば、図1に一例を示すような半導体チップパッケージ(Fan-out型WLP)における再配線形成層(絶縁層)130、ソルダーレジスト層150を本発明の樹脂組成物または樹脂シートで製造した半導体チップパッケージである。
【0186】
[半導体装置]
本発明の半導体チップパッケージを実装することとなる半導体装置としては、電気製品(例えば、コンピューター、携帯電話、スマートフォン、タブレット型デバイス、ウェラブルデバイス、デジタルカメラ、医療機器、及びテレビ等)及び乗物(例えば、自動二輪車、自動車、電車、船舶及び航空機等)等に供される各種半導体装置が挙げられる。
【実施例
【0187】
以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、以下の記載において、量を表す「部」及び「%」は、別途明示のない限り、それぞれ「質量部」及び「質量%」を意味する。実施例5は、参考例5と読み替えるものとする。
【0188】
[合成例1:合成樹脂1の合成]
反応容器に2官能性ヒドロキシ基末端ポリブタジエン(G-3000、日本曹達社製、数平均分子量=3000、ヒドロキシ基当量=1800g/eq.)69gと、イプゾール150(芳香族炭化水素系混合溶媒:出光興産社製)40g、ジブチル錫ラウレート0.005gを混合し均一に溶解させた。均一になったところで50℃に昇温し、更に撹拌しながら、イソホロンジイソシアネート(エボニックデグサジャパン社製、IPDI、イソシアネート基当量=113g/eq.)8gを添加し約3時間反応を行った。次いで、この反応物を室温まで冷却してから、これにクレゾールノボラック樹脂(KA-1160、DIC社製、水酸基当量=117g/eq.)23gと、エチルジグリコールアセテート(ダイセル社製)60gを添加し、攪拌しながら80℃まで昇温し、約4時間反応を行った。FT-IRより2250cm-1のNCOピークの消失の確認を行った。NCOピーク消失の確認をもって反応の終点とみなし、反応物を室温まで降温してから100メッシュの濾布で濾過して、ブタジエン構造及びフェノール性水酸基を有する合成樹脂1(フェノール性水酸基含有ブタジエン樹脂:固形分50質量%)を得た。数平均分子量は5500であった。
【0189】
[実施例1]
エポキシ樹脂(新日鉄住金化学社製「ZX1059」、ビスフェノールA型エポキシ樹脂とビスフェノールF型エポキシ樹脂との1:1混合品(質量比)、エポキシ当量:169g/eq)10部、ビフェニル型エポキシ樹脂(日本化薬社製「NC3000L」、エポキシ当量269)41部、両親媒性ポリエーテルブロックコポリマー(Dow Chemical Co.製「Fortegra100」)3部、フェニルアミノシラン系カップリング剤(信越化学工業社製「KBM573」)で表面処理した球形シリカ(平均粒径0.5μm、アドマテックス社製「SO-C2」)380部、フェノールノボラック樹脂(フェノール性水酸基当量105、DIC社製「TD2090-60M」固形分60質量%のMEK溶液)8.3部、フェノキシ樹脂(三菱化学社製「YX7553BH30」、固形分30質量%のシクロヘキサノン:メチルエチルケトン(MEK)の1:1溶液)16.6部、メチルエチルケトン30部、イミダゾール系硬化促進剤(四国化成社製「1B2PZ」)0.3部を混合し、高速回転ミキサーで均一に分散して樹脂ワニス1を作製した。
【0190】
[実施例2]
実施例1において、ビフェニル型エポキシ樹脂(日本化薬社製「NC3000L」、エポキシ当量269)41部を、ナフチレンエーテル型エポキシ樹脂(DIC社製「EXA-7311」、エポキシ当量277)41部に変更し、フェノールノボラック樹脂(フェノール性水酸基当量105、DIC社製「TD2090-60M」固形分60質量%のMEK溶液)8.3部を、活性エステル化合物(DIC社製「HPC-8000-65T」活性基当量約223の固形分65質量%のトルエン溶液)7.7部に変更した。以上の事項以外は実施例1と同様の方法で樹脂ワニス2を作製した。
【0191】
[実施例3]
実施例1において、ビフェニル型エポキシ樹脂(日本化薬社製「NC3000L」、エポキシ当量269)41部を、ノボラック型エポキシ樹脂(三菱化学社製「157S70」エポキシ当量200~220)41部に変更し、フェノールノボラック樹脂(フェノール性水酸基当量105、DIC社製「TD2090-60M」固形分60質量%のMEK溶液)8.3部を、トリアジン骨格含有フェノール樹脂(DIC社製「LA-3018-50P」水酸基当量151の固形分50質量%のプロピレングリコールモノメチルエーテル溶液)10部に変更した。以上の事項以外は実施例1と同様の方法で樹脂ワニス3を作製した。
【0192】
[実施例4]
実施例2において、カルボジイミド化合物(日清紡ケミカル社製「V-03」カルボジイミド当量216、不揮発成分50質量%のトルエン溶液)6部を加えた。以上の事項以外は実施例2と同様の方法で樹脂ワニス4を作製した。
【0193】
[実施例5]
実施例3において、
1)トリアジン骨格含有フェノール樹脂(DIC社製「LA-3018-50P」水酸基当量151の固形分50質量%のプロピレングリコールモノメチルエーテル溶液)10部を、活性エステル化合物(DIC社製「HPC-8000-65T」活性基当量約223の固形分65質量%のトルエン溶液)7.7部に変更し、
2)合成例1で合成した合成樹脂1を10部加え、
3)カルボジイミド化合物(日清紡ケミカル社製「V-03」カルボジイミド当量216、不揮発成分50質量%のトルエン溶液)6部を加え、
4)フェノキシ樹脂(三菱化学社製「YX7553BH30」、固形分30質量%のシクロヘキサノン:メチルエチルケトン(MEK)の1:1溶液)を加えなかった。
以上の事項以外は実施例3と同様の方法で樹脂ワニス5を作製した。
【0194】
[実施例6]
実施例1において、両親媒性ポリエーテルブロックコポリマー(Dow Chemical Co.製「Fortegra100」を3部から6部に変更し、フェノールノボラック樹脂(フェノール性水酸基当量105、DIC社製「TD2090-60M」固形分60質量%のMEK溶液)8.3部を、活性エステル化合物(DIC社製「HPC-8000-65T」活性基当量約223の固形分65質量%のトルエン溶液)7.7部に変更した。以上の事項以外は実施例1と同様の方法で樹脂ワニス6を作製した。
【0195】
[実施例7]
実施例1において、両親媒性ポリエーテルブロックコポリマー(Dow Chemical Co.製「Fortegra100」)の量を3部から9部に変更し、フェノールノボラック樹脂(フェノール性水酸基当量105、DIC社製「TD2090-60M」固形分60質量%のMEK溶液)8.3部を、活性エステル化合物(DIC社製「HPC-8000-65T」活性基当量約223の固形分65質量%のトルエン溶液)7.7部に変更した。以上の事項以外は実施例1と同様の方法で樹脂ワニス7を作製した。
【0196】
[実施例8]
実施例3において、フェニルアミノシラン系カップリング剤(信越化学工業社製「KBM573」)で表面処理した球形シリカ(平均粒径0.5μm、アドマテックス社製「SO-C2」)380部を、フェニルアミノシラン系カップリング剤(信越化学工業社製「KBM573」)で表面処理したアルミナ(デンカ社製「DAW-03」、平均粒径3.7μm)450部に変更し、トリアジン骨格含有フェノール樹脂(DIC社製「LA-3018-50P」水酸基当量151の固形分50質量%のプロピレングリコールモノメチルエーテル溶液)10部を、フェノールノボラック樹脂(フェノール性水酸基当量105、DIC社製「TD2090-60M」の固形分60質量%のMEK溶液)8.3部に変更した。以上の事項以外は実施例3と同様の方法で樹脂ワニス8を作製した。
【0197】
[実施例9]
実施例2において、両親媒性ポリエーテルブロックコポリマー(Dow Chemical Co.製「Fortegra100」)を3部から6部に変更し、フェニルアミノシラン系カップリング剤(信越化学工業社製「KBM573」)で表面処理した球形シリカ(平均粒径0.5μm、アドマテックス社製「SO-C2」)の量を380部から300部に変更し、活性エステル化合物(DIC社製「HPC-8000-65T」活性基当量約223の固形分65質量%のトルエン溶液)7.7部を、フェノールノボラック樹脂(フェノール性水酸基当量105、DIC社製「TD2090-60M」固形分60質量%のMEK溶液)8.3部に変更した。以外の事項以外は実施例2と同様の方法で樹脂ワニス9を作製した。
【0198】
[実施例10]
実施例9において、フェニルアミノシラン系カップリング剤(信越化学工業社製「KBM573」)で表面処理した球形シリカ(平均粒径0.5μm、アドマテックス社製「SO-C2」)の量を300部から250部に変更した。以外の事項以外は実施例9と同様の方法で樹脂ワニス10を作製した。
【0199】
[実施例11]
実施例3において、ノボラック型エポキシ樹脂(三菱化学社製「157S70」エポキシ当量200~220)41部を、ナフチレンエーテル型エポキシ樹脂(DIC社製「EXA-7311」、エポキシ当量277)41部に変更し、コアシェル型ゴム粒子(ガンツ化成社製「AC3832」)4部加えた。以上の事項以外は実施例3と同様の方法で樹脂ワニス11を作製した。
【0200】
[実施例12]
実施例10において、フェニルアミノシラン系カップリング剤(信越化学工業社製「KBM573」)で表面処理した球形シリカ(平均粒径0.5μm、アドマテックス社製「SO-C2」)250部を、フェニルアミノシラン系カップリング剤(信越化学工業社製「KBM573」)で表面処理した溶融球状シリカ(デンカ社製「FB-105FD」平均粒径11.7μm)250部に変更した。以上の事項以外は実施例10と同様の方法で樹脂ワニス12を作製した。
【0201】
[比較例1]
実施例4において、
1)両親媒性ポリエーテルブロックコポリマー(Dow Chemical Co.製「Fortegra100」)を加えず、
2)ナフチレンエーテル型エポキシ樹脂(DIC社製「EXA-7311」、エポキシ当量277)41部を、ノボラック型エポキシ樹脂(三菱化学社製「157S70」エポキシ当量200~220)41部に変更した。
以上の事項以外は実施例4と同様の方法で樹脂ワニス13を作製した。
【0202】
<硬化収縮率の測定>
(1-1)樹脂付ポリイミドフィルムの調製
実施例及び比較例で作製した樹脂ワニスをアルキド樹脂系離型剤(リンテック社製「AL-5」)で離型処理したPETフィルム(東レ社製「ルミラーR80」、厚み38μm、軟化点130℃、以下「離型PET」ということがある)上に、乾燥後の樹脂組成物層の厚さが170μmとなるようにダイコーターにて塗布し、80℃~120℃(平均100℃)で10分間乾燥し樹脂シートを得た。この樹脂シートを200mm角になる様に切り取った。作製した樹脂シート(200mm角)を、バッチ式真空加圧ラミネーター(ニッコー・マテリアルズ社製、2ステージビルドアップラミネーター、CVP700)を用いて、樹脂組成物層がポリイミドフィルム(宇部興産社製ユーピレックス25S、25μm厚、240mm角)の平滑面の中央と接するように、片面にラミネートした。ラミネートは、30秒間減圧して気圧を13hPa以下とした後、100℃、圧力0.74MPaにて30秒間圧着させることにより実施した。これにより、樹脂付ポリイミドフィルムを得た。
【0203】
(1-2)初期長の測定
得られた樹脂付ポリイミドフィルムを樹脂シートの離型PET上から、樹脂組成物層の4角から20mm程度の部分に、貫通穴(直径約6mm)を、パンチングによって4つ形成し(穴を時計回りにA、B、C、Dと仮に称する。)、樹脂シートの支持体を剥離後、形成した各穴の中央間の長さL(LAB、LBC、LCD、LDA、LAC、LBD)(図2参照)を非接触型画像測定器(ミツトヨ社製、Quick Vision、「QVH1X606-PRO III_BHU2G」)で測定した。
【0204】
(1-3)樹脂組成物層の熱硬化
測長の終了した樹脂付ポリイミドフィルムのポリイミドフィルム面を、255mm×255mmサイズのガラス布基材エポキシ樹脂両面銅張積層板(0.7mm厚、松下電工社製「R5715ES」)上に設置し、四辺をポリイミド接着テープ(幅10mm)で固定し、180℃で90分間加熱して、樹脂組成物層を熱硬化して、硬化物層を得た。
【0205】
(1-4)熱硬化収縮率の測定
熱硬化後、ポリイミド接着テープを剥がし、硬化物層付ポリイミドフィルムを積層板から取り外し、更に硬化物層をポリイミドフィルムから剥離して、(1-2)で形成した各穴の中央間の硬化後の長さL’(L’AB、L’BC、L’CD、L’DA、L’AC、L’BD)を、長さLと同じように非接触型画像測定器で測定した。
【0206】
穴A、穴B間の長さLABの硬化後の収縮率s1ABを下記式(1)により求めた。同様にしてLBC、LCD、LDA、LAC及びLBDの硬化後の収縮率s1BC、s1CD、s1DA、s1AC及びs1DAを求めた。
s1AB=(LAB-L’AB)/LAB (1)
【0207】
硬化物層の熱硬化収縮率は下記式(2)で算出した。
熱硬化収縮率[x-y方向の収縮率:S1](%)
={(s1AB+s1BC+s1CD+s1DA+s1AC+s1DA)/6}×100 (2)
【0208】
<反り試験>
実施例及び比較例で作製した樹脂ワニスを離型PET上に、乾燥後の樹脂組成物層の厚さが170μmとなるようにダイコーターにて塗布し、80℃~120℃(平均100℃)で10分間乾燥し樹脂シートを得た。この樹脂シートを、バッチ式真空加圧ラミネーター(名機社製、MVLP-500)を用いて、厚み0.2mm、15cm×30cmのSUS304板上に樹脂組成物層が接するようにラミネートした。ラミネートは、30秒間減圧して気圧を13hPa以下とし、その後30秒間、100℃、圧力0.74MPaでプレスすることにより行った。ラミネートされた樹脂シートの離型PETを除去し180℃90分の条件で熱硬化し反り評価用サンプルを得た。
得られた反り評価用サンプルの中央部が凸部となる側の面を下向きにして平滑な台上に設置し、平滑な台上と反り評価用サンプルとの距離が最も大きい箇所の距離を測定し反り量とした。反り量の絶対値が10mm未満を○、10mm以上20mm未満を△、20mm以上を×とした。
【0209】
<平均線熱膨張係数(熱膨張率)の測定>
実施例及び比較例で作製した樹脂ワニスを離型PET上に、乾燥後の樹脂組成物層の厚さが170μmとなるようにダイコーターにて塗布し、80℃~120℃(平均100℃)で10分間乾燥し樹脂シートを得た。得られた樹脂シートをガラス布基材エポキシ樹脂両面銅張積層板にポリイミドテープで4辺を固定し180℃90分で熱硬化した。更に樹脂組成物層から離型PETを剥離して、シート状の硬化物を得た。シート状の硬化物を評価用硬化物と称する。得られた評価用硬化物を、幅5mm、長さ15mmの試験片に切断し、熱機械分析装置(リガク社製「Thermo Plus TMA8310」)を用いて、引張加重法にて熱機械分析を行った。詳細には、試験片を前記熱機械分析装置に装着した後、荷重1g、昇温速度5℃/分の測定条件にて連続して2回測定した。そして2回目の測定において、30℃から150℃までの範囲における平面方向の平均線熱膨張係数(α1;ppm/℃)を算出した。この操作を3回行いその平均値を表に示した。
【0210】
<硬化物の熱伝導率の測定>
(1)硬化物の調製
実施例及び比較例で作製した樹脂ワニスを離型PET上に、乾燥後の樹脂組成物層の厚さが150μmとなるようにダイコーターにて塗布し、80℃~120℃(平均100℃)で10分間乾燥し樹脂シートを得た。得られた樹脂シート2枚を、バッチ式真空加圧ラミネーター(名機社製、MVLP-500)を用いて樹脂組成物層が接するように貼りあわせ、厚み300μmの樹脂シートを得た。得られた樹脂シートの片面の離型PETを剥がし、ガラス布基材エポキシ樹脂両面銅張積層板にポリイミドテープで4辺を固定し180℃90分で熱硬化した。更に樹脂組成物層からもう一方の離型PETを剥離して、シート状の硬化物を得た。
【0211】
(2)熱拡散率αの測定
シート状の硬化物について、該硬化物の厚さ方向の熱拡散率α(m/s)を、ai-Phase社製「ai-Phase Mobile 1u」を用いて温度波分析法により測定した。同一試料について3回測定を行い、平均値を算出した。
【0212】
(3)比熱容量Cpの測定
シート状の硬化物について、示差走査熱量計(SIIナノテクノロジー社製「DSC7020」)を用いて、-40℃から80℃まで10℃/分で昇温し、測定することにより、該シート状の硬化物の20℃での比熱容量Cp(J/kg・K)を算出した。
【0213】
(4)密度ρの測定
シート状の硬化物の密度(kg/m)を、メトラー・トレド社製分析天秤XP105(比重測定キット使用)を用いて測定した。
【0214】
(5)熱伝導率λの算出
上記(2)乃至(4)で得られた熱拡散率α(m/s)、比熱容量Cp(J/kg・K)、及び密度ρ(kg/m)を下記式(I)に代入して、熱伝導率λ(W/m・K)を算出した。
λ=α×Cp×ρ (I)
【0215】
<金属層の引き剥がし強さ(ピール強度)、及び粗化処理後の絶縁層表面の表面粗さ(Ra)の測定>
(1)内層回路基板の下地処理
内層回路を形成したガラス布基材エポキシ樹脂両面銅張積層板(銅箔の厚さ18μm、基板厚み0.3mm、パナソニック社製R5715ES)の両面をメック社製CZ8100に浸漬して銅表面の粗化処理を行った。
【0216】
(2)樹脂シートのラミネート
実施例及び比較例で作製した樹脂ワニスを離型PET上に、乾燥後の樹脂組成物層の厚さが200μmとなるようにダイコーターにて塗布し、80℃~120℃(平均100℃)で10分間乾燥し樹脂シートを得た。この樹脂シートをバッチ式真空加圧ラミネーター(名機社製、MVLP-500)を用いて、内層回路基板の両面に樹脂組成物層が接するようにラミネートした。ラミネートは、30秒間減圧して気圧を13hPa以下とし、その後30秒間、100℃、圧力0.74MPaでプレスすることにより行った。
【0217】
(3)樹脂組成物層の硬化
ラミネートされた樹脂シートから離型PETを剥離し、180℃、30分の硬化条件で樹脂組成物層を硬化し絶縁層を形成した。
【0218】
(4)絶縁層の研磨
絶縁層を形成した内層回路基板の絶縁層を以下の条件にて平面研削盤にて研磨切削した。
研磨切削の条件:砥石周速500m/min、テーブルスピード13m/min、1回の切り込み量3μm、全切削厚さ50μm、砥石番手#1000
【0219】
(5)粗化処理
研磨した絶縁層表面を、膨潤液である、アトテックジャパン社製のジエチレングリコールモノブチルエーテル含有のスエリングディップ・セキュリガンドPに60℃で5分間浸漬し、次に粗化液として、アトテックジャパン社製のコンセントレート・コンパクトP(KMnO:60g/L、NaOH:40g/Lの水溶液)に80℃で15分間浸漬させ、最後に中和液として、アトテックジャパン社製のリダクションショリューシン・セキュリガントPに40℃で5分間浸漬した。この基板を評価用基板Aとした。
【0220】
(6)セミアディティブ工法によるメッキ
絶縁層表面に回路を形成するために、内層回路基板を、PdClを含む無電解メッキ用溶液に浸漬し、次に無電解銅メッキ液に浸漬した。150℃にて30分間加熱してアニール処理を行った後に、エッチングレジストを形成し、エッチングによるパターン形成の後に、硫酸銅電解メッキを行い、30±5μmの厚さでメッキ導体層を形成した。次に、アニール処理を180℃にて60分間行った。この回路基板を評価用基板Bとした。
【0221】
(7)金属層の引き剥がし強さ(ピール強度)の測定
評価用基板Bの導体層に、幅10mm、長さ100mmの部分の切込みをいれ、この一端を剥がしてつかみ具で掴み、室温中にて、50mm/分の速度で垂直方向に35mmを引き剥がした時の荷重(kgf/cm)を測定した。
【0222】
(8)粗化処理後の絶縁層表面の表面粗さ(Ra)の測定
評価用基板Aの絶縁層表面を、非接触型表面粗さ計(ビーコインスツルメンツ社製WYKO NT3300)を用いて、VSIコンタクトモード、50倍レンズにより測定範囲を121μm×92μmとして測定して、粗化処理後の絶縁層表面の表面粗さを求めた。それぞれ10点の平均値を求めることにより、Raを測定した。
【0223】
実施例、比較例の樹脂組成物の調製に用いた成分とその配合量(質量部、固形分換算)を下記表に示した。なお、下記表中の記載等は以下のとおりである。
(D)成分の含有量(質量%):樹脂組成物の不揮発成分を100質量%とした場合の(D)成分の含有量
(B)成分の含有量(質量%):樹脂組成物の不揮発成分を100質量%とした場合の(B)成分の含有量
【0224】
【表1】
【0225】
各実施例において、(E)~(I)成分を含有しない場合であっても、程度に差はあるものの上記実施例と同様の結果に帰着することを確認している。
図1
図2