(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-12-19
(45)【発行日】2023-12-27
(54)【発明の名称】垂直共振器型発光素子
(51)【国際特許分類】
H01S 5/183 20060101AFI20231220BHJP
【FI】
H01S5/183
(21)【出願番号】P 2019228959
(22)【出願日】2019-12-19
【審査請求日】2022-11-04
【新規性喪失の例外の表示】特許法第30条第2項適用 令和1年7月22日に、倉本大、小林静一郎、田澤耕明、田中和史、赤木孝信、及び斎藤竜舞が、Applied Physics Letters 115, 041101(2019)にて、倉本大及び小林静一郎が発明した、In-phase supermode operation in GaN-based vertical-cavity surface-emitting laserについて公開した。
(73)【特許権者】
【識別番号】000002303
【氏名又は名称】スタンレー電気株式会社
(74)【代理人】
【識別番号】110001025
【氏名又は名称】弁理士法人レクスト国際特許事務所
(72)【発明者】
【氏名】倉本 大
(72)【発明者】
【氏名】小林 静一郎
【審査官】高椋 健司
(56)【参考文献】
【文献】特開2019-208004(JP,A)
【文献】特開2011-216881(JP,A)
【文献】特開2013-175712(JP,A)
【文献】特開2002-359432(JP,A)
【文献】中国特許出願公開第107104363(CN,A)
【文献】特開2013-008872(JP,A)
【文献】特開2008-098234(JP,A)
【文献】米国特許出願公開第2003/0096439(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H01S 5/00-5/50
(57)【特許請求の範囲】
【請求項1】
基板と、
前記基板上に設けられた第1の多層膜反射鏡と、
前記第1の多層膜反射鏡上に形成された第1の半導体層、前記第1の半導体層上に形成された活性層、及び前記活性層上に形成され前記第1の半導体層とは反対の導電型を有する第2の半導体層を含む発光構造層と、
前記発光構造層上に、前記第1の
多層膜反射鏡に対向して設けられている第2の多層膜反射鏡と、を有し、
前記第2の半導体層は、上面視において一定の幅を有する1の環が当該1の環の周方向に配列されている複数の切り欠きによって切り欠かれた形状を有する領域であって、隣接する領域よりも電気抵抗値が低い低抵抗領域を有し、
前記低抵抗領域は、前記切り欠きを挟んで前記周方向に配列されているN個の区画領域を有し、
前記区画領域の個数Nは、前記1の環の前記幅方向の中心を結んだ前記周方向に伸長する線である中間線の長さをCとし、前記幅をWとすると、次式
【数1】
によって表されることを特徴とする垂直共振器型発光素子。
【請求項2】
前記1の環は円環であり、
前記円環の外径をΦout、前記円環の内径をΦinとしたとき、
前記区画領域の個数Nは次式
【数2】
によって表されることを特徴とする請求項1に記載の垂直共振器型発光素子。
【請求項3】
前記1の環は長方形の環であり、
前記
環の外側の長辺をT、外側の短辺をL、内側の長辺をt、内側の短辺をlとしたとき、
前記区画領域の個数Nは次式
【数3】
又は次式
【数4】
によって表されることを特徴とする請求項1に記載の垂直共振器型発光素子。
【請求項4】
前記1の環は、同じ長さの対向する一組の直線と、前記一組の直線の両端において前記一組の直線間の距離を直径とする半円の円弧を繋ぎ合わせた形状に沿って延びる環であり、
前記一組の直線の長さをL、前記環の前記半円同士を繋ぎ合わせた円の外径をΦout、内径をΦinとしたとき、
前記区画領域の個数Nは次式
【数5】
によって表されることを特徴とする請求項1に記載の垂直共振器型発光素子。
【請求項5】
前記複数の切り欠きの各々は、前記1の環の外周から内周に向かって伸長し、前記幅方向において前記幅Wよりも短いことを特徴とする請求項1乃至4のいずれか1つに記載の垂直共振器型発光素子。
【請求項6】
前記複数の切り欠きの各々は、前記1の環の内周から外周に向かって伸長し、前記幅方向において前記幅Wよりも短いことを特徴とする請求項1乃至4のいずれか1つに記載の垂直共振器型発光素子。
【請求項7】
前記複数の切り欠きは、前記1の環の周方向において等間隔に配列されていることを特徴とする請求項1乃至5のいずれか1つに記載の垂直共振器型発光素子。
【請求項8】
前記第2の半導体層は、前記低抵抗領域以外の領域に、前記低抵抗領域よりも電気抵抗値が高い高抵抗領域を有する、請求項1乃至7のいずれか1つに記載の垂直共振器型発光素子。
【請求項9】
前記
高抵抗領域は、前記第2の半導体層よりも低い屈折率を有しかつ非導電性である絶縁層に覆われていることを特徴とする請求項
8に記載の垂直共振器型発光素子。
【請求項10】
前記高抵抗領域は、前記反対の導電型の不純物が不活性化された不活性化領域であることを特徴とする請求項
8又は9に記載の垂直共振器型発光素子。
【請求項11】
前記不活性化領域は、前記第2の半導体層の上面がエッチングされた領域であることを特徴とする請求項
10に記載の垂直共振器型発光素子。
【請求項12】
前記不活性化領域は、前記第2の半導体層の上面にイオン注入がなされた領域であることを特徴とする請求項
10又は11に記載の垂直共振器型発光素子。
【請求項13】
前記第2の半導体層は、上面視における前記低抵抗領域において、他の領域よりも層厚が大きいことを特徴とする請求項1乃至
12のいずれか1つに記載の垂直共振器型発光素子 。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、垂直共振器型面発光レーザなどの垂直共振器型発光素子に関する。
【背景技術】
【0002】
垂直共振器型面発光レーザ(以下、単に面発光レーザと称する)は、基板上に積層された多層膜からなる反射鏡を有し、当該基板の表面に垂直な方向に沿って光を出射する半導体レーザである。例えば、特許文献1には、窒化物半導体を用いた面発光レーザが開示されている。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
例えば、面発光レーザなどの垂直共振器型発光素子においては、発光パターンが安定していること、例えば遠視野像が安定していることが好ましい。このためには、例えば、垂直共振器型発光素子内には、所望の横モードの光を生成できる共振器が構成されていることが好ましい。例えば、基本固有モードのレーザ光を生成することで、放射角が狭く、単峰性の高出力のレーザ光の遠視野像を得ることができる。
【0005】
また、放射角が狭く、単峰性で高出力のレーザ光が安定して得られることが望ましい。
【0006】
本発明は上記した点に鑑みてなされたものであり、安定した横モードの光を出射することが可能な垂直共振器型発光素子を提供することを目的としている。
【課題を解決するための手段】
【0007】
本発明による垂直共振器型発光素子は、基板と、前記基板上に設けられた第1の多層膜反射鏡と、前記第1の反射鏡上に形成された第1の半導体層、前記第1の半導体層上に形成された活性層、及び前記活性層上に形成され前記第1の半導体層とは反対の導電型を有する第2の半導体層を含む発光構造層と、前記発光構造層上に、前記第1の反射鏡に対向して設けられている第2の多層膜反射鏡と、を有し、前記第2の半導体層は、上面視において一定の幅を有する1の環が当該1の環の周方向に配列されている複数の切り欠きによって切り欠かれた形状を有する領域であって、隣接する領域よりも電気抵抗値が低い低抵抗領域を有し、前記低抵抗領域は、前記切り欠きを挟んで前記周方向に配列されている区画領域を有し、前記区画領域の個数Nは、前記1の環の前記幅方向の中心を結んだ前記周方向に伸長する線である中間線の長さをCとし、前記幅をWとすると、次式で表される
【0008】
【0009】
ことを特徴としている。
【図面の簡単な説明】
【0010】
【
図1】実施例1に係る面発光レーザの模式的な上面図である。
【
図2】実施例1に係る面発光レーザの断面図である。
【
図3】実施例1に係る面発光レーザにおける高抵抗領域及び低抵抗領域の上面図である。
【
図4】実施例1に係る面発光レーザの光学的特性を模式的に示す図である。
【
図5】実施例1に係る面発光レーザの電気的特性を模式的に示す図である。
【
図6】実施例1に係る面発光レーザから出射される光の態様を模式的に示す図である。
【
図7A】実施例1に係る面発光レーザの近視野像を示す図である。
【
図7B】実施例1に係る面発光レーザの遠視野像を示す図である。
【
図7C】実施例1に係る面発光レーザの波長特性を示す図である。
【
図8】実施例1に係る面発光レーザにおける低抵抗領域の上面図である。
【
図9】実施例1の変形例1に係る面発光レーザにおける高抵抗領域及び低抵抗領域の上面図である。
【
図10】実施例1の変形例2に係る面発光レーザにおける高抵抗領域及び低抵抗領域の上面図である。
【
図11】実施例1の変形例3に係る面発光レーザにおける高抵抗領域及び低抵抗領域の上面図である。
【
図12】実施例1の変形例4に係る面発光レーザにおける低抵抗領域の上面図である。
【
図13】実施例1の変形例5に係る面発光レーザにおける低抵抗領域の上面図である。である。
【
図14】実施例2に係る面発光レーザの断面図である。
【
図15】実施例2の変形例に係る面発光レーザの断面図である。
【
図16】実施例3に係る面発光レーザの断面図である。
【
図17】実施例4に係る面発光レーザの断面図である。
【発明を実施するための形態】
【0011】
以下、本発明の実施例について詳細に説明する。また、以下の実施例においては、本発明が面発光レーザ(半導体レーザ)として実施される場合について説明する。しかし、本発明は、面発光レーザに限定されず、垂直共振器型発光ダイオードなど、種々の垂直共振器型発光素子に適用することができる。
【実施例1】
【0012】
図1は、実施例1に係る垂直共振器型面発光レーザ(VCSEL:Vertical Cavity Surface Emitting Laser、以下、面発光レーザと称する)の模式的な上面図である。また、
図2は、面発光レーザ10の断面図である。
図2は、
図1の2-2線に沿った断面図である。
図1及び
図2を用いて、面発光レーザ10の構成について説明する。
【0013】
面発光レーザ10は、基板11と、基板11上に形成された第1の多層膜反射鏡(以下、単に第1の反射鏡と称する)12と、を有する。本実施例においては、第1の反射鏡12は、基板11上に形成され、第1の半導体膜(以下、高屈折率半導体膜と称する)H1と高屈折率半導体膜H1よりも低い屈折率を有する第2の半導体膜(以下、低屈折率半導体膜と称する)L1とが交互に積層された構造を有する。本実施例においては、第1の反射鏡12は、半導体材料からなる分布ブラッグ反射器(DBR:Distributed Bragg Reflector)を構成する。
【0014】
本実施例においては、基板11は、GaNの組成を有する。また、基板11は、第1の反射鏡12の結晶成長に用いられる成長用基板である。また、第1の反射鏡12における高屈折率半導体膜H1はGaNの組成を有し、低屈折率半導体膜L1はAlInNの組成を有する。なお、本実施例においては、基板11と第1の反射鏡12との間にはGaNの組成を有するバッファ層(図示せず)が設けられている。
【0015】
面発光レーザ10は、第1の反射鏡12上に形成され、発光層14を含む発光構造層EM1を有する。本実施例においては、発光構造層EM1は、窒化物系半導体からなる複数の半導体層を含む。発光構造層EM1は、第1の反射鏡12上に形成されたn型半導体層(第1の半導体層)13と、n型半導体層13上に形成された発光層(活性層)14と、発光層14上に形成されたp型半導体層(第2の半導体層)15と、を有する。
【0016】
本実施例においては、n型半導体層13は、GaNの組成を有し、Siをn型不純物として含む。発光層14は、InGaNの組成を有する井戸層及びGaNの組成を有する障壁層を含む量子井戸構造を有する。また、p型半導体層15は、GaN系の組成を有し、Mgをp型不純物として含む。
【0017】
なお、発光構造層EM1の構成はこれに限定されない。例えば、n型半導体層13は、互いに組成が異なる複数のn型の半導体層を有していてもよい。また、p型半導体層15は、互いに組成が異なる複数のp型の半導体層を有していてもよい。
【0018】
例えば、p型半導体層15は、発光層14との界面に、発光層14に注入された電子のp型半導体層15へのオーバーフローを防止する電子ブロック層(図示せず)として、例えばAlGaN層を有していてもよい。また、p型半導体層15は、電極とのオーミックコンタクトを形成するためのコンタクト層(図示せず)を有していてもよい。この場合、例えば、p型半導体層15は、当該電子ブロック層及びコンタクト層間に、クラッド層としてのGaN層を有していればよい。
【0019】
また、本実施例においては、p型半導体層15は、上面15A及び上面15Aから突出した凸部15Bを有する。本実施例においては、凸部15Bは、上面15Aに垂直な方向から見たときに放射状の突起を含む側面を有するような略円環形状を有する。
【0020】
面発光レーザ10は、p型半導体層15の凸部15Bを除いた上面15A上に形成された絶縁層(第1の絶縁層)16を有する。本実施例においては、絶縁層16は、p型半導体層15の上面15Aと、p型半導体層15の凸部15Bの側面と、に接している。絶縁層16は、発光層14から放出された光に対して透光性を有し、p型半導体層15(凹部15B)よりも低い屈折率を有する材料、例えば、SiO2などの酸化物からなる。p型半導体層15の発光層14とは反対側の表面は、凸部15Bの上端面において絶縁層16から露出している。
【0021】
面発光レーザ10は、絶縁層16上に形成され、p型半導体層15の凸部15Bにおいてp型半導体層15に接続された透光電極層17を有する。透光電極層17は、発光層14から放出された光に対して透光性を有する導電性の膜である。透光電極層17は、絶縁層16の上面及びp型半導体層15の凸部15Bの上端面に接触している。例えば、透光電極層17は、ITO又はIZOなどの金属酸化膜からなる。
【0022】
絶縁層16は、透光電極層17を介して発光構造層EM1に注入される電流を狭窄する電流狭窄層として機能する。まず、p型半導体層15における凸部15Bの外側の領域(上面15Aの領域)は、絶縁層16に覆われることで、高い電気抵抗を有する高抵抗領域A1として機能する。また、p型半導体層15の凸部15Bは、絶縁層16から露出し、透光電極層17(電極)に接触することで、発光構造層EM1における高抵抗領域A1よりも低い電気抵抗を有する低抵抗領域A2として機能する。
【0023】
p型半導体層15の上面15Aの領域は、発光層14への電流の注入が抑制される非電流注入領域として機能する。そして、p型半導体層15の凸部15Bが設けられた領域は、狭窄された電流が発光層14に注入される電流注入領域として機能する。
【0024】
面発光レーザ10は、透光電極層17上に形成された絶縁層(第2の絶縁層)18を有する。例えば、絶縁層18は、Ta2O5、Nb2O5、ZrO2、TiO2、HfO2などの絶縁性の金属酸化物からなる。また、絶縁層18は、発光層14から放出された光に対して透光性を有する。
【0025】
面発光レーザ10は、絶縁層18上に形成された第2の多層膜反射鏡(以下、単に第2の反射鏡と称する)19を有する。第2の反射鏡19は、発光構造層EM1を挟んで第1の反射膜12に対向する位置に配置されている。第2の反射鏡19は、第1の反射鏡12との間で、発光構造層EM1に垂直な方向(基板11に垂直な方向)を共振器長方向とする共振器OC1を構成する。
【0026】
本実施例においては、第2の反射鏡19は、第1の誘電体膜(以下、高屈折率誘電体膜と称する)H2と高屈折率誘電体膜H2よりも低い屈折率を有する第2の誘電体膜(以下、低屈折率誘電体膜と称する)L2とが交互に積層された構造を有する。
【0027】
すなわち、本実施例においては、第2の反射鏡19は、誘電体材料からなる分布ブラッグ反射器(DBR:Distributed Bragg Reflector)を構成する。例えば、本実施例においては、高屈折率誘電体膜H2はTa2O5層からなり、低屈折率誘電体膜L2はAl2O3層からなる。
【0028】
また、本実施例においては、
図1に示すように、第2の反射鏡19は、円柱状の形状を有する。従って、本実施例においては、面発光レーザ10は、円柱状の共振器OC1を有する。
【0029】
面発光レーザ10は、発光構造層EM1に電流を印加する第1及び第2の電極E1及びE2を有する。第1の電極E1は、n型半導体層13上に形成されている。また、第2の電極E2は、透光電極層17上に形成されている。
【0030】
第1及び第2の電極E1及びE2間に電圧が印加されると、発光構造層EM1の発光層14から光が放出される。発光層14から放出された光は、第1及び第2の反射鏡12及び19間において反射を繰り返し、共振状態に至る(レーザ発振を行う)。
【0031】
また、本実施例においては、第1の反射鏡12は、第2の反射鏡19よりもわずかに低い反射率を有する。従って、第1及び第2の反射鏡12及び19間で共振した光は、その一部が第1の反射鏡12及び基板11を透過し、外部に取り出される。このようにして、面発光レーザ10は、基板11に及び発光構造層EM1に垂直な方向に光を出射する。
【0032】
なお、発光構造層EM1におけるp型半導体層15の凸部15Bは、発光層14における発光領域の中心である発光中心を画定し、共振器OC1の中心軸(発光中心軸)CAを画定する。共振器OC1の中心軸CAは、p型半導体層15の凸部15Bの中心を通り、p型半導体層15(発光構造層EM1)に垂直な方向に沿って延びる。
【0033】
なお、発光層14の発光領域とは、例えば、発光層14内における所定の強度以上の光が放出される所定の幅の領域であり、その中心が発光中心である。また、例えば、発光層14の発光領域とは、発光層14内において所定の密度以上の電流が注入される領域であり、その中心が発光中心である。また、当該発光中心を通る基板11に垂直な直線が中心軸CAである。発光中心軸CAは、第1及び第2の反射鏡12及び19によって構成される共振器OC1の共振器長方向に沿って延びる直線である。また、中心軸CAは、面発光レーザ10から出射されるレーザ光の光軸に対応する。
【0034】
ここで、面発光レーザ10における各層の例示的な構成について説明する。本実施例においては、第1の反射鏡12は、44ペアのGaN層及びAlInN層からなる。n型半導体層13は、650nmの層厚を有する。発光層14は、4nmのInGaN層及び5nmのGaN層が3回積層された多重量子井戸構造の活性層からなる。第2の反射鏡19は、10ペアのTa2O5層及びAl2O3層からなる。
【0035】
また、p型半導体層15は、凸部15Bの領域において50nmの層厚を有する。p型半導体層15は、上面15Aの領域において30nmの層厚を有する。凸部15Bは、10μmの外径を有する。また、絶縁層16は、20nmの層厚を有する。絶縁層16の上面は、p型半導体層15の凸部15Bの上端面と同一の高さ位置に配置されるように構成されている。なお、これらは一例に過ぎない。
【0036】
図3は、半導体構造層EM1内における高抵抗領域A1及び低抵抗領域A2の詳細な構成を示す図である。
図3は、
図1における共振器OC1の近傍の領域を拡大して模式的に示す図である。
図3を用いて、発光構造層EM1の構成の詳細について説明する。
【0037】
発光構造層EM1においては、高抵抗領域A1は、発光構造層EM1に垂直な方向から見たときに(発光構造層EM1の面内において)環状に設けられて発光構造層EM1及び共振器OC1の外周部を構成する外周領域(高抵抗外周領域)A10と、外周領域A10の内側に設けられて互いに離間して環状に設けられた複数の部分領域(高抵抗部分領域)A11と、部分領域A11の内側に部分領域A11から離間して柱状に設けられた内側領域(高抵抗内側領域)A12と、を有する。
【0038】
本実施例においては、高抵抗領域A1の外周領域A10は、円環状に設けられている。また、部分領域A11の各々は、外周領域A10の内側面から外周領域A10の内側に向かって伸張する高抵抗部分である。また、内側領域A12は、発光中心軸CAを含む共振器OC1の中心に設けられた円柱状の高抵抗部分である。
【0039】
また、本実施例においては、部分領域A11の各々は、外周領域A10の中心に向かって互いに同一の長さで伸張し、かつ外周領域A10の中心を基準として回転対称に配置されている。例えば、本実施例においては、部分領域A11の各々は、外周領域A10から櫛歯状にかつ錐状に伸張するように設けられている。
【0040】
低抵抗領域A2は、高抵抗領域A1の外周領域A10の内側に設けられている。低抵抗領域A2は、外周領域A10の内側に環状に設けられた内側領域(低抵抗内側領域)A20と、各々が内側領域A20の外側に環状に設けられかつ高抵抗領域A1の部分領域A11間に設けられた複数の部分領域(低抵抗部分領域)A21と、を有する。なお、低抵抗領域A2における内側領域A20の内側には、高抵抗領域A1の内側領域A12が設けられている。
【0041】
本実施例においては、低抵抗領域A2の内側領域A20は、円環形状を有し、その中心が高抵抗領域A1の外周領域A10の中心に配置されるように形成されている。また、部分領域A21の各々は、内側領域A20の外側面から内側領域A20の外側に向かってかつ高抵抗領域A1の部分領域A11の各々の間に入り込むように伸張する低抵抗部分である。
【0042】
また、本実施例においては、部分領域A21の各々は、内側領域A20から互いに同一の長さで放射状に伸張し、かつ内側領域A20の中心を基準として発光構造層EM1の面内において回転対称に配置されている。例えば、本実施例においては、部分領域A21の各々は、内側領域A20から櫛歯状にかつ柱状に伸張するように設けられている。例えば、低抵抗領域A2の部分領域A21の各々は、発光中心軸CAを中心とした周方向において、約2~3μmの幅で、内側領域A20から伸張している。
【0043】
また、発光構造層EM1の低抵抗領域A2であるp型半導体層15の凸部15Bは、第1の反射鏡12と第2の反射鏡19との間の領域に設けられている。従って、本実施例においては、共振器OC1は、第1及び第2の反射鏡12及び19間に設けられ、発光中心軸CAに同軸の4つの領域を有する。
【0044】
具体的には、共振器OC1は、第1及び第2の反射鏡間に筒状(本実施例においては円筒状)に延びかつ高抵抗領域A1のみを含み、共振器OC1の外周領域を構成する第1の領域R1と、第1の領域R1の内側に筒状(本実施例においては円筒状)に設けられかつその周方向において交互に配置された高抵抗領域A1及び低抵抗領域A2を含む第2の領域R2と、を有する。
【0045】
また、共振器OC1は、第2の領域R2の内側に筒状(本実施例においては円筒状)に設けられかつ低抵抗領域A2のみを含む第3の領域R3と、第3の領域R3の内側に柱状(本実施例においては円柱状)に設けられかつ高抵抗領域A1のみを含む第4の領域R4と、を有する。
【0046】
図4は、面発光レーザ10の共振器OC1内の光学的な特性を模式的に示す図である。
図4は、
図2と同様の断面図である。本実施例においては、絶縁層16は、p型半導体層15よりも低い屈折率を有し、p型半導体層15の凸部15Bの上端面と同一の高さで形成されている。また、第1及び第2の反射鏡12及び19間における他の層の層厚は、第1から第4の領域R1からR4のそれぞれで同一である。
【0047】
従って、共振器OC1内における等価的な屈折率(第1及び第2の反射鏡12及び19間の光学距離であり、共振波長に対応する)は、p型半導体層15及び絶縁層16間の屈折率の差によって、高抵抗領域A1及び低抵抗領域A2間で異なる。
【0048】
具体的には、
図4に示すように、例えば、第2及び第3の領域R2及びR3の低抵抗領域A2に対応する領域の第1及び第2の反射鏡12及び19間の等価屈折率を屈折率N1とし、第1、第2及び第4の領域R1、R2及びR4の高抵抗領域A1に対応する領域における第1及び第2の反射鏡12及び19間の等価屈折率を屈折率N2とする。この場合、屈折率N2は、屈折率N1よりも小さい。すなわち、低抵抗領域A2における等価的な共振波長は、高抵抗領域A1における等価的な共振波長よりも大きい(長い)。
【0049】
換言すれば、共振器OC1は、発光構造層EM1の高抵抗領域A1に対応して第1及び第2の反射鏡12及び19間に延びる低屈折率領域(第1の領域R1、第2の領域R2の一部及び第4の領域R4)と、低抵抗領域A2に対応して第1及び第2の反射鏡12及び19間に延びかつ当該低屈折率領域よりも大きな等価屈折率を有する高屈折率領域(第2の領域R2の一部及び第3の領域R3)と、を有する。上面視において、当該高屈折率領域は、低抵抗領域A2に対応している(
図3参照)。
【0050】
図5は、面発光レーザ10の共振器OC1内(発光構造層EM1内)における電気的な特性を模式的に示す図である。
図5は、発光構造層EM1内を流れる電流CRを模式的に示す図である。
図5は、
図2と同様の断面図である。
【0051】
本実施例においては、高抵抗領域A1は、絶縁層16に覆われることで、高抵抗化されている。従って、電流CRは、低抵抗領域A2を介してのみ発光構造層EM1内に注入される。また、絶縁層16による電流狭窄構造が発光層14のごく近傍に設けられているため、電流CRは、発光層14の面内方向には広がりにくい。
【0052】
従って、
図5に示すように、電流CRは、低抵抗領域A2の内側領域A20及び部分領域A21に対応する第2及び第3の領域R2及びR3内の発光層14とその近傍の領域のみに流れる。また、第1及び第4の領域R1及びR4内の発光層14の領域にはほとんど電流が注入されない。従って、第2及び第3の領域R2及びR3において光が生成される(利得が生ずる)一方で、第1及び第4の領域R1及びR4においては光が生成されない。
【0053】
このように、大きな等価屈折率を有する高屈折率領域と、電流が流れ易く光が生成され易い領域と、が上面視において一致している。
【0054】
図6は、面発光レーザ10から出射されるレーザ光LBを模式的に示す図である。本実施例においては、面発光レーザ10内の定在波は、第1の反射鏡12から外部に取り出される。また、レーザ光LBは、
図6に示すように、第1の領域R1に収束しつつ外部に取り出される。なお、
図6には、面発光レーザ10から出射されるレーザ光LBの形状の外縁を破線で模式的に示している。
【0055】
具体的には、まず、本実施例においては、上記したように、絶縁層16の屈折率は、p型半導体層15(凸部15B)の屈折率よりも小さい。従って、共振器OC1内において第1~第4の領域R1~R4間で等価屈折率の差が設けられている。また、本実施例においては、第1の領域R1における共振器OC1(レーザ媒質)の等価屈折率N2は、第2及び第3の領域R2及びR3における共振器OC1の等価屈折率N1よりも小さい。
【0056】
また、本実施例においては、高抵抗領域A1は、低抵抗領域A2を取り囲む外周領域A10を有する。従って、共振器OC1は、発光構造層EM1の高抵抗領域A1の外周領域A10に対応して第1及び第2の反射鏡12及び19間に延びる低屈折率領域(第1の領域R1)と、低抵抗領域A2に対応して当該低屈折率領域の内側に設けられかつ当該低屈折率領域よりも大きな等価屈折率を有する高屈折率領域(第2及び第3の領域R2及びR3)と、を有する。
【0057】
これによって、共振器OC1内の定在波が第2及び第3の領域R2及びR3から外側に発散(放射)することによる光損失が抑制される。すなわち、第2の領域R2の内側に多くの光が留まり、またその状態でレーザ光LBが外部に取り出される。従って、多くの光が共振器OC1の発光中心軸CAに集中し、高出力なレーザ光LBを生成及び出射することができる。
【0058】
また、本実施例においては、屈折率の差を設けることによる光ガイド構造(光閉じ込め構造)が共振器OC1内に形成されている。従って、ほぼ全ての光が損失されずに共振器OC1内でレーザ光LBとなる。従って、高効率で高出力なレーザ光LBを生成及び出射することができる。
【0059】
次に、
図7A、
図7B及び
図7Cを用いて、レーザ光LBの発振モードについて説明する。
図7Aは、レーザ光LBの近視野像を示す図である。
図7Bは、レーザ光LBの遠視野像を示す図である。また、
図7Cは、レーザ光LBの波長特性を示す図である。
【0060】
上記したように、本実施例においては、発光構造層EM1内には、高抵抗領域A1の部分領域A11及び低抵抗領域A2の部分領域A21が環状にかつ互い違いに配列された領域が設けられている。すなわち、共振器OC1内には、第2の領域R2として、発光層14に電流が注入される領域が環状に点在するような領域が設けられている。これによって、レーザ光LBの固有モードが非常に安定する。
【0061】
具体的には、第2の領域R2においては、低抵抗領域A2の部分領域A21にレーザ光LBを構成する定在波の発現位置を固定することができる。従って、この第2の領域R2において点在して発現する定在波を理想的に(設計通りに)干渉させることができる。そして、当該干渉し合った定在波は、設計通りの固有モードのレーザ光LBとして出射される。
【0062】
例えば、
図7Aに示すように、近視野像においては、低抵抗領域A2の部分領域A21に対応する位置に強度ピークを有する発光パターンが形成される。これは、共振器OC1内の定在波が部分領域A21内に閉じ込められ、発光中心軸CAの周方向における定在波の位置が固定されることに起因する。換言すれば、部分領域A21を設けることで、面発光レーザ10の発光パターンをその光軸の周方向においても制御することができる。
【0063】
また、
図7Bに示すように、遠視野像においては、発光中心軸CA上の1点に強度ピークを有する単峰性のビームパターンが形成される。このように、設計通りの発光パターンの近視野像を生成することで、設計通りに光の干渉現象が生じ、設計通りの遠視野像が生成される。すなわち、非常に安定した固有モードのレーザ光LBが出射される。
【0064】
また、部分領域A21を設けることによって、安定した遠視野像を生成できる印加電流の範囲が大幅に拡大される。例えば、車両用灯具のように高出力な光が求められる場合など、大光量のレーザ光LBを得るために大電流を印加した場合でも、発現するモードが不安定になりにくい。従って、例えば、安定した高出力のレーザ光LBが要求される用途に好適な光源となる。
【0065】
なお、部分領域A21を設けない場合、発光中心軸CAの周囲における定在波の位置、すなわち発光パターンの発光中心軸CAの周方向の位置が特定されない。この場合、印加電流を大きくするにつれて、安定した単峰性のレーザ光LBを得ることができなくなる場合や、レーザ光LBがマルチモード化する場合がある。
【0066】
これは、発光中心軸CAの周囲の定在波の位置が不安定になることに起因している。そして、例えば、共振器OC1内の定在波が不安定な干渉を起こし、レーザ光のモードが不安定になる。不安定な遠視野像の例としては、環状に複数の強度ピークを有するビームパターンが生成されることが挙げられる。
【0067】
これに対し、本実施例においては、低抵抗領域A2が環状の部分領域A21を有することで、定在波の位置が固定される。従って、印加電流を変化させることで共振器OC1内の光(定在波)の強度を上げた場合でも、その強度の空間的な大小関係が安定する。従って、光の干渉条件が安定し、安定したパターンのレーザ光LBを得ることができる。
【0068】
なお、例えば、低抵抗領域A2の部分領域A21の位置、個数、形状及びサイズなどを調節することによって、定在波の干渉条件、すなわちレーザ光LBのビームパターンを調節することができる。
【0069】
これは、例えば、光学スリットによる光の干渉縞の生成条件に対応する。例えば、部分領域A21の周方向におけるサイズ(幅)は、スリット幅に対応する。また、隣接する部分領域A21間の間隔は、スリット間隔に対応する。そして、例えば、発光層14から放出される光の波長を考慮してこれらの構成を設計することで、設計通りの横モードのレーザ光LBを安定して得ることができる。
【0070】
図7Cは、レーザ光LBの波長特性を示す図である。
図7Cに示すように、レーザ光LBは、ほぼ単一の波長の光であることがわかる。このレーザ光LBの波長は、共振器OC1における第3の領域R3の共振波長(すなわち光学距離)に対応する。このように、レーザ光LBは、単一の波長(縦モード)で単峰性の強度分布を有する光であることがわかる。面発光レーザ10は、このようなレーザ光LBを安定して出射することが可能な高性能かつ高出力な発光素子となる。
【0071】
発明者らは、面発光レーザ10が上記のような単一の波長(縦モード)で単峰性の強度分布を有するレーザ光LBを安定して出射することをさらに確実にするための理論を見出した。所定の条件を満たすように導波路を規定することで、面発光レーザ10が単峰性の強度分布を有するレーザ光LBを必ず出射するようにできる。これによって、ロバスト性の高い設計を実現し、製造における歩留まりをも高めることができる。当該導波路の規定の仕方について、以下に説明する。
【0072】
図8は、本実施例における半導体構造層EM1内における低抵抗領域A2を示す上面図である。すなわち、
図8は、p型半導体層15の凸部15Bの上面図である。
図8に示すように、凸部15Bは、上面視において、円環形状の領域AR1に配されている。円環形状の領域AR1(以下、環AR1とも称する)の寸法及び形状は、導波路を規定するための基準となる。
【0073】
図8に示すように、円環形状の領域AR1(環AR1)は、一定の幅Wを有している。また、環AR1の外径をΦ
out,内径をΦ
inとする。また、幅Wの1/2の位置を結んだ線であり、環AR1の周方向に伸長する線を中間線Mとする。当該中間線Mの長さをCとし、中間線Mによって形成される円の直径を中間径Φ
Mと称する。
【0074】
上述したように、低抵抗領域A2は、円環形状の内側領域A20及び当該内側領域A20から櫛歯状にかつ柱状に伸張する部分領域A21を有している。換言すれば、低抵抗領域A2は、上面視において、一定の幅を有する1の環(すなわち環AR1)が当該1の環の周方向に配列された複数の切欠きVによって切り欠かれた形状を有する領域である。低抵抗領域A2は、当該切欠きVを挟んで周方向に配列されている区画領域DRを有している。
【0075】
区画領域DRの各々について、直径2aの導波路Gを形成すると考える。例えば、
図7Aに示したような、面発光レーザ10の近視野像において、光の強度は、導波路Gの各々の中心付近に対応する位置で光の強度が最大となるように分布する。ここで、導波路Gにおける光の強度分布のうち、最大強度の1/e
2以上の強度を有する範囲を当該導波路Gにおける光のスポットSPと称し、当該スポットSPの直径を2W
0とする。
【0076】
発明者らは、隣り合うスポットSPの中心同士の距離が、スポットSPの直径2W
0の0.5倍から1.1倍の範囲である場合に、面発光レーザ10が同位相モードで動作することを実験によって見出した。同位相モードとは、環状に配された複数の導波路Gにおけるレーザ光LBの位相が揃った状態である。面発光レーザ10が同位相モードで動作すると、
図7Bに示したように、遠視野像において単峰性のビームパターンが形成される。また、放射角が狭く、サイドローブが殆ど生じないレーザ光LBが得られる。
【0077】
なお、スポットSPの中心同士の距離がスポットの直径2W0の0.5倍~1倍である場合には、隣り合うスポットSPが互いに重なり合う。スポットSPの中心同士の距離がスポットの直径2W0の1倍より大きい場合には、隣り合うスポットSP同士は重ならない。スポットSPの中心同士の距離は、スポットSP同士の重なり具合を表わしているといえる。
【0078】
環AR1上にスポットSPを等間隔に配置することを前提とすると、導波路の個数によって、スポットSPの中心同士の距離が決定される。スポットSPの中心同士の距離がスポットSPの直径2W
0の0.5倍から1.1倍の範囲内となるように、低抵抗領域A2の形状及びサイズに応じて区画領域DRの個数Nを規定することで、面発光レーザ10を同位相モードで動作させることができる。
図8に示す低抵抗領域A2について、区画領域DRの個数Nは、以下の式によって規定される。
【0079】
【0080】
式(1)は、以下のようにして導かれる。まず、中間線Mの長さは、以下の式で表される。
【0081】
【0082】
上記の式(3)より、中間線M上に等間隔でスポットSPが並ぶ際の中心同士の距離がスポットSPの直径2W
0の0.5倍から1.1倍の範囲となるように、領域DRの個数Nを算出する。中間線M上の当該スポットSPの中心同士の距離は、中間線Mが切り欠きVによって区切られたピッチPであるといえる。例えば、ピッチPは、
図8に示すように、切り欠きVの先端を領域AR1の中心に向かって延長した際の中間線Mとの交点によって区切られた区間の中間線Mの長さである。
【0083】
中間線Mの長さを、ピッチPの最小である2W0の0.5倍、ピッチPの最大である2W0の1.1倍でそれぞれ除することで、区画領域DRの個数Nは、以下のように表される。
【0084】
【0085】
導波路半径をaとすると、スポットSPの半径W0について、波長λ、コアの屈折率nc、屈折率段差Δとの間で、以下の関係が成立する。
【0086】
【0087】
また、基本モードの条件から、以下の関係が成立する。
【0088】
【0089】
なお、導波路の直径2aは、以下の式で表される。
【0090】
【0091】
式(5)、(6)及び(7)より、以下の式が成立する。
【0092】
【0093】
式(4)及び(8)より、式(2)が成立する。つまり、中間線M上に等間隔でスポットSPが並ぶ際のスポットSPの中心同士の距離(ピッチP)をスポットSPの直径2W0の0.5倍から1.1倍の範囲にすることで、同位相モードで動作するように凸部15Bを設けて低抵抗領域A2とすることができる。
【0094】
また、上記の区画領域DRの個数Nの範囲を次のように表すこともできる。中間線Mの長さをCとすると、上記の式(3)より、以下の式が成立する。
【0095】
【0096】
また、上記の式(7)より、環AR1の幅WとスポットSPの半径W0との関係は以下のようになる。
【0097】
【0098】
式(9)及び式(10)を上記の式(4)に代入すると、区画領域DRの個数Nは上記の式(1)で表される。
【0099】
上記の式(1)又は(2)を満たす個数Nとなるように、例えば等間隔に切欠きVを配置することで、N個の導波路Gを環AR1に沿って定義することができる。例えば、切欠きVの配置は、各々の導波路Gに対応する中間線Mの長さが等しくなるようにしてもよい。例えば、スポットSPの中心同士の距離が直線距離で等しくなるように、切欠きVの間隔を決定してもよい。
【0100】
このように、区画領域DRの個数Nを規定することによって、導波路Gの個数Nを規定することができる。導波路Gの個数Nが式(1)又は(2)の条件を満たすように、面発光レーザ10を構成することで、面発光レーザ10を確実に同位相モードで動作させることができる。従って、低放射角で単峰性のビームパターンのレーザ光LBを安定して得られる。
【0101】
例えば、製造による低抵抗領域A2の寸法のばらつきを考慮し、スポットSPの中心同士の距離がスポットSPの直径2W0の0.5倍から1.1倍という条件を満たすように、導波路Gの個数Nを規定して、面発光レーザ10を設計することができる。従って、歩留まりの高い安定なシングルモードのレーザ光LBを得ることができる。
【0102】
また、例えば面発光レーザ10の設計変更により低抵抗領域A2の幅W等の寸法を変更する際にも、上記の関係式を用いて導波路Gの個数Nを規定することで、所望の発光特性の面発光レーザを効率良く設計し、安定して供給することができる。
【0103】
図9は、本実施例の変形例1に係る面発光レーザ10Aの共振器OC12の模式的な上面図である。面発光レーザ10Aは、p型半導体層15の構成及び共振器OC12の構成を除いては、面発光レーザ10と同様の構成を有する。共振器OC12は、第3の領域R3に高抵抗領域A1及び低抵抗領域A2の混在する領域が設けられている点を除いては、共振器OC1と同様の構成を有する。
【0104】
本変形例においては、p型半導体層15は、凸部15Bに代えて、内側に放射部分を有する略円環状の凸部15Fを有する。具体的には、p型半導体層15は、上面15Eと、上面15Eから環状に突出し、その内側においてその中心に向かう複数の放射部分を有する側面を有するような凸部15Fと、を有する。なお、絶縁層16及び透光電極層17の構成は上記と同様である。
【0105】
本変形例においては、低抵抗領域A2は、高抵抗領域A1の外周領域A10の内側に接しかつ環状に設けられた内側領域A20と、内側領域A20の内側において環状に設けられかつ互いに離間した複数の部分領域A21と、を有する。本変形例においては、部分領域A21の各々は、内側領域A20の内側面から内側領域A20の中心に向かって錐状に伸張する低抵抗部分である。
【0106】
また、本変形例においては、高抵抗領域A1は、外周領域A10及び内側領域A12と、各々が内側領域A12に接しかつ低抵抗領域A2の部分領域A21間に入り込むように環状に設けられた複数の部分領域A11と、を有する。
【0107】
本変形例は、低抵抗領域A2が内側領域A20の内側に部分領域A21を有する。従って、共振器OC12においては、第2の領域R2ではなく第3の領域R3に高抵抗領域A1及び低抵抗領域A2が交互に配列された領域を有する。
【0108】
本変形例のように、低抵抗領域A2の部分領域A21は、種々の位置に設けられることができる。この場合でも、部分領域A21によってレーザ光LBのモードが安定し、例えば単峰性のレーザ光LBを安定して出射することができる。
【0109】
換言すれば、本変形例において、低抵抗領域A2(15F)は、上面視において一定の幅を有する1の環(A2とA11を合わせた部分)が当該1の環の周方向に配列されている複数の切欠きによって切り欠かれた形状を有している。低抵抗領域A2は、当該切欠きを挟んで当該周方向に配列されている区画領域を有している。
【0110】
このように、低抵抗領域A2は、当該1の環の内周から外周に向かって伸長する切欠きによって区切られた区画領域を有していても良い。また、当該切欠きの形状は、本変形例のような楔型の形状に限られず、矩形等の任意の形状とすることができる。
【0111】
さらに、上記の式(1)又は(2)を用いて区画領域の個数を規定することで、放射角度が低く単峰性のレーザ光LBを確実に安定して出射させることができる。
【0112】
図10は、本実施例の変形例2に係る面発光レーザ10Bの共振器OC2の模式的な上面図である。面発光レーザ10Bは、発光構造層EM2の構成及び共振器OC2の構成を除いては、面発光レーザ10と同様の構成を有する。また、共振器OC2は、第4の領域R4の内側に低抵抗領域に対応する第5の領域R5を有する点を除いては、共振器OC1と同様の構成を有する。
【0113】
本実施例においては、発光構造層EM2は、p型半導体層15に代えてp型半導体層21を有する。p型半導体層21は、上面21Aと、上面21Aから略環状に突出する環状部及び当該環状部の内側において柱状に突出する柱状部を有する凸部21Bと、を有する。本実施例においては、n型半導体層13、発光層14及びp型半導体層21の全体を発光構造層EM2と称する。なお、絶縁層16及び透光電極層17は、面発光レーザ10と同様の構成を有する。
【0114】
従って、本実施例においては、高抵抗領域A1の内側領域A12は、環状(本実施例においては円環状)に設けられている。また、低抵抗領域A2は、高抵抗領域A1の内側領域A12の内側に設けられた中心領域A22を有する。また、本実施例においては、低抵抗領域A2の中心領域A22は、円柱形状を有する。
【0115】
本実施例においては、低抵抗領域A2が発光中心軸CA上の領域において高抵抗領域A1に囲まれた中心領域A22を有する。これによって、発光中心軸CAの周囲の発光パターンを制御するのみならず、発光中心軸CA上の発光パターンを安定させることができる。
【0116】
本実施例においては、部分領域A21内に定在波を発現させるのに加え、中心領域A22内にも定在波を安定して発現させることができる。これによって、発光領域全体の定在波の干渉条件を安定させ、発光領域全体の安定した横モード制御を行うことができる。
【0117】
従って、例えば、中心領域A22のサイズ及び部分領域A21との位置関係を調節することで、ほとんどサイドローブを生じさせないビームパターンのレーザ光LB(すなわち遠視野像)を生成することができる。また、実施例1と同様に、印加電流の大きさに関わらず、ビームパターンが安定する。従って、高出力かつ高安定性の面発光レーザ10Bを提供することができる。
【0118】
図11は、本実施例の変形例3に係る面発光レーザ10Cの共振器OC13の模式的な上面図である。面発光レーザ10Cは、p型半導体層15の構成及び共振器OC13の構成を除いては、面発光レーザ10と同様の構成を有する。共振器OC13は、矩形の第2~第4の領域R2~R4を有する点を除いては、共振器OC1と同様の構成を有する。
【0119】
本変形例においては、p型半導体層15は、上面15Gと、上面15Gから略矩形状に突出する点を除いては凸部15Bと同様の構成を有する凸部15Hと、を有する。本変形例においては、高抵抗領域A1は、外周領域A10の内側において矩形環状に配置された複数の部分領域A11と、矩形の内側領域A12と、を有する。また、低抵抗領域A2は、矩形環状の内側領域A20と、内側領域A20の外側に矩形環状に設けられた複数の部分領域A21と、を有する。
【0120】
本変形例のように、例えば、第2の領域R2は、環状に設けられていれば、矩形の形状を有していてもよい。この場合でも、部分領域A21によってレーザ光LBのモードが安定し、例えば単峰性のレーザ光LBを安定して出射することができる。
【0121】
図12は、本実施例の変形例4に係る面発光レーザ10Dを示す上面図である。
図12において、面発光レーザ10Dのp型半導体層15の凸部15J、すなわち低抵抗領域A2の形状を示しており、その他の構成については省略している。
図12に示すように、凸部15Jは、上面視において、矩形(長方形)の環状の領域AR2に配されている。長方形の環状の領域AR2(以下、環AR2とも称する)の寸法及び形状は、本変形例における導波路を規定するための基準となる。
【0122】
図12に示すように、長方形の環状の領域AR2(環AR2)は、一定の幅Wを有している。また、環AR2の外側の長辺の長さをT、外側の短辺の長さをL、内側の長辺の長さをt、内側の短辺の長さをlとする。また、幅Wの1/2の位置を結んだ線であり、環AR2の周方向に伸長する線を中間線Mとする。当該中間線Mの長さをCとする。
【0123】
図12に示すように、低抵抗領域A2は、上面視において、一定の幅を有する1の環(すなわち長方形の環AR2)が当該1の環の周方向に配列された複数の切欠きVによって切り欠かれた形状を有する領域である。また、低抵抗領域A2は、当該切欠きを挟んで周方向に配列されている区画領域DRを有している。切欠きVは、環AR2の内周から外周に向かって伸長している。また、切欠きVは、環AR2の幅方向において、幅Wよりも短い。
【0124】
図8の場合と同様に、区画領域DRの各々について、直径2aの導波路Gが形成されると考える。導波路G内の光の強度分布のうち、最大強度の1/e
2以上の強度を有する範囲を当該導波路Gにおける光のスポットSPと称し、当該スポットSPの直径を2W
0とする。
【0125】
上述したように、隣り合うスポットSP同士の中心同士の距離が、スポットSPの直径2W0の0.5倍から1.1倍の範囲である場合に、面発光レーザが同位相モードで動作する。同位相モードとは、環状に配された複数の導波路Gにおけるレーザ光LBの位相が揃った状態である。従って、スポットSP同士の中心同士の距離がスポットSPの直径の2W0の0.5倍から1.1倍の範囲内となるように、低抵抗領域A2の形状及びサイズに応じて区画領域DRの個数Nを規定することで、面発光レーザ10を同位相モードで動作させることができる。
【0126】
図12に示す低抵抗領域A2について、区画領域DRの数Nは、以下のように規定される。
【0127】
【0128】
【0129】
区画領域DRの数Nは、上記の式(11)又は式(12)によって規定される。これらの式は、以下のようにして導かれる。中間線Mの長さをCとすると、以下の式が成立する。
【0130】
【0131】
長方形の環状の領域AR2が一定の幅を有することから、以下の関係が成立する。
【0132】
【0133】
式(13)より、以下の式が成立する。
【0134】
【0135】
また、導波路Gの半径aは以下のように表される。
【0136】
【0137】
上述した式(8)に、式(16)を代入すると以下のようになる。
【0138】
【0139】
上述したように、区画領域DRの数Nは、中間線M上に等間隔でスポットSPが並ぶ際のスポットSPの中心同士の距離がスポットSPの直径2W0の0.5倍から1.1倍の範囲となるように規定することができる。区画領域DRの数Nは、中間線の長さCをスポットSPの中心同士の距離(或いはピッチP)の最大値(2W0の1.1倍)及び最小値(2W0の0.5倍)でそれぞれ除することによって、上記の式(11)又は式(12)のように表される。また、幅Wは以下のように表される。
【0140】
【0141】
式(18)より、上記式(11)又は(12)を中間線Mの長さC及び領域AR2の幅Wを用いた式で表すと、上記した式(1)となる。
【0142】
このように、低抵抗領域A2の上面視における形状の基準となる形状が長方形の環である場合にも、スポットSPの中心同士の距離がスポットSPの直径2W0の0.5倍から1.1倍の範囲となるように、区画領域DRの個数を規定することができる。従って、面発光レーザ10Dが同位相モードで動作する条件で、長方形の環に沿って、導波路Gを規定することができる。これによって、放射角が狭く、単峰性のビームパターンを確実に形成することができる。
【0143】
図13は、本実施例の変形例5に係る面発光レーザの10Eを示す上面図である。
図13において、面発光レーザ10Eのp型半導体層15の凸部15K、すなわち低抵抗領域A2の形状を示しており、その他の構成については省略している。
図13に示すように、低抵抗領域A2は、トラック型の環状の領域AR3に配されている。トラック型の環状の領域AR3(以下、環AR3とも称する)の寸法及び形状は、本実施例における導波路を規定するための基準となる。
【0144】
図13に示すように、トラック型の環状の領域AR3(環AR3)は、一定の幅Wを有している。環AR3は、長さLの対向する一組の直線と、当該一組の直線の両端において当該一組の直線間の距離を直径とする半円の円弧を繋ぎ合わせた形状に沿って延びる環である。当該半円の円弧に沿った領域の外周の直径をΦ
out、内周の直径をΦ
inとする。換言すれば、直線に沿った領域の両端における当該半円の円弧に沿った領域2つを繋ぎ合わせて形成される円環の外径がΦ
outであり、当該円環の内径がΦ
inである。
【0145】
図13に示すように、低抵抗領域A2は、上面視において、一定の幅を有する1の環(すなわち環AR3)が当該1の環の周方向に配列された複数の切欠きVによって切り欠かれた形状を有する領域である。また、低抵抗領域A2は、当該切欠きを挟んで周方向に配列されている区画領域DRを有している。切欠きVは、環AR3の外周から内周に向かって伸長している。また、切欠きVは、環AR3の幅方向において、幅Wよりも短い。幅Wの1/2の位置を結んだ線であり、環AR3の周方向に伸長する線を中間線Mとする。当該中間線Mの長さをCとする。
【0146】
図8及び
図12の場合と同様に、区画領域DRの各々について、直径2aの導波路Gが形成されていると考える。導波路G内の光の強度分布のうち、最大強度の1/e
2以上の強度を有する範囲を当該導波路Gにおける光のスポットSPと称し、スポットSPの直径を2W
0とする。
【0147】
上述したように、隣り合うスポットSPの中心同士の距離が、スポットSPの直径2W0の0.5倍から1.1倍の範囲である場合に、面発光レーザ10Eが同位相モードで動作する。同位相モードとは、環状に配された複数の導波路Gにおけるレーザ光LBの位相が揃った状態である。従って、当該重なり具合がスポットSPの直径2W0の0.5倍から1.1倍の範囲内となるように、低抵抗領域A2の形状及びサイズに応じて区画領域DRの個数Nを規定することで、面発光レーザ10を同位相モードで動作させることができる。
【0148】
図13に示す低抵抗領域A2について、区画領域DRの数Nは、以下のように規定される。
【0149】
【0150】
式(19)は、以下のようにして導かれる。まず、中間線Mの長さCは、以下のように表される。
【0151】
【0152】
また、上記の式(8)よりW0=(Φout-Φin)/2π1/2が成立する。式(20)及び式(8)を用いて、中間線の長さCをスポットSPの中心同士の距離(或いはピッチP)の最大値(スポットSPの直径2W0の0.5倍)及び最小値(2W0の0.5倍)でそれぞれ除することによって、区画領域DRの数Nは式(19)のように表される。
【0153】
このように、低抵抗領域A2の上面視における形状の基準となる形状が上記のようなトラック型の環である場合にも、スポットSPの中心同士の距離がスポットSPの直径2W0の0.5倍から1.1倍の範囲となるように、区画領域DRの個数を規定することができる。従って、面発光レーザ10Dが同位相モードで動作する条件で、トラック形状の中間線Mに沿って並ぶように導波路Gを定義することができる。これによって、放射角が狭く、単峰性のビームパターンを確実に形成することができ、歩留まりの高い、安定なシングルモードのレーザ光LBを得ることができる。
【0154】
上記した高抵抗領域A1及び低抵抗領域A2の構成は一例に過ぎない。例えば、低抵抗領域A2は、内側領域A20を有していなくてもよい。すなわち、低抵抗領域A2は、環状に設けられた複数の部分領域A21を有していればよい。また、高抵抗領域A1は、少なくとも低抵抗領域A2の部分領域A21間に設けられた複数の部分領域A11を有していればよい。
【0155】
従って、低抵抗領域A2の全体が発光構造層EM1内において点在していてもよい。なお、部分領域A21毎の発光構造層EM1内への印加電流を安定させることを考慮すると、部分領域A21同士を電気的に接続するような領域、例えば内側領域A20が設けられていることが好ましい。
【0156】
また、本実施例においては、高抵抗領域A1及び低抵抗領域A2間で電気抵抗の差を設けるのみならず、これらの領域に対応して等価屈折率の差を設ける場合について説明した。しかし、レーザ光LBのモード制御を考慮すると、少なくともこれらの領域間で電気抵抗の差が設けられていればよい。
【0157】
上記したように、本実施例においては、発光構造層EM1は、第1及び第2の反射鏡12及び19間に設けられ、各々が発光構造層EM1の面内に設けられた高抵抗領域A1及び高抵抗領域A1よりも低い電気抵抗を有する低抵抗領域A2を有する。また、低抵抗領域A2は、発光構造層EM1の面方向において高抵抗領域A1によって区切られつつ環状に配列された複数の部分領域A21を有する。従って、安定した横モードの光を出射することが可能な面発光レーザ10(垂直共振器型発光素子)を提供することができる。
【実施例2】
【0158】
図14は、実施例2に係る面発光レーザ30の断面図である。面発光レーザ30は、発光構造層EM3の構成を除いては、面発光レーザ10と同様の構成を有する。発光構造層EM3は、高抵抗領域A1及び低抵抗領域A2の構成を除いては、発光構造層EM1と同様の構成を有する。
【0159】
発光構造層EM3は、高抵抗領域A1に対応し、イオンが注入されたイオン注入領域31Aを有するp型半導体層(第2の半導体層)31を有する。例えば、イオン注入領域31Aは、Bイオン、Alイオン、又は酸素イオンが注入されたp型半導体層31の上面の領域である。
【0160】
イオン注入領域31Aにおいては、p型の不純物が不活性化されている。すなわち、イオン注入領域31Aは、高抵抗領域A1として機能する。また、イオン注入領域31Aにおいては、イオンが注入されることで屈折率が変化する。
【0161】
また、本実施例においては、イオン注入領域31A以外のp型半導体層31の領域31Bは、イオン注入が行われていない非イオン注入領域である。従って、本実施例においては、非イオン注入領域31Bは、低抵抗領域A2として機能する。
【0162】
また、本実施例においては、イオン注入領域31Aは、p型半導体層15における上面15Aと同様の上面形状を有する。また、非イオン注入領域31Bは、p型半導体層15における凸部15Bと同様の上面形状を有する。
【0163】
より詳細には、低抵抗領域A2として機能する非イオン注入領域31Bは、一定の幅を有する1の環が当該1の環の方向に配列されている複数の切欠きによって切り欠かれた形状を有する領域である。また、低抵抗領域A2は、当該切欠きを挟んで周方向に配列されている区画領域DRを有している。
【0164】
また、当該環状の領域が一定の幅を有しており、区画領域DRの数Nを上記した式(1)で表される範囲に規定することができ、歩留まりの高い、安定なシングルモードのレーザ光LBを得ることができる。
【0165】
当該環状の領域は、本実施例において、
図8等に示したような円環形状を一例として挙げているが、
図12に示したような矩形の環状、或いは
図13に示したようなトラック型の環状であってもよい。当該環状の領域が矩形の環状又はトラック型の環状であっても、区画領域DRの数Nを上記した式(1)で表される範囲に規定することができる。
【0166】
本実施例のように、イオン注入の有無によっても、電気抵抗及び屈折率に差を設けることができる。従って、低抵抗領域A2(例えば内側領域A20及び部分領域A21)を発光構造層EM3内に設けることができる。従って、安定した横モードの光を出射することが可能な面発光レーザ30を提供することができる。
【0167】
なお、本実施例において、イオン注入以外にも、酸素アッシャー、逆スパッタリング等の手法を用いて、p型半導体層(第2の半導体層)31のp型の不純物を不活性化し、電気抵抗及び屈折率に差を設けることもできる。
【0168】
図15は、実施例2の変形例に係る面発光レーザ30Aの断面図である。面発光レーザ30Aは、発光構造層EM3と第2の反射鏡19との間に形成され、領域間で異なる屈折率を有する絶縁層(第2の絶縁層)32を有する点を除いては、面発光レーザ30と同様の構成を有する。
【0169】
面発光レーザ30Aにおいては、絶縁層32は、透光電極層17上に形成され、非イオン注入領域31B上に凸部33Aを有する高屈折率絶縁層33と、凸部33Aを露出させつつ高屈折率絶縁層33上に形成され、高屈折率絶縁層33よりも低い屈折率を有する低屈折率絶縁層34と、を有する。高屈折率絶縁層33は、例えば、Nb2O5からなる。また、低屈折率絶縁層34は、例えばSiO2からなる。
【0170】
本実施例においては、発光構造層EM3内に加え、その外部に形成された絶縁層32によって、高抵抗領域A1(第1の領域R1)及び低抵抗領域A2(第2及び第3の領域R3)間の屈折率差が設けられている。これによって、例えば、p型半導体層31によって高抵抗領域A1及び低抵抗領域A2の電気抵抗の差を優先的かつ確実に画定し、絶縁層32によって両者の屈折率差を補強することができる。従って、安定した横モードの光を出射することが可能な面発光レーザ30Aを提供することができる。
【実施例3】
【0171】
図16は、実施例3に係る面発光レーザ40の断面図である。面発光レーザ40は、発光構造層EM4の構成を除いては、面発光レーザ10と同様の構成を有する。発光構造層EM4は、高抵抗領域A1及び低抵抗領域A2の構成を除いては、発光構造層EM1と同様の構成を有する。
【0172】
面発光レーザ40においては、発光構造層EM4は、高抵抗領域A1に対応し、ドライエッチングが行われたエッチング部41Aを有するp型半導体層41を有する。p型半導体層41におけるエッチングが行われていない上面領域は、凸部41Bとなる。
【0173】
p型半導体層41などの不純物を含む半導体は、ドライエッチングを行うことによって、その表面がダメージを受ける。これによって、エッチング部41Aにおけるp型の不純物が不活性化される。すなわち、p型半導体層41は、エッチング部41Aの領域にp型の不純物が不活性化された不活性化領域41Cを有する。従って、不活性化領域41Cは、高抵抗領域A1として機能する。また、エッチングが行われていない凸部41Bは、低抵抗領域A2として機能する。
【0174】
また、本実施例においては、エッチング部41Aにおいては、p型半導体層41が部分的に除去される。従って、エッチング部41A以外の領域は、エッチング部41Aから突出した凸部41Bとなる。また、エッチング部41Aにおいては、一般的に半導体層における金属との界面に設けられるコンタクト層が除去されている。従って、例えば実施例1のように絶縁層16を設けなくても、エッチング部41Aは、十分に高抵抗化される。
【0175】
従って、まず、電流は凸部41Bのみから発光構造層EM4に注入される。また、エッチング部41Aと凸部41Bとの間でp型半導体層41の層厚が異なる。従って、エッチングの有無によって、共振器OC11内に等価屈折率の差を設けることができる。
【0176】
なお、低抵抗領域A2を設けることを考慮すると、p型半導体層41が選択的に不活性化領域41Cを有していればよい。従って、p型半導体層41は、ドライエッチングが行われたエッチング部41Aを有する場合に限定されない。例えば、イオン注入が行われることで不活性化領域41Cが形成されてもよいし、アッシング処理が行われることで不活性化領域41Cが形成されていてもよい。また、例えば、ドライエッチング後にイオン注入、アッシング処理を行ってもよい。
【0177】
本実施例においては、発光構造層EM4のp型半導体層(第2の半導体層)41は、高抵抗領域A1に対応し、p型の不純物が不活性化された不活性化領域41Cを有する。そして、p型半導体層41の不純物が不活性化されていない領域41Bは、低抵抗領域A2として機能する。
【0178】
このように、例えばエッチングを選択的に行ってp型半導体層41を部分的に不活性化させることによっても、電気抵抗及び屈折率に差を設けることができる。従って、低抵抗領域A2(例えば内側領域A20及び部分領域A21)を発光構造層EM4内に設けることができる。従って、安定した横モードの光を出射することが可能な面発光レーザ40を提供することができる。
【0179】
また、本実施例においては、不活性化領域41Cは、p型半導体層15における上面15Aと同様の上面形状を有する。また、不活性化されていない領域41Bは、p型半導体層15における凸部15Bと同様の上面形状を有する。
【0180】
より詳細には、低抵抗領域A2として機能する領域41Bは、環状の領域に配されており、周方向に配列された幅方向の複数の切欠きによって、当該環状が複数の区画領域DRに区切られた形状を有している。
【0181】
また、当該環状の領域が一定の幅を有している場合、区画領域DRの数Nを上記した式(1)で表される範囲に規定することができ、歩留まりの高い、安定なシングルモードのレーザ光LBを得ることができる。
【0182】
当該環状の領域は、本実施例において、
図8等に示したような円環形状を一例として挙げているが、
図12に示したような矩形の環状、或いは
図13に示したようなトラック型の環状であってもよい。当該環状の領域が矩形の環状又はトラック型の環状であっても、区画領域DRの数Nを上記した式(1)で表される範囲に規定することができる。また、当該環状の領域が円環形状である場合には上述した式(2)、矩形の環状である場合には式(11)又は式(12)、トラック型の環状である場合には式(19)によって、区画領域DRの個数Nを規定することができる。
【実施例4】
【0183】
図17は、実施例4に係る面発光レーザ50の断面図である。面発光レーザ50は、発光構造層EM5の構成を除いては、面発光レーザ10と同様の構成を有する。発光構造層EM5は、高抵抗領域A1及び低抵抗領域A2の構成を除いては、発光構造層EM1と同様の構成を有する。
【0184】
面発光レーザ50においては、発光構造層EM5は、低抵抗領域A2に対応し、p型半導体層15の凸部15B上に設けられたトンネル接合層51と、トンネル接合層51上に設けられたn型半導体層(第2のn型半導体層又は第3の半導体層)52と、を有する。
【0185】
また、発光構造層EM5は、高抵抗領域A1に対応し、トンネル接合層51及びn型半導体層52の側面を取り囲み、トンネル接合層51及びn型半導体層52よりも低い屈折率を有するn型半導体層(第3のn型半導体層又は第4の半導体層)53と、を有する。
【0186】
本実施例においては、トンネル接合層51は、p型半導体層15上に形成され、p型半導体層(第2の半導体層)15よりも高い不純物濃度を有するハイドープp型半導体層51Aと、ハイドープp型半導体層51A上に形成され、n型半導体層(第1のn型半導体層又は第1の半導体層)13よりも高い不純物濃度を有するハイドープn型半導体層51Bと、を含む。
【0187】
また、本実施例においては、n型半導体層53は、Geをn型不純物として含む。これによって、n型半導体層53は、n型半導体層52、トンネル接合層51及びp型半導体層15の凸部15Bの平均屈折率よりも低い屈折率を有する。
【0188】
本実施例のように、トンネル接合による電流狭窄を行う場合でも、その狭窄形状を調節することで、発光構造層EM5内に低抵抗領域A2(例えば内側領域A20及び部分領域A21)を形成することができる。また、低抵抗領域A2以外の領域の屈折率を低くすることで、例えば第1~第4の領域R1~R4を画定することができる。従って、安定した横モードの光を出射することが可能な面発光レーザ50を提供することができる。
【0189】
また、本実施例の低抵抗領域A2において、切欠きを挟んで周方向に配列されている区画領域DRの個数(
図8参照)を、上述した式(1)を満たすように規定することで、面発光レーザ50を同位相モードで動作させることができる。放射角が低く、単峰性のレーザ光を安定して出射させることができる。
【0190】
なお、上記に示した実施例は、一例に過ぎない。例えば、上記した種々の実施例は組み合わせることができる。例えば、面発光レーザ10が面発光レーザ30と同様の絶縁層31を有していてもよい。また、例えば、面発光レーザ40が不活性化領域41C上に絶縁層16を有していてもよい。
【0191】
上記したように、例えば、面発光レーザ10は、発光構造層EM1が第1及び第2の反射鏡12及び19間において環状に配列された複数の部分領域A21を有する低抵抗領域(電流注入領域)A2を有する。これによって、安定した横モードの光を出射することが可能な面発光レーザ10(垂直共振器型発光素子)を提供することができる。
【0192】
また、低抵抗領域A2は、1の環が切り欠かれた形状を有し、当該切欠きを挟んで周方向に配列された区画領域DRの個数Nを上述した式(1)を満たすように規定することによって、面発光レーザ10を同位相モードで動作させることができる。従って、低放射角で単峰性のレーザ光を安定して出射させることができる。
【符号の説明】
【0193】
10、10A、10B、10C、10D、10E、20、30、30A、40、50 面発光レーザ(垂直共振器型発光素子)
EM1、EM2、EM3、EM4 発光構造層
13 n型半導体層(第1の半導体層)
14 発光層
15 p型半導体層(第2の半導体層)
15A p型半導体層の上面
15B 凸部
A2 低抵抗領域
A21 部分領域
AR1 円環形状の領域(環)
DR 区画領域
G 導波路
2a 導波路の直径
SP スポット
2W0 スポットの直径
M 中間線
Φout,Φin AR1の外径、内径