(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-12-18
(45)【発行日】2023-12-26
(54)【発明の名称】蓄電システム
(51)【国際特許分類】
H02J 9/06 20060101AFI20231219BHJP
H02J 3/38 20060101ALI20231219BHJP
H02J 1/00 20060101ALI20231219BHJP
H02J 7/00 20060101ALI20231219BHJP
H01M 10/44 20060101ALI20231219BHJP
【FI】
H02J9/06 110
H02J3/38 180
H02J1/00 304E
H02J1/00 304J
H02J7/00 302A
H01M10/44 P
(21)【出願番号】P 2020104533
(22)【出願日】2020-06-17
【審査請求日】2022-12-16
(73)【特許権者】
【識別番号】000004606
【氏名又は名称】ニチコン株式会社
(74)【代理人】
【識別番号】110001841
【氏名又は名称】弁理士法人ATEN
(72)【発明者】
【氏名】岡本 直久
【審査官】清水 祐樹
(56)【参考文献】
【文献】特開2017-175830(JP,A)
【文献】特開平11-178241(JP,A)
【文献】特開2011-188607(JP,A)
【文献】特開2003-018765(JP,A)
【文献】特開2012-175801(JP,A)
【文献】特開2018-107890(JP,A)
【文献】国際公開第2016/157962(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H02J 1/00 - 7/12
H02J 7/34 - 11/00
H01M 10/42 - 10/48
(57)【特許請求の範囲】
【請求項1】
少なくとも電力系統の系統電圧および蓄電池の放電電圧を用いて所定の電源電圧を生成する蓄電システムであって、
前記系統電圧を直流化して得た第1直流電圧を出力可能な第1電源部と、
前記第1直流電圧よりも小さく設定された第2直流電圧を出力する第2電源部と、
前記第1電源部および前記第2電源部の双方に接続され、前記第1直流電圧および前記第2直流電圧のいずれか大きい方をスイッチングするように構成された、スイッチング素子およびトランスの一次巻線からなるスイッチング部と、
前記スイッチング部により前記トランスの他の巻線に誘起された電圧を直流化して前記電源電圧を生成する少なくとも1つの電源電圧生成部と、
前記電力系統に停電が生じたことを検出する系統停電検出部と、
を備え、
前記第2電源部は、前記蓄電池のプラス側端子に電気的に接続された直流プラス端子に接点を有する第1リレーと、前記蓄電池のマイナス側端子に電気的に接続された直流マイナス端子に接点を有する第2リレーとを有しており、
前記第1リレーおよび前記第2リレーは、前記系統停電検出部によって前記電力系統に停電が発生したと検出されたときはオフ状態からオン状態に切り替わり、前記系統停電検出部によって停電していた前記電力系統が復電したと検出されたときはオン状態からオフ状態に切り替わ
り、
前記第1電源部は、平滑用の第1コンデンサを有しており、
前記第2電源部は、平滑用の第2コンデンサを有しており、
前記第1コンデンサおよび前記第2コンデンサの容量は、前記系統停電検出部によって前記電力系統に停電が発生したと検出されてから、前記第1リレーおよび前記第2リレーがオフ状態からオン状態に切り替わるまでの間、前記第1コンデンサおよび前記第2コンデンサに充電された電荷で前記スイッチング素子を駆動する電圧を出力可能な大きさであることを特徴とする蓄電システム。
【請求項2】
前記蓄電池に一方のDC入出力端子が接続された蓄電池側双方向電力変換部と、
前記蓄電池側双方向電力変換部の他方のDC入出力端子にDC入出力端が接続されるとともに前記電力系統にAC入出力端子が接続された系統側双方向電力変換部と、
前記電力系統と前記系統側双方向電力変換部との間に介装された第3リレーと、をさらに備え、
前記第3リレーは、前記系統停電検出部によって前記電力系統に停電が発生したと検出されたときはオン状態からオフ状態に切り替わり、前記系統停電検出部によって停電していた前記電力系統が復電したと検出されたときはオフ状態からオン状態に切り替わり、
前記第1リレーおよび前記第2リレーは、前記系統停電検出部によって停電していた前記電力系統が復電したと検出されたとき、前記第3リレーがオフ状態からオン状態に切り替わる前に、オン状態からオフ状態に切り替わることを特徴とする請求項
1に記載の蓄電システム。
【請求項3】
少なくとも電力系統の系統電圧および蓄電池の放電電圧を用いて所定の電源電圧を生成する蓄電システムであって、
前記系統電圧を直流化して得た第1直流電圧を出力可能な第1電源部と、
前記第1直流電圧よりも小さく設定された第2直流電圧を出力する第2電源部と、
前記第1電源部および前記第2電源部の双方に接続され、前記第1直流電圧および前記第2直流電圧のいずれか大きい方をスイッチングするように構成された、スイッチング素子およびトランスの一次巻線からなるスイッチング部と、
前記スイッチング部により前記トランスの他の巻線に誘起された電圧を直流化して前記電源電圧を生成する少なくとも1つの電源電圧生成部と、
前記電力系統に停電が生じたことを検出する系統停電検出部と、
を備え、
前記第2電源部は、前記蓄電池のプラス側端子に電気的に接続された直流プラス端子に接点を有する第1リレーと、前記蓄電池のマイナス側端子に電気的に接続された直流マイナス端子に接点を有する第2リレーとを有しており、
前記第1リレーおよび前記第2リレーは、前記系統停電検出部によって前記電力系統に停電が発生したと検出されたときはオフ状態からオン状態に切り替わり、前記系統停電検出部によって停電していた前記電力系統が復電したと検出されたときはオン状態からオフ状態に切り替わ
り、
前記蓄電池に一方のDC入出力端子が接続された蓄電池側双方向電力変換部と、
前記蓄電池側双方向電力変換部の他方のDC入出力端子にDC入出力端が接続されるとともに前記電力系統にAC入出力端子が接続された系統側双方向電力変換部と、
前記電力系統と前記系統側双方向電力変換部との間に介装された第3リレーと、をさらに備え、
前記第3リレーは、前記系統停電検出部によって前記電力系統に停電が発生したと検出されたときはオン状態からオフ状態に切り替わり、前記系統停電検出部によって停電していた前記電力系統が復電したと検出されたときはオフ状態からオン状態に切り替わり、
前記第1リレーおよび前記第2リレーは、前記系統停電検出部によって停電していた前記電力系統が復電したと検出されたとき、前記第3リレーがオフ状態からオン状態に切り替わる前に、オン状態からオフ状態に切り替わることを特徴とする蓄電システム。
【請求項4】
前記第1リレーおよび前記第2リレーは、前記系統停電検出部によって停電していた前記電力系統が復電したことが検出されてから所定時間の間、前記系統停電検出部によって前記電力系統に停電が発生したことが継続して検出されなかった場合に、オン状態からオフ状態に切り替わることを特徴とする請求項1~3のいずれか1項に記載の蓄電システム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、少なくとも電力系統の系統電圧および蓄電池の放電電圧を用いて所定の電源電圧を生成する蓄電システムに関する。
【背景技術】
【0002】
近年、低価格の深夜電力を利用して蓄電池に充電し、その蓄電池の電力を電力需要の大きい昼間に放電することで、電気料金の低減および電力需要の平準化を図った蓄電システムが普及しつつある。
【0003】
図3に、従来の蓄電システムの一例として、特許文献1に開示された蓄電システム101を示す。蓄電システム101は、蓄電池側双方向電力変換部103と、系統側双方向電力変換部104と、を備えている。系統側双方向電力変換部104は、4つのスイッチング素子および還流ダイオードからなる電圧形インバータ141と、平滑用のコンデンサ142とを含む。蓄電システム101では、商用電力系統Gの系統電圧が系統側双方向電力変換部104により直流電圧に変換され、蓄電池側双方向電力変換部103によって直流電圧が降圧されて蓄電池Bに充電される。また、放電時には、蓄電池Bの放電電圧が、蓄電池側双方向電力変換部103により昇圧され、系統側双方向電力変換部104により交流電圧に変換されて商用電力系統Gに向けて出力される。
【0004】
上述の蓄電システム101は、商用電力系統Gの系統電圧から生成した第1直流電圧を出力する第1電源部102aと、第2直流電圧を出力する第2電源部102bと、第1電源部102aおよび第2電源部102bの双方に接続され、第1直流電圧および第2直流電圧のうちの大きい方をスイッチングするスイッチング部109と、第1制御部106aおよび第2制御部106bにそれぞれ電源電圧を供給する第1電源電圧生成部110aおよび第2電源電圧生成部110bとをさらに備えている。
【0005】
第2電源部102bは、ダイオード123、ダイオード124、第1トランス125、第1スイッチング素子127、整流用のダイオード128および平滑用のコンデンサ139、122を含む。コンデンサ122は、第1電源部102aの構成要素でもある。第2電源部102bには、上述の系統側双方向電力変換部104のコンデンサ142の両端に現れる電圧である代替電圧が、ダイオード124を通じて入力される。蓄電池Bの放電電圧が代替電圧よりも大きい場合、第1トランス125の一次巻線N125および第1スイッチング素子127からなる直列回路には、ダイオード123を通じて放電電圧が印加される。一方、蓄電池Bの放電電圧が代替電圧よりも小さい場合、上記直列回路には、ダイオード124を通じて代替電圧が印加される。
【0006】
ここで、商用電力系統Gに停電が発生していない通常時であって、蓄電池側双方向電力変換部103および系統側双方向電力変換部104が停止している待機状態においては、系統電圧に由来する第3直流電圧が代替電圧となる。この代替電圧は、放電電圧よりも大きく設定されている。
【0007】
第1スイッチング素子127がオン/オフを繰り返すと、放電電圧または代替電圧がスイッチングされ、第1トランス125の二次巻線N126に交流電圧が誘起される。そして、第2電源部102bは、ダイオード128およびコンデンサ122によりこの交流電圧を直流化して、系統電圧から生成された第1直流電圧の下限値よりも小さい第2直流電圧を生成する。
【0008】
停電が発生していない通常時においては、第1直流電圧と第2直流電圧のうちの大きい方、すなわち、第1直流電圧がコンデンサ122の両端に現れる。このとき、第2電源部102bは、無負荷で動作していると言える。一方、停電時においては、第1直流電圧および第2直流電圧の大小関係が逆転し、第2直流電圧がコンデンサ122の両端に現れる。
【0009】
スイッチング部109は、第2トランス191の一次巻線N191aおよび第2スイッチング素子193からなる直列回路を含む。第2スイッチング素子193がオン/オフを繰り返すと、コンデンサ122の両端に現れた第1直流電圧または第2直流電圧がスイッチングされ、第2トランス191の他の巻線、すなわち、一次巻線N191bおよび二次巻線N192に交流電圧が誘起される。第1電源電圧生成部110aおよび第2電源電圧生成部110bは、一次巻線N191bおよび二次巻線N192にそれぞれ誘起された電圧を直流化して電源電圧を生成する。
【0010】
この蓄電システム101では、通常時においては、系統電圧に由来する第1直流電圧に基づいて電源電圧が生成され、停電時においては、放電電圧に由来する第2直流電圧に基づいて電源電圧が生成される。よって、停電時においても第1制御部106aおよび第2制御部106bに電源電圧を供給し続けることができる。また、蓄電システム101では、ダイオードの整流作用により第1直流電圧および第2直流電圧のうちの大きい方が自動的に選択される。このため、スイッチングする対象を第1直流電圧と第2直流電圧との間で切り替える際に、空白期間が生じることはない。さらに、蓄電システム101では、第2直流電圧は第1直流電圧よりも低くなるように設定されているので、通常時は第2電源部102bは無負荷で動作していると言える。よって、通常時に蓄電池Bが消耗することはほとんどない。
【0011】
また、蓄電システム101は、第2電源部102bにおいて第1トランス125により絶縁されている。仮に、第2電源部102bにおいて絶縁されていない場合には、商用電力系統Gから蓄電池Bに向かって流れる電流が、系統側双方向電力変換部104および蓄電池側双方向電力変換部103を経由する経路と、第1電源部102aおよび第2電源部102bを経由する経路とに分流する。これにより、第1電源部102aおよび第2電源部102bに過大な電流が流れる。蓄電システム101では、第2電源部102bにおいて絶縁されているので、第1電源部102aおよび第2電源部102bに過大な電流が流れるのを防ぐことができる。
【先行技術文献】
【特許文献】
【0012】
【発明の概要】
【発明が解決しようとする課題】
【0013】
しかしながら、上述の蓄電システムのように、電源部に過大な電流が流れるのを防ぐためにトランスを備えた絶縁形電源を採用した場合には、コストが増大するという問題があった。
【0014】
本発明の目的は、コストの増大を抑えつつ、蓄電池の消耗を抑制することが可能な蓄電システムを提供することである。
【課題を解決するための手段】
【0015】
本発明の蓄電システムは、少なくとも電力系統の系統電圧および蓄電池の放電電圧を用いて所定の電源電圧を生成する蓄電システムであって、前記系統電圧を直流化して得た第1直流電圧を出力可能な第1電源部と、前記第1直流電圧よりも小さく設定された第2直流電圧を出力する第2電源部と、前記第1電源部および前記第2電源部の双方に接続され、前記第1直流電圧および前記第2直流電圧のいずれか大きい方をスイッチングするように構成された、スイッチング素子およびトランスの一次巻線からなるスイッチング部と、前記スイッチング部により前記トランスの他の巻線に誘起された電圧を直流化して前記電源電圧を生成する少なくとも1つの電源電圧生成部と、前記電力系統に停電が生じたことを検出する系統停電検出部と、を備えている。前記第2電源部は、前記蓄電池のプラス側端子に電気的に接続された直流プラス端子に接点を有する第1リレーと、前記蓄電池のマイナス側端子に電気的に接続された直流マイナス端子に接点を有する第2リレーとを有しており、前記第1リレーおよび前記第2リレーは、前記系統停電検出部によって前記電力系統に停電が発生したと検出されたときはオフ状態からオン状態に切り替わり、前記系統停電検出部によって停電していた前記電力系統が復電したと検出されたときはオン状態からオフ状態に切り替わる。
【0016】
この構成によると、第2電源部は、第1リレーおよび第2リレーにより、電力系統に停電が生じていない通常時においては絶縁状態となり、電力系統に停電が生じている停電時には通電状態となる。したがって、通常時には、スイッチング部には第1電源部から給電され、第2電源部から給電されないことから通常時の蓄電池の消耗を抑えることができる。また、絶縁形電源を採用することなく第2電源部を絶縁することができるので、コストの増大を抑えることができる。
【0017】
また、上述の蓄電システムにおいては、前記第1電源部は、平滑用の第1コンデンサを有しており、前記第2電源部は、平滑用の第2コンデンサを有しており、前記第1コンデンサおよび前記第2コンデンサの容量は、前記系統停電検出部によって前記電力系統に停電が発生したと検出されてから、前記第1リレーおよび前記第2リレーがオフ状態からオン状態に切り替わるまでの間、前記第1コンデンサおよび前記第2コンデンサに充電された電荷で前記スイッチング素子を駆動する電圧を出力可能な大きさである。
【0018】
この構成によると、系統停電検出部によって電力系統に停電が発生したと検出されてから、第1リレーおよび第2リレーがオフ状態からオン状態に切り替わるまでの間も、確実にスイッチング部に電圧を出力することができる。
【0019】
さらに、上述の蓄電システムは、前記蓄電池に一方のDC入出力端子が接続された蓄電池側双方向電力変換部と、前記蓄電池側双方向電力変換部の他方のDC入出力端子にDC入出力端が接続されるとともに前記電力系統にAC入出力端子が接続された、系統側双方向電力変換部と、前記電力系統と前記系統側双方向電力変換部との間に介装された第3リレーと、をさらに備え、前記第3リレーは、前記系統停電検出部によって前記電力系統に停電が発生したと検出されたときはオン状態からオフ状態に切り替わり、前記系統停電検出部によって停電していた前記電力系統が復電したと検出されたときはオフ状態からオン状態に切り替わり、前記第1リレーおよび前記第2リレーは、前記系統停電検出部によって停電していた前記電力系統が復電したと検出されたとき、前記第3リレーがオフ状態からオン状態に切り替わる前に、オン状態からオフ状態に切り替わる。
【0020】
この構成によると、電力系統が復電したと検出されたとき、第1リレーおよび第2リレーと、第3リレーとが、同時にオン状態となることがないので、電源部に過大な電流が流れるのを確実に防ぐことができる。
【0021】
加えて、上述の蓄電システムにおいては、前記第1リレーおよび前記第2リレーは、前記系統停電検出部によって停電していた前記電力系統が復電したことが検出されてから所定時間の間、前記系統停電検出部によって前記電力系統に停電が発生したことが継続して検出されなかった場合に、オン状態からオフ状態に切り替わる。
【0022】
この構成によると、電力系統に断続した停電が発生した場合に、第1リレーおよび第2リレーがオン/オフ動作を繰り返してばたつきが生じるのを防ぐことができる。
【発明の効果】
【0023】
本発明によれば、コストの増大を抑えつつ、蓄電池の消耗を抑制することが可能な蓄電システムを得ることができる。
【図面の簡単な説明】
【0024】
【
図1】本発明の一実施形態にかかる蓄電システムの回路図である。
【
図2】
図1に示す蓄電システムで行われる制御の流れを示すフローチャートである。
【発明を実施するための形態】
【0025】
以下、本発明の好適な一実施の形態について、図面を参照しつつ説明する。
【0026】
図1に示すように、本発明の一実施形態にかかる蓄電システム1は、蓄電池B、蓄電池側双方向電力変換部3、系統側双方向電力変換部4、系統電圧検出回路5、第1制御部6a、第2制御部6bを主に備えている。蓄電システム1は、交流電源である商用電力系統Gに接続されている。蓄電池Bは、例えばリチウムイオン電池であり、直流電源として機能する。蓄電システム1においては、商用電力系統Gから供給される系統電圧(商用系統電圧)により蓄電池Bを充電することができる。また、蓄電池Bの放電電圧を商用電力系統G側に出力することができる。
【0027】
蓄電池側双方向電力変換部3は、蓄電池Bに一方のDC入出力端が接続されている。系統側双方向電力変換部4は、蓄電池側双方向電力変換部3の他方のDC入出力端にDC入出力端が接続されるとともに、本発明の「第3リレー」に相当するメインリレー11を介して商用電力系統GにAC入出力端が接続されている。メインリレー11は、商用電力系統Gと系統側双方向電力変換部4との間に位置する端子に接点を有する。より詳細には、メインリレー11の接点は、後述する配線71と配線73との接合点と系統側双方向電力変換部4との間、および、後述する配線72と配線74との接合点と系統側双方向電力変換部4との間に位置する。
【0028】
蓄電池側双方向電力変換部3は、系統側双方向電力変換部4から供給された直流電力を降圧して蓄電池Bに供給する。また、蓄電池側双方向電力変換部3は、蓄電池Bから供給された直流電力(放電電力)を昇圧して系統側双方向電力変換部4に供給する。
【0029】
系統側双方向電力変換部4は、商用電力系統Gから供給された系統電圧を直流電圧に変換して蓄電池側双方向電力変換部3に供給する。また、系統側双方向電力変換部4は、蓄電池側双方向電力変換部3から供給された直流電圧を交流電圧に変換して商用電力系統G側に出力する。
【0030】
系統側双方向電力変換部4は、4つのスイッチング素子および各スイッチング素子に逆向きに並列接続された還流ダイオードからなる電圧形インバータ41と、電圧形インバータ41のDC入出力端側に設けられた平滑用のコンデンサ42と、電圧形インバータ41のAC入出力端側に設けられたノイズフィルタ43とを含む。
【0031】
系統電圧検出回路5は、商用電力系統Gから供給される系統電圧を検出する。第1制御部6aおよび第2制御部6bは、蓄電システム1の各部を制御する。第1制御部6aは、蓄電システム1の1次側制御回路である。第2制御部6bは、蓄電システム1の2次側制御回路である。
【0032】
第1制御部6aは、系統電圧検出回路5で検出された系統電圧に基づいて商用電力系統Gでの停電の発生の有無を検出し、検出結果を第2制御部6bのマイコン(図示せず)に伝達する。第2制御部6bのマイコンは、第1制御部6aから伝達された商用電力系統Gでの停電の有無の検出結果に基づいてメインリレー11のオン/オフを制御する制御信号を送信する。
【0033】
具体的には、商用電力系統Gに停電が発生したと検出されたとき、第2制御部6bのマイコンは、メインリレー11をオン状態からオフ状態に切り替える制御信号を送信する。また、停電していた商用電力系統Gが復電したと検出されたとき、第2制御部6bのマイコンは、メインリレー11をオフ状態からオン状態に切り替える制御信号を送信する。なお、メインリレー11は、系統連系リレーである。メインリレー11は、系統連系規格により復電が検出されてから所定時間T1経過後でないとオン状態に切り替えることができない規定となっている。したがって、第2制御部6bのマイコンは、復電が検出されてから所定時間T1経過後にメインリレー11をオフ状態からオン状態に切り替える制御信号を送信する。
【0034】
蓄電システム1は、第1電源部2a、第2電源部2b、スイッチング部9、第1電源電圧生成部10aおよび第2電源電圧生成部10bをさらに備えている。第1電源部2aは、商用電力系統Gからの系統電圧を直流化(整流および平滑)して得た第1直流電圧を出力する。第2電源部2bは、蓄電池Bの放電電圧から得た直流電圧(第2直流電圧)を出力する。第2直流電圧は第1直流電圧の下限値よりも小さい電圧値に設定される。スイッチング部9は、第1電源部2aおよび第2電源部2bの双方に接続され、、第1電源部2aおよび第2電源部2bのいずれかから出力された電圧をスイッチングする。第1電源電圧生成部10aは、第1制御部6aに電源電圧を供給する。第2電源電圧生成部10bは、第2制御部6bに電源電圧を供給する。
【0035】
第1電源部2aは、整流用のダイオード21および平滑用のコンデンサ22を含む。ダイオード21は、商用電力系統Gとメインリレー11とを接続する配線71、72からそれぞれ分岐した配線73、74が接続されている。第1電源部2aは、これらにより系統電圧を整流した後に平滑として直流化して第1直流電圧を生成する。
【0036】
第2電源部2bは、ダイオード23、ダイオード24、第1リレー25、第2リレー26、リレー制御回路27、パワーサーミスタ28および平滑用のコンデンサ22、29を含む。なお、コンデンサ22は、第1電源部2aの構成要素でもある。ダイオード23は、蓄電池Bのプラス側端子と蓄電池側双方向電力変換部3とを接続する配線81から分岐した配線83に設けられている。ダイオード23は、蓄電池Bの放電電圧を第2電源部2bに入力する。ダイオード24は、蓄電池側双方向電力変換部3と系統側双方向電力変換部4とを接続する配線82から分岐する配線84に設けられている。ダイオード24は、コンデンサ42の両端に現れる電圧(以下、「代替電圧」と称する)を第2電源部2bに入力する。
【0037】
第1リレー25は、配線85によって配線83と配線84との接合点と電気的に接続された接点を有する。すなわち、第1リレー25は、蓄電池Bのプラス側端子に接続された直流プラス端子に接点を有する。第2リレー26は、配線86によって蓄電池Bのマイナス側端子に接続された接点を有する。配線85には、パワーサーミスタ28が設けられている。
【0038】
リレー制御回路27は、系統電圧検出回路5によって検出された系統電圧に基づいて、第1リレー25および第2リレー26のオン/オフを制御する。具体的には、系統電圧検出回路5によって検出される系統電圧が閾値以下となり、商用電力系統Gに停電が発生したことが検出されたとき、リレー制御回路27は第1リレー25および第2リレー26をオフ状態からオン状態に切り替える。また、系統電圧検出回路5によって検出される系統電圧が閾値を超え、停電していた商用電力系統Gが復電したことが検出されたとき、リレー制御回路27は第1リレー25および第2リレー26をオン状態からオフ状態に切り替える。
【0039】
商用電力系統Gに停電が発生していない通常時においては、第1リレー25および第2リレー26がオフ状態であり、第2電源部2bは絶縁状態となる。つまり、通常時は、第2電源部2bから電圧が出力されることはない。一方、商用電力系統Gに停電が発生している停電時においては、第1リレー25および第2リレー26がオン状態であり、第2電源部2bは通電状態となる。
【0040】
停電時においては、蓄電池側双方向電力変換部3および系統側双方向電力変換部4が停止し、蓄電池側双方向電力変換部3のDC入出力端から出力される蓄電池Bの放電電圧にほぼ等しい直流電圧が代替電圧となる。この代替電圧は、当然ながら蓄電池Bの電圧にほぼ等しい。したがって、停電時は、第2電源部2bから放電電圧または代替電圧が第2直流電圧として出力される。
【0041】
ここで、復電が検出されたときの第1リレー25および第2リレー26の詳細な制御について説明する。リレー制御回路27は、停電していた商用電力系統Gが復電したと検出されてから所定時間T2の間、商用電力系統Gに停電が発生したことが継続して検出されなかった場合に、第1リレー25および第2リレー26をオン状態からオフ状態に切り替える。すなわち、系統電圧検出回路5によって検出される系統電圧が閾値を超えた後、所定時間T2の間継続して系統電圧が閾値を超えた場合に、第1リレー25および第2リレー26はオン状態からオフ状態に切り替わる。
【0042】
また、上述のように、停電していた商用電力系統Gが復電したと検出されたとき、メインリレー11は、復電が検出されてから所定時間T1経過後にオフ状態からオン状態に切り替わる。第1リレー25および第2リレー26は、停電していた商用電力系統Gが復電したと検出されたとき、メインリレー11がオフ状態からオン状態に切り替わる前に、オン状態からオフ状態に切り替わる。つまり、所定時間T2は所定時間T1より短い。
【0043】
なお、第1リレー25および第2リレー26のオン/オフ制御は、第2制御部6bのマイコン(図示せず)で行ってもよい。本実施形態のように、リレー制御回路27を設けて回路構成によりオン/オフ制御を行うことで、マイコンによりオン/オフ制御を行う場合に比べて第1リレー25および第2リレー26を切り替える際の遅延時間を短くすることができる。
【0044】
ここで、本発明の「系統停電検出部」は、第1制御部6aおよび系統電圧検出回路5に対応する。すなわち、上述のように、メインリレー11のオン/オン制御は、系統電圧検出回路5で検出された系統電圧に基づいて第1制御部6aで停電の有無を検出し、その検出結果に基づいて第2制御部6bのマイコン(図示せず)から送信された制御信号によってなされる。つまり、このときは第1制御部6aが「系統停電検出部」に対応する。また、第1リレー25および第2リレー26のオン/オフ制御は、系統電圧検出回路5によって検出される系統電圧が閾値以下となったときと閾値を超えたときとにリレー制御回路27によってなされる。つまり、このときは系統電圧検出回路5が「系統停電検出部」に対応する。
【0045】
コンデンサ22およびコンデンサ29の容量は、商用電力系統Gに停電が発生したと検出されてから、第1リレー25および第2リレー26がオフ状態からオン状態に切り替わるまでの間、コンデンサ22およびコンデンサ29に充電された電荷でスイッチング部9に電圧を出力可能な大きさである。上述のように、本実施形態においては、回路構成により第1リレー25および第2リレー26のオン/オフ制御を行うので、停電の発生が検出されてから第1リレー25および第2リレー26がオフ状態からオン状態に切り替わるまでの遅延時間は比較的短い。したがって、コンデンサ22およびコンデンサ29として大容量のコンデンサを採用する必要はない。
【0046】
なお、停電の発生が検出されてから第1リレー25および第2リレー26がオフ状態からオン状態に切り替わるまでの遅延時間にコンデンサ22、29が放電されるので、第1リレー25および第2リレー26がオフ状態からオン状態に切り替わった時、第1リレー25および第2リレー26の接点に突入電流が流れる。本実施形態においては、ダイオード23、24と第1リレー25との間にパワーサーミスタ28が設けられているので、第1リレー25および第2リレー26がオフ状態からオン状態に切り替わった時に流れる突入電流を抑制することができる。パワーサーミスタ28は、第1リレー25とコンデンサ29との間に設けられていてもよい。
【0047】
商用電力系統Gに停電が発生していない通常時においては、上述のように第2電源部2bは絶縁されているので第2電源部2bから電圧が出力されることがない。したがって、第1電源部2aから出力された第1直流電圧がコンデンサ22の両端に現れる。商用電力系統Gに停電が発生している停電時においては、第1電源部2aからの第1直流電圧が出力されなくなる。停電時、第2電源部2bは通電状態となるので、第2電源部2bから出力された第2直流電圧がコンデンサ22の両端に現れる。
【0048】
スイッチング部9は、トランス91の一次巻線N91aおよびスイッチング素子93からなる直列回路を含む。スイッチング素子93がオン/オフを繰り返すと、コンデンサ22の両端に現れた第1直流電圧または第2直流電圧がスイッチングされ、トランス91の他の巻線、すなわち、一次巻線N91bおよび二次巻線N92に交流電圧が誘起される。スイッチング部9は、商用電力系統Gに停電が発生していない通常時においては第1直流電圧を、商用電力系統Gに停電が発生している停電時においては第2直流電圧をスイッチングする。
【0049】
第1電源電圧生成部10aは、一次巻線N91b、整流用のダイオード12および平滑用のコンデンサ13を含む。ダイオード12およびコンデンサ13は、スイッチング素子93のスイッチングにより一次巻線N91bに誘起された交流電圧を直流化する。そして、この直流化により得られた電圧は、第1制御部6aに電源電圧として供給される。
【0050】
同様に、第2電源電圧生成部10bは、二次巻線N92、整流用のダイオード14および平滑用のコンデンサ15を含む。ダイオード14およびコンデンサ15は、スイッチング素子93のスイッチングにより二次巻線N92に誘起された交流電圧を直流化する。そして、この直流化により得られた電圧は、第2制御部6bに電源電圧として供給される。
【0051】
次に、
図2を参照しつつ、蓄電システム1で行われる制御の流れについて説明する。
図2のフローチャートで示す制御の流れは、蓄電システム1の電源が投入されている間は継続して実行されるものである。
【0052】
まず、商用電力系統Gに停電が発生していない通常時においては、通常運転制御が行われる(S1)。通常運転制御では、商用電力系統Gから供給される系統電圧を直流化して得た第1直流電圧が第1電源部2aからスイッチング部9に出力される。そして、系統電圧検出回路5によって検出される系統電圧に基づいて、商用電力系統Gに停電が発生したか否かの判断が行われる(S2)。なお、通常時においては、メインリレー11はオン状態(閉状態)とされ、第1リレー25および第2リレー26はオフ状態(開状態)とされている。
【0053】
系統電圧検出回路5の検出結果に基づき、停電が発生していないと判断した場合には(S2:NO)、S1に戻って通常運転制御を続ける。一方、停電が発生したと判断した場合には(S2:YES)、リレー制御回路27により第1リレー25および第2リレー26がオフ状態からオン状態に切り替えられ、かつ、第2制御部6bのマイコンから送信される制御信号により、メインリレー11がオン状態からオフ状態に切り替えられる(S3)。なお、第1リレー25および第2リレー26がオフ状態からオン状態に切り替えられるタイミングと、メインリレー11がオン状態からオフ状態に切り替えられるタイミングとはいずれが先であってもよい。
【0054】
続いて、系統電圧検出回路5によって検出される系統電圧に基づいて、停電していた商用電力系統Gが復電したか否かの判断が行われる(S4)。S4の判断は、復電したと判断するまで繰り返し行われる。そして、復電したと判断した場合には(S4:YES)、復電が検出されてからの経過時間のカウントをスタートする(S5)。
【0055】
続いて、系統電圧検出回路5によって検出される系統電圧に基づいて、商用電力系統Gに停電が発生したか否かの判断が行われる(S6)。停電が発生したと判断した場合には(S6:YES)、S4で復電が検出されてからの経過時間のカウントをリセットし(S7)、上述のS4に戻る。一方、停電が発生していないと判断した場合には(S6:NO)、S4で復電が検出されてからの経過時間が所定時間T2を経過したか否かを判断する(S8)。
【0056】
未だ所定時間T2が経過していないと判断した場合には(S8:NO)、S6に戻る。そして、所定時間T2が経過したと判断した場合には(S8:YES)、リレー制御回路27により第1リレー25および第2リレー26がオン状態からオフ状態に切り替えられる(S9)。その後(復電を検知してから所定時間T1経過後、所定時間T1>所定時間T2)、第2制御部6bのマイコンから送信される制御信号により、メインリレー11がオフ状態からオン状態に切り替えられ(S10)、S1に戻る。
【0057】
以上のように、本実施形態の蓄電システム1は、系統電圧を直流化して得た電圧を出力可能な第1電源部2aと、蓄電池Bの放電電圧から得た電圧を出力可能な第2電源部2bと、第1電源部2aおよび第2電源部2bのいずれかから出力された電圧をスイッチングするように構成されたスイッチング部9と、スイッチング部9によりトランス91の他の巻線(一次巻線N91bおよび二次巻線N92)に誘起された電圧を直流化して電源電圧を生成する第1電源電圧生成部10aおよび第2電源電圧生成部10bと、商用電力系統Gから供給される系統電圧を検出する系統電圧検出回路5と、を備えている。第2電源部2bは、蓄電池Bのプラス側端子に接続された直流プラス端子に接点を有する第1リレー25と、蓄電池Bのマイナス側端子に接続された直流マイナス端子に接点を有する第2リレー26とを有しており、第1リレー25および第2リレー26は、系統電圧検出回路5によって検出される系統電圧が閾値以下となり商用電力系統Gに停電が発生したことが検出されたときはオフ状態からオン状態に切り替わり、系統電圧検出回路5によって検出される系統電圧が閾値を超え商用電力系統Gが復電したことが検出されたときはオン状態からオフ状態に切り替わる。
【0058】
上述の構成によると、第2電源部2bは、第1リレー25および第2リレー26により、商用電力系統Gに停電が生じていない通常時においては絶縁状態となり、商用電力系統Gに停電が生じている停電時には通電状態となる。したがって、通常時には、スイッチング部9には第1電源部2aから給電され、第2電源部2bから給電されないことから通常時の蓄電池Bの消耗を抑えることができる。また、絶縁形電源を採用することなく第2電源部2bを絶縁することができるので、コストの増大を抑えることができる。
【0059】
さらに、本実施形態においては、
図3に示す従来の蓄電システム101の第1スイッチング素子127が不要である。よって、停電時の制御電源変換効率が向上し、かつ、通電時にスイッチングのために消費する電力およびスイッチングにより生ずるノイズを削減することができる。また、通電時においては、第1リレー25および第2リレー26の接点で機械的に絶縁されているので、雷サージが蓄電池Bおよび蓄電池側双方向電力変換部3に浸入することがない。
【0060】
本実施形態の蓄電システム1では、第1電源部2aは、平滑用のコンデンサ22を有しており、第2電源部2bは、平滑用のコンデンサ29を有しており、コンデンサ22およびコンデンサ29の容量は、商用電力系統Gに停電が発生したことが検出されてから、第1リレー25および第2リレー26がオフ状態からオン状態に切り替わるまでの間、コンデンサ22およびコンデンサ29に充電された電荷で電圧を出力可能な大きさである。したがって、商用電力系統Gに停電が発生したと検出されてから、第1リレー25および第2リレー26がオフ状態からオン状態に切り替わるまでの間も、確実にスイッチング部9に電圧を出力することができる。
【0061】
本実施形態の蓄電システム1では、蓄電池Bに一方のDC入出力端子が接続された蓄電池側双方向電力変換部3と、蓄電池側双方向電力変換部3の他方のDC入出力端子にDC入出力端が接続されるとともに商用電力系統GにAC入出力端子が接続され、4つのスイッチング素子および還流ダイオードからなる電圧形インバータ41と平滑用のコンデンサ42とを含む系統側双方向電力変換部4と、商用電力系統Gと系統側双方向電力変換部4との間に位置する端子に接点を有するメインリレー11と、をさらに備えている。メインリレー11は、第1制御部6aによって商用電力系統Gに停電が発生したと検出されたときはオン状態からオフ状態に切り替わり、第1制御部6aによって停電していた商用電力系統Gが復電したと検出されたときはオフ状態からオン状態に切り替わり、第1リレー25および第2リレー26は、商用電力系統Gが復電したと検出されたとき、メインリレー11がオフ状態からオン状態に切り替わる前に、オン状態からオフ状態に切り替わる。したがって、商用電力系統Gが復電したと検出されたとき、第1リレー25および第2リレー26と、メインリレー11とが、同時にオン状態となることがないので、第1電源部2aおよび第2電源部2bに過大な電流が流れるのを確実に防ぐことができる。
【0062】
本実施形態の蓄電システム1では、第1リレー25および第2リレー26は、停電していた商用電力系統Gが復電したことが検出されてから所定時間T2の間、商用電力系統Gに停電が発生したことが継続して検出されなかった場合に、オン状態からオフ状態に切り替わる。したがって、商用電力系統Gに断続した停電が発生した場合に、第1リレー25および第2リレー26がオン/オフ動作を繰り返してばたつきが生じるのを防ぐことができる。
【0063】
以上、本発明の実施形態について図面に基づいて説明したが、具体的な構成は、これらの実施形態に限定されるものでない。本発明の範囲は、上記した実施形態の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。
【0064】
上述の実施形態では、第1電源電圧生成部10aおよび第2電源電圧生成部10bを備えている場合について説明したが、電源電圧を生成する電源電圧生成部の個数は2つに限定されるものではない。電源電圧生成部は、少なくとも1つ備えていればよく、3つ以上備えていてもよい。
【0065】
上述の実施形態では、第1リレー25および第2リレー26は、停電していた商用電力系統Gが復電したことが検出されてから所定時間T2の間、商用電力系統Gに停電が発生したことが継続して検出されなかった場合に、オン状態からオフ状態に切り替わる場合について説明したが、これには限定されない。リレーの繰り返し切り替え動作が支障にならない範囲で第1リレー25および第2リレー26は、停電していた商用電力系統Gが復電したことが検出されたとき、直ちにオン状態からオフ状態に切り替わってもよい。
【0066】
上述の実施形態においては、第2電源部2bがパワーサーミスタ28を有している場合について説明したが、パワーサーミスタ28はなくてもよい。また、パワーサーミスタ28に代わる他の突入電流防止手段を用いてもよい。
【0067】
上述の実施形態においては、商用電力系統Gに接続された蓄電システム1について説明したが、これには限定されない。蓄電システム1は、商用の系統電力網に限定されず、事業所内などの限られた範囲内に構築された構内の系統電力網に接続されていてもよい。
【0068】
また、蓄電システム1は、太陽電池等の発電装置に基づく発電電圧を代替電圧としてもよい。この場合、発電装置に繋がる発電装置側電力変換部の出力端を蓄電池側双方向電力変換部3と系統側双方向電力変換部4との相互接続点に接続すればよい。
【符号の説明】
【0069】
1 蓄電システム
2a 第1電源部
2b 第2電源部
3 蓄電池側双方向電力変換部
4 系統側双方向電力変換部
5 系統電圧検出回路(系統停電検出部)
6a 第1制御部(系統停電検出部)
9 スイッチング部
10a、10b 第1電源電圧生成部
11 メインリレー(第3リレー)
22 コンデンサ(第1コンデンサ)
25 第1リレー
26 第2リレー
29 コンデンサ(第2コンデンサ)