IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社ブリヂストンの特許一覧

特許7407100タイヤ摩耗状態予測システム、タイヤ摩耗状態予測プログラムおよびタイヤ摩耗状態予測方法
<>
  • 特許-タイヤ摩耗状態予測システム、タイヤ摩耗状態予測プログラムおよびタイヤ摩耗状態予測方法 図1
  • 特許-タイヤ摩耗状態予測システム、タイヤ摩耗状態予測プログラムおよびタイヤ摩耗状態予測方法 図2
  • 特許-タイヤ摩耗状態予測システム、タイヤ摩耗状態予測プログラムおよびタイヤ摩耗状態予測方法 図3
  • 特許-タイヤ摩耗状態予測システム、タイヤ摩耗状態予測プログラムおよびタイヤ摩耗状態予測方法 図4
  • 特許-タイヤ摩耗状態予測システム、タイヤ摩耗状態予測プログラムおよびタイヤ摩耗状態予測方法 図5
  • 特許-タイヤ摩耗状態予測システム、タイヤ摩耗状態予測プログラムおよびタイヤ摩耗状態予測方法 図6
  • 特許-タイヤ摩耗状態予測システム、タイヤ摩耗状態予測プログラムおよびタイヤ摩耗状態予測方法 図7
  • 特許-タイヤ摩耗状態予測システム、タイヤ摩耗状態予測プログラムおよびタイヤ摩耗状態予測方法 図8
  • 特許-タイヤ摩耗状態予測システム、タイヤ摩耗状態予測プログラムおよびタイヤ摩耗状態予測方法 図9
  • 特許-タイヤ摩耗状態予測システム、タイヤ摩耗状態予測プログラムおよびタイヤ摩耗状態予測方法 図10
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-12-20
(45)【発行日】2023-12-28
(54)【発明の名称】タイヤ摩耗状態予測システム、タイヤ摩耗状態予測プログラムおよびタイヤ摩耗状態予測方法
(51)【国際特許分類】
   G01M 17/02 20060101AFI20231221BHJP
   B60C 19/00 20060101ALI20231221BHJP
【FI】
G01M17/02
B60C19/00 H
B60C19/00 G
【請求項の数】 6
(21)【出願番号】P 2020189449
(22)【出願日】2020-11-13
(65)【公開番号】P2022078630
(43)【公開日】2022-05-25
【審査請求日】2023-04-25
(73)【特許権者】
【識別番号】000005278
【氏名又は名称】株式会社ブリヂストン
(74)【代理人】
【識別番号】100083806
【弁理士】
【氏名又は名称】三好 秀和
(74)【代理人】
【識別番号】100101247
【弁理士】
【氏名又は名称】高橋 俊一
(74)【代理人】
【識別番号】100095500
【弁理士】
【氏名又は名称】伊藤 正和
(74)【代理人】
【識別番号】100098327
【弁理士】
【氏名又は名称】高松 俊雄
(72)【発明者】
【氏名】西山 健太
【審査官】岡村 典子
(56)【参考文献】
【文献】特開2020-164127(JP,A)
【文献】特開2013-136297(JP,A)
【文献】国際公開第2017/082362(WO,A1)
【文献】米国特許出願公開第2018/0154707(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G01M 17/02
B60C 19/00
(57)【特許請求の範囲】
【請求項1】
タイヤの内側面または内部に設けられ、前記タイヤの歪みを検知する歪みセンサを有するセンサユニットと、
前記歪みセンサから出力される歪み信号を取得する歪み信号取得部と、
取得された前記歪み信号の時系列波形に基づいて、変形速度の指標を算出する指標算出部と、
前記変形速度の指標と、前記タイヤの摩耗の度合いとの関係値を予め算出する関係値算出部と、
前記関係値と、前記変形速度の指標とを比較して前記タイヤの摩耗の度合いを推定する摩耗状態推定部と、
前記タイヤについての前記変形速度の指標と、前記タイヤの摩耗の度合いとの関係値に基づいて、他のサイズのタイヤの関係値を予測する関係値予測部と、
を備え、
前記関係値予測部は、他のサイズのタイヤの関係値を予測する際に、データ格納部に予め格納された、少なくともタイヤトレッド部の厚さに関するデータを用いるタイヤ摩耗状態予測システム。
【請求項2】
前記タイヤトレッド部の厚さに関するデータは、タイヤ内面から、該タイヤ内に設けられるベルトまでの径方向厚さのデータを含む請求項1に記載のタイヤ摩耗状態予測システム。
【請求項3】
タイヤ摩耗状態予測システムが備えるコンピュータで実行されるタイヤ摩耗状態予測プログラムであって、
タイヤの内側面または内部に設けられる歪みセンサから出力される歪み信号を取得する歪み信号取得ステップと、
取得された前記歪み信号の時系列波形に基づいて、変形速度の指標を算出する指標算出ステップと、
前記変形速度の指標と、前記タイヤの摩耗の度合いとの関係値を予め算出する関係値算出ステップと、
前記関係値と、前記変形速度の指標とを比較して前記タイヤの摩耗の度合いを推定する摩耗状態推定ステップと、
前記タイヤについての前記変形速度の指標と、前記タイヤの摩耗の度合いとの関係値に基づいて、他のサイズのタイヤの関係値を予測する関係値予測ステップと、
を有し、
前記関係値予測ステップは、他のサイズのタイヤの関係値を予測する際に、少なくともタイヤトレッド部の厚さに関するデータを用いるタイヤ摩耗状態予測プログラム。
【請求項4】
前記タイヤトレッド部の厚さに関するデータは、タイヤ内面から、該タイヤ内に設けられるベルトまでの径方向厚さのデータを含む請求項3に記載のタイヤ摩耗状態予測プログラム。
【請求項5】
タイヤの内側面または内部に設けられる歪みセンサから出力される歪み信号を取得する歪み信号取得過程と、
取得された前記歪み信号の時系列波形に基づいて、変形速度の指標を算出する指標算出過程と、
前記変形速度の指標と、前記タイヤの摩耗の度合いとの関係値を予め算出する関係値算出過程と、
前記関係値と、前記変形速度の指標とを比較して前記タイヤの摩耗の度合いを推定する摩耗状態推定過程と、
前記タイヤについての前記変形速度の指標と、前記タイヤの摩耗の度合いとの関係値に基づいて、他のサイズのタイヤの関係値を予測する関係値予測過程と、
を有し、
前記関係値予測過程は、他のサイズのタイヤの関係値を予測する際に、少なくともタイヤトレッド部の厚さに関するデータを用いるタイヤ摩耗状態予測方法。
【請求項6】
前記タイヤトレッド部の厚さに関するデータは、タイヤ内面から、該タイヤ内に設けられるベルトまでの径方向厚さのデータを含む請求項5に記載のタイヤ摩耗状態予測方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、タイヤ摩耗状態予測システム、タイヤ摩耗状態予測プログラムおよびタイヤ摩耗状態予測方法に関する。
【背景技術】
【0002】
従来より、空気入りタイヤ(以下、タイヤという)に加速度センサを設け、検出された加速度に基づいてタイヤの摩耗を推定(予測)する技術が提案されている(特許文献1)。
【0003】
このような加速度センサを用いた摩耗推定技術は、例えば、検出した径方向加速度を微分してピークを取得した変形速度の指標(摩耗メジャーともいう)を用い、この変形速度の指標値が、摩耗進展に従って増加するという原理を用いて、回帰式によりタイヤの残溝量を推定するものであった。
【先行技術文献】
【特許文献】
【0004】
【文献】WO2009/008502号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
ところで、加速度センサを用いた摩耗推定技術では、加速度信号の大きさがタイヤの回転速度に依存するため、低速域でデータの取得が困難であるという問題があった。
【0006】
そこで、加速度センサの代替として、歪みセンサを用いる摩耗推定技術が提案された。
【0007】
ところが、タイヤ摩耗を予測するにあたって、加速度センサを用いる技術と歪みセンサを用いる技術には、「タイヤ種ごとに実験を伴うパラメータの学習を実施するには、非常に大きなコストを要する」という共通の課題があった。
【0008】
一方、歪みセンサを用いるメリットとして、速度依存性が殆どないことが挙げられる。
【0009】
また、歪みセンサを用いるデメリットとして、タイヤ内面厚さの影響を受けるため補正が難しい点が挙げられる。そのため、従来における加速度センサを用いたタイヤ摩耗予測におけるタイヤサイズ汎用化の技術を、そのまま歪みセンサを用いたタイヤ摩耗予測に適応することは困難であるという問題があった。
【0010】
そこで、本発明は、上記課題に鑑みてなされたものであり、歪センサを用いると共に、学習データを保有していないタイヤについても高精度な摩耗状態の予測を低コストで行うことが可能なタイヤ摩耗状態予測システム、タイヤ摩耗状態予測プログラムおよびタイヤ摩耗状態予測方法を提供することを目的とする。
【課題を解決するための手段】
【0011】
本発明の一態様に係るタイヤ摩耗状態予測システムは、タイヤの内側面または内部に設けられ、前記タイヤの歪みを検知する歪みセンサを有するセンサユニットと、前記歪みセンサから出力される歪み信号を取得する歪み信号取得部と、取得された前記歪み信号の時系列波形に基づいて、変形速度の指標を算出する指標算出部と、前記変形速度の指標と、前記タイヤの摩耗の度合いとの関係値を予め算出する関係値算出部と、前記関係値と、前記変形速度の指標とを比較して前記タイヤの摩耗の度合いを推定する摩耗状態推定部と、前記タイヤについての前記変形速度の指標と、前記タイヤの摩耗の度合いとの関係値に基づいて、他のサイズのタイヤの関係値を予測する関係値予測部と、を備え、前記関係値予測部は、他のサイズのタイヤの関係値を予測する際に、データ格納部に予め格納された、少なくともタイヤトレッド部の厚さに関するデータを用いることを要旨とする。
【0012】
このような構成によれば、他のサイズのタイヤについても高精度な摩耗状態の予測を低コストで行うことが可能となる。
【0013】
また、前記タイヤトレッド部の厚さに関するデータは、タイヤ内面から、該タイヤ内に設けられるベルトまでの径方向厚さのデータを含むようにできる。
【0014】
これにより、タイヤの内面厚さの増加に伴って歪みが増大しても高精度な摩耗状態の予測を行うことが可能となる。
【0015】
本発明の他の態様に係るタイヤ摩耗状態予測プログラムは、タイヤ摩耗状態予測システムが備えるコンピュータで実行されるタイヤ摩耗状態予測プログラムであって、タイヤの内側面または内部に設けられる歪みセンサから出力される歪み信号を取得する歪み信号取得ステップと、取得された前記歪み信号の時系列波形に基づいて、変形速度の指標を算出する指標算出ステップと、前記変形速度の指標と、前記タイヤの摩耗の度合いとの関係値を予め算出する関係値算出ステップと、前記関係値と、前記変形速度の指標とを比較して前記タイヤの摩耗の度合いを推定する摩耗状態推定ステップと、前記タイヤについての前記変形速度の指標と、前記タイヤの摩耗の度合いとの関係値に基づいて、他のサイズのタイヤの関係値を予測する関係値予測ステップと、を有し、前記関係値予測ステップは、他のサイズのタイヤの関係値を予測する際に、少なくともタイヤトレッド部の厚さに関するデータを用いることを要旨とする。
【0016】
このような構成によれば、他のサイズのタイヤについても高精度な摩耗状態の予測を低コストで行うことが可能となる。
【0017】
また、前記タイヤトレッド部の厚さに関するデータは、タイヤ内面から、該タイヤ内に設けられるベルトまでの径方向厚さのデータを含むようにできる。
【0018】
これにより、タイヤの内面厚さの増加に伴って歪みが増大しても高精度な摩耗状態の予測を行うことが可能となる。
【0019】
本発明の他の態様に係るタイヤ摩耗状態予測方法は、タイヤの内側面または内部に設けられる歪みセンサから出力される歪み信号を取得する歪み信号取得過程と、取得された前記歪み信号の時系列波形に基づいて、変形速度の指標を算出する指標算出過程と、前記変形速度の指標と、前記タイヤの摩耗の度合いとの関係値を予め算出する関係値算出過程と、前記関係値と、前記変形速度の指標とを比較して前記タイヤの摩耗の度合いを推定する摩耗状態推定過程と、前記タイヤについての前記変形速度の指標と、前記タイヤの摩耗の度合いとの関係値に基づいて、他のサイズのタイヤの関係値を予測する関係値予測過程と、を有し、前記関係値予測過程は、他のサイズのタイヤの関係値を予測する際に、少なくともタイヤトレッド部の厚さに関するデータを用いることを要旨とする。
【0020】
このような構成によれば、他のサイズのタイヤについても高精度な摩耗状態の予測を低コストで行うことが可能となる。
【0021】
また、前記タイヤトレッド部の厚さに関するデータは、タイヤ内面から、該タイヤ内に設けられるベルトまでの径方向厚さのデータを含むようにできる。
【0022】
これにより、タイヤの内面厚さの増加に伴って歪みが増大しても高精度な摩耗状態の予測を行うことが可能となる。
【発明の効果】
【0023】
本発明によれば、歪センサを用いると共に、学習データを保有していないタイヤについても高精度な摩耗状態の予測を低コストで行うことが可能なタイヤ摩耗状態予測システム、タイヤ摩耗状態予測プログラムおよびタイヤ摩耗状態予測方法を提供することができる。
【図面の簡単な説明】
【0024】
図1】実施形態に係るタイヤ摩耗状態予測システムの概略構成を示す概略構成図である。
図2】実施形態に係るタイヤ摩耗状態予測システムの機能構成を示す機能ブロック図である。
図3】実施形態に係るタイヤ摩耗状態予測処理の処理手順を示すフローチャートである。
図4】タイヤについての歪みと時間の関係を示すグラフである。
図5】タイヤについての歪み速度と時間の関係を示すグラフである。
図6】タイヤについての変形速度の指標(摩耗メジャー)と接地時間比(CTR)の関係を示すグラフである。
図7】複数サイズのタイヤの諸元を示す図表である。
図8】タイヤの内面厚さ(比較的薄い場合)の歪みへの影響を示す模式図(a)、その歪み分布を示す模式図(b)である。
図9】タイヤの内面厚さ(比較的厚い場合)の歪みへの影響を示す模式図(a)、その歪み分布を示す模式図(b)である。
図10】タイヤについての歪みの指標(歪みメジャー)と接地時間比(CTR)の関係を示すグラフである。
【発明を実施するための形態】
【0025】
図1および図2を参照して、本発明の実施形態に係るタイヤ摩耗状態予測システムS1について説明する。
【0026】
なお、以下の図面の記載において、同一または類似の部分には、同一または類似の符号を付している。但し、図面は模式的なものであり、各寸法の比率などは現実のものとは異なることに留意すべきである。
【0027】
したがって、具体的な寸法などは以下の説明を参酌して判断すべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。
【0028】
(タイヤ摩耗状態予測システムの概略構成)
図1の概略構成図を参照して、実施形態に係るタイヤ摩耗状態予測システムS1の概略構成について説明する。
【0029】
タイヤ摩耗状態予測システムS1は、空気入りタイヤ(以下、単にタイヤと呼称する)10側に設けられるセンサユニットSUと、無線回線N1を介してセンサユニットSUから取得した情報を処理する処理装置(車載器(ECU)等)200とから構成される。
【0030】
図1では、リムホイール90に組み付けられたタイヤ10のタイヤ幅方向に沿った断面形状が示されている。
【0031】
また、トレッド部20は、図示しない車両に装着されたタイヤ10が路面を転動する際に路面と接する部分である。トレッド部20には、車両の種別及び要求される性能に応じたトレッドパターンが形成される。
【0032】
そして、タイヤ摩耗状態予測システムS1を適用可能なタイヤ10の内面10aには、タイヤ10の歪みを検出する歪みセンサSNを備えるセンサユニットSUが設けられている。なお、本実施形態には直接関係しないが、センサユニットSUは、歪みの他に温度情報等を取得できるようにしてもよい。
【0033】
図1に示す構成例では、センサユニットSUは、トレッド部20と対向する内面10aに設けられている。より具体的には、センサユニットSUは、リムホイール90に組み付けられた空気入りタイヤ10の内部空間に充填された空気などの気体の漏れを防止するインナーライナー(図示省略)の表面に取り付けられる。
【0034】
センサユニットSUは、車両に装着される各タイヤ10に設けられることが好ましい。車両の安全性確保には各タイヤ10の摩耗状態等を監視することが望ましいためである。
【0035】
また、センサユニットSUは、必ずしもタイヤ10の内側面に貼付されていなくてもよく、例えば、センサユニットSUの一部または全部がタイヤ10の内部に埋設される構成としてもよい。
【0036】
(タイヤ摩耗状態予測システムの機能構成)
図2の機能ブロック図に示すように、センサユニットSUは、タイヤ10の歪みを検出する歪みセンサSNと、処理装置200に検出データを送信する送信器150と、歪みセンサSNおよび送信器150に給電するバッテリ151とを備える。
【0037】
一方、ECU等で構成される処理装置200は、一定の検出周期ごとに、センサユニットSUから歪み信号を取得する歪み信号取得部201を備える。なお、センサユニットSUと処理装置200との通信は、無線回線N1を介して、センサユニットSU側の送信器150と、処理装置200側の通信部210との間で行われる。
【0038】
また、取得された歪み信号の時系列波形に基づいて、変形速度の指標(摩耗メジャー)を算出する指標算出部202を備える。
【0039】
また、変形速度の指標と、タイヤ10の摩耗の度合いとの関係値を予め算出する関係値算出部203を備える。
【0040】
また、算出された関係値と、変形速度の指標とを比較してタイヤ10の摩耗の度合いを推定する摩耗状態推定部204を備える。
【0041】
また、タイヤ10についての変形速度の指標と、タイヤ10の摩耗の度合いとの関係値に基づいて、タイヤ10とはサイズが異なる他のタイヤの関係値を予測する関係値予測部205を備える。
【0042】
さらに、サイズが異なる複数のタイヤについて、タイヤトレッド部の厚さに関するデータを予め格納する不揮発性メモリ等で構成されるデータ格納部206を備える。
【0043】
そして、関係値予測部205は、データ格納部206に予め格納されているタイヤトレッド部の厚さに関するデータを用いて、他のサイズのタイヤの関係値を予測する。
【0044】
なお、他のサイズのタイヤの関係値を予測する具体的な手法等については後述する。
【0045】
このような構成により、タイヤ10に加えて、他のサイズのタイヤについても高精度な摩耗状態の予測を低コストで行うことが可能となる。即ち、従来のように、タイヤの内面厚さが異なる複数のタイヤ種ごとに実験を伴うパラメータの学習を行うことなく、複数のタイヤ種について、摩耗状態の予測を行うことが可能となる。
【0046】
また、タイヤトレッド部の厚さに関するデータは、タイヤ10の内面から、このタイヤ内に設けられるベルトまでの径方向厚さのデータを含むようにできる。
【0047】
これにより、タイヤの内面厚さの増加に伴って歪みが増大しても高精度な摩耗状態の予測を行うことが可能となる。
【0048】
(タイヤ摩耗状態予測処理について)
図3に示すフローチャートを参照して、タイヤ摩耗状態予測システムS1で実行されるタイヤ摩耗状態予測処理の処理手順について説明する。
【0049】
なお、本処理は、処理装置200等が備えるOS(オペレーティングシステム)と所定のアプリケーションプログラムとの協働により実現することができる。但し、各処理の一部または全部をハードウェアで実現するようにしてもよい。
【0050】
この処理が開始されると、ステップS10で、センサユニットSUの歪みセンサSNから出力される歪み信号を歪み信号取得部201で取得してステップS11に移行する。
【0051】
ステップS11では、取得した歪み信号の時系列波形に基づいて、変形速度の指標(摩耗メジャー)を算出してステップS12に移行する。
【0052】
ステップS12では、変形速度の指標(摩耗メジャー)と、タイヤ10の摩耗の度合いとの関係値を算出してステップS13に移行する。
【0053】
ステップS13では、算出された関係値と、変形速度の指標(摩耗メジャー)とを比較して、タイヤ10の摩耗度合いを推定してステップS14に移行する。
【0054】
ステップS14では、タイヤ10についての変形速度の指標(摩耗メジャー)と、タイヤ10の摩耗の度合いとの関係値に基づいて、他のサイズのタイヤの関係値を予測して処理を終了する。
【0055】
ここで、他のサイズのタイヤの関係値を予測する際に、データ格納部206に予め格納されているタイヤトレッド部の厚さに関するデータを用いる。
【0056】
なお、タイヤトレッド部の厚さに関するデータは、タイヤ10の内面から、このタイヤ10内に設けられるベルトまでの径方向厚さのデータを含むようにできる。
【0057】
(タイヤ摩耗状態予測のアルゴリズムについて)
ここで、本発明に係るタイヤ摩耗状態予測に適用されるアルゴリズムについて説明する。
【0058】
本発明では、歪みセンサを用いたタイヤ摩耗状態予測の基本アルゴリズムとして、本出願人に係る特許出願(特開2009-018667号、WO2009/008502等)に開示のアルゴリズムと同等のものを用いる。
【0059】
なお、上記特許出願に開示のアルゴリズムは、タイヤに設けられる加速度センサを用いた摩耗予測についてのものであり、径方向の加速度を微分後に検出したピーク値(摩耗メジャー値)および接地時間比(CTR:Contact Time Ratio)を主な特徴量とする機械学習モデルである。より詳細については、上記特許出願の記載を参照されたい。
【0060】
一方、本発明において用いる「歪み」は、タイヤ周方向(接線方向)の1軸とする。
【0061】
ここで、図4のグラフに周方向歪みの例を、図5のグラフにその微分波形の例を示す。
【0062】
なお、図4図5は、FEM(Finite Element Method:有限要素解析)によって得られた波形である。
【0063】
また、本実施形態におけるFEM解析では、サイズが「11R22.5 M801」のタイヤをサンプルとし、検出した「歪み」は、タイヤインナーライナーの歪みである。
【0064】
ここで、摩耗メジャー(WM:Wear Measure)は以下の式で定義される。
【0065】
WM=DP×ORT×CL
なお、DP(Derivative Peak)は微分波形のピーク値であり、踏み側・蹴り側の絶対値、またはそれを平均等で集約したものでもよい。
【0066】
また、ORT(One Rotational Time)は、タイヤ1回転の時間、CL(Circumferential Length)はタイヤの周長を示す。
【0067】
なお、CLは、タイヤ半径が直径などサイズを示す値で代替可能であり、設計スペックなどから決定する。
【0068】
ORTは速度依存性を、CLはタイヤ径依存性をキャンセルするものである。
【0069】
また、CTRは微分波形の踏みピークから蹴りピークまでの経過時間をORTで除したもので、荷重を示す代表的な指標である。
【0070】
図6のグラフには、新品のタイヤTR1aおよび完摩したタイヤTR1bにおけるCTRとWM(摩耗メジャー:変形速度の指標)の関係を示す。
【0071】
図6のグラフを参照すると分かるように、新品のタイヤTR1aと、完摩したタイヤTR1bとを明確に区別することができる。
【0072】
また、TPMS(タイヤの空気圧モニタリングシステム)の情報も加え、下記の回帰式等により残溝量(RTD)を推定することができる。
【0073】
RTD=f(WM、温度、空気圧、速度等)
【0074】
(加速度センサの補正方法とその問題点について)
加速度センサを用いた摩耗予測では、下記の式(数1)を用いてタイヤの摩耗メジャーを推定していた。
【0075】
【数1】
【0076】
ここで、Dはタイヤ直径、Wはタイヤ幅、Hは断面高さである。
【0077】
タイヤ直径Dによる補正は、センサ自身の大きさにより平均化されることに対する補正である。そのため、サンプルデータとして用いるデータはタイヤ内面の座標や変形挙動であって、センサの物理的な大きさがないので Dの影響を無視することができる。
【0078】
そして、CTRが0.04で固定された条件下では、加速度の相関係数はR2=0.967、歪みの相関係数はR2=0.677を得ることができた。
【0079】
なお、サンプルデータとしては、径、扁平率等が全体をある程度網羅するように、図7の図表に示すようなTR10~TR15の6種類のタイヤのデータを用いた。
【0080】
そして、上記相関係数から、加速度の場合は非常に相関係数が高く、この補正モデルにより高精度に摩耗メジャー値を予測可能であった。
【0081】
一方、歪みの場合は相関係数が低く、加速度センサと同等のサイズ補正アルゴリズムでは精度が悪化するものと考えられる。
【0082】
そのため、本実施形態に係る歪みセンサSNを用いたタイヤ摩耗状態予測では、新たな補正方法が必要である。
【0083】
(タイヤ内面厚さによる補正について)
歪みセンサSNの場合には、タイヤの内面のゴムの厚さに大きく影響を受けるため、その補正を行う必要がある。
【0084】
ここで、図8(a)は、タイヤの内面厚さ(比較的薄い場合)の歪みへの影響を示す模式図、図8(b)は、その歪み分布を示す模式図、図9(a)は、タイヤの内面厚さ(比較的厚い場合)の歪みへの影響を示す模式図、図9(b)は、その歪み分布を示す模式図である。
【0085】
まず、タイヤの張力の大半はベルトによって支持されており、ベルトに発生する力、変形によりタイヤ全体の力学的挙動の大半が決定される。
【0086】
ここで、ベルトに、ある一定の曲げ変形が発生したと仮定する。
【0087】
図8を参照すると分かるように、内面の厚さが薄い場合(din=Small)は、インナーライナー表面で発生する圧縮歪みが小さくなる。
【0088】
一方、図9を参照すると分かるように、内面厚さが厚い場合(din=Large)は、圧縮歪みが大きく出ることが推測される。
【0089】
したがって、内面厚さの増加に伴い、歪みが大きくなると推測できる。
【0090】
ここで、FEMを用いて内面の厚さの変化が摩耗メジャーに与える影響を調査した。具体的には、FEMの完摩品のモデルにおいて、インナーライナーの厚さについて、設計値通りのタイヤ(TR20b)、設計値より1mm厚いタイヤ(TR20c)、設計値よりも2mm厚いタイヤ(TR20d)、の3種類を用意して解析を実施した(図10参照)。
【0091】
なお、図10のグラフにおいて、TR20aは、設計値通りのタイヤの未使用品(新品)の解析結果を示す。
【0092】
図10のグラフより、理論通り内面厚さが増すと、歪みが増幅されて摩耗メジャー値が大きくなることが分かる。
【0093】
一方で、加速度センサを用いた場合は、タイヤ内面のプロファイル(ベルトのプロファイルと略同じ)の形状により決まるため、僅かに内面厚さが増すことによるプロファイル変化の影響を受けるものの、顕著な差が生じないと考えられる。
【0094】
以上の検証から、歪みセンサSNを用いる場合には、タイヤの内面厚さによる補正を加える必要があることが分かった。
【0095】
(摩耗メジャー値の推定式について)
以上の検討結果から、完摩時の摩耗メジャー値は、以下の式(数2)を用いて推定する。
【0096】
【数2】
【0097】
ここで、dinは、内面の厚さである。
【0098】
なお、式(数2)による補正に加えて、TPMSデータを用いた補正を行うようにしてもよい。
【0099】
また、式(数2)の関数は単純な線形重回帰でもよいし、非線形な関数であってもよい。
【0100】
(摩耗予測の手順)
実際にタイヤの摩耗を予測するときの手順は以下のようにすることができる。
【0101】
1)モデル学習ステージ
まず、上述の6種類(図7参照)程度の完摩タイヤを供試タイヤとして実験を行い、WM、CTR、D、dinなどの関係を学習させる。
【0102】
2)新品タイヤのパラメータ取得ステージ
学習データがないタイヤの場合は、タイヤが減っていない走行初期の段階で、WMとCTR,TPMSデータとの関係を求める。
【0103】
3)残溝量の推定
WM,CTR,TPMSデータなどを計測する。
【0104】
ここで、他のタイヤサイズにおける関係を予測するにあたっては、din:タイヤ内部構造厚さの他に、D:タイヤ直径、W:タイヤ幅、H:タイヤ断面高さなどの設計情報を用いることができる。
【0105】
そして、CTR、TPMSデータ、設計情報データから、新品時の摩耗メジャー、完摩時の摩耗メジャーを計算する。
【0106】
計測されたWMが、新品と完摩の摩耗メジャーに対してどのレベルに位置するかを求め、残溝量を計算する。
【0107】
以上述べたように、本実施形態に係るタイヤ摩耗状態予測システムS1によれば、歪センサSNによる摩耗予測において、複数のスペック(サイズ等)のタイヤの各々について「変形速度の指標とタイヤの摩耗の度合いとの関係」を実測する必要がなくなり、低コストでタイヤのサイズ間差を正確に予測することが可能となる。
【0108】
以上、本発明のタイヤ摩耗推定システム、タイヤ摩耗推定プログラムおよびタイヤ摩耗推定方法を図示の実施形態に基づいて説明したが、本発明はこれに限定されるものではなく、各部の構成は、同様の機能を有する任意の構成のものに置き換えることができる。
【0109】
例えば、電源(バッテリ)151などの作動条件が満たされるのであれば、本実施の形態における処理装置200が有する処理機能の一部をセンサユニットSU内に搭載するようにしてもよい。
【符号の説明】
【0110】
S1 タイヤ摩耗状態予測システム
SU センサユニット
SN 歪みセンサ
200 処理装置
201 歪み信号取得部
202 指標算出部
203 関係値算出部
204 摩耗状態推定部
205 関係値予測部
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10