(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-12-19
(45)【発行日】2023-12-27
(54)【発明の名称】無機酸化物微粒子分散液
(51)【国際特許分類】
C01G 25/02 20060101AFI20231220BHJP
C01G 23/04 20060101ALI20231220BHJP
C09D 17/00 20060101ALI20231220BHJP
G02B 1/111 20150101ALI20231220BHJP
【FI】
C01G25/02
C01G23/04 Z
C09D17/00
G02B1/111
(21)【出願番号】P 2020525603
(86)(22)【出願日】2019-06-12
(86)【国際出願番号】 JP2019023210
(87)【国際公開番号】W WO2019240154
(87)【国際公開日】2019-12-19
【審査請求日】2022-05-24
(31)【優先権主張番号】P 2018114607
(32)【優先日】2018-06-15
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000214250
【氏名又は名称】ナガセケムテックス株式会社
(74)【代理人】
【識別番号】110000914
【氏名又は名称】弁理士法人WisePlus
(72)【発明者】
【氏名】杉浦 祐基
【審査官】本多 仁
(56)【参考文献】
【文献】国際公開第2016/093014(WO,A1)
【文献】特開2015-091985(JP,A)
【文献】特開2011-116943(JP,A)
【文献】国際公開第2016/182007(WO,A1)
【文献】特開平4-220468(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
C01G 25/00ー25/06
C01G 23/00-23/08
C09D 1/00-201/10
G02B 1/111
(57)【特許請求の範囲】
【請求項1】
下記(A)~(D)成分:
(A)酸化ジルコニウム(ZrO
2)、酸化チタン(TiO
2)、及びチタン酸バリウム(BaTiO
3)からなる群より選ばれる少なくとも1種の無機酸化物微粒子
(B)ポリアクリル酸系分散剤、ポリカルボン酸系分散剤、リン酸系分散剤、及びシリコーン系分散剤からなる群より選ばれる少なくとも1種の分散剤
(C)アルコキシシラン化合物、及び
(D)ハンセン溶解度パラメータの水素結合項(dH)が11以下、極性項(dP)が4以上である溶媒
を混合する工程、及び、
該混合物を湿式粉砕する工程
を含み、
(A)無機酸化物微粒子100重量部に対し、(B)分散剤と(C)アルコキシシラン化合物の総量が5~40重量部であり、
(A)無機酸化物微粒子100重量部に対し、(B)分散剤の配合量が0.25~8重量部であり、
(A)無機酸化物微粒子、(B)分散剤、及び(C)アルコキシシラン化合物を(D)溶媒に一括添加する
無機酸化物微粒子分散液の製造方法。
【請求項2】
(B)分散剤と(C)アルコキシシラン化合物の重量比が20:80~5:95である、
請求項1に記載の無機酸化物微粒子分散液の製造方法。
【請求項3】
下記(A)~(D)成分:
(A)酸化ジルコニウム(ZrO
2)、酸化チタン(TiO
2)、及びチタン酸バリウム(BaTiO
3)からなる群より選ばれる少なくとも1種の無機酸化物微粒子、
(B)ポリアクリル酸系分散剤、ポリカルボン酸系分散剤、リン酸系分散剤、及びシリコーン系分散剤からなる群より選ばれる少なくとも1種の分散剤、
(C)アルコキシシラン化合物、及び
(D)ハンセン溶解度パラメータの水素結合項(dH)が11以下、極性項(dP)が4以上である溶媒
を含有し、
(A)無機酸化物微粒子100重量部に対し、(B)分散剤と(C)アルコキシシラン化合物の総量が5~40重量部であり、
(A)無機酸化物微粒子100重量部に対し、(B)分散剤の配合量が0.25~8重量部であ
る
無機酸化物微粒子分散液。
【請求項4】
(B)分散剤と(C)アルコキシシラン化合物の重量比が20:80~5:95である、請求項3に記載の無機酸化物微粒子分散液。
【請求項5】
(A)無機酸化物微粒子100重量部に対し、(B)分散剤と(C)アルコキシシラン化合物の総量が5~40重量部である、
請求項
3又は4に記載の無機酸化物微粒子分散液。
【請求項6】
請求項
3~5のいずれかに記載の無機酸化物微粒子分散液、及びバインダー樹脂を含む樹脂組成物。
【請求項7】
固形分中の無機酸化物微粒子の含有量が30重量%以上である、請求項
6に記載の樹脂組成物。
【請求項8】
請求項
6又は7に記載の樹脂組成物を硬化してなる硬化物。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、無機酸化物微粒子分散液に関する。
【背景技術】
【0002】
近年、ディスプレイの反射防止や光学レンズの集光効率向上のために、酸化チタン、酸化ジルコニウム等の高屈折率を示す無機酸化物微粒子を配合した光学コーティング組成物が検討されており、実用化されている。
【0003】
このような光学コーティング組成物は、無機酸化物微粒子の分散液を、分散状態を維持しながら硬化性樹脂に混合して得ることができる。無機酸化物微粒子は表面にヒドロキシ基を有しており、親水性を示すため、非水溶性の硬化性樹脂に混合しようとした場合に、凝集を起こして白濁したり、時には増粘して流動性を失ったりすることもある。そこで、無機酸化物微粒子の分散状態を安定化させる技術として、分散剤の添加やシランカップリング剤による表面処理を使用した無機微粒子分散液の製法が種々提案されている。ところが、微粒子を分散安定化させ凝集を防止する分散剤は、多量に配合すると、得られる薄膜や成形体の耐光性や耐熱性を低下させてしまうことがある。したがって、分散剤の使用量を低減しつつ無機酸化物微粒子を分散させることが求められており、シランカップリング剤による表面処理との併用や複雑なプロセスでの分散液調製が検討されている。
【0004】
特許文献1は酸化ジルコニウムナノ粒子を分散剤、分散媒、シランカップリング剤を用いて分散している。無機酸化物微粒子に分散剤を添加する工程の後で、アルコキシシランを分割添加することが必要である。
【0005】
特許文献2は無機酸化物微粒子をメタノールに分散させた後で、非アルコール親油性有機溶媒に溶媒置換している。無機酸化物微粒子の分散は可能だが、溶媒置換工程が必要である。
【先行技術文献】
【特許文献】
【0006】
【文献】特開2010-189506号公報
【文献】特開2015-117157号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
無機酸化物微粒子を簡便に分散でき、かつ、分散剤の使用量を低減できる、無機酸化物微粒子分散液の製造方法を提供することを目的とする。
【課題を解決するための手段】
【0008】
本発明者らは、特定の溶媒を用いると無機酸化物微粒子を簡便に分散でき、かつ、分散剤の使用量を低減できることを見出し、本発明を完成した。
【0009】
すなわち、本発明は、下記(A)~(D)成分:
(A)酸化ジルコニウム(ZrO2)、酸化チタン(TiO2)、及びチタン酸バリウム(BaTiO3)からなる群より選ばれる少なくとも1種の無機酸化物微粒子
(B)分散剤
(C)アルコキシシラン化合物、及び
(D)ハンセン溶解度パラメータの水素結合項(dH)が11以下、極性項(dP)が4以上である溶媒
を混合する工程、及び、
該混合物を湿式粉砕する工程
を含む、無機酸化物微粒子分散液の製造方法に関する。
【0010】
(B)分散剤と(C)アルコキシシラン化合物の重量比が20:80~5:95であることが好ましい。
【0011】
(A)無機酸化物微粒子100重量部に対し、(B)分散剤と(C)アルコキシシラン化合物の総量が5~40重量部であることが好ましい。
【0012】
また、本発明は、下記(A)~(D)成分:
(A)酸化ジルコニウム(ZrO2)、酸化チタン(TiO2)、及びチタン酸バリウム(BaTiO3)からなる群より選ばれる少なくとも1種の無機酸化物微粒子、
(B)分散剤、
(C)アルコキシシラン化合物、及び
(D)ハンセン溶解度パラメータの水素結合項(dH)が11以下、極性項(dP)が4以上である溶媒
を含有し、
(B)分散剤と(C)アルコキシシラン化合物の重量比が20:80~5:95である無機酸化物微粒子分散液に関する。
【0013】
(A)無機酸化物微粒子100重量部に対し、(B)分散剤と(C)アルコキシシラン化合物の総量が5~40重量部であることが好ましい。
【0014】
また、本発明は、前記無機酸化物微粒子分散液、及びバインダー樹脂を含む樹脂組成物に関する。
【0015】
固形分中の無機酸化物微粒子の含有量が30重量%以上であることが好ましい。
【0016】
また、本発明は、前記樹脂組成物を硬化してなる硬化物に関する。
【発明の効果】
【0017】
本発明の無機酸化物微粒子分散液の製造方法は、無機酸化物微粒子を簡便に分散でき、かつ、分散剤の使用量を低減できる。また、本発明の樹脂組成物を硬化してなる塗膜は、良好な光学特性と高い信頼性を有する。
【発明を実施するための形態】
【0018】
<<無機酸化物微粒子分散液の製造方法>>
本発明は、下記(A)~(D)成分:
(A)酸化ジルコニウム(ZrO2)、酸化チタン(TiO2)、及びチタン酸バリウム(BaTiO3)からなる群より選ばれる少なくとも1種の無機酸化物微粒子
(B)分散剤
(C)アルコキシシラン化合物、及び
(D)ハンセン溶解度パラメータの水素結合項(dH)が11以下、極性項(dP)が4以上である溶媒
を混合する工程、及び、
該混合物を湿式粉砕する工程
を含む、無機酸化物微粒子分散液の製造方法に関する。
【0019】
<(A)無機酸化物微粒子>
本発明では(A)無機酸化物微粒子として、入手の容易さ、屈折率等の光学特性の調整が容易であることから、酸化ジルコニウム(ZrO2)、酸化チタン(TiO2)、及びチタン酸バリウム(BaTiO3)からなる群より選ばれる少なくとも1種を用いる。これらの中でも酸化ジルコニウムが好ましい。これらの無機酸化物微粒子は、異種の元素がドープされた化合物であってもよい。無機酸化物微粒子に異種の元素がドープされた化合物としては、例えば、タンタルドープ酸化チタンや、ニオブドープ酸化チタン等が挙げられる。これらの無機酸化物微粒子は、単独で使用してもよいし、2種以上を併用してもよい。また、無機酸化物微粒子の製法も特に限定されない。
【0020】
無機酸化物微粒子の一次粒子径は特に限定されないが、1~50nmが好ましく、5~30nmがより好ましい。1nm未満であると、無機酸化物微粒子の比表面積が大きく、凝集エネルギーが高いため、分散安定性を保つことが困難となることがある。一方、50nmを超えると、薄膜や成形体中の無機酸化物微粒子による光の散乱が激しくなり、透明性を高く維持できないことがある。なお、一次粒子径は、SEM,TEM等の電子顕微鏡や、比表面積からの換算で測定することができる。
【0021】
本発明の分散液中の無機酸化物微粒子の平均粒子径は10~70nmが好ましく、10~50nmがより好ましい。10nm未満とするには、一次粒子径の小さい粒子を用いる必要があるため、分散が困難となることがある。一方、70nmを超えると、薄膜、成形体等の硬化物にした際に、白濁することがある。二次粒子径は動的光散乱法、レーザー回折法等の装置で測定することができる。
【0022】
無機酸化物微粒子の配合量は、分散液中、5~80重量%が好ましく、10~70重量%がより好ましく、20~65重量%がさらに好ましく、30~65重量%が最も好ましい。上記範囲内であると、光学特性が十分に発揮され、製膜性も維持できる。
【0023】
<(B)分散剤>
分散剤は、無機酸化物微粒子を後述の溶媒中で分散できれば特に限定されないが、例えば、ポリアクリル酸系分散剤、ポリカルボン酸系分散剤、リン酸系分散剤、シリコーン系分散剤が挙げられる。
【0024】
ポリアクリル酸系分散剤としては、例えばポリアクリル酸ナトリウムが挙げられ、市販品としてアロンシリーズ(東亞合成株式会社製)、シャロールシリーズ(第一工業製薬株式会社製)が挙げられる。
【0025】
ポリカルボン酸系分散剤としては、例えばカチオンで中和されていない酸性タイプのものやポリカルボン酸アンモニウム塩が挙げられ、市販品としてAH-103P(第一工業製薬株式会社製)、SNディスパーサント5020、SNディスパーサント5468(サンノプコ株式会社製)、ポイズ532A、ポイズ2100(花王株式会社製)、マリアリムAKM-0531、マリアリムAKM-1511-60、マリアリムHKM-50A、マリアリムHKM-150A(日油株式会社製)が挙げられる。
【0026】
リン酸系分散剤としては、例えば、ポリオキシエチレンアルキルエーテルリン酸エステルが挙げられる。市販品としてフォスファノールRA-600、ML-220(東邦化学工業株式会社製)、ディスパロンPW-36(楠本化成株式会社製)が挙げられる。
【0027】
シリコーン系分散剤としては、例えば、変性シリコーンオイル等が挙げられる。市販品として、ES-5612(東レ・ダウコーニング社製)が挙げられる。
【0028】
分散剤の配合量は、無機酸化物微粒子100重量部に対して0.25~8重量部が好ましく、0.5~7重量部がより好ましく、1~5重量部がさらに好ましい。配合量が0.25重量部未満では、無機酸化物微粒子が十分に分散されないことがあり、8重量部を超えると薄膜、成形体等に加工した際に耐光性や耐熱性を低下させてしまうことや無機酸化物微粒子の特性が十分に得られないことがある。
【0029】
<(C)アルコキシシラン化合物>
アルコキシシラン化合物は、分散液をバインダー樹脂と混合したときに無機酸化物微粒子とバインダーとの親和性を高める目的で添加する。本発明の分散液を酸性条件又はアルカリ性条件にすると、無機酸化物微粒子の表面に存在する水酸基とアルコキシシラン化合物が反応し、無機酸化物微粒子の表面処理を行うことができる。
【0030】
アルコキシシラン化合物としては、
下記式(I)
SiR4 (I)
(式中、Rは、水素、水酸基、炭素数1~4のアルコキシ基、置換基を有してもよいアルキル基、置換基を有してもよいフェニル基である。但し、4つのRのうち少なくとも1個は炭素数1~4のアルコキシ基又は水酸基である)
で表される化合物が好ましい。
【0031】
アルコキシシラン化合物の具体例としては、3-メタクリロキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、フェニルトリメトキシシラン、ビニルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、p-スチリルトリメトキシシラン、3-アクリロキシプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-ウレイドプロピルトリエトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、ビス(トリエトキシシリルプロピル)テトラスルフィド、3-イソシアネートプロピルトリエトキシシラン等のトリアルコキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、ジメチルジメトキシシラン、ジフェニルジメトキシシラン等のジアルコキシシランが挙げられる。これらは単独で用いてもよいし、2種以上を併用してもよい。これらの中でも、トリアルコキシシランが好ましく、3-メタクリロキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、フェニルトリメトキシシランがより好ましい。
【0032】
アルコキシシラン化合物の配合量は、無機酸化物微粒子100重量部に対して4~50重量部が好ましく、6~38重量部がより好ましく、8~20重量部がさらに好ましい。配合量が4重量部未満では、無機酸化物微粒子を均一に分散することが難しいことがあり、50重量部を超えると無機酸化物を高充填できず目的の特性が得られないことがある。
【0033】
また、分散液中の(B)分散剤と(C)アルコキシシラン化合物の重量比は、20:80~5:95が好ましく、18:82~7:93がより好ましく、18:82~9:91がさらに好ましい。分散剤20に対しアルコキシシラン化合物の重量比が80を下回ると分散剤が過剰となり、薄膜、成形体等に加工した際に特性低下の原因となることがあり、分散剤5に対しアルコキシシラン化合物の重量比が95を超えると均一な分散液を作製するのが難しいことがある。
【0034】
本発明では所定の溶媒を用いることにより、分散剤を低減しながら無機酸化物微粒子を簡便に分散できる。(A)無機酸化物微粒子100重量部に対し、(B)分散剤と(C)アルコキシシラン化合物の総量は5~40重量部であることが好ましく、7~35重量部であることがより好ましく、10~30重量部であることがさらに好ましい。(A)無機酸化物微粒子100重量部に対し(B)分散剤と(C)アルコキシシラン化合物の総量が5重量部を下回ると無機酸化物微粒子が十分に分散されないことがあり、40重量部を超えると、分散体を利用して得られる光学コーティング塗膜、光学部材、成形体等において屈折率、耐光性、耐熱性を低下させてしまうことがある。
【0035】
<(D)溶媒>
本発明では、ハンセン溶解度パラメータの水素結合項(dH)が11以下、極性項(dP)が4以上である溶媒を用いる。これにより、分散剤の使用量を低減しながら安定な無機酸化物微粒子の分散液を得ることができる。さらに、無機酸化物微粒子を、上記要件を満たさない溶媒に分散させる場合、まず無機酸化物微粒子に分散剤を添加し、その後、アルコキシシランを分割添加することや、アルコール性溶媒に分散した後に非アルコール性親油性有機溶媒への溶媒置換が必要となる。しかし、本発明における溶媒中では、無機酸化物微粒子、分散剤、アルコキシシラン化合物を一括添加しても微分散させることができ、分散後の溶媒置換も必須ではなく、分散工程を簡略化可能である。
【0036】
ハンセン溶解度パラメータは、ヒルデブランド(Hildebrand)による溶解度を、分散項dD、極性項dP、水素結合項dHの3つのパラメータで表現するものである。分散項dD、極性項dP、水素結合項dHは物質固有の物性値であり、例えば、「Hansen Solubility Parameters:A User’s Handbook,HSPiP 3rd Edition ver.3.0.20」に示されている。
【0037】
本発明において溶媒のハンセン溶解度パラメータの水素結合項(dH)は11以下である。11を超えると良好な分散状態の分散液を得ることが難しくなることがある。また、水素結合項(dH)の下限は特に限定されないが、通常3以上である。
【0038】
溶媒のハンセン溶解度パラメータの極性項(dP)は4以上であるが、5以上がより好ましい。4を下回ると良好な分散状態の分散液を得ることが難しくなることがある。また、極性項(dP)の上限は特に限定されないが、通常13以下である。
【0039】
溶媒のハンセン溶解度パラメータの分散項(dD)は特に限定されないが14~20が好ましい。
【0040】
ハンセン溶解度パラメータの水素結合項(dH)が11以下、極性項(dP)が4以上である溶媒としては、プロピレングリコールモノメチルエーテルアセテート、メチルイソブチルケトン、シクロペンタノン、メチルエチルケトン、テトラヒドロフラン等が挙げられる。これらの溶媒は、単独で用いてもよいが、混合後に前記ハンセン溶解度パラメータを満たす限り2以上を混合して使用してもよい。混合溶媒とする場合、その成分として単独では前記ハンセン溶解度パラメータを満たさない溶媒を使用してもよく、配合比を調整することにより混合溶媒のハンセン溶解度パラメータの水素結合項(dH)を11以下、極性項(dP)を4以上とすればよい。単独では前記ハンセン溶解度パラメータを満たさないが混合溶媒の成分として使用できる溶媒としては、プロピレングリコールモノメチルエーテル、イソプロパノール、トルエン、メタノール、水等が挙げられる。
【0041】
前述した溶媒の中でも、単独溶媒としてはプロピレングリコールモノメチルエーテルアセテート、メチルイソブチルケトン、シクロペンタノンが好ましい。また、混合溶媒としては、シクロペンタノンとプロピレングリコールモノメチルエーテルとを50:50(重量基準)の比で混合した溶媒が好ましい。
【0042】
溶媒の配合量は、無機酸化物微粒子100重量部に対して30~900重量部が好ましく、50~400重量部がより好ましく、60~400重量部がさらに好ましい。配合量が30重量部未満では、粘度が高くなり分散が難しいことがあり、900重量部を超えると固形分濃度が低くなり無機酸化物微粒子を高充填できず、目的の特性が得られなくなる場合がある。
【0043】
<任意成分>
無機酸化物微粒子分散液には、前述した成分に加えて、任意に他の成分を含有していてもよい。他の成分としては、例えば、(A)無機酸化物微粒子以外の無機微粒子、アクリル酸エステルモノマー、エポキシ樹脂等が挙げられる。
【0044】
(A)無機酸化物微粒子以外の無機微粒子としては、例えば、酸化ケイ素(SiO2)、酸化アルミニウム(Al2O3)、酸化鉄(Fe2O3、FeO、Fe3O4)、酸化銅(CuO、Cu2O)、酸化亜鉛(ZnO)、酸化イットリウム(Y2O3)、酸化ニオブ(Nb2O5)、酸化モリブデン(MoO3)、酸化インジウム(In2O3、In2O)、酸化スズ(SnO2)、酸化タンタル(Ta2O5)、酸化タングステン(WO3、W2O5)、酸化鉛(PbO、PbO2)、酸化ビスマス(Bi2O3)、酸化セリウム(CeO2、Ce2O3)、酸化アンチモン(Sb2O5、Sb2O5)、酸化ゲルマニウム(GeO2、GeO)等の金属酸化物微粒子、チタン/ケイ素複合酸化物、イットリウム安定化ジルコニア等の2種以上の金属元素から構成される複合酸化物、及び金、銀、銅、半導体等の非酸化物無機微粒子が挙げられる。複合酸化物は、多成分の元素からなる化合物や固溶体だけではなく、核となる金属酸化物微粒子の周囲を他の金属元素で構成される金属酸化物で被覆したコアシェル構造を有するもの、1個の金属酸化物微粒子の中に他の複数の金属酸化物微粒子が分散しているような多成分分散型の構造を有するものを包含する。(A)無機酸化物微粒子以外の無機微粒子を含有する場合、その含有量は特に限定されないが、適宜(A)無機酸化物微粒子の配合量を元に調整すればよい。
【0045】
<混合工程>
(A)無機酸化物微粒子、(B)分散剤、(C)アルコキシシラン化合物、及び(D)溶媒の混合順は特に限定されず、溶媒に対し無機酸化物微粒子、分散剤、アルコキシシラン化合物を任意の順番で添加してもよい。本発明における溶媒は無機酸化物微粒子を分散させやすいため、全ての成分を一括で添加することもできる。
【0046】
<湿式粉砕工程>
湿式粉砕工程では、混合工程で得られた混合物を湿式粉砕により粉砕する。ハンセン溶解度パラメータの水素結合項(dH)が11以下、極性項(dP)が4以上である溶媒中で湿式粉砕することにより、無機酸化物微粒子の粉砕と、該粉砕物の分散を同時に行う。湿式粉砕工程で用いる湿式粉砕機としては、ボールミル、ビーズミルが挙げられるが、これらのミルとは異なる機構を有する装置を用いてもよい。湿式粉砕機としてビーズミルを用いる場合、ビーズ径は30~100μmが好ましく、回転速度は6~12m/秒が好ましい。
【0047】
<<無機酸化物微粒子分散液>>
本発明の機酸化物微粒子分散液は、
下記(A)~(D)成分:
(A)無機酸化物微粒子、
(B)分散剤、
(C)アルコキシシラン化合物、及び
(D)ハンセン溶解度パラメータの水素結合項(dH)が11以下、極性項(dP)が4以上である溶媒
を含有し、
(B)分散剤と(C)アルコキシシラン化合物の重量比が20:80~5:95であることを特徴とする。無機酸化物微粒子分散液に含まれる成分、含有量、製造方法は、無機酸化物微粒子分散液の製造方法について前述した通りである。
【0048】
<<樹脂組成物>>
本発明の樹脂組成物は、前記無機酸化物微粒子分散液、及びバインダー樹脂を含む。この樹脂組成物の固形分中、無機酸化物微粒子の含有量は30重量%以上が好ましく、50重量%以上がより好ましく、70重量%以上が更に好ましい。上記範囲内であると、この樹脂組成物を硬化してなる硬化物において、必要な屈折率を得ることができる。
【0049】
バインダー樹脂としては、特に限定されず、例えばエポキシ樹脂、ポリシロキサン樹脂、ポリエステル樹脂、アクリル樹脂、ウレタン樹脂、ポリオレフィン樹脂、メラミン等が挙げられる。これらは単独で用いてもよいし、2種以上を併用してもよい。
【0050】
エポキシ樹脂としては、特に限定されないが、例えば、ビスフェノールA型、ビスフェノールF型、フェノールノボラック型、ベンゼン環を多数有した多官能型であるテトラキス(ヒドロキシフェニル)エタン型又はトリス(ヒドロキシフェニル)メタン型、ビフェニル型、トリフェノールメタン型、ナフタレン型、オルソノボラック型、ジシクロペンタジエン型、アミノフェノール型、脂環式等のエポキシ樹脂、シリコーンエポキシ樹脂等が挙げられる。これらは単独で用いてもよいし、2種以上を併用してもよい。
【0051】
ポリシロキサン樹脂としては、例えば、下記式(I)により表されるアルコキシシランのモノマー同士が縮合したアルコキシシランであって、シロキサン結合(Si-O-Si)を1分子内に1個以上有するオリゴマー等が挙げられる。
SiR1
4 (I)
(式中、R1は、水素、水酸基、炭素数1~4のアルコキシ基、置換基を有しても良いアルキル基、置換基を有しても良いフェニル基である。但し、4つのR1のうち少なくとも1個は炭素数1~4のアルコキシ基又は水酸基である)
ポリシロキサン樹脂は、式(I)により表されるアルコキシシランが2分子以上縮合したものであることが好ましい。
【0052】
ポリシロキサン樹脂の構造は特に限定されず、直鎖状であっても良く、分岐状でも良い。また、ポリシロキサン樹脂は、式(I)により表される化合物を単独で用いても良いし、2種以上併用しても良い。
【0053】
上記ポリシロキサン樹脂として、 シリコンアルコキシドアクリル系樹脂、シリコンアルコキシドエポキシ系樹脂、シリコンアルコキシドビニル系樹脂、シリコンアルコキシドメタクリル系樹脂、シリコンアルコキシドチオール系樹脂、シリコンアルコキシドアミノ系樹脂、シリコンアルコキシドイソシアネート系樹脂、シリコンアルコキシドアルキル系樹脂、及びシリコンアルコキシド基以外の官能基を有しないシリコンアルコキシド系樹脂などのシリコンアルコキシド系樹脂を挙げることができる。
【0054】
上記ポリシロキサン樹脂の具体的な構成成分としては、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン、メチルトリメトキシシラン、ジメチルジメトキシシラン、トリメチルメトキシシラン、メチルトリエトキシシラン、メチルフェノキシシラン、n-プロピルトリメトキシシラン、ジイソプロピルジメトキシシラン、イソブチルトリメトキシシラン、ジイソブチルジメトキシシラン、イソブチルトリエトキシシラン、n-ヘキシルトリメトキシシラン、n-ヘキシルトリエトキシシラン、シクロヘキシルメチルジメトキシシラン、n-オクチルトリエトキシシラン、n-デシルトリメトキシシラン、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシランなどのテトラアルコキシシラン又はテトラフェノキシシラン、メチルシリケートオリゴマー、エチルシリケートオリゴマーなどのアルコキシシリケートオリゴマー等を挙げることができる。これらの中でもテトラアルコキシシラン、テトラフェノキシシラン、アルコキシシリケートオリゴマーが好ましい。
【0055】
ポリシロキサン樹脂の重量平均分子量は特に限定されないが、1000より大きく5000以下であることが好ましく、1300より大きく3700以下であることがより好ましく、1500~3500であることがさらに好ましい。
【0056】
ポリエステル樹脂としては、2つ以上のカルボキシル基を分子内に有する化合物と2つ以上のヒドロキシル基を有する化合物とを重縮合して得られた高分子化合物であれば特に限定されず、例えば、ポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート等が挙げられる。これらは単独で用いてもよいし、2種以上を併用してもよい。
【0057】
アクリル樹脂としては、特に限定されないが、例えば、(メタ)アクリル系樹脂、ビニルエステル系樹脂等が挙げられる。これらのアクリル樹脂としては、例えば、カルボキシル基、酸無水物基、スルホン酸基、燐酸基などの酸基を有する重合性単量体を構成モノマーとして含む重合体であればよく、例えば、酸基を有する重合性単量体の単独又は共重合体、酸基を有する重合性単量体と共重合性単量体との共重合体等が挙げられる。これらは単独で用いてもよいし、2種以上を併用してもよい。
【0058】
(メタ)アクリル系樹脂は、(メタ)アクリル系単量体を主たる構成モノマー(例えば、50モル%以上)として含んでいれば共重合性単量体と重合していてもよく、この場合、(メタ)アクリル系単量体及び共重合性単量体のうち、少なくとも一方が酸基を有していればよい。
【0059】
(メタ)アクリル系樹脂としては、例えば、酸基を有する(メタ)アクリル系単量体[(メタ)アクリル酸、スルホアルキル(メタ)アクリレート、スルホン酸基含有(メタ)アクリルアミド等]又はその共重合体、酸基を有していてもよい(メタ)アクリル系単量体と、酸基を有する他の重合性単量体[他の重合性カルボン酸、重合性多価カルボン酸又は無水物、ビニル芳香族スルホン酸等]及び/又は共重合性単量体[例えば、(メタ)アクリル酸アルキルエステル、グリシジル(メタ)アクリレート、(メタ)アクリロニトリル、芳香族ビニル単量体等]との共重合体、酸基を有する他の重合体単量体と(メタ)アクリル系共重合性単量体[例えば、(メタ)アクリル酸アルキルエステル、ヒドロキシアルキル(メタ)アクリレート、グリシジル(メタ)アクリレート、(メタ)アクリロニトリル等]との共重合体、酸基を有していない(メタ)アクリル系単量体[アルキル(メタ)アクリレート、アリール(メタ)アクリレート(フルオレン系(メタ)アクリレート等]又はその共重合体、ロジン変性ウレタンアクリレート、特殊変性アクリル樹脂、ウレタンアクリレート、エポキシアクリレート、ウレタンアクリレートエマルジョン等が挙げられる。
【0060】
これらの(メタ)アクリル系樹脂の中では、(メタ)アクリル酸-(メタ)アクリル酸エステル重合体(アクリル酸-メタクリル酸メチル共重合体等)、(メタ)アクリル酸-(メタ)アクリル酸エステル-スチレン共重合体(アクリル酸-メタクリル酸メチル-スチレン共重合体等)等が好ましい。
【0061】
ポリウレタンとしては、イソシアネート基を有する化合物とヒドロキシル基を有する化合物を共重合させて得られた高分子化合物であれば特に限定されず、例えば、エステル・エーテル系ポリウレタン、エーテル系ポリウレタン、ポリエステル系ポリウレタン、カーボネート系ポリウレタン、アクリル系ポリウレタン等が挙げられる。これらは単独で用いてもよいし、2種以上を併用してもよい。
【0062】
ポリオレフィン樹脂としては、特に限定されないが、例えば、ポリエチレン、ポリプロピレン、塩素化ポリプロピレン、無水マレイン酸変性ポリプロピレン、無水マレイン酸変性塩素化ポリプロピレン等が挙げられる。これらは単独で用いてもよいし、2種以上を併用してもよい。
【0063】
以上に挙げたバインダー樹脂の中でも、光学用途の硬化物を得る目的では、光学特性を調整しやすいために熱硬化性のバインダー樹脂が好ましく、熱硬化性のエポキシ樹脂、ポリシロキサン樹脂がより好ましい。バインダー樹脂は単独で用いてもよいし、2種以上を併用してもよい。
【0064】
バインダー樹脂の含有量は、特に限定されないが、無機酸化物微粒子100重量部に対して5~100重量部であることが好ましく、10~80重量部であることがより好ましく、10~50重量部がさらに好ましい。上記範囲内であると、製膜時にクラックが発生せず、均一な膜が形成できる上に、光学特性に優れる。
【0065】
<任意成分>
樹脂組成物には、前述した成分に加えて、任意に他の成分を含有していてもよい。他の成分としては、例えば、重合開始剤、光増感剤、溶媒、レベリング剤、界面活性剤、消泡剤、中和剤、酸化防止剤、離型剤、紫外線吸収剤等が挙げられる。
【0066】
重合開始剤としては、光重合開始剤、ラジカル開始剤が挙げられる。
【0067】
光重合開始剤としては、例えばアセトフェノン、2,2-ジエトキシアセトフェノン、p-ジメチルアセトフェノン、p-ジメチルアミノプロピオフェノン、ジクロロアセトフェノン、トリクロロアセトフェノン、p-tert-ブチルアセトフェノンなどのアセトフェノン類;ベンゾフェノン、2-クロロベンゾフェノン、p,p’-ビスジメチルアミノベンゾフェノンなどのベンゾフェノン類;ベンジル、ベンゾイン、ベンゾインメチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテルなどのベンゾインエーテル類;ベンジルジメチルケタール、チオキサンテン、2-クロロチオキサンテン、2,4-ジエチルチオキサンテン、2-メチルチオキサンテン、2-イソプロピルチオキサンテンなどのイオウ化合物;2-エチルアントラキノン、オクタメチルアントラキノン、1,2-ベンズアントラキノン、2,3-ジフェニルアントラキノンなどのアントラキノン類;アゾビスイソブチロニトリル、ベンゾイルパーオキサイド、クメンパーオキサイドなどの有機過酸化物;および2-メルカプトベンゾイミダゾール、2-メルカプトベンゾオキサゾール、2-メルカプトベンゾチアゾールなどのチオール化合物が挙げられる。これらの化合物は、その1種を単独で使用してもよく、また、2種以上を組み合わせて使用することもできる。光重合開始剤の配合量は、バインダー樹脂100重量部に対して、0.05~5.0重量部が好ましく、より好ましくは0.1~3.0重量部である。
【0068】
ラジカル開始剤としては、例えばケトンパーオキサイド系化合物、ジアシルパーオキサイド系化合物、ハイドロパーオキサイド系化合物、ジアルキルパーオキサイド系化合物、パーオキシケタール系化合物、アルキルパーエステル系化合物、パーカーボネート系化合物、アゾビス系化合物などでなるラジカル開始剤が挙げられる。これらの化合物は、その1種を単独で使用してもよく、また、2種以上を組み合わせて使用することもできる。ラジカル開始剤の配合量は、バインダー樹脂100重量部に対して、0.05~10.0重量部が好ましく、より好ましくは0.1~5.0重量部である。
【0069】
溶媒は、水系又は有機溶剤系の何れも好適に使用できるが、例えば、トルエン、エチルベンゼン、トリメチルベンゼン、キシレン等の芳香族炭化水素系溶剤、ペンタン、ヘキサン、シクロヘキサン等の脂肪族炭化水素系溶剤、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶剤、メタノール、エタノール、イソプロパノール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール等のアルコール系溶剤、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、メチルジグリコール、エチルジグリコール、ブチルジグリコール、プロピレングリコールモノメチルエーテル等のグリコールエーテル系溶剤、酢酸エチル、酢酸ブチル、プロピレングリコールモノメチルエーテルアセテート等のエステル系溶剤、水等が挙げられる。また、芳香族炭化水素系溶剤として使用できる市販品としては、ソルベッソ100、ソルベッソ150、ソルベッソ200等が挙げられる。これらは単独で用いても良いし、2種以上を併用しても良い。
【0070】
溶媒の含有量は、塗布方法、所望する塗膜の膜厚によって選択すればよく、特に限定されないが、樹脂組成物の固形分100重量部に対して10~5000重量部であることが好ましく、20~2000重量部であることがより好ましい。10重量部未満であると、粘度が高くなり、均一に塗工できないことがあり、5000重量部を超えると、十分な膜厚の塗膜が得られないことがある他、経済性や揮発性有機化合物の過剰使用の観点から好ましくない。
【0071】
<<硬化物>>
本発明の硬化物は、前記樹脂組成物を硬化してなることを特徴とする。このような硬化物の例としては、前記樹脂組成物を基材表面に塗布し、硬化して得られた塗膜が挙げられる。本発明の樹脂組成物は、そこに含まれる無機酸化物微粒子分散液において分散剤の含有量を低減しながら無機酸化物微粒子を十分に分散できている。よって、この樹脂組成物を硬化して得られる塗膜は、良好な光学特性と高い信頼性を有する。
【0072】
塗膜の形成方法は特に限定されないが、樹脂組成物を基材の少なくとも一つの表面に塗布した後、加熱して硬化させる方法等が挙げられる。樹脂組成物の基材表面への塗布方法としては、例えば、バーコート法、スピンコート法、スプレーコート法、ディップコート法、ノズルコート法、グラビアコート法、リバースロールコート法、ダイコート法、エアドクターコート法、ブレードコート法、ロッドコート法、カーテンコート法、ナイフコート法、トランスファロールコート法、スクイズコート法、含浸コート法、キスコート法、カレンダコート法、押出コート法等が挙げられる。
【0073】
塗布した樹脂組成物の硬化条件は特に限定されないが、加熱温度は80~300℃であることが好ましく、90~120℃であることがより好ましい。また、加熱時間は、5~300秒間であることが好ましく、20~120秒間であることがより好ましい。加熱時間が5秒間未満では硬化不良となることがあり、300秒間を超えると基材の材質によっては基材の形状が損なわれることがあり、また、工程に要する時間が長くなるため生産性の観点からも好ましくない。
【0074】
硬化後の塗膜の厚みは特に限定されないが、0.1~30μmであることが好ましく、0.3~20μmであることがより好ましい。厚みが0.1μm未満であると、塗膜の平滑性が不十分となることがあり、30μmを超えると、内部応力の増加により基材への密着性が不十分となることがある。
【0075】
<基材>
基材の材質は、特に限定されないが、樹脂、無機材料、紙、シリコーン等の半導体作製基板が挙げられる。
【0076】
樹脂としては、ポリエチレンテレフタラート、ポリエチレンナフタレート等のポリエステル、ポリエチレン、ポリプロピレン、ポリメチルペンテン等のポリオレフィン、シクロオレフィン、ポリスチレン、ポリテトラフルオロエチレン、PMMA、ナイロン6、ナイロン66等のポリアミド、ポリカーボネート、ポリ酢酸ビニル、ポリイミド、ABS樹脂等が挙げられる。これらの中では、経済性、加工容易性の観点からポリエステルが好ましい。無機材料としては、ガラス、石英、セラミック、Ni、Cu、Cr、Feなどの金属基板、ITO等の導電基材等が挙げられる。
【0077】
上記硬化物は、光学コーティング塗膜、光学部材や成形体の形で、光学デバイスに好適に用いることができる。光学デバイスの具体例としては、例えば、有機EL照明、有機ELディスプレイ、タッチパネル、液晶ディスプレイ、CMOSイメージセンサー等が挙げられる。
【実施例】
【0078】
以下、実施例を挙げて本発明を説明するが、本発明は以下の実施例に限定されない。以下、「部」又は「%」は特記ない限り、それぞれ「重量部」又は「重量%」を意味する。
【0079】
(1)使用材料
(1-1)無機酸化物微粒子
酸化ジルコニウム(第一稀元素化学工業株式会社製、UEP-50、平均一次粒子径20nm)
酸化ジルコニウム(第一稀元素化学工業株式会社製、UEP-100、平均一次粒子径10nm)
酸化チタン(日本アエロジル社製、P90、平均一次粒子径13nm)
(1-2)分散剤
ポリエーテルリン酸エステル系分散剤(楠本化成株式会社製、ディスパロンPW-36、有効成分50%)
(1-3)アルコキシシラン化合物
3-メタクリロキシプロピルトリメトキシシラン(信越化学工業株式会社製、KBM-503)
3-グリシドキシプロピルトリメトキシシラン(信越化学工業株式会社製、KBM-403)
フェニルトリメトキシシラン(信越化学工業株式会社製:KBM-103)
(1-4)溶媒
プロピレングリコールモノメチルエーテルアセテート(株式会社ダイセル社製、PGMEA)
メチルイソブチルケトン(昭和化学社製、MIBK)
シクロペンタノン(日本ゼオン社製、CPN)
プロピレングリコールモノメチルエーテル(日本乳化剤株式会社製、PGME)
(1-5)バインダー樹脂
フルオレン系アクリレート(大阪ガスケミカル社製、OGSOL EA-0250P)
ポリシロキサン1(合成例1で製造)
(1-6)重合開始剤
Omnirad127(IGM Resins B.V.社製)
(1-7)レベリング剤
BYK-301(BYK Chemie社製)
【0080】
各溶媒のハンセン溶解度パラメータを表1に示す。
【表1】
なお、CPN/PGMEは、シクロペンタノンとプロピレングリコールモノメチルエーテルとを50:50(重量基準)の比で混合した溶媒を示す。
【0081】
(2)実施例1~11、比較例1~3
表2に示す配合量で無機酸化物微粒子、分散剤、アルコキシシラン化合物、及び溶媒を混合した。次いで、該混合物を、メディア型分散機(ビーズミル)を用いて分散させ、無機酸化物微粒子分散液を得た。ビーズミルの処理条件は、混合物の仕込み総重量350g、ビーズ径50μm、回転速度10m/秒、分散時間180分とした。
【0082】
得られた分散液中の、無機酸化物微粒子の平均粒子径及び保存安定性を、後述する方法で測定した。結果を表2に示す。なお、表2において、分散剤、アルコキシシラン化合物、及び溶媒の配合量は、無機酸化物微粒子100重量部に対する重量部を示す。
【0083】
(3)微粒子分散液の評価方法
(3-1)平均粒子径
実施例及び比較例の分散液について、Malvern社製ゼータサイザーナノZSを用いて、動的光散乱法にて測定した散乱強度分布に基づきZ-平均粒子径を算出した。
(3-2)保存安定性
実施例及び比較例の分散液について、製造後1日間静置した後の流動性を目視により確認し、製造直後と同じ流動性を有しているものを「○」と評価した。なお、比較例1~3では沈殿が生じたため保存安定性を評価することができなかった。
【0084】
【0085】
表2に示すように、実施例1~11の分散液では、無機酸化物微粒子の平均粒子径は40nm以下であり、十分な分散性が得られており、保存安定性も良好だった。分散剤を含まない比較例1、アルコキシシラン化合物を含まない比較例2、溶媒の要件を満たさない比較例3では、無機酸化物微粒子を十分に分散できず、平均粒子径が大きかった。比較例1~3では沈殿が生じた。
【0086】
(4)合成例1(バインダー樹脂の合成)
3-メタクリロキシプロピルトリメトキシシラン(信越化学工業株式会社製、KBM-503)とフェニルトリメトキシシラン(信越化学工業株式会社製、KBM-103)をモル比90:10となるように混合し、MIBKにて50重量%に希釈、水をアルコキシシラン合計量の3当量加えた。20重量%の水酸化ナトリウム水溶液をアルコキシシラン合計量の0.05当量滴下し、60℃にて3時間加熱した。反応後の溶液に水を加え取り除く分液工程を3度行い、硫酸ナトリウムを加え脱水させた。その後エバポレーバーにて濃縮し、ポリシロキサン1を得た。得られたポリシロキサン1の分子量をGPCにて測定したところ、重量平均分子量は3300であった。
【0087】
(5)製造例1(無機酸化物微粒子分散液の製造)
無機酸化物微粒子としてUEP50を100重量部、分散剤としてPW-36を10重量部、アルコキシシラン化合物としてKBM-503を10重量部、溶媒としてPGMEを120重量部を混合した。次いで、該混合物を、メディア型分散機(ビーズミル)を用いて分散させ、無機酸化物微粒子分散液を得た。ビーズミルの処理条件は、混合物の仕込み総重量350g、ビーズ径50μm、回転速度10m/秒、分散時間180分とした。得られた無機酸化物微粒子分散液の平均粒子径は40nmであり、製造後1日間静置した後も製造直後と同じ流動性を有していた。
【0088】
(6)実施例12~18、比較例4~5
下記表3に示す各成分を混合し、コーティング用樹脂組成物を得た。表3の配合量は重量比を示し、溶剤以外は固形分の数値である。得られたコーティング用樹脂組成物を、バーコーター(No.8)を用いてガラス基材上に塗布し、110℃で40秒間、熱風乾燥機内で加熱して硬化させて膜厚8μmの塗膜を形成し、部材を得た。部材を室温まで冷却させたものを試験片として用いて、後述する方法により塗膜外観、屈折率、全光線透過率、ヘイズ値、及び、信頼性試験後の塗膜外観の評価を行った。評価結果を表3に示す。
【0089】
(7)塗膜の評価方法
(7-1)塗膜外観
上記で作製した試験片の塗膜の状態について目視観察を行い、以下の基準に基づいて評価した。
良好:凝集物やムラがなく、均一な塗膜である
白化:局所的に微粒子が凝集し、白化が発生した。
【0090】
(7-2)屈折率
上記で作製した試験片の屈折率を、分光エリプソメーター(ジェー・エー・ウーラム・ジャパン株式会社製、M-2000C)を用いて、550nmにおける屈折率を測定した。
【0091】
(7-3)全光線透過率、ヘイズ値
上記で作製した試験片の全光線透過率、ヘイズ値について、JIS K7150に従い、ヘイズコンピュータ(スガ試験機社製、HGM-2B)を用いて測定した。
【0092】
(7-4)信頼性試験後の塗膜外観の評価
温度85℃、相対湿度85%の湿熱オーブン中に、上記で作製した試験片を暴露し、500時間後の塗膜外観を観察し、クラックの有無を確認した。
【0093】
【0094】
表3に示すように、実施例12~18では基材上に良好な塗膜を形成することができ、塗膜の耐久性は高く、屈折率、全光線透過率、ヘイズ値も良好であった。比較例4では使用した微粒子分散液にアルコキシシラン化合物が含まれておらず、無機酸化物微粒子を十分に分散できなかったため、塗膜が白化し、光学特性も劣っていた。比較例5では塗膜は形成できたが、使用した製造例1の微粒子分散液に分散剤が多く含まれているために塗膜の信頼性が低かった。