IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社日立製作所の特許一覧

<>
  • 特許-作業分析システム、及び作業分析方法 図1
  • 特許-作業分析システム、及び作業分析方法 図2
  • 特許-作業分析システム、及び作業分析方法 図3
  • 特許-作業分析システム、及び作業分析方法 図4
  • 特許-作業分析システム、及び作業分析方法 図5
  • 特許-作業分析システム、及び作業分析方法 図6
  • 特許-作業分析システム、及び作業分析方法 図7
  • 特許-作業分析システム、及び作業分析方法 図8
  • 特許-作業分析システム、及び作業分析方法 図9A
  • 特許-作業分析システム、及び作業分析方法 図9B
  • 特許-作業分析システム、及び作業分析方法 図10
  • 特許-作業分析システム、及び作業分析方法 図11
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-12-18
(45)【発行日】2023-12-26
(54)【発明の名称】作業分析システム、及び作業分析方法
(51)【国際特許分類】
   G06Q 10/00 20230101AFI20231219BHJP
【FI】
G06Q10/00
【請求項の数】 14
(21)【出願番号】P 2020175487
(22)【出願日】2020-10-19
(65)【公開番号】P2022066892
(43)【公開日】2022-05-02
【審査請求日】2023-02-16
(73)【特許権者】
【識別番号】000005108
【氏名又は名称】株式会社日立製作所
(74)【代理人】
【識別番号】110000176
【氏名又は名称】弁理士法人一色国際特許事務所
(72)【発明者】
【氏名】野尻 周平
(72)【発明者】
【氏名】広瀬 雄二
【審査官】野口 俊明
(56)【参考文献】
【文献】特開2008-117127(JP,A)
【文献】特開2003-331113(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G06Q 10/00-99/00
(57)【特許請求の範囲】
【請求項1】
プロセッサ及び記憶装置を有する情報処理装置を用いて構成され、
業務に関する一連の作業の流れに関する情報である作業処理と前記作業処理の結果に関する情報である作業処理結果とを含んだログ情報を記憶する記憶部と、
前記ログ情報における作業処理に関する情報を量子化することにより取得される特徴量に基づき、前記作業処理を複数のクラスタに分類した情報であるクラスタ化ログ情報を生成するクラスタ化部と、
前記クラスタ化ログ情報と前記ログ情報から取得される前記作業処理結果とに基づき、前記クラスタの夫々について、前記作業処理と前記作業処理結果との関係を示す情報を生成する分析部と、
を備える、作業分析システム。
【請求項2】
請求項1に記載の作業分析システムであって、
前記クラスタ化部は、前記作業処理に表現されている、作業主体の熟練度の差、異なる作業処理の共通の情報処理システムへの相乗りの状況、顧客側の作業処理であるか否か、及び作業客体の違い、のうちの少なくともいずれかの情報に基づき、前記作業処理をクラスタに分類する、
作業分析システム。
【請求項3】
請求項1に記載の作業分析システムであって、
前記作業処理と前記作業処理結果との関係を示す前記情報は、前記作業処理の夫々が、成功に繋がる作業処理である成功作業処理であるか、失敗に繋がる作業処理である失敗作業処理であるかを示す情報を含む、
作業分析システム。
【請求項4】
請求項3に記載の作業分析システムであって、
前記分析部は、前記成功作業処理の群である成功作業処理群にのみ登場する頻出系列である成功系列、又は前記失敗作業処理の群である失敗作業処理群にのみ登場する頻出系列である失敗系列を特定し、特定した前記頻出系列を示す情報を生成する、
作業分析システム。
【請求項5】
請求項3に記載の作業分析システムであって、
前記記憶部は、作業の来歴情報を記憶し、
前記来歴情報と前記クラスタ化ログ情報とを対照することにより、前記来歴情報に類似又は一致する前記作業処理を含む前記クラスタを特定し、特定した前記クラスタを示す情報を生成するクラスタ化推定部を更に備える、
作業分析システム。
【請求項6】
請求項5に記載の作業分析システムであって、
前記分析部は、前記成功作業処理からなる群である成功作業処理群にのみ登場する頻出系列である成功系列、及び前記失敗作業処理からなる群である失敗作業処理群にのみ登場する頻出系列である失敗系列を特定し、
前記クラスタ化推定部が推定した前記クラスタを構成する前記作業処理と、当該クラスタにおける前記成功系列又は前記失敗系列とを対照することにより、前記作業処理に対応する前記作業処理結果を特定し、特定した前記作業処理結果を示す情報を生成する来歴分析処理部を更に備える、
作業分析システム。
【請求項7】
請求項1乃至6のいずれか一項に記載の作業分析システムであって、
生成した前記情報を出力するユーザインタフェースを更に備える、
作業分析システム。
【請求項8】
プロセッサ及び記憶装置を有する情報処理装置が、
業務に関する一連の作業の流れに関する情報である作業処理と前記作業処理の結果に関する情報である作業処理結果とを含んだログ情報を記憶するステップと、
前記ログ情報における作業処理に関する情報を量子化することにより取得される特徴量に基づき、前記作業処理を複数のクラスタに分類した情報であるクラスタ化ログ情報を生成するステップと、
前記クラスタ化ログ情報と前記ログ情報から取得される前記作業処理結果とに基づき、前記クラスタの夫々について、前記作業処理と前記作業処理結果との関係を示す情報を生成するステップと、
を実行する、作業分析方法。
【請求項9】
請求項8に記載の作業分析方法であって、
前記情報処理装置が、前記作業処理に表現されている、作業主体の熟練度の差、異なる作業処理の共通の情報処理システムへの相乗りの状況、顧客側の作業処理であるか否か、及び作業客体の違い、のうちの少なくともいずれかの情報に基づき、前記作業処理をクラスタに分類するステップ、
を更に実行する、作業分析方法。
【請求項10】
請求項8に記載の作業分析方法であって、
前記作業処理と前記作業処理結果との関係を示す前記情報は、前記作業処理の夫々が、成功に繋がる作業処理である成功作業処理であるか、失敗に繋がる作業処理である失敗作業処理であるかを示す情報を含む、
作業分析方法。
【請求項11】
請求項10に記載の作業分析方法であって、
前記情報処理装置が、前記成功作業処理の群である成功作業処理群にのみ登場する頻出系列である成功系列、又は前記失敗作業処理の群である失敗作業処理群にのみ登場する頻出系列である失敗系列を特定し、特定した前記頻出系列を示す情報を生成するステップ、
を更に実行する、作業分析方法。
【請求項12】
請求項10に記載の作業分析方法であって、
前記情報処理装置が、
作業の来歴情報を記憶するステップと、
前記来歴情報と前記クラスタ化ログ情報とを対照することにより、前記来歴情報に類似又は一致する前記作業処理を含む前記クラスタを特定し、特定した前記クラスタを示す情報を生成するステップと、
を更に実行する、作業分析方法。
【請求項13】
請求項11に記載の作業分析方法であって、
前記情報処理装置が、
前記成功作業処理からなる群である成功作業処理群にのみ登場する頻出系列である成功系列、及び前記失敗作業処理からなる群である失敗作業処理群にのみ登場する頻出系列である失敗系列を特定するステップと、
推定した前記クラスタを構成する前記作業処理と、当該クラスタにおける前記成功系列又は前記失敗系列とを対照することにより、前記作業処理に対応する前記作業処理結果を特定し、特定した前記作業処理結果を示す情報を生成するステップと、
を更に実行する、作業分析方法。
【請求項14】
請求項8乃至13のいずれか一項に記載の作業分析方法であって、
前記情報処理装置が、生成した情報をユーザインタフェースを介して出力するステップ
を更に実行する、作業分析方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、作業分析システム、及び作業分析方法に関する。
【背景技術】
【0002】
特許文献1には、アプリケーションプログラムの作業ログから業務処理のフローを生成することができるようにすることを目的として構成された業務処理フロー生成システムに関して記載されている。業務処理フロー生成システムの業務処理フロー生成装置は、アプリケーションプログラムのログを取得し、取得したログの中から、一連の作業処理に関するログデータをブロックとして抽出し、抽出したブロックの中から、関連する複数のログデータを時系列順に配置してなるパターンを抽出し、抽出されたパターンのうち、所定のログデータが共通するパターンを抽出し、所定のログデータに基づき業務処理フローを生成する。
【0003】
特許文献2には、管理者や業務担当者に手間をかけることなく、人の主観を排除して客観的に業務内容を評価することができることを目的として構成された業務評価システムに関して記載されている。業務評価システムは、業務に関する業務データを収集し、収集された業務データを分析するために用いる分析用データを記憶し、業務の段階を示す業務フェーズの名称と業務フェーズに含まれるプロセスの名称とを対応付けて記憶し、収集された業務データを、分析用データを用いて分析し、分析結果データを評価対象データとして記憶し、分析結果データを過去データとして蓄積し、評価対象データを、蓄積されている過去データと比較することにより評価する。
【0004】
特許文献3には、引合から受注決定に至る時間の中でその時点に必要な営業活動を支援することを目的として構成された営業業務管理システムに関して記載されている。営業業務管理システムは、営業商品の商品タイプ毎に引合から受注決定までの受注プロセスを所定の複数工程に分けて業務管理し、引合に応じて入力される当該案件の案件識別情報と当該案件の商品情報及び商品タイプ情報と顧客情報とを案件毎に対応付けた案件毎ファイルを作成して記憶し、担当者データベースのデータに基づき当該案件の少なくとも商品タイプに応じて営業担当者を決定し、当案件ファイルの内容を更新し、次に行う顧客との打合せにおいて必要な情報を打合準備内容情報ファイルの情報に基づき出力し、項目情報の達成未達成情報を設定した受注確度情報を当該案件ファイル内に作成する。
【先行技術文献】
【特許文献】
【0005】
【文献】特開2017-227944号公報
【文献】特開2007-200368号公報
【文献】特開2018-55268号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
企業や官公庁等の組織においては、業務効率の改善等を目的として、組織に導入されている情報処理システムが生成する履歴情報(以下、「ログ情報」と称する。)を分析することが行われている。上記分析の結果は可視化されてユーザに提供され、ユーザは上記結果を業務において行われる作業の改善策の立案等に利用する。
【0007】
業務の改善に際しては、業務が成功しやすい作業手順や業務が失敗しやすい作業手順等、作業手順(以下、「作業処理」とも称する。)とその結果(以下、「作業処理結果」と
も称する。)との因果関係に関する情報が有用である。例えば、営業活動においては、顧客訪問や要件取得、営業方法等の作業をどのような作業手順(作業処理)で行った場合に受注率が高くなり、逆にこうした作業をどのような作業手順(作業処理)で行った場合に失注率が高くなるのか、といった情報が有用である。
【0008】
特許文献1に記載の業務処理フロー生成システムは、アプリケーションプログラムのログから抽出した一連の作業処理に関するログデータから、関連する複数のログデータを時系列順に配置してパターンを抽出し、抽出したパターンのうち、所定のログデータが共通するパターンを抽出し、所定のログデータに基づき業務処理フローを生成する。しかし特許文献1には、業務処理フローと当該業務処理フローを実行した結果との関係に関する情報を取得する技術についてはとくに記載されていない。
【0009】
特許文献2に記載の業務評価システムは、業務データを分析用データを用いて分析し、分析結果データを評価対象データとして格納し、分析結果データを過去データとして蓄積し、評価対象データを過去データと比較することにより評価する。しかし当該システムは、実際の結果に基づき業務データの評価を行うものではなく、業務処理フローと当該業務処理フローを実行した結果との関係に関する情報を取得する技術についてはとくに記載されていない。
【0010】
特許文献3に記載の営業業務管理システムは、営業担当から入力された営業案件情報に基づき受注確度を求め、営業担当に次に実行するべき営業活動と、提供すべきもしくは取得すべき情報のテンプレートを提示する。しかし当該システムは、営業活動の成功パターンが予め確立していることを前提として構成可能なものであり、ログ情報から作業手順と作業結果との間の関係に関する情報を自動的に抽出するものではない。
【0011】
本発明はこのような背景に鑑みてなされたものであり、作業に関するログ情報から作業手順とその結果との関係についての有用な情報を提供することが可能な、作業分析システム、及び作業分析方法を提供することを目的とする。
【課題を解決するための手段】
【0012】
上記の目的を達成するための本発明の一つは、作業分析システムであって、プロセッサ及び記憶装置を有する情報処理装置を用いて構成され、業務に関する一連の作業の流れに関する情報である作業処理と前記作業処理の結果に関する情報である作業処理結果とを含んだログ情報を記憶する記憶部と、前記ログ情報における作業処理に関する情報を量子化することにより取得される特徴量に基づき、前記作業処理を複数のクラスタに分類した情報であるクラスタ化ログ情報を生成するクラスタ化部と、前記クラスタ化ログ情報と前記ログ情報から取得される前記作業処理結果とに基づき、前記クラスタの夫々について、前記作業処理と前記作業処理結果との関係を示す情報を生成する分析部と、を備える。
【0013】
その他、本願が開示する課題、及びその解決方法は、発明を実施するための形態の欄、及び図面により明らかにされる。
【発明の効果】
【0014】
本発明によれば、作業に関するログ情報から作業手順とその結果との関係についての有用な情報を提供することができる。
【図面の簡単な説明】
【0015】
図1】第1実施形態にかかる作業分析システムの概略的な構成を示す図である。
図2】作業分析システムの構成に用いる情報処理装置のハードウェア構成例である。
図3】ログ情報の一例である。
図4】クラスタ化ログ情報の一例である。
図5】分析結果の一例である。
図6】作業フロー図の一例である。
図7】第2実施形態にかかる作業分析システムの概略的な構成を示すシステムフロー図である。
図8】作業処理分析処理を説明するフローチャートである。
図9A】あるクラスタについての分析結果の一例である。
図9B】あるクラスタについての分析結果の一例である。
図10】第3実施形態にかかる作業分析システムの概略的な構成を示す図である。
図11】来歴分析結果表示画面の一例である。
【発明を実施するための形態】
【0016】
以下、本発明の実施形態について適宜図面を参照しつつ詳細に説明する。尚、以下の記載および図面は、本発明を説明するための例示に過ぎず、説明の明確化のため、適宜、省略および簡略化がなされている。本発明は、他の種々の形態でも実施する事が可能である。とくに限定しない限り、各構成要素は単数でも複数でも構わない。
【0017】
以下の説明において、同一のまたは類似する構成について同一の符号を付して重複した説明を省略することがある。また、以下の説明において、符号の前に付した「S」の文字は処理ステップの意味である。また、以下の説明における各種情報(データ)は例示するデータ構造以外の方法で表現もしくは管理してもよい。また、以下の説明において、各種の識別情報について説明する際、「識別子」、「ID」等の表現を適宜用いるが、これらについてはお互いに置換可能である。
【0018】
[第1実施形態]
図1は、第1実施形態として示す情報処理システム(以下、「作業分析システム1」と称する。)の概略的な構成を示すシステムフロー図である。作業分析システム1は、一つ以上の情報処理装置(コンピュータ)を用いて構成される。
【0019】
作業分析システム1は、業務に関する一連の作業の流れ(以下、「作業処理」と称する。)に関する情報を含むテキストデータであるログ情報に基づき、作業処理に関する情報(作業主体、作業内容、作業順序、作業日時、作業処理の結果(以下、「作業処理結果」と称する。)等を示す情報。)を取得し、取得した情報に基づき作業処理を複数の類型(以下、「クラスタ」と称する。)に分類し、クラスタ毎に作業処理と作業処理結果との関係を分析し、その結果を出力する。
【0020】
作業分析システム1が対象とする、作業処理を構成する作業は必ずしも限定されないが、例えば、企業や官公庁、自治体等の組織における業務について社員や職員等の作業主体によって行われる作業である。尚、作業主体は必ずしも人でなくてもよく、ロボット等であってもよい。ログ情報は、例えば、上記のような組織において運用されている情報処理システムから取得される。上記情報処理システムは、例えば、営業管理システム、旅費精算システム、出退勤管理システム、在庫管理システム、発注管理システム、顧客管理システム、人事管理システム、物流管理システム、経理システム、決算システムである。本実施形態では、上記の情報処理システムが営業管理システムである場合を例として説明する。
【0021】
作業分析システム1が分析の対象とするログ情報は、ログパーサやログアダプタ等を用い、各ログの特性に基づき適宜、整形やクレンジング等の前処理がなされたものである。また、ログ情報においては、上記の前処理により、当該業務における業務の開始作業から
完了作業ないし当該業務で最後に実施された作業までに至る一連の有限な作業が、実際の実行順に基づき一連の作業処理として識別可能な状態になっているものとする。尚、作業処理は、例えば、特許文献1(特開2017-227944号公報)に記載されている方法等の公知の技術を用いて取得することができる。
【0022】
また、各作業処理には、前処理において作業処理結果が付与されているものとする。作業処理結果の態様は必ずしも限定されず、例えば、2値的(成功/失敗)に表される場合や閾値によって分類(例えば、迅速、遅延、失敗等)される場合等、様々である。作業処理結果は、例えば、作業処理に含まれる各作業(各作業ステップ)の内容や、作業処理の元になるログから得られる作業時間等に基づき、取得もしくは算出される。作業処理結果は、例えば、作業処理結果が定義された他のファイルから内容をマージする等して取得してもよい。作業分析システム1は、ログ情報に含まれている、様々な作業の組み合わせからなる作業処理を分析し、分析により得られた作業処理の特性に基づき、作業処理をクラスタに自動的に分類する。作業処理のクラスタへの分類方法は必ずしも限定されないが、例えば、作業分析システム1は、作業処理に関する情報(作業を構成する個々の作業の結果、作業主体、経過時間、作業の集合や作業の順序等)を量子化することにより得られる特徴量(特徴値)に基づき、作業処理をクラスタに分類する。より具体的には、作業分析システム1は、各業務の具体の作業処理に表現されている情報(作業主体の熟練度の差、異なる作業処理の共通の情報処理システムへの相乗りの状況、顧客側の作業処理であるか否か、作業客体(取り扱われる商品や分野等)の違い等の情報等、作業処理に暗黙に体現(表現)されている情報)に応じて、作業処理をクラスタに分類する。
【0023】
図2に、作業分析システム1を構成する情報処理装置のハードウェア構成例を示す。例示する情報処理装置10は、プロセッサ11、主記憶装置12、補助記憶装置13、入力装置14、出力装置15、及び通信装置16を備える。尚、例示する情報処理装置10は、その全部または一部が、例えば、クラウドシステムによって提供される仮想サーバのように、仮想化技術やプロセス空間分離技術等を用いて提供される仮想的な情報処理資源を用いて実現されるものであってもよい。また、情報処理装置10によって提供される機能の全部または一部は、例えば、クラウドシステムがAPI(Application Program Interface)等を介して提供するサービスによって実現してもよい。また、作業分析システム1
は、通信可能に接続された複数の情報処理装置10を用いて構成してもよい。
【0024】
同図において、プロセッサ11は、例えば、CPU(Central Processing Unit)、M
PU(Micro Processing Unit)、GPU(Graphics Processing Unit)、FPGA(Field Programmable Gate Array)、ASIC(Application Specific Integrated Circuit
)、AI(Artificial Intelligence)チップ等を用いて構成されている。
【0025】
主記憶装置12は、プログラムやデータを記憶する装置であり、例えば、ROM(Read
Only Memory)、RAM(Random Access Memory)、不揮発性メモリ(NVRAM(Non Volatile RAM))等である。
【0026】
補助記憶装置13は、例えば、SSD(Solid State Drive)、ハードディスクドライ
ブ、光学式記憶装置(CD(Compact Disc)、DVD(Digital Versatile Disc)等)、ストレージシステム、ICカード、SDカードや光学式記録媒体等の記録媒体の読取/書込装置、クラウドサーバの記憶領域等である。補助記憶装置13には、記録媒体の読取装置や通信装置16を介してプログラムやデータを読み込むことができる。補助記憶装置13に格納(記憶)されているプログラムやデータは主記憶装置12に随時読み込まれる。
【0027】
入力装置14は、外部からの入力を受け付けるインタフェースであり、例えば、キーボード、マウス、タッチパネル、カードリーダ、ペン入力方式のタブレット、音声入力装置
等である。
【0028】
出力装置15は、処理経過や処理結果等の各種情報を出力するインタフェースである。出力装置15は、例えば、上記の各種情報を可視化する表示装置(液晶モニタ、LCD(Liquid Crystal Display)、グラフィックカード等)、上記の各種情報を音声化する装置(音声出力装置(スピーカ等))、上記の各種情報を文字化する装置(印字装置等)である。尚、例えば、情報処理装置10が通信装置16を介して他の装置との間で情報の入力や出力を行う構成としてもよい。
【0029】
入力装置14及び出力装置15は、ユーザとの間で情報の受け付けや情報の提示を行うユーザインタフェースを構成する。
【0030】
通信装置16は、他の装置との間の通信を実現する装置である。通信装置16は、通信ネットワーク5を介して他の装置との間の通信を実現する、有線方式または無線方式の通信インタフェースであり、例えば、NIC(Network Interface Card)、無線通信モジュール、USBモジュール等である。
【0031】
情報処理装置10には、例えば、オペレーティングシステム、ファイルシステム、DBMS(DataBase Management System)(リレーショナルデータベース、NoSQL等)、KVS(Key-Value Store)等が導入されていてもよい。
【0032】
作業分析システム1が備える各機能は、プロセッサ11が、主記憶装置12に格納されているプログラムを読み出して実行することにより、もしくは、作業分析システム1を構成するハードウェア(FPGA、ASIC、AIチップ等)によって実現される。作業分析システム1は、前述した各種の情報(データ)を、例えば、データベースのテーブルやファイルシステムが管理するファイルとして記憶する。
【0033】
図1に示すように、作業分析システム1は、量子化部120、クラスタ化部130、及び分析部150の各機能を備える。また、作業分析システム1は、ログ情報111、量子化ログ情報112、クラスタ化ログ情報114、及び分析結果115を記憶する記憶部110(不図示)を備える。
【0034】
図3にログ情報111の一例を示す。例示するログ情報111は、作業処理ID1111、順序1112、作業ID1113、作業結果1114、作業主体ID1115、及び作業日時1116の各項目を有する複数のレコード(エントリ)で構成される。ログ情報111の一つのレコードは、一つの作業処理に対応する。
【0035】
作業処理ID1111には、作業処理の識別子である作業処理IDが設定される。順序1112には、作業処理を構成する各作業が行われる順序を示す情報が設定される。本例では自然数の小さい順に作業が行われる。本例では上記情報は自然数であり、作業は数の小さい方から順に行われる。作業ID1113には、作業処理を構成する各作業を特定する情報である作業IDが設定される。作業結果1114には、当該作業の結果(以下、「作業結果」と称する。)が設定される。作業主体ID1115には、当該作業の作業主体の識別子である作業主体IDが設定される。作業日時1116には、当該作業が行われた日時である作業日時が設定される。
【0036】
図1に戻り、量子化部120は、ログ情報111から取得される、各作業処理に関する情報を量子化した情報である量子化ログ情報112を生成する。尚、量子化の方法は必ずしも限定されないが、量子化は、例えば、BoW(Bag of Words)、TF-IDF(Term
Frequency - Invers Document Frequency)、Word2Vec(CBOW(Continuous
Bag of Word)、Skip-Gram)等を用いて行われる。
【0037】
図1に戻り、クラスタ化部130は、量子化部120によって算出された量子化ログ情報に基づき、作業処理を複数のクラスタに分類し、クラスタ単位で分析を行えるようにする。このクラスタ化(クラスタ分類処理)により、作業処理は、例えば、前述した作業主体の熟練度の差、異なる作業処理の共通の情報処理システムへの相乗りの状況、顧客側の作業処理であるか否か、作業客体の違い等、前提が異なる作業処理群について、異なる前提に基づき区別して扱えるようになり、ユーザの分析作業を容易にすることができる。
【0038】
尚、作業処理の分類先となるクラスタの数は、予め設定してもよいし、例えば、分析結果115を利用するユーザ(分析者)から受け付けるようにしてもよい。クラスタの数は、例えば、ユーザが対応可能な程度の数(例えば、20程度)とする。クラスタリングは、例えば、K-meansや混合ガウスモデル等を用いて行うことができる。また、次元数が多くなる場合は、例えば、潜在的意味解析(LSI(Latent Semantic Indexing)、LSA(Latent Semantic Analysis))や特異点分解(SVD(Singular Value Decomposition))を用いて次元圧縮を行うようにしてもよい。
【0039】
図4にクラスタ化ログ情報114の一例を示す。例示するクラスタ化ログ情報114は、クラスタID1141、作業処理ID1142、及び作業処理結果1143の各項目を有する複数のレコード(エントリ)で構成される。
【0040】
上記項目のうち、クラスタID1141には、クラスタの識別子であるクラスタIDが設定される。作業処理ID1142には、クラスタを構成する作業処理の作業処理IDが設定される。尚、クラスタを構成する各作業処理は、クラスタの特徴量の一つとなる。作業処理結果1143には、当該作業処理IDで特定される作業処理の作業処理結果が設定される。
【0041】
図1に戻り、分析部150は、クラスタ化ログ情報114のクラスタ毎に統計処理を行うことにより、クラスタ毎の分析結果115を生成して出力する。
【0042】
図5にクラスタ毎の分析結果115の一例を示す。例示する分析結果115の各レコード(エントリ)は一つのクラスタに対応する。分析結果115は、クラスタID1151、実行数1152、受注オッズ1153、受注/失注1154、及び分類結果1155の各項目を有する複数のエントリ(レコード)を含む。尚、受注オッズ1153や受注/失注1154の内容は、作業処理結果を統計処理したものに相当する。また、分類結果1155の内容は、分析結果に相当する。
【0043】
クラスタID1151には、クラスタIDが設定される。実行数1152には、当該クラスタに属する作業処理の数が設定される。受注オッズ1153には、当該クラスタについて所定の計算式により求めたオッズの値が設定される。受注/失注1154には、受注数(成功数)と失注数(失敗数)の数が設定される。分類結果1155には、受注オッズ1153の値に応じた当該クラスタの分類先(有望群、可能群、絶望群)を示す情報が設定される。本例では、有望群と可能群を線引きする受注オッズ1153の値(以下、「第1閾値」と称する。)として「3.0」を、可能群と絶望群を線引きする受注オッズ1153の値(以下、「第2閾値」と称する。)として「0.10」を設定している。
【0044】
例示する分析結果115が提供されることで、ユーザ(分析者)は、例えば、いずれの類型(クラスタ)の作業処理に従って作業すべきであるかについての指標を得ることができる。例えば、ユーザは、業務プロセスの再構築や作業員への指導方法等についての効果的な改善を図ることができる。
【0045】
尚、同図に示した分析結果115は一例に過ぎず、例えば、散布図(分布図)等であってもよい。従来、作業フロー図や散布図等を作成するには、例えば、業務の個々の事例の追跡や業務担当者へのヒアリング等を実施する必要があったが、本実施形態の作業分析システム1を利用することでこうした図をユーザは容易に取得することができる。
【0046】
ところで、分析部150が、例えば、分析結果115として、作業の流れを示す作業フロー図をクラスタ毎に生成してユーザに提示するようにしてもよい。
【0047】
図6に作業フロー図の一例を示す。例示する作業フロー図は、作業処理を構成する各作業を示すノード(同図に示す矩形枠)と、作業順序を示す情報(同図に示す矢線)とを含む。同図において、例えば、末尾の作業「受注」は、作業処理結果を示す情報に相当する。例示するような作業フロー図を図5に示した分析結果115とともにユーザに提示することで、ユーザは、例えば、有望なクラスタの作業処理の内容を視覚的に効率よく把握することができ、作業手順の改善方針の立案等に活用することができる。
【0048】
[第2実施形態]
図7は、第2実施形態として示す作業分析システム1の概略的な構成を示すシステムフロー図である。第2実施形態の作業分析システム1は、基本的な構成は第1実施形態と同様であるが、分析部150が、クラスタ化ログ情報114のクラスタ毎に、クラスタの作業処理を取得し、取得した作業処理を、ログ情報111に基づき、業務が成功した作業処理(以下、「成功作業処理」と称する。)の群(以下、「成功作業処理群」と称する。)と業務が失敗した作業処理(以下、「失敗作業処理」と称する。)の群(以下、「失敗作業処理群」と称する。)とに分類し、成功作業処理群にのみ登場する頻出系列(以下、「成功系列」と称する。)と失敗作業処理群にのみ登場する頻出系列(以下、「失敗系列」と称する。)、及び、成功作業処理群及び失敗作業処理群の双方に登場する頻出系列(以下、「共通系列」と称する。)を特定し、特定した頻出系列に基づき分析を行った結果である分析結果115を生成し出力する点で、第1実施形態の作業分析システム1と構成が異なる。
【0049】
図8は、第2実施形態の作業分析システム1の分析部150が作業処理の分析に際して行う処理(以下、「作業処理分析処理S800」と称する。)を説明するフローチャートである。以下、同図とともに作業処理分析処理S800について説明する。
【0050】
まず、分析部150は、クラスタ化ログ情報114からクラスタを一つ選択する(S811)。
【0051】
続いて、分析部150は、選択中のクラスタの作業処理を一つ選択する(S812)。
【0052】
続いて、分析部150は、ログ情報111を参照し、選択中の作業処理が、成功作業処理であるか、失敗作業処理であるかを判定する(S813)。選択中の作業処理が成功作業処理であれば(S813:成功)、分析部150は、選択中の作業処理を成功作業処理として記憶する(S814)。その後、処理はS816に進む。一方、選択中の作業処理が失敗作業処理であれば(S813:失敗)、分析部150は、選択中の作業処理を失敗作業処理として記憶する(S815)。その後、処理はS816に進む。
【0053】
S816では、分析部150は、選択中のクラスタの作業処理を全て選択済か否かを判定する。選択中のクラスタの作業処理を全て選択済でなければ(S816:NO)、処理はS812に戻る。一方、選択中のクラスタの作業処理を全て選択済であれば(S816: YES)、処理はS817に進む。
【0054】
S817では、分析部150は、記憶している成功作業処理群と失敗作業処理群の夫々について、頻出系列を特定するアルゴリズムにより頻出系列を特定する。ここでいう頻出系列とは、当該集合の中で高頻度で出現する作業および作業の順序系列である。高頻度の判定は一定の閾値によってなされ、例えば、閾値が頻度0.8であり、その集合の中で「初
期訪問_いまいち」というノードが0.9の頻度で出現していた場合、「初期訪問_いまいち
」は長さ1の頻出系列とみなされる。また、もし「初期訪問_いまいち」の後に「提案体
制の決定」というノードがやはり0.9という頻度で出現していた場合、初期訪問_いまいち」から「提案体制の決定」という順序関係の頻出系列としてみなされる。尚、頻出系列は、ノード間の相対的な順序関係においての頻出度合いを表現するものである。ノード間の間隔の上限を特に規定しなければ、実際の事例に照らし合わせた際に当該ノード間に他のノードがいくつ含まれていても、閾値を超える数の事例でその順序関係が成り立っていれば頻出であると判断する。尚、頻出系列の特定は、例えば、公知の頻出系列抽出手法(頻出パターンマイニング(frequent pattern mining)等)を用いて行うことができる。
【0055】
続いて、分析部150は、成功系列、失敗系列、及び共通系列を夫々特定し、特定した結果を出力する(S818)。
【0056】
S819では、分析部150は、全てのクラスタを選択済か否かを判定する。未選択のクラスタがあれば(S819:NO)、処理はS811に戻る。全てのクラスタを選択済であれば(S819:YES)、作業処理分析処理S800は終了する。
【0057】
図9A及び図9Bに、あるクラスタについての分析結果115の一例を示す。図9Aは、当該クラスタにおける作業処理を描いた作業フロー図であり、図9Bは、当該クラスタについて特定された共通系列、成功系列、失敗系列を表型式で示したものである。
【0058】
図9Aにおいて、各ノードを表す円には、作業と当該作業の作業結果(作業結果は必ずしも取得できない場合もある。)を記載している。各ノードを結ぶ矢線は系列間の相対的な順序関係を表す。実線で示す矢線は共通系列を、破線で示す矢線は成功系列を、一点鎖線で示す矢線は失敗系列を、夫々表す。尚、頻出系列の特性について前述した通り、個別の事例では、この矢線の間にて異なる別の作業が複数実施されていることもある。
【0059】
このように、共通系列、成功系列、失敗系列を視覚的に表示することで、ユーザは、成功の要因となった作業処理についての情報や、失敗の要因となった作業処理についての情報を容易に得ることができ、業務の改善計画等に役立てることができる。例えば、ユーザは、個々の活動をどのように進めていけば成功に繋がるのかといった情報を容易に取得することができる。また例えば、ユーザは、あるドメインや地域において、成功に至りやすい営業活動や失敗に至りやすい営業活動にどのような特徴があるのかといった情報を容易に取得することができる。
【0060】
[第3実施形態]
第3実施形態の作業分析システム1は、第2実施形態の作業分析システム1の構成に加え、第2実施形態で生成したクラスタ化ログ情報114と分析結果115に基づき、ユーザが行った作業の来歴情報118を分析することにより得られる情報を生成して出力する構成を有する。来歴情報118は、ユーザがこれまでに行った作業処理に関する情報を含む。来歴情報118の取得方法は必ずしも限定されないが、例えば、ユーザの手入力やユーザが利用している既存の情報処理システムから取得される。
【0061】
図10は、第3実施形態として示す作業分析システム1の概略的な構成を示すシステムフロー図である。第3実施形態の作業分析システム1は、クラスタ推定部160と来歴分
析処理部170を更に備える。また、第3実施形態の作業分析システム1の記憶部110は、来歴情報118と来歴分析結果119を更に記憶する。尚、同図では第2実施形態で説明した構成については省略もしくは簡略化している。
【0062】
クラスタ推定部160は、ユーザが行う作業の来歴情報118とクラスタ化ログ情報114の各クラスタの作業処理の全部又は一部とを対照することにより、来歴情報118に類似する作業処理を有するクラスタを特定し、特定したクラスタを示す情報をクラスタ化推定結果117として出力する。上記特定は、例えば、各クラスタに割り当てられる確率(確信度)に基づき、確率が最大のものを選出する、一定の確信度に達するまで尤度の高いクラスタを順に選出する等により行う。また、上記類似するか否かの判定は、例えば、各種類似度(作業処理を構成する各作業の類似度、作業順序の類似度、各作業の作業名の類似度等)による方法、ニューラルネットワーク等の機械学習を用いた方法、公知の業務(作業)フロー判定手法等により行う。
【0063】
来歴分析処理部170は、クラスタ化推定結果117を来歴分析結果119として出力する。また、来歴分析処理部170は、クラスタ化推定結果117のクラスタを構成する各作業処理と、第2実施形態の作業分析システム1で得られた分析結果115における成功系列や失敗系列とを対照することにより、例えば、今後行うことにより成功に結びつく作業処理を示す情報や、今後行うことにより失敗に結びつく作業処理を示す情報を取得し、取得した情報を来歴分析結果119として生成し出力する。
【0064】
図11に来歴分析結果119の内容を画面に表示した例を示す。例示する画面(以下、「来歴分析結果表示画面1100」と称する。)は、現在の作業の表示欄1271、作業担当者の表示欄1272、予測される頻出パスの表示欄1273、アドバイスの表示欄1274が設けられている。
【0065】
例示する来歴分析結果表示画面1100では、担当者「特許 太郎」の来歴情報118から、当該担当者が現在(現時点)行っている作業とその作業結果が「予算取得 小」であること、業務を成功させるためには次に「競業排除」を行いこれを成功させること、次の作業として「責任体制の決定」を行うと業務の失敗に繋がる可能性があること等が表示されている。
【0066】
ユーザは、来歴分析結果表示画面1100を確認することで、自身が行ってきた作業の経緯を確認し、例えば、現在自身が行っている作業が成功に近い状況にあるのか、失敗に近い状況にあるのかといった情報を得ることができる。また、ユーザは、業務を成功させるためにこれからどのような作業を行うべきであり、どのような作業を行わないほうがよいのかといった情報を得ることができ、作業計画の立案等に有効に役立てることができる。
【0067】
以上、本発明の一実施形態について説明したが、本発明は上記の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。例えば、上記の実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、上記実施形態の構成の一部について、他の構成の追加や削除、置換をすることが可能である。
【0068】
また、上記の各構成、機能部、処理部、処理手段等は、それらの一部または全部を、例えば、集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリやハードディスク、SSD(Solid State Drive)等の記録装置、
ICカード、SDカード、DVD等の記録媒体に置くことができる。
【0069】
また、以上に説明した各情報処理装置の各種機能部、各種処理部、各種データベースの配置形態は一例に過ぎない。各種機能部、各種処理部、各種データベースの配置形態は、これらの装置が備えるハードウェアやソフトウェアの性能、処理効率、通信効率等の観点から最適な配置形態に変更し得る。
【0070】
また、前述した各種のデータを格納するデータベースの構成(スキーマ(Schema)等)は、リソースの効率的な利用、処理効率向上、アクセス効率向上、検索効率向上等の観点から柔軟に変更し得る。
【符号の説明】
【0071】
1 作業分析システム、110 記憶部、111 ログ情報、112 量子化ログ情報、114 クラスタ化ログ情報、115 分析結果、117 クラスタ化推定結果、118
来歴情報、119 来歴分析結果、120 量子化部、130 クラスタ化部、150
分析部、160 クラスタ推定部、170 来歴分析処理部、S900 作業処理分析処理、1200 来歴分析結果表示画面
図1
図2
図3
図4
図5
図6
図7
図8
図9A
図9B
図10
図11