IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社フジクラの特許一覧

特許7406421光ファイバ部品、光ファイバ部品の製造方法、及び、レーザ装置
<>
  • 特許-光ファイバ部品、光ファイバ部品の製造方法、及び、レーザ装置 図1
  • 特許-光ファイバ部品、光ファイバ部品の製造方法、及び、レーザ装置 図2
  • 特許-光ファイバ部品、光ファイバ部品の製造方法、及び、レーザ装置 図3
  • 特許-光ファイバ部品、光ファイバ部品の製造方法、及び、レーザ装置 図4
  • 特許-光ファイバ部品、光ファイバ部品の製造方法、及び、レーザ装置 図5
  • 特許-光ファイバ部品、光ファイバ部品の製造方法、及び、レーザ装置 図6
  • 特許-光ファイバ部品、光ファイバ部品の製造方法、及び、レーザ装置 図7
  • 特許-光ファイバ部品、光ファイバ部品の製造方法、及び、レーザ装置 図8
  • 特許-光ファイバ部品、光ファイバ部品の製造方法、及び、レーザ装置 図9
  • 特許-光ファイバ部品、光ファイバ部品の製造方法、及び、レーザ装置 図10
  • 特許-光ファイバ部品、光ファイバ部品の製造方法、及び、レーザ装置 図11
  • 特許-光ファイバ部品、光ファイバ部品の製造方法、及び、レーザ装置 図12
  • 特許-光ファイバ部品、光ファイバ部品の製造方法、及び、レーザ装置 図13
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-12-19
(45)【発行日】2023-12-27
(54)【発明の名称】光ファイバ部品、光ファイバ部品の製造方法、及び、レーザ装置
(51)【国際特許分類】
   G02B 6/26 20060101AFI20231220BHJP
   G02B 6/24 20060101ALI20231220BHJP
【FI】
G02B6/26
G02B6/24
【請求項の数】 5
(21)【出願番号】P 2020049746
(22)【出願日】2020-03-19
(65)【公開番号】P2021148986
(43)【公開日】2021-09-27
【審査請求日】2022-12-26
(73)【特許権者】
【識別番号】000005186
【氏名又は名称】株式会社フジクラ
(74)【代理人】
【識別番号】110000338
【氏名又は名称】弁理士法人 HARAKENZO WORLD PATENT & TRADEMARK
(72)【発明者】
【氏名】毛利 俊男
(72)【発明者】
【氏名】坂口 有也
(72)【発明者】
【氏名】益子 泰裕
【審査官】山本 元彦
(56)【参考文献】
【文献】特開2011-186267(JP,A)
【文献】特開2002-333526(JP,A)
【文献】特開平08-146245(JP,A)
【文献】特開2012-014173(JP,A)
【文献】特表2013-540288(JP,A)
【文献】米国特許出願公開第2003/0103753(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G02B 6/26-6/27
G02B 6/30-6/34
G02B 6/42-6/43
H01S 3/00-3/30
IEEE Xplore
(57)【特許請求の範囲】
【請求項1】
第1光ファイバと、
前記第1光ファイバの出射端面に入射端面が融着された第2光ファイバであって、前記入射端面におけるコア径が前記出射端面における前記第1光ファイバのコア径よりも小さい第2光ファイバと、
前記第1光ファイバ及び前記第2光ファイバを支持する支持体と、
前記第2光ファイバを前記支持体に固定する樹脂体と、を備え、
上記樹脂体の表面のうち前記出射端面と対向する面は、前記第1光ファイバの光軸と直交しないように傾いており、
前記樹脂体の表面のうち前記出射端面と対向する前記面の接平面と前記光軸との成す角は、30°以下である、
ことを特徴とする光ファイバ部品。
【請求項2】
前記支持体を三方から覆うカバーと、
前記支持体及び前記カバーの各々と熱接触する冷却体と、を更に備え、
前記樹脂体の表面のうち前記出射端面と対向する前記面は、前記カバーの天板と対向するように傾いている、
ことを特徴とする請求項1に記載の光ファイバ部品。
【請求項3】
前記第2光ファイバとして2本以上の光ファイバを備え、
前記樹脂体は、前記2本以上の光ファイバが互いに接触している部分に形成されている、
ことを特徴とする請求項1又は2に記載の光ファイバ部品。
【請求項4】
第1光ファイバと、前記第1光ファイバの出射端面に入射端面が融着された第2光ファイバであって、前記入射端面におけるコア径が前記出射端面における前記第1光ファイバのコア径よりも小さい第2光ファイバと、前記第1光ファイバ及び前記第2光ファイバを支持する支持体と、前記第2光ファイバを前記支持体に固定する樹脂体と、を備えた光ファイバ部品の製造方法であって、
前記樹脂体を形成する工程であって、前記樹脂体の表面のうち前記出射端面と対向する面を、前記第1光ファイバの光軸と直交しないように傾け、且つ、製造後の前記光ファイバ部品において、前記樹脂体の表面のうち前記出射端面と対向する前記面の接平面と前記光軸との成す角を、30°以下とさせる工程、を含んでいる、
ことを特徴とする光ファイバ部品の製造方法。
【請求項5】
1又は複数のレーザ光源と、
前記レーザ光源から出力されたレーザ光を導波するデリバリ光学系であって、コア径の異なる2本の光ファイバを少なくとも含むデリバリ光学系と、
請求項1~の何れか一項に記載の光ファイバ部品であって、前記2本の光ファイバを前記第1光ファイバ及び前記第2光ファイバとして含む光ファイバ部品と、を備えている、
ことを特徴とするレーザ装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、コア径の異なる光ファイバを含む光ファイバ部品に関する。また、そのような光ファイバ部品の製造方法に関する。また、そのような光ファイバ部品を備えたレーザ装置に関する。
【背景技術】
【0002】
光ファイバ部品には、しばしば、コア径の異なる光ファイバが含まれる。例えば、コンバイナには、2本以上の入力ファイバと1本の出力ファイバとが含まれ、入力ファイバのコア径は、出力ファイバのコア径よりも小さくなっている。このような光ファイバ部品においては、コア径の大きい方の光ファイバからコア径の小さい方の光ファイバへと光が導波されると、これらの光ファイバの融着点において光の漏出が生じる。出力が数百ワット~数キロワットに及ぶ高出力レーザ装置に適用される光ファイバ部品においては、融着点において漏出する光(以下、「漏出光」とも記載する)のパワーが数十ワット~数百ワットに達することもある。このため、例えば、光ファイバを固定するための樹脂体に漏出光が入射すると、その樹脂体の温度が上昇し、その樹脂体自体の劣化、或いは、その樹脂体により固定された光ファイバの劣化等の問題が生じ得る。
【0003】
このような問題の解決に資する可能性のある技術を開示した文献としては、例えば、特許文献1が挙げられる。特許文献1に記載の光ファイバ部品においては、融着点と樹脂体(特許文献1における「取付領域」)との間に散乱体(特許文献1における「光散乱材料領域」)を配置し、この散乱体により漏出光を散乱させることで、樹脂体に入射する漏出光の強度を低下させている。
【先行技術文献】
【特許文献】
【0004】
【文献】特表2013-540288号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかしながら、特許文献の技術によれば、樹脂体の温度上昇を抑制することはできるものの、散乱体の発熱が生じる。そして、散乱体の発熱が生じると、光ファイバ等を劣化させる要因となり、光ファイバ部品の信頼性を低下させることに繋がる。
【0006】
本発明の一態様は、上記の問題に鑑みてなされたものであり、漏出光に起因する発熱による信頼性の低下が生じ難い光ファイバ部品を実現することを目的とする。
【課題を解決するための手段】
【0007】
本発明の態様1に係る光ファイバ部品は、第1光ファイバと、前記第1光ファイバの出射端面に入射端面が融着された第2光ファイバであって、前記入射端面におけるコア径が前記出射端面における前記第1光ファイバのコア径よりも小さい第2光ファイバと、前記第1光ファイバ及び前記第2光ファイバを支持する支持体と、前記第2光ファイバを前記支持体に固定する樹脂体と、を備え、上記樹脂体の表面のうち前記出射端面と対向する面は、前記第1光ファイバの光軸と直交しないように傾いている、ことを特徴とする。
【0008】
上記の構成によれば、第1光ファイバの出射端面から漏出する漏出光に関して、樹脂体の表面における単位面積あたりの吸光率を低下させることができる。これにより、漏出光に起因する樹脂体の温度上昇を抑制することができる。その結果、光ファイバ部品の信頼性を向上させることができる。
【0009】
本発明の態様2に係る光ファイバ部品においては、態様1の構成に加えて、前記支持体を三方から覆うカバーと、前記支持体及び前記カバーの各々と熱接触する冷却体と、を更に備え、前記樹脂体の表面のうち前記出射端面と対向する前記面は、前記カバーの天板と対向するように傾いている、という構成が採用されている。
【0010】
上記の構成によれば、樹脂体の表面のうち第1光ファイバの出射端面と対向する面において反射された漏出光を、カバーにおいて効率的に熱に変換することができる。また、その面において反射された漏出光が、周囲の部品に予期せず入射する可能性を低減することができる。
【0011】
本発明の態様3に係る光ファイバ部品においては、態様1又は2の構成に加えて、前記樹脂体の表面のうち前記出射端面と対向する前記面の接平面と前記光軸との成す角は、30°以下である、という構成が採用されている。
【0012】
上記の構成によれば、漏出光に起因する樹脂体の温度上昇を更に抑制することができる。
【0013】
本発明の態様4に係る光ファイバ部品においては、態様1~3の何れかの構成に加えて、前記第2光ファイバとして2本以上の光ファイバを備え、前記樹脂体は、前記2本以上の光ファイバが互いに接触している部分に形成されている、という構成が採用されている。
【0014】
上記の構成によれば、光ファイバ部品が第2光ファイバとして2本以上の光ファイバを備えている場合であっても、樹脂体の表面のうち第1光ファイバの出射端面と対向する面の傾きを自在に設定することが容易になる。
【0015】
本発明の態様5に係る光ファイバ部品の製造方法は、第1光ファイバと、前記第1光ファイバの出射端面に入射端面が融着された第2光ファイバであって、前記入射端面におけるコア径が前記出射端面における前記第1光ファイバのコア径よりも小さい第2光ファイバと、前記第1光ファイバ及び前記第2光ファイバを支持する支持体と、前記第2光ファイバを前記支持体に固定する樹脂体と、を備えた光ファイバ部品の製造方法であって、前記樹脂体を形成する工程であって、前記樹脂体の表面のうち前記出射端面と対向する面を、前記第1光ファイバの光軸と直交しないように傾ける工程を含んでいる、ことを特徴とする。
【0016】
上記の方法によれば、信頼性の高い光ファイバ部品を製造することができる。
【0017】
本発明の態様6に係るレーザ装置は、1又は複数のレーザ光源と、前記レーザ光源から出力されたレーザ光を導波するデリバリ光学系であって、コア径の異なる2本の光ファイバを少なくとも含むデリバリ光学系と、態様1~4の何れかに係る光ファイバ部品であって、前記2本の光ファイバを前記第1光ファイバ及び前記第2光ファイバとして含む光ファイバ部品と、を備えている。
【0018】
上記の構成によれば、信頼性の高い光ファイバ部品を備えたレーザ装置を実現することができる。
【発明の効果】
【0019】
本発明の一態様によれば、漏出光に起因する発熱による信頼性の低下が生じ難い光ファイバ部品を実現することができる。本発明の他の一態様によれば、そのような光ファイバ部品を製造することができる。また、本発明の更に他の一態様によれば、そのような光ファイバ部品を備えたレーザ装置を実現することができる。
【図面の簡単な説明】
【0020】
図1】本発明の一実施形態に係る光ファイバ部品の構成を示す斜視図である。
図2図1の光ファイバ部品のAA’断面を示す斜視図である。
図3】(a)は、図1の光ファイバ部品において第3樹脂体の屈折率が1.36、1.40、1.44である場合について、漏出光に対する樹脂界面の反射率の樹脂角度依存性を示すグラフである。(b)は、図1の光ファイバ部品において第3樹脂体の屈折率が1.36、1.40、1.44である場合について、樹脂界面における漏出光の単位面積あたりの吸光率の樹脂角度依存性を示すグラフである。
図4図1の光ファイバ部品が備える第3樹脂体の製造方法を模式的に示す図である。
図5】一実施例に係る光ファイバ部品(サンプルA)が備える第3樹脂体を側方から撮影した写真である。
図6】一実施例に係る光ファイバ部品(サンプルB)が備える第3樹脂体を側方から撮影した写真である。
図7】一実施例に係る光ファイバ部品(サンプルC)が備える第3樹脂体を側方から撮影した写真である。
図8】一実施例に係る光ファイバ部品(サンプルD)が備える第3樹脂体を側方から撮影した写真である。
図9図6の光ファイバ部品(サンプルA)において、60Wの光を第1光ファイバに入力したときの第3樹脂体の熱画像である。
図10図7の光ファイバ部品(サンプルB)において、60Wの光を第1光ファイバに入力したときの第3樹脂体の熱画像である。
図11図8の光ファイバ部品(サンプルC)において、60Wの光を第1光ファイバに入力したときの第3樹脂体の熱画像である。
図12図9の光ファイバ部品(サンプルD)において、60Wの光を第1光ファイバに入力したときの第3樹脂体の熱画像である。
図13図6~8の光ファイバ部品(サンプルA~D)について、樹脂角度[deg]と温度上昇係数[℃/W]との関係をプロットしたグラフである。
【発明を実施するための形態】
【0021】
(光ファイバ部品の構成)
本発明の一実施形態に係る光ファイバ部品1の構成について、図1及び図2を参照して説明する。図1は、光ファイバ部品1の構成を示す斜視図である。図2は、光ファイバ部品1のAA’断面(図1参照)を示す断面図である。
【0022】
光ファイバ部品1は、図1に示すように、第1光ファイバ11と、第2光ファイバ12と、支持体13と、樹脂体14a~14cと、カバー15と、冷却体16と、を備えている。
【0023】
第1光ファイバ11は、第2光ファイバ12よりも上流側(光源に近い側)に配置される光ファイバである。第1光ファイバ11の出射端面11aは、第2光ファイバ12の入射端面12aに融着されている。出射端面11aにおける第1光ファイバ11のコア径は、入射端面12aにおける第2光ファイバ12のコア径よりも大きい。本実施形態においては、第1光ファイバ11として、出射端面11aにおけるコア径が入射端面におけるコア径よりも大きいテーパファイバを用いている。ここで、光源とは、注目する光を光ファイバ部品1に入射させる物のことを指す。反射光に注目する場合には、加工対象物などのターゲットが光源になる点に留意されたい。
【0024】
第2光ファイバ12は、第1光ファイバ11よりも下流側(光源から遠い側)に配置される光ファイバである。第2光ファイバ12の入射端面12aは、第1光ファイバ11の出射端面11aに融着されている。入射端面12aにおける第2光ファイバ12のコア径は、出射端面11aにおける第1光ファイバ11のコア径よりも小さい。本実施形態においては、第2光ファイバ12として、コア径が一定のストレートファイバを用いている。
【0025】
入射端面12aにおける第2光ファイバ12のコア径が出射端面11aにおける第1光ファイバ11のコア径よりも小さいので、第1光ファイバ11のコアを導波した光の一部は、第2光ファイバ12のコアに入射することなく漏出する。このようにして漏出した光のことを、以下、「漏出光」と記載する。また、第2光ファイバ12の光軸は、第1光ファイバ11の光軸に一致している。第1光ファイバ11及び第2光ファイバ12の共通の光軸のことを、単に「光軸L」と記載する。
【0026】
なお、図1においては、第1光ファイバ11の出射端面11aに1本の第2光ファイバ12の入射端面12aが融着されている構成を例示しているが、これに限定されない。すなわち、第1光ファイバ11の出射端面11aに2本以上の第2光ファイバ12の入射端面12aが融着されていてもよい。1本の第1光ファイバ11と2本以上の第2光ファイバ12とは、(1)第2光ファイバ12の各々を導波された光を合成して第1光ファイバ11に入力するコンバイナ、或いは、(2)第1光ファイバ11を導波された光を分岐して第2光ファイバ12の各々に入力するスプリッタとして機能する。この場合、入射端面12aにおける2本以上の第2光ファイバ12のコアの断面積の合計は、出射端面11aにおける第1光ファイバ11の断面積よりも小さくなる。
【0027】
支持体13は、第1光ファイバ11及び第2光ファイバ12を支持するための部材である。本実施形態においては、熱伝導性を有する材料(例えば、アルミニウム等の金属)により構成された直方体状の部材を、支持体13として用いている。支持体13の一方の主面13aには、支持体13を長手方向に横断する溝13a1が形成されている。図1においては、断面が台形の溝13a1を例示しているが、溝13a1の断面形状は、特に限定されない。第1光ファイバ11及び第2光ファイバ12は、この溝13a1に収容されている。なお、支持体13の主面13aは、ガラス板など、透明材料により構成された不図示の板状部材で覆われていてもよい。
【0028】
樹脂体14a~14cは、第1光ファイバ11及び第2光ファイバ12を支持体13に固定するための部材である。第1樹脂体14aは、第1光ファイバ11を溝13a1の上流側の端部に固定するために用いられる。第2樹脂体14bは、第2光ファイバ12を溝13a1の下流側の端部に固定するために用いられる。第3樹脂体14c(特許請求の範囲における「樹脂体」の一例)は、第2光ファイバ12を溝13b1の中間部に固定するために用いられる。本実施形態においては、溝13aに注入された樹脂を、紫外線、熱、又は湿気等により硬化したものを、樹脂体14a~14cとして用いている。
【0029】
第3樹脂体14cの表面のうち、第1光ファイバ11の出射端面に対向する面14c1は、光軸Lと直交しないように傾いている。これにより、面14c1が光軸Lと直交している場合と比べて、面14c1において漏出光が入射する領域の面積が大きくなる。また、これにより、面14c1が光軸Lと直交している場合と比べて、漏出光に対する面14c1の反射率が高くなる。それらの結果、面14c1が光軸Lと直交している場合と比べて、面14c1における漏出光の単位面積あたりの吸光率が低下する。これにより、漏出光の吸収に伴う第3樹脂体14cの温度上昇が抑制される。したがって、第3樹脂体14cの温度上昇に起因する、第3樹脂体14c自身の劣化、及び、第3樹脂体14cと接触する第2光ファイバ12の劣化を抑制することができる。その結果、光ファイバ部品1の信頼性を向上させることができる。
【0030】
なお、上述したように第1光ファイバ11と2本以上の第2光ファイバ12とがコンバイナを構成している場合、第1光ファイバ11の近傍において2本以上の第2光ファイバ12は、互いに接触するように束ねられている。この場合、第3樹脂体14cは、2本以上の第2光ファイバ12が互いに接触するよう束ねられている部分に形成されることが好ましい。これにより、面14c1の傾きが所望の角度となるよう第3樹脂体14cを形成することが容易になる。
【0031】
カバー15は、第1光ファイバ11及び第2光ファイバ12が収容された支持体13を三方から覆うための部材である。本実施形態においては、熱伝導性を有する材料(例えば、アルミニウム等の金属)により構成された、支持体13の主面13aと対向する天板15a、支持体13の一方の側面と対向する第1側板15b、及び、支持体13の他方の側面と対向する第2側板15cからなる部材を、カバー15として用いている。上述した第3樹脂体14cの面14c1は、天板15aと対向するように傾いている。このため、面14cにて反射された漏出光は、天板15aに入射し、天板15aにおいて熱に変換される。
【0032】
冷却体16は、支持体13及びカバー15を冷却するための部材である。本実施形態においては、水冷板を冷却体16として用いている。支持体13の他方の主面13bは、冷却体16の主面16aと熱接触している。このため、漏出光が支持体13に入射することにより生じた熱、及び、漏出光が第3樹脂体14cに入射することにより生じ、第3樹脂体14cから支持体13に伝導した熱は、支持体13の主面13bを介して冷却体16に効率良く伝導する。また、カバー15の第1側板15b及び第2側板15cの下端面は、冷却体16の主面16aと熱接触している。このため、第3樹脂体14cの面14c1にて反射された漏出光がカバー15の天板15aに入射することにより生じた熱は、カバー15の第1側板15b及び第2側板15cの下端面を介して冷却体16に効率良く伝導する。なお、本実施形態においては、水冷板を冷却体16として用いているが、空冷板(放熱板)を冷却体16として用いてもよい。何れの場合であっても、支持体13及びカバー15よりも冷却体を低温に保つこと(すなわち、冷却体16の冷却機能を損なわないこと)が可能である。
【0033】
(反射率及び吸光率)
上述したように、光ファイバ部品1によれば、第3樹脂体14cの面14c1が光軸Lと直交している場合と比べて、(1)漏出光に対する面14c1の反射率が高くなり、(2)面14c1における漏出光の単位面積あたりの吸光率が低くなる。これらの効果は、光軸Lとの交点における面14c1の接平面と光軸Lとの成す角(以下、「樹脂角度」とも記載する)が小さくなるほど大きくなる。
【0034】
図3の(a)は、第3樹脂体14cの屈折率が1.36、1.40、1.44である場合について、漏出光に対する面14c1(同図における「樹脂界面」)の反射率の樹脂角度依存性を示すグラフである。反射率の算出に際しては、フレネルの法則を用いている。同図によれば、樹脂角度が小さくなれば小さくなるほど、反射率が大きくなることが確かめられる。
【0035】
図3の(b)は、第3樹脂体14cの屈折率が1.36、1.40、1.44である場合について、面14c1(同図における「樹脂界面」)における漏出光の単位面積あたりの吸光率の樹脂角度依存性を示すグラフである。吸光率の算出に際しては、面14c1が光軸Lと直交し、且つ、面14c1の反射率が0である場合の吸収量を1としている。同図によれば、樹脂角度が小さくなれば小さくなるほど、吸光率が小さくなることが確かめられる。例えば、樹脂角度を30°以下にすれば、吸光率が0.5以下になることが分かる。
【0036】
(第3樹脂体の形成方法)
光ファイバ部品1の製造方法に適用される第3樹脂体14cの形成方法について、図4を参照して説明する。図4の(a)は、第3樹脂体14cの第1の形成方法を模式的に示した図であり、図4の(b)は、第3樹脂体14cの第2の形成方法を模式的に示した図である。
【0037】
第1の形成方法においては、図4の(a)に示すように、まず、支持体13を傾けたうえで、型枠20が挿入された溝13a1に液状の樹脂を注入する。そして、図4の(a)に示すように、溝13a1に注入された樹脂を紫外線、熱、又は湿気等により硬化させた後、型枠20を除去する。このように第1の形成方法を用いて第3樹脂体14cを形成する場合、第3樹脂体14cの面14c1の傾きを、支持体13の傾け方を適宜調整することで自在に設定することができる。
【0038】
第2の形成方法においては、図4の(b)に示すように、支持体13の溝13a1に液体の樹脂を注入した後、液体の樹脂が濡れ広がるのを待つ。そして、図4の(b)に示すように、溝13a1の中で濡れ広がった樹脂を紫外線、熱、又は湿気等により硬化させる。このように第2の形成方法を用いて第3樹脂体14cを形成する場合、第3樹脂体14cの面14c1の傾きを、樹脂が濡れ広がるのを待つ時間を適宜調整することで自在に設定することができる。
【0039】
なお、光ファイバ部品1は、第3樹脂体14cを形成する工程を除き、公知の製造方法により製造することが可能である。したがって、光ファイバ部品1の製造方法に含まれる、第3樹脂体14cを形成する工程以外の工程については、詳細な説明を省略する。
【0040】
(光ファイバ部品の実施例)
光ファイバ部品1の実施例について、図5図13を参照して説明する。ここでは、光ファイバ部品1の実施例として、4つのサンプルA~Dを作成した。いずれのサンプルにおいても、出射端面11aにおける第1光ファイバ11のガラス部径は360μmであり、入射端面12aにおける第2光ファイバ12のガラス部径は125μmである。第3樹脂体14cとしては、屈折率が1.36であるものを用いた。
【0041】
サンプルAは、第3樹脂体14cの面14c1の接平面T(面14c1と光軸Lとの交点における接平面)と光軸Lとの成す角(以下、「樹脂角度」とも記載する)を75°としたものである。このサンプルAにおける第3樹脂体14cを側方から撮影した写真を、図5に示す。
【0042】
サンプルBは、樹脂角度を46°としたものである。このサンプルBにおける第3樹脂体14cを側方から撮影した写真を、図6に示す。
【0043】
サンプルCは、樹脂角度を23°としたものである。このサンプルCにおける第3樹脂体14cを側方から撮影した写真を、図7に示す。
【0044】
サンプルDは、樹脂角度を13°としたものである。このサンプルDにおける第3樹脂体14cを側方から撮影した写真を、図8に示す。
【0045】
最初に、樹脂角度が75°であるサンプルAについて、第1光ファイバ11に入力する光のパワーを変化させながら、第3樹脂体14cの温度を測定した。その結果、第3樹脂体14cは、第1光ファイバ11に入力する光のパワーを57.1Wとしたときに、最高温度36.4℃に達した。また、温度上昇係数は、0.191℃/Wになることが分かった。第1光ファイバ11に入力する光のパワーを60Wとしたときの第3樹脂体14cの熱画像を、図9に示す。
【0046】
次に、樹脂角度が46°であるサンプルBについて、第1光ファイバ11に入力する光のパワーを変化させながら、第3樹脂体14cの温度を測定した。その結果、第3樹脂体14cは、第1光ファイバ11に入力する光のパワーを65.9Wとしたときに、最高温度32.0℃に達した。また、温度上昇係数は、0.106℃/Wになることが分かった。第1光ファイバ11に入力する光のパワーを60Wとしたときの第3樹脂体14cの熱画像を、図10に示す。
【0047】
次に、樹脂角度が23°であるサンプルCについて、第1光ファイバ11に入力する光のパワーを変化させながら、第3樹脂体14cの温度を測定した。その結果、第3樹脂体14cは、第1光ファイバ11に入力する光のパワーを65.9Wとしたときに、最高温度28.3℃に達した。また、温度上昇係数は、0.047℃/Wになることが分かった。第1光ファイバ11に入力する光のパワーを60Wとしたときの第3樹脂体14cの熱画像を、図11に示す。
【0048】
最後に、樹脂角度が13°であるサンプルDについて、第1光ファイバ11に入力する光のパワーを変化させながら、第3樹脂体14cの温度を測定した。その結果、第3樹脂体14cは、第1光ファイバ11に入力する光のパワーを65.9Wとしたときに、最高温度27.0℃に達した。また、温度上昇係数は、0.034℃/Wになることが分かった。第1光ファイバ11に入力する光のパワーを60Wとしたときの第3樹脂体14cの熱画像を、図12に示す。
【0049】
サンプルA~Dについて、樹脂角度[deg]と温度上昇係数[℃/W]との関係をプロットしたグラフを図13に示す。図13によれば、樹脂角度を小さくするほど、温度上昇係数が小さくなることが確かめられる。また、図13によれば、樹脂角度が30°以下であることが好ましいことが分かる。温度上昇係数が特に小さくなる(本実施例のセッティングでは0.075℃/W以下になる)からである。なお、樹脂角度の下限は特に限定されないが、例えば、3°以上であればよい。
【0050】
(光ファイバ部品の適用例)
レーザ装置は、1又は複数のレーザ光源と、レーザ光源から出力されたレーザ光を導波するデリバリ光学系と、を備えている。デリバリ光学系は、コア径の異なる2本の光ファイバを含み得る。例えば、複数のレーザ光源を備えたレーザ装置では、複数のレーザ光源の各々から出力されたレーザ光を合成するために、細径の入力ファイバと太径の出力ファイバとを有する出力コンバイナが、デリバリ光学系に含まれる。また、ファイバレーザを光源とするレーザ装置では、複数の励起光源の各々から出力された励起光を合成するために、細径の入力ファイバと太径の出力ファイバとを有する励起コンバイナが、デリバリ光学系に含まれる。
【0051】
光ファイバ部品1は、上記のようなレーザ装置に適用することができる。すなわち、(1)1又は複数のレーザ光源と、(2)レーザ光源から出力されたレーザ光を導波するデリバリ光学系であって、コア径の異なる2本の光ファイバを少なくとも含むデリバリ光学系と、(3)これら2本の光ファイバを第1光ファイバ11及び第2光ファイバ12として含む光ファイバ部品1と、を備えたレーザ装置を実現することができる。
【0052】
なお、レーザ光源としては、例えば、ファイバレーザを用いることができる。レーザ光源して利用するファイバレーザは、共振器型のファイバレーザであってもよいし、MOPA(Master Oscillator / Power Amplifier)型のファイバレーザであってもよい。別の言い方をすれば、連続発振型のファイバレーザであってもよいし、パルス発振型のファイバレーザであってもよい。また、レーザ光源は、ファイバレーザ以外のレーザ発振器であってもよい。固体レーザ、液体レーザ、気体レーザなど、任意のレーザ発振器を、レーザ光源として利用することができる。
【0053】
(付記事項)
本発明は、上述した実施形態に限定されるものでなく、請求項に示した範囲で種々の変更が可能であり、上述した実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても、本発明の技術的範囲に含まれる。
【符号の説明】
【0054】
1 光ファイバ部品
11 第1光ファイバ
12 第2光ファイバ
13 支持体
14a 第1樹脂体
14b 第2樹脂体
14c 第3樹脂体
15 カバー
16 冷却体
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13