IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社ジャパンディスプレイの特許一覧

<>
  • 特許-蒸着装置および表示装置の作製方法 図1A
  • 特許-蒸着装置および表示装置の作製方法 図1B
  • 特許-蒸着装置および表示装置の作製方法 図1C
  • 特許-蒸着装置および表示装置の作製方法 図2A
  • 特許-蒸着装置および表示装置の作製方法 図2B
  • 特許-蒸着装置および表示装置の作製方法 図3
  • 特許-蒸着装置および表示装置の作製方法 図4
  • 特許-蒸着装置および表示装置の作製方法 図5
  • 特許-蒸着装置および表示装置の作製方法 図6
  • 特許-蒸着装置および表示装置の作製方法 図7
  • 特許-蒸着装置および表示装置の作製方法 図8
  • 特許-蒸着装置および表示装置の作製方法 図9
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-12-20
(45)【発行日】2023-12-28
(54)【発明の名称】蒸着装置および表示装置の作製方法
(51)【国際特許分類】
   C23C 14/24 20060101AFI20231221BHJP
   G09F 9/00 20060101ALI20231221BHJP
   H05B 33/10 20060101ALI20231221BHJP
   H10K 50/10 20230101ALI20231221BHJP
【FI】
C23C14/24 R
C23C14/24 G
G09F9/00 338
H05B33/10
H05B33/14 A
【請求項の数】 23
(21)【出願番号】P 2019202642
(22)【出願日】2019-11-07
(65)【公開番号】P2021075750
(43)【公開日】2021-05-20
【審査請求日】2022-11-07
(73)【特許権者】
【識別番号】502356528
【氏名又は名称】株式会社ジャパンディスプレイ
(74)【代理人】
【識別番号】110000408
【氏名又は名称】弁理士法人高橋・林アンドパートナーズ
(72)【発明者】
【氏名】上村 孝明
(72)【発明者】
【氏名】平田 教行
(72)【発明者】
【氏名】水越 寛文
【審査官】西田 彩乃
(56)【参考文献】
【文献】特表2020-501005(JP,A)
【文献】国際公開第2018/110953(WO,A1)
【文献】特開2014-019913(JP,A)
【文献】特開2015-137389(JP,A)
【文献】特表2019-502017(JP,A)
【文献】特開2019-094562(JP,A)
【文献】特開2019-113341(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
C23C 14/24
H05B 33/10
H10K 50/10
H10K 59/10
G09F 9/00
(57)【特許請求の範囲】
【請求項1】
蒸着マスクを用いて基板に有機材料を蒸着する表示装置の作製方法であって、
前記基板を、前記基板の表面が重力方向と交差する方向を向くように配置し、
前記基板の前記表面側に対向して前記蒸着マスクを、前記蒸着マスクの表面が前記重力方向と交差する方向を向くように配置し、
前記基板の裏面側に、前記基板から離間されるようにマグネットを配置し、
第1位置における前記基板と前記蒸着マスクとの間の第1ギャップ(l)を検出し、
第2位置における前記基板と前記蒸着マスクとの間の第2ギャップ(l)を検出し、
式3を満たすように、前記第1ギャップ(l)および前記第2ギャップ(l)を調整し、
前記マグネットを前記基板に近づけることにより前記蒸着マスクを前記基板の前記表面側に引き寄せ、前記基板の一部と接した状態で前記有機材料を前記基板に蒸着する表示装置の作製方法。
【数1】

(L12:前記第1位置と前記第2位置との間の距離)
【請求項2】
式4を満たす請求項1に記載の表示装置の作製方法。
【数2】
【請求項3】
さらに、第3位置における前記基板と前記蒸着マスクとの間の第3ギャップ(l)を検出し、
式5を満たすように、前記第1ギャップ(l)および前記第3ギャップ(l)を調整する請求項1または請求項2に記載の表示装置の作製方法。
【数3】

(L13:前記第1位置と前記第3位置との間の距離)
【請求項4】
式6を満たす請求項3に記載の表示装置の作製方法。
【数4】
【請求項5】
鉛直方向において、前記第1位置は、前記第2位置の上方に位置する請求項1乃至請求項4のいずれか一項に記載の表示装置の作製方法。
【請求項6】
前記第1位置および前記第2位置の各々は、前記基板の四隅近傍のいずれか1つである請求項1乃至請求項5のいずれか一項に記載の表示装置の作製方法。
【請求項7】
前記第1ギャップ(l)および前記第2ギャップ(l)の各々は、同期して調整される請求項1乃至請求項6のいずれか一項に記載の表示装置の作製方法。
【請求項8】
蒸着マスクを用いて基板に有機材料を蒸着する表示装置の作製方法であって、
前記基板を縦方向に立てて配置し、
前記基板の表面側に対向して前記蒸着マスクを配置し、
前記基板の裏面側に、前記基板から離間されるようにマグネットを配置し、
第1位置および第2位置を含むn個(nは3以上の自然数)の検出位置を有し、前記第1位置から第n位置における前記基板と前記蒸着マスクとの各ギャップを検出し、前記各ギャップのうちの最大値と最小値の差が小さくなるように、前記第1位置から前記第位置を同時に調整し、
前記マグネットを前記基板に近づけることにより前記蒸着マスクを前記基板の前記表面側に引き寄せ、前記基板の一部と接した状態で前記有機材料を前記基板に蒸着する表示装置の作製方法。
【請求項9】
前記第1位置から前記第n位置は、前記基板の端部近傍に設けられる請求項に記載の表示装置の作製方法。
【請求項10】
前記基板は矩形であり、前記第1位置から前記第n位置の全部または一部は、前記基板の四隅に設けられている請求項に記載の表示装置の作製方法。
【請求項11】
基板を、前記基板の表面が重力方向と交差する方向を向くように配置する手段と、
前記基板の表面側に対向して蒸着マスクを、前記蒸着マスクの前記表面が前記重力方向と交差する方向を向くように配置する手段と、
前記基板の裏面側に、前記基板から離間されるように配置されるマグネットと、
第1位置における前記基板と前記蒸着マスクとの間の第1ギャップ(l)を検出する第1検出部と、
第2位置における前記基板と前記蒸着マスクとの間の第2ギャップ(l)を検出する第2検出部と、
前記第1ギャップ(l)を調整する第1調整部と、
前記第2ギャップ(l)を調整する第2調整部と、を含み、
前記第1調整部および前記第2調整部は、式9を満たすように、前記第1ギャップ(l)および前記第2ギャップ(l)を調整し、
前記マグネットを前記基板に近づけることにより前記蒸着マスクを前記基板の前記表面側に引き寄せ、前記基板の一部と接した状態で有機材料を前記基板に蒸着する蒸着装置。
【数5】

(L12:前記第1位置と前記第2位置との間の距離)
【請求項12】
式10を満たす請求項11に記載の蒸着装置。
【数6】
【請求項13】
さらに、
第3位置における前記基板と前記蒸着マスクとの間の第3ギャップ(l)を検出する第3検出部と、
前記第3ギャップ(l)を調整する第3調整部と、を含み、
前記第1調整部および前記第3調整部は、式11を満たすように、前記第1ギャップ(l)および前記第3ギャップ(l)を調整する請求項11または請求項12に記載の蒸着装置。
【数7】

(L13:前記第1位置と前記第3位置との間の距離)
【請求項14】
式12を満たす請求項13に記載の蒸着装置。
【数8】
【請求項15】
鉛直方向において、前記第1調整部は、前記第2調整部の上方に位置する請求項11乃至請求項14のいずれか一項に記載の蒸着装置。
【請求項16】
前記第1位置および前記第2位置の各々は、前記基板の四隅近傍のいずれか1つである請求項11乃至請求項15のいずれか一項に記載の蒸着装置。
【請求項17】
前記第1調整部および前記第2調整部が同期している請求項11乃至請求項16のいずれか一項に記載の蒸着装置。
【請求項18】
縦方向に配置された基板の表面側に対向して蒸着マスクを配置する手段と、
前記基板の裏面側に、前記基板から離間されるように配置されるマグネットと、
第1位置における前記基板と前記蒸着マスクとの第1ギャップを検出する第1検出部と、
第2位置における前記基板と前記蒸着マスクとの第2ギャップを検出する第2検出部と、
前記第1ギャップを調整する第1調整部と、
前記第2ギャップを調整する第2調整部と、を含み、
前記第1調整部および前記第2調整部は、前記第1ギャップと前記第2ギャップの差が小さくなるように、前記第1位置および前記第2位置を同時に調整し、
前記マグネットを前記基板に近づけることにより前記蒸着マスクを前記基板の前記表面側に引き寄せ、前記基板の一部と接した状態で有機材料を前記基板に蒸着する蒸着装置。
【請求項19】
前記第1位置および前記第2位置を含むn個(nは3以上の自然数)の検出位置を有し、
前記第1位置の前記第1ギャップから第n位置の第nギャップにおける前記基板と前記蒸着マスクとの各ギャップを検出する前記第1検出部から第n検出部と、
前記第1調整部、前記第2調整部を含む、各ギャップのそれぞれを調整する前記第1調整部から第n調整部と、を含み、
前記各ギャップのうちの最大値と最小値の差が小さくなるように、前記第1位置から前記第n位置を同時に調整する請求項18に記載の蒸着装置。
【請求項20】
前記第1位置から前記第n位置は、前記基板の端部近傍に設けられる請求項19に記載の蒸着装置。
【請求項21】
前記基板は矩形であり、前記第1位置から前記第n位置の全部または一部は、前記基板の四隅に設けられている請求項20に記載の蒸着装置。
【請求項22】
前記第1調整部および前記第2調整部は、前記蒸着マスク側に設けられる請求項18に記載の蒸着装置。
【請求項23】
前記基板の前記蒸着マスクとは反対側に、前記基板の位置を調整する基板側調整部をさらに有する請求項22に記載の蒸着装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明の一実施形態は、蒸着装置に関する。また、蒸着装置を用いて作製される表示装置およびその作製方法に関する。
【背景技術】
【0002】
表示装置として、有機エレクトロルミネッセンス材料(有機EL材料)を表示領域の発光素子(有機EL素子)に用いた有機EL表示装置(Organic Electroluminescence Display)が知られている。有機EL表示装置は、有機EL材料を発光させることにより表示を実現する、いわゆる自発光型の表示装置である。
【0003】
有機EL素子は、アノード(陽極)とカソード(陰極)との間に、有機EL材料を含む。有機EL材料は、低分子材料または高分子材料が知られているが、蒸着法で薄膜を形成することができる低分子材料が用いられることが多い。
【0004】
蒸着法で使用する蒸着装置の一つとして、蒸着装置内に基板を立てて配置する縦型蒸着装置が知られている(例えば、特許文献1および特許文献2参照)。縦型蒸着装置では、大型基板を立てて処理することができるため、占有面積を小さくすることができるという利点がある。
【先行技術文献】
【特許文献】
【0005】
【文献】特開2012-84544号公報
【文献】特開2014-70239号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
縦型蒸着装置では、横型蒸着装置と異なり、基板および蒸着マスクを縦方向(鉛直方向、重力方向)に立てて配置する。そのため、縦型蒸着装置では横型蒸着装置と異なる問題が発生している。例えば、基板と蒸着マスクとの位置合わせにおいて、基板に蒸着マスクを引き寄せる際には磁力を利用するが、横型蒸着装置の場合、磁力の方向と重力の方向が一致しているため、位置合わせにおける重力の影響は小さい。一方、縦型蒸着装置の場合、磁力の方向と重力の方向とが異なるため、重力の影響による位置ずれが発生する。基板が大型化すると、位置合わせにおける位置ずれの量はさらに顕著になる。
【0007】
本発明者らは、鋭意研究を重ねた結果、縦型蒸着装置では、基板と蒸着マスクとの位置合わせ前における基板と蒸着マスクとのギャップが位置ずれに関連していることを見出した。また、本発明者らは、基板と蒸着マスクとのギャップを制御することにより、縦型蒸着装置における位置ずれによる不良を低減することができることを見出した。
【0008】
横型蒸着装置では、基板と蒸着マスクとのギャップの調整を手動で行っても位置ずれの調整は十分可能であった。しかしながら、縦型蒸着装置において手動で基板と蒸着マスクとのギャップを調整する場合、微調整が何度も必要となって時間がかかりすぎるため、基板ごとにギャップを調整することが難しかった。
【0009】
本発明は、上記問題に鑑み、基板と蒸着マスクとのギャップの調整時間が短縮された蒸着装置および表示装置の作製方法を提供することを課題の一つとする。また、蒸着工程における不良が低減された蒸着装置および表示装置の作製方法を提供することを課題の一つとする。
【課題を解決するための手段】
【0010】
本発明の一実施形態に係る表示装置の作製方法は、蒸着マスクを用いて基板に有機材料を蒸着する表示装置の作製方法であって、基板に対向して蒸着マスクを配置し、第1位置における基板と前記蒸着マスクとの間の第1ギャップ(l)を検出し、第2位置における基板と蒸着マスクとの間の第2ギャップ(l)を検出し、式3を満たすように、前記第1ギャップ(l)および前記第2ギャップ(l)を調整する。
【0011】
【数1】
【0012】
また、本発明の一実施形態に係る蒸着装置は、基板に対向して蒸着マスクを配置する手段と、第1位置における基板と蒸着マスクとの間の第1ギャップ(l)を検出する第1検出部と、第2位置における基板と蒸着マスクとの間の第2ギャップ(l)を検出する第2検出部と、第1ギャップ(l)を調整する第1調整部と、第2ギャップ(l)を調整する第2調整部と、を含み、第1調整部および第2調整部は、式9を満たすように、第1ギャップ(l)および第2ギャップ(l)を調整する。
【0013】
【数2】
【0014】
ここで、式3および式9におけるL12は、第1位置と前記第2位置との間の距離である。
【0015】
また、本発明の一実施形態に係る表示装置の作製方法は、蒸着マスクを用いて基板に有機材料を蒸着する表示装置の作製方法であって、基板を縦方向に立てて配置し、基板に対向して蒸着マスクを配置し、第1位置における基板と蒸着マスクとの間の第1ギャップを検出し、第2位置における基板と蒸着マスクとの間の第2ギャップを検出し、第1ギャップと第2ギャップの差が小さくなるように、第1位置および第2位置を同時に調整する。
【0016】
また、本発明の一実施形態に係る蒸着装置は、縦方向に配置された基板に対向して蒸着マスクを配置する手段と、第1位置における基板と蒸着マスクとの間の第1ギャップを検出する第1検出部と、第2位置における基板と蒸着マスクとの間の第2ギャップを検出する第2検出部と、第1ギャップを調整する第1調整部と、第2ギャップを調整する第2調整部と、を含み、第1調整部および第2調整部は、第1ギャップと第2ギャップの差が小さくなるように、第1位置および第2位置を同時に調整する。
【図面の簡単な説明】
【0017】
図1A】第1実施形態に係る蒸着装置で用いる蒸着マスクの正面図である。
図1B】第1実施形態に係る蒸着装置で用いる蒸着マスクの断面図である。
図1C】第1実施形態に係る蒸着装置で用いる蒸着マスクの部分拡大図である。
図2A】第1実施形態に係る蒸着装置で行われる、基板に対する蒸着マスクの位置が固定される前の状態を示す模式図である。
図2B】第1実施形態に係る蒸着装置で行われる、基板に対する蒸着マスクの位置が固定された後の状態を示す模式図である。
図3】第1実施形態において、蒸着回数に対して、Δギャップおよび蒸着工程における歩留まりの相関関係を示すグラフである。
図4】第1実施形態に係る蒸着装置の断面模式図である。
図5】第1実施形態に係る蒸着装置の平面模式図である。
図6】第2実施形態に係る表示装置の作製方法における蒸着工程のフローチャートである。
図7】第2実施形態に係る表示装置の模式図である。
図8】第2実施形態に係る表示装置の画素の回路図である。
図9】第2実施形態に係る表示装置の画素の断面図である。
【発明を実施するための形態】
【0018】
以下、本発明の実施形態について、図面を参照しつつ説明する。ただし、本発明は、その要旨を逸脱しない範囲において様々な態様で実施することができ、以下に例示する実施形態の記載内容に限定して解釈されるものではない。図面は、説明をより明確にするため、実際の態様に比べ、各部の幅、厚さ、形状等について模式的に表される場合があるが、あくまで一例であって、本発明の解釈を限定するものではない。本明細書と各図面において、既出の図面に関して説明したものと同様の機能を備えた要素には、同一の符号を付して、重複する説明を省略することがある。
【0019】
本明細書および特許請求の範囲において、「上」および「下」とは、基板における発光素子が形成される側の面(以下、単に「表面」という。)を基準とした相対的な位置関係を指す。例えば、本明細書では、基板の表面から発光素子に向かう方向を「上」といい、その逆の方向を「下」という。また、本明細書および特許請求の範囲において、ある構造体の上に他の構造体を配置する態様を表現するにあたり、単に「上に」と表記する場合、特に断りの無い限りは、ある構造体に接するように、直上に他の構造体を配置する場合と、ある構造体の上方に、さらに別の構造体を介して他の構造体を配置する場合との両方を含むものとする。
【0020】
<第1実施形態>
図1図5を用いて、本発明の一実施形態に係る蒸着装置100について説明する。
【0021】
始めに、本実施形態に係る蒸着装置100で用いる蒸着マスク200について説明する。
【0022】
[蒸着マスク]
図1Aは、蒸着マスク200の正面図である。また、図1Bは、図1Aに示すA-A’線に沿って切断した蒸着マスク200の断面図である。また、図1Cは、図1Aに示す領域Bを拡大した部分拡大図である。
【0023】
図1Aおよび図1Bに示すように、蒸着マスク200は、マスクフレーム210と、メタルマスク220とを含む。マスクフレーム210は中央が矩形に開口され、その開口を覆うようにメタルマスク220が設けられている。すなわち、メタルマスク220の外周部がマスクフレーム210に固定されている。
【0024】
メタルマスク220は、マスクフレーム210に溶接されて固定されていてもよく、接着剤で固定されていてもよい。メタルマスク220をマスクフレーム210に接着剤で固定する場合、エポキシ系の耐熱性のある接着剤を用いることが好ましい。
【0025】
また、図1Cに示すように、メタルマスク220には、複数の開口部230が設けられている。開口部230を通過した蒸着材料が基板300(図2A参照)に堆積し、開口部230のパターンが基板300上に形成される。開口部230のパターンは、基板300の画素の配置パターンと対応するものであってもよく、基板300の画素の一部の配置パターンであってもよい。開口部230のパターンとしては、例えば、マトリクス状または千鳥状に設けることができる。
【0026】
マスクフレーム210は、メタルマスク220を支持するため、蒸着マスク200に歪みが生じないように剛性材料で構成されることが好ましい。剛性材料としては、例えば、ステンレス鋼(SUS)、鉄ニッケル合金、またはアルミニウム合金である。
【0027】
マスクフレーム210の厚さは特に限定されないが、例えば、5mm以上100mm以下である。マスクフレーム210は複数の構造物で構成されてもよい。マスクフレーム210の厚さが小さい場合には、マスクフレーム210の剛性が低下するため、歪みを生じやすい。一方、マスクフレーム210の厚さが大きい場合には、蒸着マスク200の重量が大きくなるため、蒸着装置100における蒸着マスク200の取り扱いが困難になる。そのため、マスクフレーム210の厚さは、上記範囲が好ましい。
【0028】
メタルマスク220は、複数の開口部230を設けることができるように加工性のよい材料で構成されることが好ましい。メタルマスク220の材料として、例えば、ステンレス鋼、ニッケル材料系、鉄ニッケル合金、またはアルミニウム合金などを用いることができる。また、有機EL素子の発光層の画素パターンのように微細な開口部230が必要である場合、メタルマスク220は、磁力を用いて基板300に引き寄せてメタルマスク220の位置を固定する。そのため、メタルマスク220の材料は、磁性材料を含むことが好ましい。磁性材料は、例えば、純鉄、炭素鋼、W鋼、Cr鋼、Co鋼、KS鋼、MK鋼、NKS鋼、CuNiCo鋼、またはAl-Fe合金などである。また、メタルマスク220の表面に磁性材料を塗布することもできる。
【0029】
メタルマスク220の厚さは特に限定されないが、例えば、100μm以下であり、好ましくは、2μm以上10μm以下がよい。メタルマスク220の厚さが小さい場合には剛性が弱くなるため、メタルマスク220が破断されやすい。また、蒸着時の輻射熱によるメタルマスク220の変形も起こりやすい。一方、メタルマスク220の厚さが大きい場合には、開口部230の側壁が厚くなるため、開口部230内に蒸着材料が入りにくくなる現象(シャドー効果)が生じる。そのため、メタルマスク220の厚さは、上記範囲が好ましい。
【0030】
縦型蒸着装置では、蒸着マスク200を縦方向(鉛直方向、重力方向)に立てて配置する。蒸着マスク200の形状が一対の長辺および一対の短辺を有する矩形である場合、蒸着マスク200は、長辺を立てて配置してもよく、短辺を立てて配置してもよい。また、縦方向(鉛直方向、重力方向)とは、縦型蒸着装置の接地面に対して垂直な方向に限られず、実質的に垂直な方向も含む。さらに、縦型蒸着装置の蒸着マスク200は、縦方向に対して傾斜させて配置することもできる。蒸着マスク200を傾斜させた場合における縦方向に対する傾斜角は、例えば、0°以上30°以下である。
【0031】
次に、縦型蒸着装置において、蒸着前に行われる基板300に対する蒸着マスク200の位置の固定について説明する。
【0032】
[基板に対する蒸着マスクの位置の固定]
図2Aは、基板300に対する蒸着マスク200の位置が固定される前の状態を示す模式図である。また、図2Bは、基板300に対する蒸着マスク200の位置が固定された後の状態を示す模式図である。
【0033】
図2(A)および図2(B)は、蒸着マスク200のマスクフレーム210およびメタルマスク220と、基板300と、蒸着装置の一部である支持部120およびマグネット部170とが示されている。基板300は、支持部120に支持され、鉛直方向に立てて配置されている。また、蒸着マスク200も、基板300と同様に、鉛直方向に立てて配置されている。なお、蒸着マスク200と基板300とは、一定の間隔を有するよう離れて配置され、その間隔をギャップlとする。
【0034】
マグネット部170は、支持部120を挟んで蒸着マスク200および基板300と対向して設けられている。言い換えると、マグネット部170は、支持部120に対して、蒸着マスク200および基板300が配置された側と反対側に位置する。
【0035】
図2(A)に示すように、マグネット部170が支持部120から離れているときは、蒸着マスク200と基板300との間隔はギャップlが維持されている。一方、図2(B)に示すように、マグネット部170が支持部120に近づくと、メタルマスク220がマグネット部170の磁力に引き寄せられて、蒸着マスク200と基板300との間隔(ギャップl)が狭まり、最終的には、蒸着マスク200のメタルマスク220が基板300の一部と接し、基板300に対する蒸着マスク200の位置が固定される。その後、蒸着材料の蒸着が行われ、基板300上に蒸着マスク200が有するパターンに対応するパターンを有する膜が形成される。なお、蒸着工程には、基板300に対する蒸着マスク200の位置の固定および蒸着のほかに、蒸着マスク200のパターンの位置合わせ(アライメント)などを含む。
【0036】
図3は、蒸着回数に対して、Δギャップおよび蒸着工程における歩留まりの相関関係を示すグラフである。ここで、Δギャップとは、基板300内の複数の位置の各々における基板300と蒸着マスク200とのギャップlのうち、最大ギャップlmaxと最小ギャップlminの差をいう。また、蒸着工程における歩留まりとは、蒸着工程で製造された製品(例えば、表示装置など)から蒸着工程が起因となる不良製品を除いた割合をいう。蒸着工程が起因となる不良としては、基板300上の所定の位置にパターンが形成されない、またはパターンの位置がずれて形成される、いわゆる位置ずれなどである。
【0037】
図3に示すように、蒸着回数が多くなるにつれて、基板300と蒸着マスク200とのΔギャップが増加する。これは、磁力による位置ずれが部分的に生じるためである。すなわち、縦型蒸着装置では重力の方向と磁力の方向が異なるため、基板300と蒸着マスク200の面内距離にばらつきが生じやすく、基板300面に対して、蒸着マスク200面が傾きやすい。そして、時間が経過とともにΔギャップは大きくなる傾向にある。このため、蒸着回数が多くなるにつれて、蒸着工程における面内ばらつきが生じ、歩留まりは減少する。すなわち、本発明者らは、基板300と蒸着マスク200とのΔギャップが増加すると、蒸着工程における歩留まりが減少する相関関係があることを見出した。蒸着ごとに、基板300と蒸着マスク200とのギャップ調整を行うことで蒸着工程における歩留まりは改善されるが、従来の縦型蒸着装置では、基板300と蒸着マスク200とのギャップ調整に時間がかかりすぎるため、蒸着ごとにギャップを調整することは現実的ではなく、一定の蒸着回数ごと、または蒸着マスク200の交換ごとにしか行われていなかった。
【0038】
一方、本実施形態に係る蒸着装置100は、基板300と蒸着マスク200とのギャップ調整における時間が短いため、蒸着ごとに、基板300と蒸着マスク200とのギャップを調整することが可能である。もちろん、本実施形態に係る蒸着装置100は、許容される位置ずれの量に応じて、一定の蒸着回数ごと、または蒸着マスク200の交換ごとに行うこともでき、この場合においても、基板300と蒸着マスク200とのギャップを調整する時間を短縮することができる。
【0039】
続いて、図4および図5を用いて、本実施形態に係る蒸着装置100について説明する。
【0040】
図4は、本実施形態に係る蒸着装置100の断面模式図である。図4に示すように、蒸着装置100は、蒸着源110と、支持部120と、第1基板用クランプ130-1と、第2基板用クランプ130-2と、第1光学センサ140-1と、第2光学センサ140-2と、第1蒸着マスク用クランプ150-1と、第2蒸着マスク用クランプ150-2と、第1調整部160-1と、第2調整部160-2と、マグネット部170と、位置合わせ用カメラ180と、第1基板側調整部190-1と、第2基板側調整部190-2とを含む。
【0041】
なお、本明細書では、第1基板用クランプ130-1と第2基板用クランプ130-2を特に区別しない場合は、基板用クランプ130と記載して説明する。同様に、第1光学センサ140-1と第2光学センサ140-2、第1蒸着マスク用クランプ150-1と第2蒸着マスク用クランプ150-2、第1調整部160-1と第2調整部160-2、および第1基板側調整部190-1と第2基板側調整部190-2を特に区別しない場合も、それぞれ、光学センサ140、蒸着マスク用クランプ150、調整部160、および基板側調整部190と記載して説明する。
【0042】
蒸着源110は、基板側に開口を有する坩堝と、坩堝を加熱するヒータとを含む。坩堝に蒸着材料を入れ、ヒータによって坩堝が加熱されると、坩堝の開口から蒸発した蒸着材料が飛び出す。飛び出した蒸着材料は、蒸着マスク200の開口部230を通り、基板300上に堆積される。蒸着源110は、複数設けてもよく、鉛直方向に移動することができるようにしてもよい。
【0043】
支持部120は、基板300を支持することができ、基板300に撓みを生じないようにするため、基板300側に平坦面を有することが好ましい。
【0044】
基板用クランプ130は、基板300を保持し、支持部120上に基板300を固定することができる。図4に示すように、基板300が鉛直方向に立てて配置される場合、第1基板用クランプ130-1が基板300の上部を固定し、第2基板用クランプ130-2が基板300の下部を固定する。基板用クランプ130は、基板300の上部および下部の各々に複数設けることもできる。特に、基板300を安定して保持することができるように、基板300が矩形である場合には、基板用クランプ130は、基板300の四隅に対して設けられていることが好ましい。
【0045】
光学センサ140は、基板300と蒸着マスク200とのギャップを検出することができる。また、光学センサ140は、複数の位置でギャップを検出することができるように、複数の光学センサ140が設けられることが好ましい。例えば、図4に示すように、基板300が鉛直方向に立てて配置される場合、第1光学センサ140-1が基板300の上部の第1位置の第1ギャップlを検出し、第2光学センサ140-2が基板300の下部の第2位置の第2ギャップlを検出することが好ましい。
【0046】
光学センサ140として、例えば、コンフォーカルセンサを用いることができる。コンフォーカルセンサは、白色光(LEDなど)をマルチレンズに通して分散させ、基板300の表面および蒸着マスク200の表面に焦点を合わせる。基板300の表面および蒸着マスク200の表面に焦点があった単色光をスペクトロメータで検出し、基板300の表面と蒸着マスク200の表面との距離(ギャップl)を算出する。なお、光学センサ140は、コンフォーカルセンサに限られない。光学センサ140は、基板300の表面と蒸着マスク200の表面との間の距離(ギャップl)を測定することができるものであればよく、複数の測長センサで構成することもできる。例えば、光学センサ140は、基板300の表面の距離を測定する第1測長センサと、蒸着マスク200の表面の距離を測定する第2測長センサとを含み、第1測長センサで測定した第1距離と第2測長センサで測定した第2距離とから、基板300の表面と蒸着マスク200の表面との距離(ギャップl)を算出することもできる。
【0047】
蒸着マスク用クランプ150は、蒸着マスク200を保持し、固定することができる。また、蒸着マスク用クランプ150は、調整部160と連結し、調整部160によって蒸着マスク200の位置を調整できるようになっている。図4に示すように、蒸着マスク200が鉛直方向に立てて配置される場合、第1蒸着マスク用クランプ150-1が蒸着マスク200の上部を固定し、第2蒸着マスク用クランプ150-2が蒸着マスク200の下部を固定する。蒸着マスク用クランプ150は、蒸着マスク200の上部および下部の各々に複数設けることもできる。特に、蒸着マスク200を安定して保持することができるように、蒸着マスク用クランプ150は、蒸着マスク200が矩形である場合には、蒸着マスク200の四隅に対して設けられていることが好ましい。
【0048】
調整部160は、光学センサ140で検出されたギャップを基にして、基板300と蒸着マスク200との間隔が所定のΔギャップ以下となるように、自動で蒸着マスク用クランプ150を動かし、基板300に対する蒸着マスク200の位置を調整することができる。すなわち、調整部160は、光学センサ140からの信号を受信し、その信号を基に自動で蒸着マスク用クランプ150を調整することができる。そのため、調整部160は、光学センサ140と通信接続できるように電気的に接続されていてもよい。また、調整部160は、光学センサ140と同様に、複数設けられることが好ましい。例えば、図4に示すように、蒸着マスク200が鉛直方向に立てて配置される場合、第1調整部160-1が第1光学センサ140-1で検出されたギャップを基にして、第1蒸着マスク用クランプ150-1を調整することができ、第2調整部160-2が第2光学センサ140-2で検出されたギャップを基にして、第2蒸着マスク用クランプ150-2を調整することができる。
【0049】
調整部160は、蒸着マスク用クランプ150を基板300に対して垂直方向(図面の左右方向)へ移動させて、基板300と蒸着マスク200とのギャップlを調整することができる。また、第1調整部160-1および第2調整部160-2の各々は、独立して駆動するように蒸着マスク用クランプ150に連結されたモータと、モータの駆動を制御するための制御部とを含む。制御部は、光学センサ140で検出されたギャップを基に、モータの駆動を制御する。すなわち、調整部160の制御部は、光学センサ140で検出されるギャップlが所定の範囲内となるように、蒸着マスク用クランプ150に連結されたモータを調整する。調整部160は、モータに限られず、蒸着マスク用クランプ150を移動することができるアクチュエータであればよい。また、モータは、基板300に対して垂直方向の調整だけでなく、基板300に対して水平方向の調整ができてもよい。
【0050】
図4では、2つの調整部160が示されているが、蒸着マスク用クランプ150が蒸着マスク200の四隅に設けられている場合、それぞれの蒸着マスク用クランプ150に対して調整部160が設けられる。すなわち、4つの調整部が設けられる。また、4つの調整部160が独立して駆動することもできるが、4つの調整部160の各々の制御部が同期していることが好ましい。これにより、4箇所を同時に駆動することが可能になり、Δギャップの調整を短時間で行うことができるようになる。
【0051】
複数の調整部160が設けられる場合、複数の調整部160の制御部はお互いが接続されていてもよい。例えば、第1調整部160-1の制御部と第2調整部160-2の制御部とを接続しておくことで、第1調整部160-1による第1ギャップlの調整と第2調整部160-2による第2ギャップlのように複数のギャップlの調整を同期して行うことができる。また、図示しないが、複数の調整部160の制御部が接続された統括制御部を設け、統括制御部の制御によって複数の調整部160を同期させ、ギャップlの調整を行うこともできる。
【0052】
マグネット部170は、支持部120に近づき、マグネット部170の磁力によって蒸着マスク200を基板300の一部と接して、基板300に対する蒸着マスク200の位置を固定することができる。そのため、マグネット部170は、蒸着マスク200を引き寄せるための磁石と、磁石を駆動するための駆動機構とを含む。マグネット部170に含まれる磁石としては、例えば、ネオジム磁石またはフェライト磁石などを用いることができる。
【0053】
位置合わせ用カメラ180は、基板300の所定の位置に設けられたアライメントマークと蒸着マスク200の所定の位置にアライメントマークを撮像することができる。位置合わせ用カメラ180は、調整部160と接続されていてもよい。調整部160は、位置合わせ用カメラ180の撮像に基づいて、基板300と蒸着マスク200との位置を調整する。調整部160は、例えば、2つのアライメントマークが重畳するように、または、2つのアライメントマークが整列するように基板300と蒸着マスク200との位置を調整することができる。なお、位置合わせカメラは180複数設けられていてもよい。
【0054】
基板側調整部190は、支持部120を基板300に対して垂直方向(図面の左右方向)へ移動させて、基板300を蒸着マスク200に近づけることができる。言い換えれば、基板側調整部190は、基板300と蒸着マスク200とのギャップlの粗調整を行うことができる。基板側調整部190は、調整部160と同様の構成としてもよい。また、基板側調整部190と支持部120を連結し、基板側調整部190をスライドさせることによって支持部120を移動させてもよい。さらに、基板側調整部190からピンを突出させることによって支持部120を押し出し、移動させてもよい。
【0055】
基板側調整部190を設けることによって、基板側調整部190でギャップlの粗調整を行い、調整部160でギャップlの微調整を行うことが可能となる。なお、調整部160の微調整と基板側調整部190の粗調整の機能は逆であってもよい。すなわち、マスク側の位置を調整する調整部160でギャップlの粗調整を行い、基板側の位置を調整する基板側調整部190でΔギャップの調整を行ってもよい。
【0056】
図5を用いて、さらに、本発明の一実施形態に係る蒸着装置100について説明する。
【0057】
図5は、本実施形態に係る蒸着装置100の平面模式図である。具体的には、図5は、基板300と蒸着マスク200とのギャップlの調整に関連する構成を表した蒸着装置100の平面模式図である。なお、図5では、基板300のみを示し、蒸着マスク200は省略している。
【0058】
図5に示すように、蒸着装置100は、基板300の第1位置の第1ギャップlを検出する第1光学センサ140-1、第1ギャップlを調整することができる第1蒸着マスク用クランプ150-1、および第1蒸着マスク用クランプ150-1を調整することができる第1調整部160-1と、基板300の第2位置のギャップlを検出する第2光学センサ140-2、第2ギャップlを調整することができる第2蒸着マスク用クランプ150-2、および第2蒸着マスク用クランプ150-2を調整することができる第2調整部160-2と、基板300の第3位置のギャップlを検出する第3光学センサ140-3、ギャップlを調整することができる第3蒸着マスク用クランプ150-3、および第3蒸着マスク用クランプ150-3を調整することができる第3調整部160-3と、基板300の第4位置の第4ギャップlを検出する第4光学センサ140-4、第4ギャップlを調整することができる第4蒸着マスク用クランプ150-4、および第4蒸着マスク用クランプ150-4を調整することができる第4調整部160-4と、基板300の第5位置の第5ギャップlを検出する第5光学センサ140-5、第5ギャップlを調整することができる第5蒸着マスク用クランプ150-5、および第5蒸着マスク用クランプ150-5を調整することができる第5調整部160-5と、基板300の第6位置の第6ギャップlを検出する第6光学センサ140-6、第6ギャップlを調整することができる第6蒸着マスク用クランプ150-6、および第6蒸着マスク用クランプ150-6を調整することができる第6調整部160-6とを含む。
【0059】
ここで、第1位置、第2位置、第3位置、および第4位置は、基板300の四隅近傍の位置である。第1位置および第4位置は、本図において、基板300の上部に位置し、第2位置および第3位置は、基板300の下部に位置している。また、第1位置と第3位置とは基板300の対角上に位置し、第2位置と第4位置も基板300の対角上に位置している。第5位置および第6位置の各々は、第1位置と第2位置との中間に位置し、第6位置は、第3位置と第4位置との中間に位置している。
【0060】
第1調整部160-1、第2調整部160-2、第3調整部160-3、および第4調整部160-4は、それぞれ、第1ギャップl、第2ギャップl、第3ギャップl、および第4ギャップlが1.0mm以下となるように調整する。好ましくは、0.3mmとなるように調整するとよい。
【0061】
また、基板300内での面内ばらつきを抑制して蒸着工程における歩留まりを向上させるため、第1ギャップl、第2ギャップl、第3ギャップl、および第4ギャップlの中から最大ギャップlmaxと最小ギャップlminを選び、これらの差が所定の範囲内となるようにΔギャップが調整される。例えば、Δギャップは、式1を満たすように調整される。
【0062】
【数3】
【0063】
好ましくは、Δギャップは、式2を満たすように調整される。
【0064】
【数4】
【0065】
上述したように、調整部160は、各位置のギャップlを調整するだけでなく、各ギャップlが関連付けされたΔギャップも調整することができる。すなわち、ギャップの2段階調整を行うことにより、基板300内での面内ばらつきを抑制して蒸着工程における歩留まりを向上させることができる。
【0066】
さらに、Δギャップの調整は、ギャップlの検出位置間の距離をパラメータとすることもできる。
【0067】
例えば、第1位置のギャップlおよび第2位置のギャップlの一方が最大ギャップlmaxであり、他方が最小ギャップlminである場合、第1調整部160-1および第2調整部160-2は、式3を満たすように調整する。ここで、L12は第1位置と第2位置との間の距離である。
【0068】
【数5】
【0069】
なお、蒸着工程における歩留まりをさらに向上させるため、第1調整部160-1および第2調整部160-2は、式4を満たすように調整することが好ましい。
【0070】
【数6】
【0071】
また、例えば、第1位置のギャップlおよび第3位置のギャップlの一方が最大ギャップlmaxであり、他方が最小ギャップlminである場合、第1調整部160-1および第3調整部160-3は、式5を満たすように調整する。ここで、L13は第1位置と第3位置との間の距離である。
【0072】
【数7】
【0073】
なお、基板300内での面内ばらつきをさらに抑制するため、第1調整部160-1および第3調整部160-3は、式6を満たすように調整することが好ましい。
【0074】
【数8】
【0075】
同様に、第4調整部160-4および第2調整部160-2ならびに第4調整部160-4および第3調整部160-3を調整することができるが、ここでは説明を省略する。
【0076】
Δギャップの調整は、1点だけでなく、複数の点で行ってもよい。すなわち、基板300は第1位置、第2位置、・・・、第n位置(nは3以上の自然数)となるn個の検出位置を有してもよい。
【0077】
また、基板300の大きさが一定以上(例えば、1500mm×1850mm以上)である場合は、基板300の四隅だけでなく、基板の中間位置でのギャップlも蒸着工程の歩留まりに影響するため、6個の検出位置を有していてもよい。この場合、第5調整部160-5および第6調整部160-6が、それぞれ、第5ギャップlおよび第6ギャップlを調整する。第1位置~第6位置のうち、最大ギャップlmaxおよび最小ギャップlminを持つ二つの位置を選択し、選択した2つの位置において、上記式1~式6を満たすようにすればよい。
【0078】
以上、本実施形態に係る蒸着装置100は、基板300と蒸着マスク200とのギャップlの調整を自動で行うことができる。自動でギャップを調整する場合、手動でギャップlを調整する場合に比べて、ギャップlの調整に要する時間が大幅に短縮される。そのため、蒸着ごとにギャップlの調整を行うことができ、蒸着工程における歩留まりを向上させることができる。また、基板300内の複数の位置におけるギャップlを関連付けた所定の式を満たすようにギャップを調整することで、蒸着工程における歩留まりをさらに向上させることができる。
【0079】
<第2実施形態>
図6を用いて、本発明の一実施形態に係る蒸着装置について説明する。
【0080】
図6は、本実施形態に係る表示装置の作製方法における蒸着工程のフローチャートである。図6に示す蒸着工程は、表示装置の作製方法の中における工程の1つであり、蒸着法によって有機EL素子の有機層を形成する工程である。
【0081】
図6に示すように、蒸着工程は、基板300を搬入するステップ(基板搬入ステップ:S110)と、基板300と蒸着マスクとのギャップを粗調整するステップ(ギャップ粗調整ステップ:S120)と、基板300と蒸着マスク200とのギャップを微調整するステップ(ギャップ微調整ステップ:S125)と、基板300と蒸着マスク200との位置を合わせるステップ(位置合わせステップ:S130)と、基板300に対する蒸着マスク200の位置を固定するステップ(位置固定ステップ:S140)と、蒸着材料を蒸着するステップ(蒸着ステップ:S150)と、蒸着マスク200の位置の固定を解除するステップ(位置固定解除ステップ:S160)と、基板300を搬出するステップ(基板搬出ステップ:S170)とを含む。
【0082】
基板搬入ステップ(S110)では、蒸着装置100に基板300を搬入し、基板300を基板用クランプ130で保持し、固定する。なお、蒸着マスク200は、基板300の搬入前に蒸着装置100に予め固定されていてもよく、基板300の搬入後に蒸着装置100に搬入されて固定されていてもよい。
【0083】
ギャップ粗調整ステップ(S120)では、光学センサ140、支持部120、および基板側調整部190を用いて、基板300と蒸着マスク200とを近づける。具体的には、光学センサ140によってギャップを検出し、基板側調整部190が支持部120を移動させ、所定のギャップ以下となるように調整する。ここでの調整は粗調整であるため、所定のギャップとしては、例えば、1cm以下である。
【0084】
ギャップ微調整ステップ(S125)では、光学センサ140、蒸着マスク用クランプ150、および調整部160を用いて、基板300と蒸着マスク200との間のギャップを微調整する。具体的には、光学センサ140がギャップを検出し、調整部160が蒸着マスク用クランプ150を動かし、所定のギャップ以下となるように調整する。蒸着マスク用クランプ150の調整においては、調整部160に含まれるモータによって自動で行われる。ギャップ微調整ステップ(S125)は、基板搬入毎に行ってもよく、基板搬入が複数回行われる毎に行ってもよい。
【0085】
基板300と蒸着マスク200との間のギャップの調整は、基板300内の複数の位置で行われる。特に、基板300の四隅近傍の第1位置、第2位置、第3位置、および第4位置で、それぞれ、第1ギャップl、第2ギャップl、第3ギャップl、および第4ギャップlの調整が行われることが好ましい。ここで、第1位置および第4位置は、基板300を配置した状態において、基板300の上部の位置であり、第2位置および第3位置は、基板300の下部の位置である。また、第1位置と第3位置とは基板300の対角上の位置にあり、第2位置と第4位置も基板300の対角上の位置である。
【0086】
ギャップlの微調整は、2段階で行われる。まず、第1ギャップl、第2ギャップl、第3ギャップl、および第4ギャップlが、1.0mm以下となるように調整される。好ましくは、0.3mmとなるように調整するとよい。ギャップlが大きくなると、ギャップlの微調整の効果が小さくなる。そのため、ギャップは上記範囲が好ましい。
【0087】
続いて、Δギャップの調整を行う。すなわち、第1ギャップl、第2ギャップl、第3ギャップl、および第4ギャップlの中から最大ギャップlmaxと最小ギャップlminを選び、これらの差が所定の範囲内となるようにΔギャップが調整される。具体的には、選ばれたギャップに対応する調整部160を選択し、これらを独立、かつ同時に移動させることによりΔギャップが小さくなるよう調整する。例えば、Δギャップは、式7を満たすように調整される。
【0088】
【数9】
【0089】
好ましくは、Δギャップは、式8を満たすように調整される。
【0090】
【数10】
【0091】
上述したように、各位置のギャップが独立して調整されるだけでなく、各ギャップが関連付けされたΔギャップも調整されることにより、基板300内での面内ばらつきを抑制して蒸着工程における歩留まりを向上させることができる。
【0092】
さらに、Δギャップの調整は、ギャップの検出位置間の距離をパラメータとすることもできる。
【0093】
例えば、第1位置のギャップlおよび第2位置のギャップlの一方が最大ギャップであり、他方が最小ギャップである場合、第1位置のギャップlおよび第2位置のギャップlは、式9を満たすように調整される。ここで、L12は第1位置と第2位置との間の距離である。
【0094】
【数11】
【0095】
さらに、第1位置のギャップlおよび第2位置のギャップlは、式10を満たすように調整されることが好ましい。
【0096】
【数12】
【0097】
また、第1位置のギャップlおよび第3位置のギャップlの一方が最大ギャップであり、他方が最小ギャップである場合、第1位置のギャップlおよび第3位置のギャップlは、式11を満たすように調整される。ここで、L13は第1位置と第3位置との間の距離である。
【0098】
【数13】
【0099】
さらに、第1位置のギャップlおよび第3位置のギャップlは、式12を満たすように調整されることが好ましい。
【0100】
【数14】
【0101】
その他にも、第1位置のギャップlおよび第4位置のギャップlの一方が最大ギャップlmaxであり、他方が最小ギャップlminである場合、第2位置のギャップlおよび第3位置のギャップlの一方が最大ギャップlmaxであり、他方が最小ギャップlminである場合、または第3位置のギャップlおよび第4位置のギャップlの一方が最大ギャップlmaxであり、他方が最小ギャップlminである場合が考えられるが、いずれも上述の式と同様であるため、ここでは説明を省略する。
【0102】
Δギャップの調整は、1点だけでなく、複数の点で行ってもよい。すなわち、基板は第1位置、第2位置、・・・、第n位置(nは3以上の自然数)となるn個の検出位置を有してもよい。この場合、第1から第n位置におけるそれぞれのΔギャップを検出する。そして、それらのうちの最大ギャップlmaxと最小ギャップlminの差が小さくなるように調整部160により調整する。これにより、蒸着時に基板300内での面内ばらつきを抑えることができる。
【0103】
基板300内の複数の位置におけるギャップを独立して調整するだけでなく、複数の位置におけるギャップを関連付けた所定の式を満たすようにギャップを調整することで、基板300内の面内ばらつきも抑制することができるため、蒸着工程における歩留まりをさらに向上させることができる。
【0104】
位置合わせステップ(S130)では、基板300のパターンに蒸着マスク200のパターンを対応させるように、基板300と蒸着マスク200との位置合わせを行う。具体的には、位置合わせ用カメラ180を用いて、基板300のアライメントマークと蒸着マスク200のアライメントマークを撮像し、撮像されたアライメントマークに基づいて、調整部160が基板300と蒸着マスク200との位置を調整する。なお、位置合わせステップ(S130)は、ギャップ微調整ステップ(S125)の後に行ってもよく、ギャップ微調整ステップ(S125)の前に行ってもよい。
【0105】
蒸着マスク200の位置固定ステップ(S140)では、マグネット部170を支持部120に近づける。マグネット部170が支持部120に近づくことによって、蒸着マスク200は磁力によって基板300の一部と接し、基板300に対する蒸着マスク200の位置が固定される。
【0106】
蒸着ステップ(S150)では、蒸着源110を用いて蒸着材料の蒸着を行う。蒸着マスク200に設けられた開口部230を通過した蒸着材料が基板300上に堆積され、蒸着マスク200のパターンに対応するパターンを有する有機層が形成される。
【0107】
蒸着マスク200の位置固定解除ステップ(S160)では、マグネット部170を支持部120から離す。マグネット部170が支持部120から離れることによって、蒸着マスク200も基板300から離れる。
【0108】
基板300の搬出ステップ(S170)では、基板用クランプ130による基板300の固定を解除し、基板300を蒸着装置100から搬出する。
【0109】
以上、本実施形態に係る表示装置の作製方法によれば、蒸着工程において、基板300と蒸着マスク200との間のギャップ微調整ステップ(S125)を含む。すなわち、蒸着ごとにギャップの調整を行うことができ、蒸着工程における歩留まりを向上させることができる。また、図3のグラフにより、許容される歩留まり範囲となる蒸着回数が導き出され、これに基づき複数回の蒸着回数ごとにギャップの調整を行ってもよい。また、基板300内の複数の位置におけるギャップを独立して調整するだけでなく、複数の位置におけるギャップを関連付けた所定の式を満たすようにギャップを調整することで(言い換えれば、2段階の微調整を行うことで)、蒸着工程における歩留まりをさらに向上させることができる。
【0110】
<第3実施形態>
図7図9を用いて、本発明の一実施形態に係る表示装置700の構造の一例について説明する。表示装置700は可撓性を有し、蒸着装置100を使用して作製される。
【0111】
図7は、本実施形態に係る表示装置700の平面図である。表示装置700は、基板701上に、第1領域703および第2領域710が設けられている。第2領域710は、第1領域703の外側に位置する。
【0112】
第1領域703は、いわゆる表示領域である。第1領域703には、複数の画素709がマトリクス状に配置されている。なお、画素709の配置は、マトリクス状に限られない。画素709の配置は、例えば、千鳥状にすることもできる。
【0113】
第2領域710は、いわゆる周辺領域である。第2領域710は、第1領域703の長辺方向に沿って設けられた2つの走査線駆動回路704と、第1領域703の短辺方向に沿って基板701の端部に設けられた複数の端子707を含む。2つの走査線駆動回路704は、第1領域703を挟むように設けられる。また、複数の端子707は、フレキシブルプリント回路基板708と接続される。ドライバIC706は、フレキシブルプリント回路基板708上に設けられている。
【0114】
表示装置700の外部のコントローラ(図示せず)から、フレキシブルプリント回路基板708を介して、映像信号および各種制御信号が供給される。映像信号は、ドライバIC706によって処理されて複数の画素709に入力される。各種回路信号は、ドライバIC706を介して、走査線駆動回路704に入力される。
【0115】
映像信号および各種回路信号のほか、走査線駆動回路704、ドライバIC706、および複数の画素709を駆動するための電力が表示装置700に供給される。複数の画素709の各々は、後述する有機EL素子840を有する。表示装置700に供給された電力の一部は、複数の画素709の各々が有する有機EL素子840に供給されて、有機EL素子840を発光させる。
【0116】
表示装置700は、第1領域703上に、偏光板702が設けられてもよい。
【0117】
[画素回路]
図8は、本発明の一実施形態に係る表示装置700に配置された複数の画素709の各々が有する画素回路である。画素回路は、少なくともトランジスタ810、トランジスタ820、容量素子830、および有機EL素子840を含む。
【0118】
トランジスタ810は、選択トランジスタとして機能することができる。すなわち、トランジスタ810は、走査線711によりトランジスタ810のゲートの導通状態が制御される。トランジスタ810において、ゲート、ソース、およびドレインは、それぞれ、走査線711、信号線712、およびトランジスタ820のゲートに電気的に接続される。
【0119】
トランジスタ820は、駆動トランジスタとして機能することができる。すなわち、トランジスタ820は、有機EL素子840の発光輝度を制御する。トランジスタ820において、ゲート、ソース、およびドレインは、それぞれ、トランジスタ810のソース、駆動電源線714、および有機EL素子840の陽極に電気的に接続される。
【0120】
容量素子830において、容量電極の一方が、トランジスタ820のゲートと接続され、トランジスタ810のドレインに電気的に接続される。また、容量電極の他方が、有機EL素子840の陽極およびトランジスタ820のドレインに接続される。
【0121】
有機EL素子840において、陽極がトランジスタ820のドレインに接続され、陰極が基準電源線716に接続される。
【0122】
[第1領域の構成]
図9は、本発明の一実施形態に係る表示装置700の画素709の断面図である。具体的には、図9は、図7に示す表示装置700をC-C’線に沿って切断した断面図である。
【0123】
基板701は、一層または複数層からなる。複数層からなる場合、例えば、第1樹脂層701a、無機層701b、および第2樹脂層701cを含む積層構造である。第1樹脂層701aと第2樹脂層701cとの密着性を向上させるため、第1樹脂層701aと第2樹脂層701cとの間に無機層701bを設けることが好ましい。第1樹脂層701aおよび第2樹脂層701cの材料として、例えば、アクリル、ポリイミド、ポリエチレンテレフタレート、またはポリエチレンナフタレートなどを用いることができる。また、無機層701bの材料として、例えば、窒化シリコン、酸化シリコン、またはアモルファスシリコンを用いることができる。
【0124】
基板701上に、アンダーコート層802が設けられる。アンダーコート層802は、例えば、酸化シリコン層または窒化シリコン層を単層または積層して設けられる。本実施形態では、アンダーコート層802は、酸化シリコン層802a、窒化シリコン層802b、および酸化シリコン層802cの三層からなる積層構造を有する。酸化シリコン層802aは、基板701との密着性を向上することができる。窒化シリコン層802bは、外部からの水分および不純物のブロッキング膜として機能することができる。酸化シリコン層802cは、窒化シリコン層802b中に含有する水素が後述する半導体層側に拡散しないようにするブロッキング膜として機能することができる。
【0125】
また、アンダーコート層802には、トランジスタ820が設けられる箇所に合わせて無機層803を設けることもできる。無機層803を設けることにより、トランジスタ820のチャネル裏面からの光の侵入等によるトランジスタ特性の変化を抑制したり、無機層803を導電層で形成して、所定の電位を与えることで、トランジスタ820にバックゲート効果を与えることができる。
【0126】
アンダーコート層802上に、トランジスタ820が設けられる。トランジスタ820は、半導体層804、ゲート絶縁層805、およびゲート電極806aを含む。トランジスタ820として、nchトランジスタを用いる例について示しているが、pchトランジスタを用いてもよい。本実施形態では、nchTFTは、チャネル領域804aとソース領域804dまたはドレイン領域804e(高濃度不純物領域)との間に、低濃度不純物領域804bおよび804cを設けた構造を取る。半導体層804の材料として、アモルファスシリコン、ポリシリコン、またはIGZOなどの酸化物半導体を用いることができる。ゲート絶縁層805の材料として、例えば、酸化シリコンまたは窒化シリコンを用いることができる。また、ゲート絶縁層805は、単層または積層とすることができる。ゲート電極806aとして、例えば、MoWを用いることができる。なお、図9では、トランジスタ820の構造について示しているが、トランジスタ810の構造についてもトランジスタ820と同様である。また、これ以降の説明で、トランジスタ820とのさらに上部の層との接続関係について示すが、これはトランジスタ820に限られず、トランジスタ820以外のトランジスタとの接続であってもよい。
【0127】
ゲート電極806aを覆うように、層間絶縁層807が設けられる。層間絶縁層807の材料として、例えば、酸化シリコンまたは窒化シリコンを用いることができる。また、層間絶縁層807は、単層または積層とすることができる。層間絶縁層807上には、ソース電極808aまたはドレイン電極808bが設けられる。ソース電極808aまたはドレイン電極808bは、層間絶縁層807およびゲート絶縁層805の開口部を介して、それぞれ、半導体層804のソース領域804dおよびドレイン領域804eと接続される。
【0128】
ここで、ゲート絶縁層805上には、導電層806bが設けられている。導電層806bは、ゲート電極806aと同一の工程で形成される。導電層806bは、ゲート絶縁層805を間に挟んで、半導体層804のソース領域804dまたはドレイン領域804eにより容量を構成する。また、導電層806bは、層間絶縁層807を間に挟んで、ソース電極808aまたはドレイン電極808bにより容量を構成する。
【0129】
ソース電極808aまたはドレイン電極808b上に、絶縁層809が設けられる。
【0130】
絶縁層809上に、平坦化膜811が設けられる。平坦化膜811の材料として、感光性アクリルまたはポリイミドなどの有機材料を用いることができる。平坦化膜811を設けることにより、トランジスタ820による段差を平坦化することができる。
【0131】
平坦化膜811上に、透明導電膜812aおよび812bが設けられる。透明導電膜812aは、平坦化膜811および絶縁層809の開口部を介して、ソース電極808aまたはドレイン電極808bと接続される。
【0132】
透明導電膜812aおよび812b上に絶縁層813が設けられる。絶縁層813には、透明導電膜812aおよびソース電極808aまたはドレイン電極808bと重畳する領域と、透明導電膜812aと隣の画素の透明導電膜812bとの間の領域とに開口部が設けられる。
【0133】
絶縁層813上には、画素電極822が設けられる。画素電極822は、絶縁層813の開口部を介して、透明導電膜812aと接続される。本実施形態では、画素電極822は、反射電極として形成される。反射電極は、例えば、IZO(酸化インジウム亜鉛)やITO(酸化インジウムスズ)といった透明導電材料と、Agといった高反射率を有する材料との積層構造を有してもよい。
【0134】
画素電極822と隣の画素の画素電極822との境界に、隔壁となる絶縁層825が設けられる。絶縁層825は、バンクまたはリブとも呼ばれる。絶縁層825の材料としては、平坦化膜811の材料と同様の有機材料を用いることができる。絶縁層825は、画素電極822の一部を露出するように開口される。
【0135】
ここで、平坦化膜811と絶縁層825とは、絶縁層813に設けられた開口部において接触している。このような構成を有することで、絶縁層825の形成時における熱処理の際に、平坦化膜811から脱離する水分やガスを、絶縁層813の開口部を介して絶縁層825から除去することができる。これにより、平坦化膜811と絶縁層825との界面における剥離を抑制することができる。
【0136】
絶縁層825の形成後、有機EL素子840を形成する有機層823を形成する。有機層823は、画素電極822側から順に、少なくとも、正孔輸送層、発光層、電子輸送層が積層されている。また、図9では、有機層823を、各画素709に対して選択的に設けているが、有機層823のうち発光層は各画素709に対して選択的に設け、正孔輸送層および電子輸送層は全画素を覆うように設けてもよい。これらの層は、蒸着装置100を用いて形成される。また、正孔輸送層および電子輸送層だけでなく、発光層も、全画素を覆うように設けてもよい。発光層が全画素を覆うように設けられる場合は、全画素において白色光を得て、カラーフィルタ(図示せず)によって所望の色波長部分を取り出す構成とすることができる。
【0137】
有機層823の形成後、対向電極824を形成する。本実施形態では、有機EL素子840がトップエミッション構造であるため、対向電極824は光透過性を有する必要がある。なお、トップエミッション構造とは、画素電極822上に、有機層823を挟んで配置される対向電極824から光を出射する構造をいう。本実施形態では、有機EL層からの発光が透過する程度のMgAg薄膜を、対向電極824として形成する。上述の有機層823の形成順序に従うと、画素電極822が陽極となり、対向電極824が陰極となる。
【0138】
有機EL素子840の対向電極824上に、封止膜850が設けられる。封止膜850は、外部からの水分が有機層823に侵入することを防止することを機能の一つとしており、封止膜850としてはガスバリア性の高いものが要求される。そのため、封止膜850は、無機絶縁膜を含まれていることが好ましい。封止膜850の構造として、例えば、第1無機絶縁膜831、第1有機絶縁膜832、第2無機絶縁膜833の積層構造を用いることができる。
【0139】
第1無機絶縁膜831および第2無機絶縁膜833の材料として、例えば、窒化シリコンまたは窒化アルミニウムなどを用いることができる。なお、第1無機絶縁膜831と第2無機絶縁膜833とは同じ材料であってもよい。
【0140】
第1有機絶縁膜832の材料として、例えば、アクリル樹脂、エポキシ樹脂、ポリイミド樹脂、シリコーン樹脂、フッ素樹脂、またはシロキサン樹脂などを用いることができる。
【0141】
続いて、封止膜850より上方の構造について説明する。
【0142】
封止膜850の上には、第1領域703を覆うように、第2有機絶縁膜834が設けられている。第2有機絶縁膜834は、第1無機絶縁膜831および第2無機絶縁膜833をエッチングするためのマスクとして機能することができる。第2有機絶縁膜834の材料として、例えば、アクリル系樹脂、ゴム系樹脂、シリコーン系樹脂、またはウレタン系樹脂などの粘着材を用いることができる。
【0143】
第2有機絶縁膜834の上には、偏光板702が設けられている。偏光板702は、1/4波長板と、直線偏光板とを含む積層構造を有している。この構成により、発光領域からの光が偏光板702の表示側の面から外部に放出することができる。
【0144】
表示装置700には、必要に応じて、偏光板702上にカバーガラスを設けても良い。カバーガラスや封止膜には、タッチセンサ等が形成されていてもよい。この場合、偏光板702とカバーガラスとの空隙を埋めるために、樹脂等を用いた充填材を封入することもできる。
【0145】
以上、本実施形態に係る表示装置700によれば、有機EL素子840の有機層823が蒸着装置100を用いて形成されるため、有機層823の画素709における位置ずれが抑制され、絶縁層825上に有機層823が均一に形成される。また、発光層も全画素を覆うように設けられる場合にも、第1領域703の端部における位置ずれが抑制される。
【0146】
各実施形態は、相互に矛盾しない限りにおいて、適宜構成を組み合わせて実施することができる。また、各実施形態の構成を基にして、当業者が適宜構成要素の追加、削除、または設計変更を行ったもの、もしくは、工程の追加、省略、または条件変更を行ったものも、本発明の要旨を備えている限り、本発明の範囲に含まれる。
【0147】
また、上述した各実施形態の態様によりもたらされる作用効果とは異なる他の作用効果であっても、本明細書の記載から明らかなもの、又は、当業者において容易に予測し得るものについては、当然に本発明によりもたらされるものと解される。
【符号の説明】
【0148】
100:蒸着装置、 110:蒸着源、 120:支持部、 130:基板用クランプ、 130-1:第1基板用クランプ、 130-2:第2基板用クランプ、 140:光学センサ、 140-1:第1光学センサ、 140-2:第2光学センサ、 140-3:第3光学センサ、 140-4:第4光学センサ、 140-5:第5光学センサ、 140-6:第6光学センサ、 150:蒸着マスク用クランプ、 150-1:第1蒸着マスク用クランプ、 150-2:第2蒸着マスク用クランプ、 150-3:第3蒸着マスク用クランプ、 150-4:第4蒸着マスク用クランプ、 150-5:第5蒸着マスク用クランプ、 150-6:第6蒸着マスク用クランプ、 160:調整部、 160-1:第1調整部、 160-2:第2調整部、 160-3:第3調整部、 160-4:第4調整部、 160-5:第5調整部、 160-6:第6調整部、 170:マグネット部、 180:位置合わせ用カメラ、 190:基板側調整部、 190-1:第1基板側調整部、 190-2:第2基板側調整部、 200:蒸着マスク、 210:マスクフレーム、 220:メタルマスク、 230:開口部、 300:基板、 700:表示装置、 701:基板、 701a:第1樹脂層、 701b:無機層、 701c:第2樹脂層、 702:偏光板、 703:第1領域、 704:走査線駆動回路、 706:ドライバIC、 707:端子、 708:フレキシブルプリント回路基板、 709:画素、 710:第2領域、 711:走査線、 712:信号線、 714:駆動電源線、 716:基準電源線、 730:折曲領域、 740:発光素子、 802:アンダーコート層、 802a:酸化シリコン層、 802b:窒化シリコン層、 802c:酸化シリコン層、 803:無機層、 804:半導体層、 804a:チャネル領域、 804b:低濃度不純物領域、 804d:ソース領域、 804e:ドレイン領域、 805:ゲート絶縁層、 806a:ゲート電極、 806b:導電層、 807:層間絶縁層、 808a:ソース電極、 808b:ドレイン電極、 809:絶縁層、 810:トランジスタ、 811:平坦化膜、 812a:透明導電膜、 812b:透明導電膜、 813:絶縁層、 820:トランジスタ、 822:画素電極、 823:有機層、 824:対向電極、 825:絶縁層、 830:容量素子、 831:第1無機絶縁膜、 832:第1有機絶縁膜、 833:第2無機絶縁膜、 834:第2有機絶縁膜、 840:有機EL素子、 850:封止膜
図1A
図1B
図1C
図2A
図2B
図3
図4
図5
図6
図7
図8
図9