(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-12-22
(45)【発行日】2024-01-05
(54)【発明の名称】ビルド面のグリッド領域における放射熱エネルギー密度の測定
(51)【国際特許分類】
B22F 10/366 20210101AFI20231225BHJP
B22F 10/28 20210101ALI20231225BHJP
B22F 10/85 20210101ALI20231225BHJP
B22F 12/41 20210101ALI20231225BHJP
B22F 12/90 20210101ALI20231225BHJP
B33Y 10/00 20150101ALI20231225BHJP
B33Y 50/02 20150101ALI20231225BHJP
【FI】
B22F10/366
B22F10/28
B22F10/85
B22F12/41
B22F12/90
B33Y10/00
B33Y50/02
【外国語出願】
(21)【出願番号】P 2022015272
(22)【出願日】2022-02-02
(62)【分割の表示】P 2020529102の分割
【原出願日】2018-08-01
【審査請求日】2022-03-03
(32)【優先日】2017-08-01
(33)【優先権主張国・地域又は機関】US
(32)【優先日】2018-02-21
(33)【優先権主張国・地域又は機関】US
(32)【優先日】2018-03-15
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】520039205
【氏名又は名称】シグマ ラボズ,インコーポレイテッド
(74)【代理人】
【識別番号】100137969
【氏名又は名称】岡部 憲昭
(74)【代理人】
【識別番号】100104824
【氏名又は名称】穐場 仁
(74)【代理人】
【識別番号】100121463
【氏名又は名称】矢口 哲也
(72)【発明者】
【氏名】マディガン,アール.ブルース
(72)【発明者】
【氏名】ジャケメットン,ラース
(72)【発明者】
【氏名】ワイクル,グレン
(72)【発明者】
【氏名】コーラ,マーク ジェイ.
(72)【発明者】
【氏名】デイヴ,ヴィヴェック アール.
(72)【発明者】
【氏名】ベケット,ダレン
(72)【発明者】
【氏名】カストロ,アルバート エム.
【審査官】岡田 隆介
(56)【参考文献】
【文献】特表2020-530070(JP,A)
【文献】特表2006-513055(JP,A)
【文献】国際公開第2016/050319(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
B22F 3/16
B22F 3/105
B22F 10/28
B22F 10/31
B22F 10/38
B33Y 10/00
B33Y 50/02
(57)【特許請求の範囲】
【請求項1】
ビルド面上に粉末金属の層を堆積させるステップと、
各ビルド面の少なくとも一部を複数のグリッド領域に分割するステップであって、各グリッド領域はそれぞれのグリッド面積を有する、ステップと、
前記粉末金属の層を融合させるためのエネルギー源を使用して、各グリッド領域にわたる複数のスキャンを生成するステップと、
各グリッド領域のための前記複数のスキャンのそれぞれが行われている間に、各グリッド領域から放射されたエネルギー量を決定するステップと、
各グリッド領域の熱エネルギー密度を決定するステップと、
各グリッド領域の前記熱エネルギー密度を基準値と比較し、潜在的に欠陥のあるグリッド領域を特定するステップと、
を含む、コンポーネントを製造するための付加製造方法。
【請求項2】
グラフィカル媒体を用いて潜在的に欠陥のあるグリッド領域を表すステップをさらに含む、請求項1に記載の方法。
【請求項3】
テキストベースの媒体を用いて潜在的に欠陥のあるグリッド領域を表すステップをさらに含む、請求項1に記載の方法。
【請求項4】
前記エネルギー源がレーザであり、グリッド領域に潜在的な欠陥があると判定することに応答して、そのグリッド領域を修復するためにレーザの後続のスキャンを調整する、請求項1に記載の方法。
【請求項5】
前記潜在的に欠陥のあるグリッド領域を特定するステップは、前記複数のグリッド領域の各グリッド領域を公称または非公称として分類するステップを含む、請求項1に記載の方法。
【請求項6】
各非公称グリッド領域は、非公称閾値のセットに基づいて分類される、請求項5に記載の方法。
【請求項7】
ビルド面を複数のグリッド領域に分割するステップであって、前記グリッド領域の各々はそれぞれのグリッド面積を有する、ステップと、
前記ビルド面にわたるエネルギー源の複数のスキャンを生成するステップと、
前記複数のスキャン中に、各グリッド領域から放射されたエネルギーの総量を決定するステップと、
各グリッド領域から放射された前記エネルギーの総量と各グリッド領域のグリッド面積とに基づいて、前記複数のグリッド領域の各グリッド領域に関連する熱エネルギー密度を計算するステップと、
前記複数のグリッド領域の各グリッド領域について計算された前記熱エネルギー密度を基準エネルギー密度値と比較し、潜在的に欠陥のあるグリッド領域を特定するステップと、
を含む、付加製造方法。
【請求項8】
グラフィカル媒体を用いて潜在的に欠陥のあるグリッド領域を表すステップをさらに含む、請求項7に記載の方法。
【請求項9】
テキストベースの媒体を用いて潜在的に欠陥のあるグリッド領域を表すステップをさらに含む、請求項7に記載の方法。
【請求項10】
前記エネルギー源がレーザであり、グリッド領域に潜在的な欠陥があると判定することに応答して、そのグリッド領域を修復するためにレーザの後続のスキャンを調整する、請求項7に記載の方法。
【請求項11】
前記潜在的に欠陥のあるグリッド領域を特定するステップは、前記複数のグリッド領域の各グリッド領域を公称または非公称として分類するステップを含む、請求項7に記載の方法。
【請求項12】
各非公称グリッド領域は、非公称閾値のセットに基づいてさらに分類される、請求項11に記載の方法。
【請求項13】
各グリッド領域の前記熱エネルギー密度は、それぞれのグリッド領域から放射される前記エネルギーの総量をそのグリッド領域のグリッド面積で割ることによって決定される、請求項7に記載の方法。
【請求項14】
ビルド面上に粉末金属の層を堆積させるステップと、
前記ビルド面にわたる複数のスキャンを生成するために、エネルギー源を使用して前記粉末金属の層を融合させるステップと、
前記複数のスキャン中に、前記ビルド面から放射されるエネルギー量を測定するステップと、
放射されたエネルギー量と前記複数のスキャンによって横断された前記ビルド面の面積とに基づいて、前記ビルド面の熱エネルギー密度を決定するステップと、
前記熱エネルギー密度を基準熱エネルギー密度値と比較することにより、前記ビルド面に潜在的な欠陥があるかを判定するステップと、
を含む、コンポーネントを製造するための付加製造方法。
【請求項15】
前記ビルド面を複数のグリッド領域に分割するステップであって、各グリッド領域がそれぞれのグリッド面積を有する、ステップをさらに含む、請求項14に記載の方法。
【請求項16】
各グリッド領域の熱エネルギー密度を決定するステップと、決定された前記熱エネルギー密度を基準熱エネルギー密度と比較し、そのグリッド領域に潜在的な欠陥があるかを判定するステップをさらに含む、請求項15に記載の方法。
【請求項17】
グラフィカル媒体を用いて潜在的に欠陥のあるグリッド領域を表すステップをさらに含む、請求項14に記載の方法。
【請求項18】
テキストベースの媒体を用いて潜在的に欠陥のあるグリッド領域を表すステップをさらに含む、請求項14に記載の方法。
【請求項19】
前記エネルギー源がレーザであり、ビルド面に潜在的な欠陥があると判定することに応答して、そのビルド面を修復するためにレーザの後続のスキャンを調整する、請求項14に記載の方法。
【請求項20】
前記ビルド面の前記熱エネルギー密度は、前記ビルド面から放射される前記エネルギー量を前記複数のスキャンによって横断された前記ビルド面の面積で割ることによって決定される、請求項14に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
[0001]関連出願への相互参照
本出願は、それぞれ「Systems And Methods For Measuring Energy Input During An Additive Manufacturing Operation」と題する、2017年8月1日に出願された米国仮特許出願第62/540,016号、2018年2月21日に出願された第62/633,487号、および2018年3月15日に出願された62/643,457号の優先権を主張し、その開示は、その全体があらゆる目的のために参照により本明細書に組み込まれる。
【背景技術】
【0002】
[0002]付加製造、または材料の追加と加えられるエネルギーの組み合わせによる部品の連続的アセンブリもしくは構築は、多くの形態をとり、現在多くの特定の実装と実施形態で存在している。付加製造は、実質的にあらゆる形状の3次元部品の形成を伴う、さまざまなプロセスのいくつかを使用して実行できる。さまざまなプロセスでは、一般に、液体、粉末、または粒状の原材料の焼結、硬化、または溶融が、それぞれ紫外線、高パワーレーザ、または電子ビームを使用して層ごとに行われる。残念ながら、この方法で製造された部品の品質を決定するための確立されたプロセスは限られている。従来の品質保証テストでは、一般に、部品の機械的、幾何学的、または冶金学的特性のポストプロセス測定が行われるが、これはしばしば部品の破壊をもたらす。破壊的テストは、部品のさまざまな内部特徴を綿密に調べることができるため、部品の品質を検証する方法として受け入れられているが、このようなテストは明白な理由で生産部品に適用できない。したがって、付加製造によって生産される生産部品の機械的、幾何学的、および冶金学的特性を非破壊的かつ正確に検証する方法が望まれている。
【発明の概要】
【0003】
[0003]説明された実施形態は、付加製造に関連し、これは、強い熱エネルギーの移動領域の形をとるエネルギー源の使用を伴う。この熱エネルギーが追加された材料の物理的溶融を引き起こす場合、これらのプロセスは溶接プロセスとして広く知られている。溶接プロセスでは、材料が増分的かつ連続的に追加され、溶融溶接と同様の方法でエネルギー源によって溶融される。説明された実施形態と共に使用するのに適した例示的な溶接プロセスは、粉末床を備えた走査エネルギー源を使用するプロセス、およびエネルギー源としてアーク、レーザまたは電子ビームを使用するワイヤ供給プロセスを含む。
【0004】
[0004]追加された材料が粉末の層の形をとる場合、粉末材料の各増分層が構築中の部品に連続して追加された後、走査エネルギー源は、粉末層の領域を溶接することにより、増分的に追加された粉末を溶融し、移動溶融領域(以下、溶融プールと呼ばれる)を生成し、このため、固化すると、それらは、新しい層の下に以前に連続して加えられ、溶融および固化した層の一部となり、構築中の部品を形成する。付加機械加工プロセスは時間がかかり、溶融プールのパスを何回も含む可能性があるため、溶融プールを使用して部品を固化させる際に、溶融プールのサイズと温度の少なくともわずかな変動を避けることは困難であり得る。本明細書に記載の実施形態は、溶融プールのサイズおよび温度の変動によって引き起こされる不連続性を低減または最小化する。加熱要素の高速移動と3次元構造の形成に必要な複雑なパターンにより、付加製造プロセスはコンピュータ数値制御(CNC)に関連付けられた1つまたは複数のプロセッサによって駆動され得ることに留意されたい。
【0005】
[0005]説明された実施形態の全体的な目的は、例えば、品質推定、プロセス制御、またはその両方などの光学センシング技術を付加製造プロセスに適用することである。光学センサを使用して、関連するインプロセス物理変数の進展を追跡することにより、インプロセス物理現象の進展を追跡できる。本明細書では、光学は、近赤外(IR)、可視、および近紫外(UV)を含む電磁スペクトルの部分を含むことができる。一般に、光学スペクトルは、380nmから780nmの波長になると考えられている。しかし、近UVおよび近IRは、それぞれ1nmの短い波長および3000nmの長い波長にまで及ぶ可能性がある。光学センサから収集されたセンサ読み取り値を使用して、プロセス品質メトリック(IPQM)を決定できる。そのようなIPQMの1つに熱エネルギー密度(TED)があり、これは、部品のさまざまな領域に加えられるエネルギー量を特徴付けるのに役立つ。
【0006】
[0006]TEDは、レーザパワー、レーザ速度、ハッチ間隔など、ユーザ定義のレーザ粉末床融合プロセスパラメータに敏感なメトリックである。このメトリックは、ベースラインデータセットとのIPQM比較を使用した分析に使用できる。結果のIPQMは、スキャンごとに計算でき、点群を使用してグラフまたは3次元で表示できる。また、製造欠陥を示すベースラインデータセットとのIPQM比較を使用して、プロセスパラメータの制御信号を生成することができる。いくつかの実施形態では、詳細な熱分析が望まれる場合、各スキャンの個別部分について熱エネルギー密度を決定できる。いくつかの実施形態では、複数のスキャンからの熱エネルギーデータをグリッドの個別のグリッド領域に分割することができ、各グリッド領域は、1つの層または事前に規定された数の層の各グリッド領域で受け取ったエネルギーの合計量を反映できる。
【0007】
[0007]付加製造方法が開示されており、この方法は:ビルド面にわたるエネルギー源の複数のスキャンを生成するステップと;ビルド面を監視する光学センサを使用して、複数のスキャンのそれぞれの間にビルド面から放射されるエネルギー量を測定するステップと;複数のスキャン中に横断したビルド面の面積を決定するステップと;放射されたエネルギー量と複数のスキャンが横断したビルド面の面積に基づいて、複数のスキャンが横断したビルド面の面積の熱エネルギー密度を決定するステップと;熱エネルギー密度をビルド面の1つまたは複数の位置にマッピングするステップと;熱エネルギー密度が密度値の範囲外の密度によって特徴付けられると決定するステップと;その後、ビルド面の1つまたは複数の位置にわたる、または近接するエネルギー源の後続のスキャンを調整するステップと、を含む。
【0008】
[0008]付加製造方法が開示されており、この方法は:ビルド面にわたるエネルギー源のスキャンを生成するステップと;粉末床を監視する光学センサを使用して、スキャン中に粉末床から放射されるエネルギー量を測定するステップと;スキャンに関連する面積を決定するステップと;放射されたエネルギー量とスキャンの面積に基づいてスキャンの面積の熱エネルギー密度を決定するステップと;熱エネルギー密度が密度値の範囲外の密度によって特徴付けられると決定するステップと;その後、ビルド面にわたるエネルギー源の後続のスキャンを調整するステップと、を含む。
【0009】
[0009]付加製造方法が開示されており、この方法は:エネルギー源を使用して付加製造動作を実行するステップと;粉末床を横切るエネルギー源のスキャン中に、フォトダイオードに関連付けられたセンサデータを受信するステップと;エネルギー源の電源がオンになったことを示す駆動信号データを受信するステップと;エネルギー源駆動信号データを使用して、エネルギー源の電源がオンになったときに収集されたセンサデータを識別するステップと;センサデータを複数のサンプルセクションに分割するステップであって、各サンプルセクションはスキャンの一部に対応する、ステップと;複数のサンプルセクションのそれぞれの熱エネルギー密度を決定するステップと;複数のサンプルセクションのそれぞれの熱エネルギー密度に基づいて、製造欠陥を含む可能性が最も高い部品の1つまたは複数の部分を識別するステップと、を含む。
【0010】
[0010]付加製造方法が開示されており、この方法は:ビルド面にわたるエネルギー源の複数のスキャンを生成するステップと;複数のスキャンを含むグリッド領域を決定するステップであって、グリッド領域はグリッド面積によって特徴付けられる、ステップと;光学センサを使用して、複数のスキャンのそれぞれの間にセンサ読み取り値を生成するステップと;センサ読み取り値を使用して、複数のスキャン中にビルド面から放射されるエネルギーの合計量を決定するステップと;放射されるエネルギーの合計量とグリッド面積に基づいて、グリッド領域に関連する熱エネルギー密度を計算するステップと;グリッド領域に関連付けられた熱エネルギー密度が、熱エネルギー密度値の範囲外の熱エネルギー密度によって特徴付けられると決定するステップと;その後、エネルギー源の出力を調整するステップと、を含む。
【0011】
[0011]付加製造方法が開示されており、この方法は:それぞれがグリッド領域面積を有する複数のグリッド領域を含むグリッドとしてビルド面の一部を画定するステップと;ビルド面にわたるエネルギー源の複数のスキャンを生成するステップと;光学センサを使用して、複数のスキャンのそれぞれの間にセンサ読み取り値を生成するステップと;複数のスキャンのそれぞれに対して、複数のセンサ読み取り値のそれぞれの部分を複数のグリッド領域のそれぞれ1つにマッピングするステップと;複数のグリッド領域のそれぞれについて:各グリッド領域にマッピングされたセンサ読み取り値を合計するステップと;合計されたセンサ読み取り値とグリッド領域面積に基づいてグリッドベースの熱エネルギー密度を計算するステップと;複数のグリッド領域の1つまたは複数に関連付けられたグリッドベースの熱エネルギー密度が、熱エネルギー密度値の範囲外の熱エネルギー密度によって特徴付けられると決定するステップと;その後、エネルギー源の出力を調整するステップと、を含む。
【0012】
[0012]本開示は、添付の図面と併せて以下の詳細な説明によって容易に理解され、同様の参照符号は同様の構造要素を示す。
【図面の簡単な説明】
【0013】
【
図1A】この特定の例では、レーザビームであると解釈される、エネルギー源を備えた付加製造システムで使用される光学検知装置の概略図である。
【
図1B】この特定の例では電子ビームであると解釈される、エネルギー源を備えた付加製造システムで使用される光学検知装置の概略図である。
【
図2】付加製造プロセスで使用されるサンプルスキャンパターンを示す図である。
【
図3】製造欠陥を含む可能性が最も高い部品の部分を識別するための方法を表すフローチャートである。
【
図4A】熱エネルギー密度を使用して製造欠陥を含む可能性が最も高い部品の一部を識別するための段階的なプロセスに関連するデータを示す図である。
【
図4B】熱エネルギー密度を使用して製造欠陥を含む可能性が最も高い部品の一部を識別するための段階的なプロセスに関連するデータを示す図である。
【
図4C】熱エネルギー密度を使用して製造欠陥を含む可能性が最も高い部品の一部を識別するための段階的なプロセスに関連するデータを示す図である。
【
図4D】熱エネルギー密度を使用して製造欠陥を含む可能性が最も高い部品の一部を識別するための段階的なプロセスに関連するデータを示す図である。
【
図4E】熱エネルギー密度を使用して製造欠陥を含む可能性が最も高い部品の一部を識別するための段階的なプロセスに関連するデータを示す図である。
【
図4F】熱エネルギー密度を使用して製造欠陥を含む可能性が最も高い部品の一部を識別するための段階的なプロセスに関連するデータを示す図である。
【
図4G】熱エネルギー密度を使用して製造欠陥を含む可能性が最も高い部品の一部を識別するための段階的なプロセスに関連するデータを示す図である。
【
図4H】熱エネルギー密度を使用して製造欠陥を含む可能性が最も高い部品の一部を識別するための段階的なプロセスに関連するデータを示す図である。
【
図5】スキャンレットデータ分離を使用してIPQM評価を完了する方法を詳細に説明するフローチャートである。
【
図6A】熱エネルギー密度を使用して製造欠陥を含む可能性が最も高い部品の一部を識別するための段階的なプロセスに関連するデータを示す図である。
【
図6B】熱エネルギー密度を使用して製造欠陥を含む可能性が最も高い部品の一部を識別するための段階的なプロセスに関連するデータを示す図である。
【
図6C】熱エネルギー密度を使用して製造欠陥を含む可能性が最も高い部品の一部を識別するための段階的なプロセスに関連するデータを示す図である。
【
図6D】熱エネルギー密度を使用して製造欠陥を含む可能性が最も高い部品の一部を識別するための段階的なプロセスに関連するデータを示す図である。
【
図6E】熱エネルギー密度を使用して製造欠陥を含む可能性が最も高い部品の一部を識別するための段階的なプロセスに関連するデータを示す図である。
【
図6F】熱エネルギー密度を使用して製造欠陥を含む可能性が最も高い部品の一部を識別するための段階的なプロセスに関連するデータを示す図である。
【
図7A】IPQMメトリックをポストプロセス金属組織学と比較するテスト結果を示す図である。
【
図7B】IPQMメトリックをポストプロセス金属組織学と比較するテスト結果を示す図である。
【
図7C】IPQMメトリックをポストプロセス金属組織学と比較するテスト結果を示す図である。
【
図8】非撮像光検出器などの光学センサによって記録されたデータを処理して、付加製造ビルドプロセスを特徴付けることができる代替プロセスを示す図である。
【
図9A】複数のスキャンが個々のグリッド領域で導入されるパワーにどのように寄与できるかを示す視覚的描写である。
【
図9B】複数のスキャンが個々のグリッド領域で導入されるパワーにどのように寄与できるかを示す視覚的描写である。
【
図9C】複数のスキャンが個々のグリッド領域で導入されるパワーにどのように寄与できるかを示す視覚的描写である。
【
図9D】複数のスキャンが個々のグリッド領域で導入されるパワーにどのように寄与できるかを示す視覚的描写である。
【
図10A】説明された実施形態での使用に適した例示的なタービンブレードを示す図である。
【
図10B】25個のタービンブレードをビルド面1006の上に同時に製造することができる例示的な製造構成を示す図である。
【
図11A】タービンブレードのベース部分の断面図である。
【
図11B】タービンブレードのベース部分の別の断面図である。
【
図11C】2つの異なるベース部分間の表面一貫性の違いを示す写真である。
【
図12】複数の異なるビルドに関連する部品の熱エネルギー密度を示す図である。
【
図13】現場測定値を使用して部品の動作を制御するために熱エネルギー密度をどのように使用できるかの例を示す図である。
【
図14A】現場測定値を使用して部品の動作を制御するために熱エネルギー密度をどのように使用できるかの例を示す図である。
【
図14B】現場測定値を使用して部品の動作を制御するために熱エネルギー密度をどのように使用できるかの例を示す図である。
【
図14C】エネルギー源の設定がプロセスウィンドウから離れすぎていることに起因するさまざまな物理的効果を強調する別のパワー密度グラフである。
【
図14D】溶融プールのサイズおよび形状が、レーザパワーおよびスキャン速度設定に従ってどのように変化し得るかを示す図である。
【
図15A】付加製造動作を特徴付けて制御するために、どのようにグリッドを動的に生成できるかを示す図である。
【
図15B】付加製造動作を特徴付けて制御するために、どのようにグリッドを動的に生成できるかを示す図である。
【
図15C】付加製造動作を特徴付けて制御するために、どのようにグリッドを動的に生成できるかを示す図である。
【
図15D】付加製造動作を特徴付けて制御するために、どのようにグリッドを動的に生成できるかを示す図である。
【
図15E】付加製造動作を特徴付けて制御するために、どのようにグリッドを動的に生成できるかを示す図である。
【
図15F】付加製造動作を特徴付けて制御するために、どのようにグリッドを動的に生成できるかを示す図である。
【
図16】付加製造動作のフィードバック制御を確立および維持するための例示的な制御ループ1600を示す図である。
【
図17A】ビルドプレートにわたる粉末の正規分布を示す図である。
【
図17B】不十分な量の粉末が回収され、リコータアームによってビルドプレート全体に広がるとき、結果として生じる粉末層の厚さが変化し得る様子を示す図である。
【
図17C】ビルドプレートの白黒写真であり、ここでは、粉末のショートフィードにより、ビルドプレート上に配置された9つのワークピースが部分的にしか覆われていない。
【
図17D】同じ入力パラメータを使用してエネルギー源が9つすべてのワークピース全体を走査するとき、検出される熱エネルギー密度がどのように実質的に異なるかを示す図である。
【発明を実施するための形態】
【0014】
[0038]
図1Aは、1つまたは複数の光学検知装置を使用して熱エネルギー密度を決定する付加製造システムの実施形態を示している。熱エネルギー密度は、例えばエネルギー源パワー、エネルギー源速度、ハッチ間隔などのプロセスパラメータの変化に敏感である。
図1Aの付加製造システムは、エネルギー源としてレーザ100を使用する。レーザ100は、部分反射ミラー102を通過して走査および集束システム103に入るレーザビーム101を放出し、次いで、走査および集束システム103は、ビームを作業プラットフォーム105上の小領域104に投射する。いくつかの実施形態では、作業プラットフォームは粉末床である。材料温度が高いため、光エネルギー106が小領域104から放出される。
【0015】
[0039]いくつかの実施形態では、走査および集束システム103は、ビーム相互作用領域104から放出される光エネルギー106の一部を収集するように構成され得る。部分反射ミラー102は、光信号107によって示されるように光エネルギー106を反射することができる。光信号107は、それぞれが一連の追加の部分反射ミラー108を介して光信号107の一部を受信する複数の軸上光学センサ109によって問い合わせられてもよい。いくつかの実施形態では、付加製造システムは、完全反射ミラー108を備えた1つの軸上光学センサ109のみを含むことができることに留意されたい。
【0016】
[0040]収集された光信号107は、部分反射ミラー102、走査および集束システム103、および一連の追加の部分反射ミラー108などの複数の光学素子を通過した後に信号107がいくらか減衰したため、ビーム相互作用領域104から放出された光エネルギー106と同じスペクトル成分を持たない可能性があることに留意されたい。これらの光学素子は、それぞれ独自の透過および吸収特性を有し、その結果、減衰量が変化し、ビーム相互作用領域104から放射されるエネルギーのスペクトルの特定の部分を制限する可能性がある。軸上光学センサ109によって生成されたデータは、作業プラットフォームに与えられるエネルギー量に対応し得る。
【0017】
[0041]軸上光学センサ109の例には、高温計およびフォトダイオードなどの光から電気信号への変換器(すなわち、光検出器)が含まれるが、これらに限定されない。光学センサは、分光計、および可視、紫外、または赤外の周波数スペクトルで動作する低速または高速カメラも含むことができる。軸上光学センサ109は、ビームと共に移動する基準フレーム内にあり、すなわち、レーザビームが接触するすべての領域を見て、レーザビーム101が作業プラットフォーム105を横切って走査する際に接触した作業プラットフォーム105のすべての領域から光信号107を収集することができる。走査および集束システム103によって収集された光エネルギー106は、レーザビームにほぼ平行な経路を進むため、センサ109は軸上センサと見なすことができる。
【0018】
[0042]いくつかの実施形態では、付加製造システムは、レーザビーム101に対して静止した基準フレーム内にある軸外センサ110を含むことができる。これらの軸外センサ110は、非常に狭い可能性のある所与の視野111を有するか、作業プラットフォーム105全体を取り囲むことができる。これらのセンサの例には、高温計、フォトダイオード、分光計、可視、紫外線、またはIRスペクトル範囲で動作する高速または低速カメラなどが含まれるが、これらに限定されない。エネルギー源と位置合わせされていない軸外センサ110は、軸外センサと見なされる。軸外センサ110は、ビルド中の堆積物の機械的特性または機械的完全性を測定または予測するために、1つのレーザビームで堆積物を積極的に励起または「ピング(ping)」し、レーザ干渉計を使用して結果の超音波または構造の「リンギング(ringing)」を測定するレーザ超音波センサなどの一連の物理測定モダリティを組み合わせたセンサでもよい。レーザ超音波センサ/干渉計システムを使用して、材料の弾性特性を測定でき、これにより、例えば材料の多孔度やその他の材料特性を把握できる。さらに、材料の振動を引き起こす欠陥形成は、レーザ超音波/センサ干渉計システムを使用して測定され得る。
【0019】
[0043]さらに、粉末を散布する機械デバイスであるリコータアーム112には、接触センサ113があってもよい。これらのセンサは、加速度計、振動センサなどであってもよい。最後に、他のタイプのセンサ114があってもよい。これらには、マクロ熱場を測定するための熱電対などの接触センサや、ビルド中に堆積物に発生する亀裂やその他の冶金現象を検出できるアコースティックエミッションセンサが含まれてもよい。これらの接触センサは、リコータアーム112の動作を特徴付けるために、粉末添加プロセス中に利用され得る。軸上光学センサ109および軸外センサ110によって収集されたデータを使用して、リコータアーム112に関連するプロセスパラメータを検出することができる。したがって、散布された粉末の表面の不均一性は、システムによって検出および対処できる。粉末散布プロセスの変動から生じる粗い表面は、得られた部品の可能性のある問題領域または不均一性を予測するために、接触センサ113によって特徴付けられることができる。
【0020】
[0044]いくつかの実施形態において、粉末の広がりのピークは、レーザビーム101によって融合され得、対応するピークを有する後続の粉末の層をもたらす。ある時点で、ピークがリコータアーム112に接触し、リコータアーム112を損傷する可能性があり、結果としてさらなる粉末の不均一性が生じる場合がある。したがって、本発明の実施形態は、作業プラットフォーム105上のビルド領域に不均一性が生じる前に、散布された粉末の不均一性を検出することができる。当業者には、多くの変形、修正、および代替が認識されよう。
【0021】
[0045]いくつかの実施形態では、軸上光学センサ109、軸外センサ110、接触センサ113、および他のセンサ114は、インプロセスの生センサデータを生成するように構成され得る。他の実施形態では、軸上光学センサ109、軸外光学センサ110、接触センサ113、および他のセンサ114は、データを処理し、低次元センサデータを生成するように構成され得る。
【0022】
[0046]いくつかの実施形態では、プロセッサ118、コンピュータ可読媒体120、およびI/Oインタフェース122を含むコンピュータ116が提供され、さまざまなセンサからデータを収集するために付加製造システムの適切なシステムコンポーネントに結合される。コンピュータ116により受信されたデータは、インプロセスの生センサデータおよび/または低次元センサデータを含むことができる。プロセッサ118は、インプロセスの生センサデータおよび/または低次元センサデータを使用して、レーザ100のパワーを決定し、作業プラットフォーム105に関する座標を含む情報を制御することができる。他の実施形態では、プロセッサ118、コンピュータ可読媒体120、およびI/Oインタフェース122を含むコンピュータ116は、さまざまなシステムコンポーネントの制御を提供することができる。コンピュータ116は、各構成要素のそれぞれのプロセスパラメータを制御および調整するために、レーザ100、作業プラットフォーム105、およびリコータアーム112に関連する制御情報を送信、受信、および監視することができる。
【0023】
[0047]プロセッサ118を使用して、さまざまなセンサによって収集されたデータを使用して計算を実行し、インプロセス品質メトリックを生成することができる。いくつかの実施形態では、軸上光学センサ109および/または軸外センサ110によって生成されたデータを使用して、ビルドプロセス中に熱エネルギー密度を決定することができる。ビルド面にわたるエネルギー源の移動に関連する制御情報を、プロセッサで受信できる。次に、プロセッサは、制御情報を使用して、軸上光学センサ109および/または軸外光学センサ110からのデータを対応する位置と相関させることができる。この相関データを組み合わせて、熱エネルギー密度を計算できる。いくつかの実施形態では、熱エネルギー密度および/または他のメトリックをプロセッサ118が使用して、プロセスパラメータ、例えば、熱エネルギー密度もしくは所望の範囲外のその他のメトリックに応じてレーザパワー、レーザ速度、ハッチ間隔、および他のプロセスパラメータの制御信号を生成できる。このようにして、普通なら生産部品を台無しにする可能性のある問題を改善できる。複数の部品が一度に生成される実施形態では、メトリックが所望の範囲外になったことに応じてプロセスパラメータを迅速に修正することで、隣接する部品がエネルギー源から受け取るエネルギーが多すぎたり少なすぎたりするのを防ぐことができる。
【0024】
[0048]いくつかの実施形態では、I/Oインタフェース122は、収集されたデータを遠隔地に送信するように構成され得る。I/Oインタフェースは、遠隔地からデータを受信するように構成され得る。受信したデータは、ベースラインデータセット、履歴データ、ポストプロセス検査データ、および分類データを含むことができる。リモートコンピューティングシステムは、付加製造システムから送信されたデータを使用して、インプロセス品質メトリックを計算できる。リモートコンピューティングシステムは、特定のインプロセス品質メトリックに応じて情報をI/Oインタフェース122に送信することができる。
【0025】
[0049]電子ビームシステムの場合、
図1Bはセンサの可能な構成と配置を示している。電子ビーム銃150は、電磁集束システム152によって集束され、次いで電磁偏向システム153によって偏向される電子ビーム151を生成し、その結果、細かく集束され、標的化された電子ビーム154がもたらされる。電子ビーム154は、ワークピース156上にホットビーム材料相互作用ゾーン155を生成する。光エネルギー158はワークピース156から放射され、相互作用領域155に局所的に分離されるか、ワークピース156全体を取り囲むことができる独自の視野160をそれぞれ有する一連の光学センサ159によって収集され得る。加えて、光学センサ159は、電子ビーム154がワークピース156を横切って移動するときに電子ビーム154を追跡できる独自の追跡および走査システムを有することができる。
【0026】
[0050]センサ159が光学トラッキングを有するかどうかにかかわらず、センサ159は、高温計、フォトダイオード、分光計、および可視、UV、またはIRスペクトル領域で動作する高速カメラまたは低速カメラで構成できる。センサ159は、ビルド中の堆積物の機械的特性または機械的完全性を測定または予測するために、1つのレーザビームで堆積物を積極的に励起または「ピング(ping)」し、レーザ干渉計を使用して構造の結果の超音波または「リンギング(ringing)」を測定するレーザ超音波センサなどの一連の物理測定モダリティを組み合わせたセンサでもよい。加えて、リコータアーム上に接触センサ113があってもよい。これらのセンサは、加速度計、振動センサなどであってもよい。最後に、他のタイプのセンサ114があってもよい。これらには、マクロ熱場を測定するための熱電対などの接触センサや、ビルド中に堆積物に発生する亀裂やその他の冶金現象を検出できるアコースティックエミッションセンサが含まれてもよい。いくつかの実施形態では、1つまたは複数の熱電対を使用して、センサ159によって収集された温度データを較正することができる。
図1Aおよび
図1Bに関連して説明されたセンサは、説明された方法で使用されて、連続的な材料の蓄積を伴う付加製造プロセスの性能を特徴付けることができることに留意されたい。
【0027】
[0051]
図2は、粉末床にわたるエネルギー源を走査するための可能なハッチパターンを示している。200では、ワークピースの領域が、方向が交互に変わる長い経路長に沿って走査するエネルギー源によって処理される。この実施形態では、第1のスキャン206と第2のスキャン208との間にハッチ間隔204が示されている。202では、ワークピースの領域がより小さいチェッカーボード214に分割され、このチェッカーボード214では左から右および上から下に連続して第1スキャン210および第2スキャン212によって走査することができる。他の実施形態では、個々のチェッカーボードのスキャン順序をランダム化することができる。本明細書に開示されている付加製造プロセスに関連して、いくつかのハッチパターンを利用することができる。当業者には、多くの変形、修正、および代替が認識されよう。
【0028】
[0052]
図3は、付加製造システムによって生成されたデータを使用して熱エネルギー密度を決定し、製造欠陥を含む可能性が最も高い部品の部分を識別する例示的なプロセス300を示すフローチャートを示している。軸上光学センサ109および軸外光学センサ110によって生成されたデータを、単独でまたは組み合わせて使用して、熱エネルギー密度を決定することができる。302で、生のフォトダイオードデータトレースが受信される。生のフォトダイオードデータトレースは、例えば、放出された熱エネルギーの検出に応じてセンサによって生成された電圧データを使用して生成され得る。304では、特定のスキャンscan
iに対応する生のフォトダイオードトレースの一部が識別される。いくつかの実施形態において、個々のフォトダイオードデータトレースは、エネルギー源駆動信号データ(エネルギー源の操作および作動に関与する駆動信号)を参照することにより、残りのセンサ読み取り値から分離され得る。306で、scan
iの生のフォトダイオードデータトレース(以下pdon
i)の下の面積を決定する。いくつかの実施形態では、pdon
iは集積フォトダイオード電圧を表すことができる。いくつかの実施形態では、pdon
iは、scan
i中のフォトダイオードの平均読み取り値を表す。308で、scan
iに関連付けられた部品pを識別する。308で識別された部品は、部品の関連面積A
pも有することができる。これらの2つの値は、前述のようにpdon
iをエネルギー源の位置データと相関させることで決定できる。プロセスは、310で合計スキャンカウントを計算できる。312で、scan
iに関連する長さL
iを決定できる。L
iは、式(1)を使用して計算することができ、ここで、x1
i,y1
iおよびx2
i,y2
iは、scan
iの開始位置と終了位置を表す:
【数1】
【0029】
[0053]314で、部品の製造に使用されるすべてのスキャンの合計長さLsum
pが決定され得る。部品のLsum
pは、部品に関連付けられている各スキャンの長さL
iを合計することで決定できる。316で、スキャンの比例配分された面積A
iを決定することができる。A
iは、式(2)を使用して計算され得る:
【数2】
【0030】
[0054]316で、i番目のスキャンの比例配分された熱エネルギー密度(TED)TED
iを決定することができる。TED
iは、一連の低次元化プロセス特徴の例である。TEDは、生のフォトダイオードデータを使用して計算される。この生のセンサデータから、TED計算は生のセンサデータから低次元化プロセスの特徴を抽出する。TED
iは、例えばレーザパワー、レーザ速度、ハッチ間隔など、すべてのユーザ定義のレーザ粉末床融合プロセスパラメータに敏感である。TED
iは、式(3)を使用して計算され得る:
【数3】
【0031】
[0055]この説明の目的のために、「低次元(reduced order)」とは:データ圧縮、つまり、生データと比較して特徴のデータが少ない;データ削減、つまり、プロセスメトリックまたはその他の性能指数を生む生データの体系的な分析;データ集約、つまり、個別のグループ、および生データ自体とは対照的にクラスタリングを特徴付ける変数の小さなセットへのデータのクラスタリング;データ変換、つまり、変換則またはアルゴリズムを使用して、生データを低次元の別の変数空間に線形または非線形にマッピングするためのデータの数学的操作;あるいは、データ密度の削減、データの次元数の削減、データサイズの削減、データの別の削減されたスペースへの変換、またはこれらのすべてが同時に行われる正味の効果を有するその他の関連技術、のうちの1つまたは複数の側面を指す。
【0032】
[0056]TEDiは、ベースラインデータセットとのプロセス品質メトリック(IPQM)の比較中に分析に使用できる。結果のIPQMは、スキャンごとに計算できる。318で、IPQM品質ベースラインデータセットと計算されたTEDiを比較できる。計算されたTEDとベースラインデータセットの差が閾値を超える部品の領域では、それらの領域は1つまたは複数の欠陥を含む可能性があると識別でき、および/またはその領域に対してほぼリアルタイムでさらなる処理を実行でき、ベースラインデータセットからのTEDの変動によって引き起こされる欠陥を改善することができる。いくつかの実施形態では、欠陥を含む可能性のある部品の部分は、分類子を使用して識別できる。分類子は、結果を公称または非公称のいずれかとしてグループ化することができ、グラフィカルおよび/またはテキストベースの媒体で表すことができる。分類子は:統計的分類、単一変数と多変数の両方;ヒューリスティックベースの分類子;エキスパートシステムベースの分類子;ルックアップテーブルベースの分類子;単に制御の上限または下限に基づく分類子;信頼区間および/または自由度の考慮に基づいて公称閾値対非公称閾値を確立できる1つまたは複数の統計分布と連動して機能する分類子;または、暗黙的か明示的かを問わず、特徴データのセットが公称か非公称かを識別できるその他の分類スキーム、を含むがこれらに限定されない複数の分類方法を使用できる。この説明の目的上、「公称」とは、事前に定義された仕様内にあった一連のプロセス結果を意味し、このようにして製造された部品のポストプロセス測定属性は、許容可能と見なされる値のレジーム、または「許容可能な」コンポーネントを確立するための他の定量的、半定量的、客観的、または主観的方法論に該当する。IPQMの分類に関する追加の説明は、2016年9月30日に出願された米国特許出願第15/282,822号に提供されており、その開示はあらゆる目的のために参照によりその全体が本明細書に組み込まれる。
【0033】
[0057]
図3に示す特定のステップは、本発明の実施形態に従ってデータを収集し、熱エネルギー密度を決定する特定の方法を提供することを理解されたい。他の順序のステップが、代替の実施形態に従って実行されてもよい。また、
図3に示す個々のステップは、個々のステップに適切なように、さまざまな順序で実行され得る複数のサブステップを含んでもよい。さらに、特定の用途に応じて、追加のステップを追加したり、既存のステップを削除したりできる。当業者には、多くの変形、修正、および代替が認識されよう。
【0034】
[0058]
図4A~
図4Hは、TEDを決定し、欠陥を含む可能性が高い部品の任意の部分を識別するためにプロセス300で使用されるステップを示している。
図4Aは、ステップ302に対応し、所与のスキャン長に対する生のフォトダイオード信号402を示している。x軸450は秒単位の時間を示し、y軸460はフォトダイオード電圧を示す。いくつかの実施形態では、代わりに、またはそれに加えて、高温計によって光学測定を行うことができる。信号402は、フォトダイオードの生電圧である。フォトダイオード信号402の立ち上がり404および立ち下がり406、ならびにレーザがオンである間の信号の散乱および変動408を明確に見ることができる。データは、所与のサンプル数/秒で収集される。フォトダイオード信号402の変動408は、粉末床上で溶融する粉末の変動によって引き起こされ得る。例えば、フォトダイオード信号402の小さな谷の1つは、固体状態から液体状態に移行する粒子床内のより大きな粒子によって吸収されるエネルギーによって引き起こされ得る。一般に、立ち上がりイベントと立ち下がりイベントとの間のフォトダイオード信号の所与のセグメント内のデータポイントの数は、スキャン期間とサンプリングレートに関連し得る。
【0035】
[0059]
図4Bは、生のフォトダイオード信号402およびレーザ駆動信号410を示している。
図4Bに示すレーザ駆動信号410は、エネルギー源駆動信号データ、この場合はレーザ駆動信号410、または特定のスキャン長でレーザのオンとオフを指示するコマンド信号を使用して生成され得る。フォトダイオード信号402は、レーザ駆動信号410に重畳される。レーザ駆動信号410の立ち上がり412および立ち下がり414は、フォトダイオード信号402の立ち上がり404および立ち下がり406に対応する。
図4Bに示されるデータは、ステップ304において、スキャンに対応する生のフォトダイオード信号402の一部を識別するために使用され得る。いくつかの実施形態では、レーザ駆動信号410は、レーザがオフのとき約0Vであり、レーザがオンのとき約5Vである。ステップ304は、レーザ駆動信号410が特定の閾値、例えば4.5Vを超えるフォトダイオード信号に関連するすべてのデータを分離し、レーザがこの閾値を下回るすべてのデータを分析から除外することにより達成され得る。
【0036】
[0060]
図4Cは、生のフォトダイオード信号402の下の面積416を決定するステップを含むステップ306の一実施形態を示している。いくつかの実施形態において、曲線の下の面積は、式(4)を使用して計算され得る:
【数4】
統合されたフォトダイオード電圧418を使用して、TED
i計算のpdon
iを決定できる。
【0037】
[0061]
図4Dは、部品に対するスキャン420の位置および合計スキャンカウント424を示している。両方の値を使用して、部品のスキャン位置に対応するTEDを決定できる。
図4Eは、関心部品426のレンダリング面積を示している。
図4Eは、複数の追加部品428とウイットネスクーポン430も示している。
図4Eのすべての部品は、粉末床432上に配置されて描かれている。
【0038】
[0062]
図4Fは、フォトダイオードデータの一部に関連するトレースと、合計サンプルカウント434を決定するためにフォトダイオードデータの残りで使用できる4つのスキャンに対応するレーザ駆動信号データを示している。合計サンプルカウントを使用して、部品の合計スキャン長LSum
pを計算できる。合計サンプルカウントは、レーザオン期間436を合計することで決定される。いくつかの実施形態では、レーザオン期間の合計とレーザオン期間中のスキャンエネルギー源の平均速度を使用して、合計スキャン長を決定することができる。
【0039】
[0063]スキャンデータを収集した後、各層のTEDを各レーザスキャンに関連するTEDから計算して、
図4Gに示すグラフ440に表示することができる。グラフ440は、公称領域442内および非公称領域444内に位置するTED値を示している。TED領域は、ベースラインの閾値438で分割される。このようにして、欠陥を含む可能性が高い部品の層を簡単に識別できる。その後、さらなる分析は、非公称TED値を有する層に焦点を当てることができる。
【0040】
[0064]
図4Hは、点群446を使用して各スキャンのTED値を3次元で表示できる様子を示している。点群446は、公称値とは異なる色または強度として非公称値を表示することにより、公称領域442および非公称領域444からのTED値の3次元空間における位置を示している。非公称値は、キーホール形成による多孔度や融合不足による空隙など、製造欠陥を含む可能性が最も高い部品の部分を示している。いくつかの実施形態では、システムは、TEDに基づいて1つまたは複数のプロセスパラメータを変更する制御信号を生成および送信することができる。
【0041】
[0065]
図5は、付加製造システムによって生成されたデータを使用して熱エネルギー密度を決定し、製造欠陥を含む可能性が最も高い部品の部分を識別する例示的なプロセス500を示すフローチャートを示している。軸上光学センサ109および軸外光学センサ110によって生成されたデータを、単独でまたは組み合わせて使用して、熱エネルギー密度を決定することができる。502で、フォトダイオード時系列データを収集できる。フォトダイオード時系列データは、例えばセンサに関連付けられた電圧データを使用して生成され得る。504で、レーザ駆動時系列データが収集される。レーザ駆動時間データを、レーザパワー、レーザ速度、ハッチ間隔、x-y位置などの追加のプロセスパラメータに関連付けてもよい。506のプロセスは、レーザオフ状態を示すレーザ駆動時系列データの部分に対応するフォトダイオード時系列データの部分をドロップすることにより、フォトダイオード時系列データをスライスすることができる。いくつかの実施形態では、レーザ駆動信号は、レーザがオフのとき約0Vであり、レーザがオンのとき約5Vである。506でのプロセスは、レーザ駆動信号が特定の閾値、例えば4.5Vを超えるすべてのデータを分離し、レーザがこの閾値を下回るすべてのデータを分析から除外することができる。いくつかの実施形態では、レーザがちょうどオンになり、レーザが材料を加熱しているときがあるため、周期的に約0.2Vに低下するフォトダイオード信号をサンプル系列データに含めることができる。
【0042】
[0066]506のプロセスは、レーザオンフォトダイオードデータ508のみを出力する。510のプロセスでは、レーザオンフォトダイオードデータを使用して、時系列データをサンプル系列データに変換できる。510のプロセスは、レーザオンフォトダイオードデータを「N」個のサンプルセクションに分割する。20個のサンプルセクションの使用は、本発明の一実施形態の例を提供することを意図している。さまざまな精度/解像度のサンプルセクションをいくつでも使用できる。いくつかの実施形態では、サンプルセクションのセットは、一般に単一のスキャンを構成するために複数のスキャンレット520を必要とするため、スキャンレット520と呼ぶことができる。512のプロセスは、サンプルの数をカウントする(516)ことができる。514のプロセスは、レーザを当てた部品の面積をレンダリングできる。いくつかの実施形態では、レーザを当てた部品に関連するディスプレイ内のピクセルの数を使用して、レーザを当てた部品面積518を決定することができる。他の実施形態では、プロセスパラメータに関連するスキャンおよびデータの数を使用して面積を計算することができる。522で、プロセスは、合計サンプルカウントのレーザを当てた部品面積518、およびスキャンレットデータ520を使用してスキャンレットデータを正規化する。図示の実施形態では、スキャンレットメトリックデータ524は、各スキャンレットに関連付けられた部品の部分の熱エネルギー密度である。いくつかの実施形態では、スキャンデータは、スキャンタイプごとに分類することもできる。例えば、付加製造機は異なる特性を有するスキャンを利用できる。特に、輪郭スキャン、または部品の外面を仕上げるように設計されたスキャンは、部品の内部領域を焼結するように設計されたスキャンよりも大幅に強力であり得る。このため、スキャンタイプごとにデータを分離することで、より一貫した結果を得ることができる。いくつかの実施形態では、スキャンタイプの識別は、スキャン強度、スキャン期間、および/またはスキャン位置に基づくことができる。いくつかの実施形態では、検出されたスキャンをビルド中の部品に関連付けられたスキャン計画によって指示されたスキャンと相関させることにより、スキャンタイプを識別することができる。
【0043】
[0067]次に、プロセス528は、ベースラインスキャンレットメトリックデータおよび熱エネルギー密度を受け取り、IPQM品質評価530を出力する。IPQM品質評価530を使用して、製造欠陥を含む可能性が最も高い部品の部分を識別することができる。プロセス528は、本明細書で前述したように分類子を含むことができる。上記の方法およびシステムに加えて、プロセス528は、マハラノビス距離を使用して、候補データ、例えばスキャンレットメトリックデータ524とベースラインスキャンレットメトリックデータを比較することができる。いくつかの実施形態において、各スキャンレットのマハラノビス距離は、ベースラインスキャンレットメトリックデータを使用して計算することができる。
図5に関連して開示された実施形態は、エネルギー源としてのレーザの使用を論じたが、例えば、レーザを電子ビームまたは他の適切なエネルギー源に置き換えることができるという上記の教示を考慮して多くの修正および変形が可能であることは当業者には明らかであろう。
【0044】
[0068]
図5に示す特定のステップは、本発明の別の実施形態に従って、熱エネルギー密度を決定し、製造欠陥を含む可能性が最も高い部品の部分を識別する特定の方法を提供することを理解されたい。他の順序のステップが、代替の実施形態に従って実行されてもよい。例えば、本発明の代替の実施形態は、異なる順番で上記のステップを実行してもよい。また、
図5に示す個々のステップは、個々のステップに適切なように、さまざまな順序で実行され得る複数のサブステップを含んでもよい。さらに、追加のステップが、特定の用途に応じて追加または削除されてもよい。当業者には、多くの変形、修正、および代替が認識されよう。
【0045】
[0069]
図6Aは、フォトダイオード時系列データ602を示している。フォトダイオード時系列データは、
図1および
図2に示すように、さまざまな軸上または軸外のセンサから収集され得る。x軸602は秒単位の時間を示し、y軸604はセンサによって生成された電圧を示す。センサによって生成される電圧は、1つまたは複数のセンサに衝突する可能性のあるビルド面から放出されるエネルギーに関連付けられている。サンプル606は、フォトダイオード時系列データ602のトレース上に示されている。
図4Bは、フォトダイオードデータがレーザ駆動信号に関連付けられる506でのプロセスを説明する。
【0046】
[0070]
図6Bは、レーザオンフォトダイオードデータを示している。x軸608はサンプルの数を表し、y軸610は生センサデータの電圧を表す。電圧の低下612は分析に含まれ、これは、電圧が大幅に低くなるが、レーザは材料の加熱に依然として積極的に寄与しているためである。
【0047】
[0071]
図6Cは、ステップ510に関連して説明したフォトダイオード上のレーザのサンプル系列データを示している。20個のサンプルセクション620は、任意のサイズを有することができる。20個のサンプルは、レーザの移動速度が1000mm/sで、レーザの移動距離が約400μmに相当する。XY信号自体のノイズは約150μmである。いくつかの実施形態では、20個のサンプル未満のセクション、例えば2サンプルセクションでは、測定される距離とノイズは、ポイントの位置を確信して決定できないような比率になる可能性がある。いくつかの実施形態では、1mm未満の空間分解能のために、50個のサンプルの制限を使用することができる。したがって、データをセグメント化するサンプルの数は、レーザ移動速度が1000mm/sの50KHzデータの場合、20≦N≦50の範囲にある必要がある。上記の教示に鑑みて、多くの修正および変形が可能であることは、当業者には明らかであろう。
【0048】
[0072]
図6Dはプロセス522に対応し、各スキャンレットの平均値618が決定される実施形態を示している。いくつかの実施形態では、プロセス522への入力は、合計サンプルカウント516、レーザを当てた部品面積518、およびスキャンレットデータ520を含む。これらの入力を使用すると、平均を使用して、式(5)に示すように曲線下面積(AUC)を決定できる:
【数5】
ここで、Vは各スキャンレットに対して決定された平均電圧、Nはサンプル数である。
図6Dでは、20サンプルセグメントの平均電圧は、データの幅が固定されているため、信号の積分に相当する。
【0049】
[0073]
図6Eは、個々のスキャンレット622についてのレーザを当てた部品面積A
i、およびすべてのスキャン624についてのレーザを当てた部品面積を示している。面積に加えて、スキャンの長さL
iと、部品全体のL
iの合計LSum
pを計算できる。L
iは、式(6)を使用して計算され得る:
【数6】
スキャンの開始と終了のx座標とy座標は指定され得るか、1つまたは複数の直接センサ測定値に基づいて決定され得る。
【0050】
[0074]
図6Fは、ビルド面内の層に関連付けられたレーザを当てた部品のレンダリング面積626を示している。いくつかの実施形態では、pdon
i、部品の面積A
p、スキャンの長さL
i、および合計長さLSum
pが決定されると、TEDは式(7)を使用して計算され得る:
【数7】
TEDは、レーザパワー、レーザ速度、ハッチ間隔など、ユーザ定義のすべてのレーザ粉末床融合プロセスパラメータに敏感である。TED値は、ベースラインデータセットとのIPQM比較を使用した分析に使用され得る。結果のIPQMは、レーザスキャンごとに決定され得、点群を使用してグラフまたは3次元で表示され得る。
図4Gは、例示的なグラフを示している。
図4Hは、例示的な点群を示している。
【0051】
[0075]
図7A~
図7Cは、ポストプロセス多孔度測定値および対応する正規化されたインプロセスTED測定値を示している。これらの図は、インプロセスTED測定値が、多孔度およびその他の製造欠陥の正確なIPQM予測因子となり得ることを示している。
図7Aは、TEDメトリックデータとベースラインデータセットとの比較を示している。プロットは、IPQMメトリックの各フォトダイオードの値を、個別と組み合わせの両方で示している。軸上フォトダイオードデータ702は、エネルギー源と位置合わせされたセンサから取得できる。軸外フォトダイオードデータ704は、エネルギー源と位置合わせされていないセンサによって収集され得る。軸上および軸外のフォトダイオードデータ706の組み合わせにより、プロセスパラメータの変化に対して最高の感度が得られる。x軸708は、部品のビルド面層を示しており、y軸710は、計算されたTEDとベースラインメトリックとの間のマハラノビス距離を示している。
【0052】
[0076]マハラノビス距離を使用して、TEDデータを標準化できる。マハラノビス距離は、各TED測定値がTED測定値の正規分布からどれだけの標準偏差であるかを示す。この場合、マハラノビス距離は、各TED測定値が制御層526~600のビルド中に収集された平均TED測定値からどれだけの標準偏差であるかを示す。また、
図7Aの下のチャートは、TEDがグローバルエネルギー密度(GED)と多孔度によってどのように変化するかを示している。特に、この一連の実験では、破壊的な検査を行うことなく、TEDを、部品の多孔度を予測できるように構成することができる。
【0053】
[0077]いくつかの実施形態では、テストランの実行中に生成される金属部品の定量的な金属組織学的特徴(例えば、細孔または金属間粒子のサイズおよび形状)および/または機械的特性特徴(例えば、強度、靭性または疲労)を比較することにより、付加製造装置の性能をさらに検証することができる。一般に、テスト部品内の未溶融金属粉末粒子の存在は、十分なエネルギーが加えられていないことを示すが、エネルギーを受け取りすぎたテスト部品は、作製された部品の完全性を損なう可能性のある内部空洞を形成する傾向がある。多孔度714は、これらの欠陥の代表的なものであり得る。
【0054】
[0078]いくつかの実施形態では、
図7Aを生成するために使用される公称値は、先行するテストから取得される。いくつかの実施形態では、付加製造動作中に計算を行う必要がないため、公称値は後続のテストから取得することもできる。例えば、2つの付加製造装置の性能を比較しようとする場合、第1の付加製造装置を使用してテストを実行することにより、公称値を特定できる。次に、第2の付加製造装置の性能を、第1の付加製造装置によって決定された公称値と比較することができる。2つの付加製造装置の性能が5つの標準偏差の所定の閾値内にあるいくつかの実施形態では、2つの機械から同等の性能が期待できる。いくつかの実施形態では、所定の閾値は、逆カイ二乗分布から導出された95%の統計的信頼レベルであり得る。このタイプのテスト方法論は、時間の経過に伴う性能の変化を識別する際にも利用できる。例えば、機械の較正後、テストパターンの結果を記録できる。装置によって一定数の製造動作が実行された後、付加製造装置を再度実行できる。較正直後に実行される初期テストパターンをベースラインとして使用して、付加製造装置の性能の経時的な変化を特定できる。いくつかの実施形態では、付加製造装置の設定を調整して、付加製造装置を較正後の性能に戻すことができる。
【0055】
[0079]
図7Bは、付加製造プロセスを使用して構築された部品のポストプロセス金属組織学を示している。
図7Bは、部品718および部品の対応する断面720を示している。セクション1~11は、
図7Aのセクション1~11に対応する。プロセスパラメータの変化、および結果として生じる多孔度の変化は、部品の断面
図720で見ることができる。特に、セクション2と3は、それぞれ3.38%と1.62%の最高の多孔度を有する。サンプル部分の欠陥マーク722の数が増えることにより、断面に高い多孔度が示される。
【0056】
[0080]
図7Cは、金属組織学中に決定された対応する断面でのIPQM結果を示している。各断面には、J/mm
2単位のエネルギー密度724と多孔度714が含まれる。最大数の欠陥マーク722を有するサンプルは、ベースラインから最も標準化された距離を有するTED測定値に対応する。このプロットは、標準化された距離が低いと高密度で低多孔度の金属組織学を予測できる一方で、標準化されたマラハボニス距離が高いと高多孔度および貧弱な金属組織学と高い相関があることを示している。例えば、層200の周りの層を生成する際に使用される低パワー設定は、高い多孔度714および多数の欠陥マーク722をもたらす。これに対して、600番目の層またはその周辺のロード設定の中央を使用すると、識別可能な欠陥マーク722はなく、記録された最小の多孔度値は0.06%である。
【0057】
[0081]
図8は、非イメージング光検出器などの光学センサによって記録されたデータを処理して、付加製造ビルドプロセスを特徴付けることができる代替プロセスを示している。802で、相互に相関するビルド面強度データとエネルギー源駆動信号の両方を含むことができる生のセンサデータが受信される。804で、駆動信号とビルド面強度データとを比較することにより、ビルド面内で個々のスキャンを識別および位置特定することができる。一般に、エネルギー源駆動信号は、少なくとも開始位置と終了位置を提供し、そこからスキャンが延びることができる範囲が決定され得る。806で、各スキャンの強度またはパワーに関連する生のセンサデータを対応するX&Yグリッド領域にビニングすることができる。いくつかの実施形態では、特定のグリッド領域における各スキャンの滞留時間を相関させることにより、生の強度またはパワーデータをエネルギー単位に変換することができる。いくつかの実施形態では、各グリッド領域は、ビルド面を監視する光学センサの1ピクセルを表すことができる。極座標などの異なる座標系を使用してグリッド座標を格納でき、座標の格納はデカルト座標に限定されるべきではないことに留意されたい。いくつかの実施形態では、特定のスキャンタイプのみで分析を実行できるように、異なるスキャンタイプを別々にビニングすることができる。例えば、オペレータは、これらのタイプのスキャンに不要な変動が含まれる可能性が最も高い場合、輪郭スキャンに焦点を合わせたいことがある。808で、各グリッド領域でのエネルギー入力を合計して、式(8)を使用して各グリッド領域で受け取ったエネルギーの合計量を決定できるようにすることができる。
【数8】
【0058】
[0082]この合計は、ビルド面に新しい粉末の層を追加する直前に実行され得、あるいは、所定の数の粉末の層が堆積されるまで合計することを遅らせてもよい。例えば、合計は、付加製造プロセス中に5層または10層の異なる粉末層を堆積および融合させた後にのみ実行できる。いくつかの実施形態では、粉末の焼結層は、部品の厚さに約40ミクロンを追加することができるが、この厚さは、使用する粉末の種類と粉末層の厚さによって異なる。
【0059】
[0083]810で、各グリッド領域に検出され関連付けられたサンプルの標準偏差が決定される。これにより、パワー読み取り値の変動幅が小さいまたは大きいグリッド領域を特定できる。標準偏差の変動は、センサの性能の問題や、1つまたは複数のスキャンが欠落しているか、通常の動作パラメータをはるかに超えたパワーレベルを有する場合の問題を示している可能性がある。標準偏差は、式(9)を使用して決定され得る。
【数9】
【0060】
[0084]812では、パワー読み取り値をグリッド領域の全体の面積で割ることにより、各グリッド領域で受け取られる合計エネルギー密度を決定することができる。いくつかの実施形態では、グリッド領域は、約250ミクロンの長さの正方形の形状を有することができる。各グリッド領域のエネルギー密度は、式(10)を使用して決定され得る。
【数10】
【0061】
[0085]814で、複数の部品がビルドされている場合、異なるグリッド領域を異なる部品に関連付けることができる。いくつかの実施形態では、システムは、グリッド領域の座標および各部品に関連付けられた境界を使用して、各グリッド領域およびそれに関連付けられたエネルギー密度を各部品に迅速に関連付けるために使用できる格納された部品境界を含めることができる。
【0062】
[0086]816で、部品の各層の面積を決定することができる。層が空隙を含むか、内部空洞を画定するのに役立つ場合、層の大部分はエネルギーを受け取らない可能性がある。このため、エネルギー源からある程度のエネルギーを受け取っていると特定されたグリッド領域のみを合計することにより、影響を受ける面積を計算できる。818で、部品に関連する層の部分内のグリッド領域が受け取る合計パワー量を合計し、影響を受ける面積で除算して、部品のその層のエネルギー密度を決定することができる。面積とエネルギー密度は、式(11)および(12)を使用して計算され得る。
【数11】
【数12】
【0063】
[0087]820で、各層のエネルギー密度を合計して、部品が受け取るエネルギーの総量を示すメトリックを取得できる。その後、部品の全体的なエネルギー密度は、ビルド面上の他の同様の部品のエネルギー密度と比較され得る。822で、各部品からの合計エネルギーが合計される。これにより、異なるビルド間で高レベルの比較を行うことができる。ビルドの比較は、粉末のばらつきや全体的なパワー出力の変化などの系統的な違いを特定するのに役立ち得る。最後に、824で、合計されたエネルギー値を他の層、部品、またはビルド面と比較して、他の層、部品、またはビルド面の品質を決定できる。
【0064】
[0088]
図8に示す特定のステップは、本発明の別の実施形態による付加製造ビルドプロセスを特徴付ける特定の方法を提供することを理解されたい。他の順序のステップが、代替の実施形態に従って実行されてもよい。例えば、本発明の代替の実施形態は、異なる順番で上記のステップを実行してもよい。また、
図8に示す個々のステップは、個々のステップに適切なように、さまざまな順序で実行され得る複数のサブステップを含んでもよい。さらに、追加のステップが、特定の用途に応じて追加または削除されてもよい。当業者には、多くの変形、修正、および代替が認識されよう。
【0065】
[0089]
図9A~
図9Dは、複数のスキャンが個々のグリッド領域で導入されるパワーにどのように寄与できるかを示す視覚的描写を示している。
図9Aは、付加製造システムによってビルドされている部品の一部にわたって分散された複数のグリッド領域902で構成されたグリッドパターンを示している。
図9Aは、グリッド領域902を横切って斜めに延びるエネルギースキャン904の第1のパターンも示している。エネルギースキャンの第1のパターン902は、グリッド904を横切るレーザまたは他の熱エネルギースキャンの強い供給源によって加えられ得る。
図9Bは、部品全体に導入されたエネルギーが、グリッド領域902のそれぞれにおいて、受け取ったエネルギー量を表す単一のグレースケール色によってどのように表されるかを示しており、濃い影のグレー色は、より大きなエネルギー量に対応する。いくつかの実施形態では、グリッド領域902のサイズを縮小して、より高い解像度のデータを取得できることに留意されたい。代替として、グリッド領域902のサイズを増加させて、メモリおよび処理パワーの使用量を削減することができる。
【0066】
[0090]
図9Cは、エネルギースキャンの第1のパターンのエネルギースキャンの少なくとも一部と重複するエネルギースキャンの第2のパターン906を示している。
図8に付随するテキストで説明したように、エネルギースキャンの第1パターンと第2パターンが重なる場合、グリッド領域は濃い影で表示され、両方のスキャンのエネルギーが、重なり合うスキャンパターンで受け取るエネルギー量をどのように増加させたかを示す。明らかに、この方法は2つの重複スキャンに限定されず、各グリッド領域で受信したエネルギーを完全に表すために一緒に追加される他の多くの追加スキャンを含めることができる。
【0067】
[0091]
図10Aは、説明された実施形態での使用に適した例示的なタービンブレード1000を示している。タービンブレード1000は、複数の異なる表面を含み、生成するために多くの異なるタイプの複雑なスキャンを必要とする複数の異なる特徴を含む。特に、タービンブレード1000は、中空のブレード部分1002とテーパ状のベース部分1004とを含む。
図10Bは、25個のタービンブレード1000をビルド面1006の上に同時に製造できる例示的な製造構成を示している。
【0068】
[0092]
図10C~
図10Dは、グリッドTEDベースの視覚化層を有する
図10Bに示された構成の異なる層の異なる断面図を示している。
図10Cは、タービンブレード1000の層14を示し、TEDベースの視覚化層は、ベース部分1004の選択されたものの下端がタービンブレード1000-1、1000-2、および1000-3内の複数の空隙を画定し得る様子を示している。エネルギー密度データは個別のグリッド領域に関連付けられているため、普通ならタービンブレード内に完全に隠され得るこれらの空隙は、このグリッドTEDベースの視覚化で明確に見える。
図10Dは、ベース部分1004の上端が、
図10Dに示されているグリッドTEDベースの視覚化層から明確に識別できるタービンブレード1000-1、1000-2、および1000-3内の複数の隠された空隙を画定し得る様子を示している。
【0069】
[0093]
図11A~
図11Bは、2つの異なるタービンブレード1000のベース部分1004-1および1004-2の断面図を示している。
図11Aは、公称製造設定を使用して製造されたベース部分1004-1を示している。ベース部分1004-1の外面1102および1104は、ベース部分1004-1の内部1106よりも実質的に多くのエネルギーを受け取る。外面への増加したエネルギー入力は、より均一な硬化表面を提供し、結果として外面1102および1104に沿ってアニーリング効果が達成される。この追加のエネルギーは、外面1102および1104をターゲットとする高エネルギーの輪郭スキャンを使用して導入され得る。
図11Bは、輪郭スキャンを省略することを除いて、1004-2と同じ製造設定で生産されたベース部分1004-2を示している。ベース部分1004-2を生成する製造動作で利用されるすべてのスキャンもベース部分1004-1の生成に含まれていたが、各グリッド領域をカバーするすべてのスキャンのエネルギー密度入力を合計すると、オペレータはベース部分1004-1および1004-2の違いを明確に見ることができる。
【0070】
[0094]
図11Cは、ベース部分1004-1と1004-2との間の表面一貫性の違いを示している。明らかに、ベース部分1004-2の輪郭スキャンを省略することは、全体的な外面の品質に実質的な影響を及ぼす。ベース部分1004-1の外面は、より滑らかで一貫性のある多孔性が少ない。ベース部分1004-1に対するアニーリング効果はまた、ベース部分1004-2よりも実質的に大きな強度を与えるべきである。
【0071】
[0095]
図12は、複数の異なるビルドに関連する部品の熱エネルギー密度を示している。ビルドA~Gにはそれぞれ、同じ付加製造動作中にビルドされた約50の異なる部品(個別の円1202で表される)の熱放射データが含まれる。この図は、熱放射データを使用して異なるビルド間の変動を追跡し得る方法を示している。例えば、ロットA,B,およびCはすべて同様のTED分布を有するが、許容範囲内でD,E,およびFをビルドすると、熱放射データが一貫して低くなる。場合によっては、これらのタイプの変化は、粉末ロットの変化が原因である可能性がある。このようにして、熱放射データを使用して、全体的な出力品質に悪影響を及ぼす可能性のある系統的エラーを追跡できる。このチャートはグリッドTEDに基づく平均TED値を示しているが、スキャンベースのTED方法論のために同様のチャートを作成できることに留意されたい。
【0072】
[0096]
図13~
図14Bは、現場測定値を使用して部品の動作を制御するために熱エネルギー密度をどのように使用できるかの例を示している。
図13は、エネルギー源パワーと走査速度の異なる組み合わせを使用して製造される部品を製造し、次に破壊的に分析して、図示のようにグラム/立方センチメートルで得られる部品密度を決定する方法を示している。このトライアルでは、部品密度1302に関連付けられ、部品密度が4.37g/ccの部品が、製造元が推奨するスキャンおよびレーザパワー設定を使用して製造された。結果として得られる密度読み取り値に基づいて、破線1304の位置を決定することができる。線1304は、結果として生じるエネルギー入力量の低下により、粉末の一部が十分に融合するように加熱されず、部品密度が閾値密度レベルを下回る場所を示している。また、システムに過剰なエネルギーが加えられると、部品の密度が低下する可能性があり、製造動作中に粉末が溶融する代わりに気化するため、部品内にキーホールが形成される。破線1306は密度データから実験的に決定され得、この例では部品密度が4.33g/ccと低くなることで識別される。線1308は、エネルギー密度と部品形状が実質的に一定のままである最適なエネルギー密度の輪郭を表す。密度テストは、線1308に沿って分布された設定を使用して作製された部品の平均密度がどのように比較的一貫したままであるかを示す。
【0073】
[0097]
図14A~
図14Bは、パワー密度グラフの一部に重ねられた熱エネルギー密度の輪郭を示し、付加製造動作中に収集された熱密度測定値がエネルギー源によって使用される設定に応じて変化する様子を示している。
図14A~
図14Bに示されるように、濃い影はより高い熱エネルギー密度を示し、薄い影はより低い熱エネルギー密度を示す。部品密度のテストと熱エネルギー密度の輪郭から、特定の部品の制御限界を決定できる。この場合、楕円1402で示される制御限界が決定されており、パワーとスキャン速度のパラメータは、線1308に沿って3σ、線1308に垂直な線に沿って1σまで部品1302を生産するために使用される設定から変更できる。いくつかの実施形態では、パワーおよび速度の許容可能な変動により、生産実行中に所望の熱エネルギー密度を維持するために、インプロセス調整を行うことが可能になる。楕円1404は、制御限界外のさらなる変動に対応できるプロセスウィンドウ全体を示している。いくつかの実施形態では、このプロセスウィンドウを使用して、インプロセスデータのみを使用して、結果の部品を検証できるばらつきを特定することができる。描かれた制御およびプロセスウィンドウは楕円形として示されているが、他のプロセスウィンドウの形状およびサイズが可能であり、例えば、部品の形状および材料の離心率に応じてより複雑になる場合があることに留意されたい。製造動作中、熱放射を測定する光学センサ読み取り値を使用して、その場で熱エネルギー密度を決定できる。レーザパワーとスキャン速度を楕円1402で示された制御限界内に維持するときに熱エネルギー密度が予想範囲外になる場合、熱エネルギー密度の異常な読み取り値を有する部品の部分に欠陥がある可能性があると警告することができる。
【0074】
[0098]いくつかの実施形態では、プロセスウィンドウを、熱エネルギー密度を決定するために使用されるセンサ読み取り値を収集する1つまたは複数の光学センサをモデル化するモデリングおよびシミュレーションプログラムに組み込むことができる。モデリングおよびシミュレーションシステムがワークピースの命令セットの一次近似まで繰り返されると、予想される熱エネルギー密度を追加テストのために付加製造機に出力できる。付加製造機に熱エネルギー密度を測定するように構成された光学センサとコンピューティング機器が含まれている場合、モデル化された熱エネルギー密度データは付加製造機でさらにテストおよび検証するために使用できる。モデル化された熱エネルギー密度と測定された熱エネルギー密度の比較を使用して、命令セットの性能がその場で予想される結果とどの程度一致するかを確認できる。
【0075】
[0099]
図14Cは、エネルギー源の設定がプロセスウィンドウ1404から離れすぎていることに起因するさまざまな物理的効果を強調する別のパワー密度グラフである。例えば、パワー密度グラフは、低スキャン速度で大量のレーザパワーを追加すると、ワークピース内にキーホールが形成されることを示している。キーホールの形成は、あまりにも多くのエネルギーを受け取ることで粉末材料の一部が蒸発するために発生する。さらに、高いスキャン速度と組み合わされた低いパワーにより、粉末が融合しなくなる可能性がある。最後に、高いスキャン速度と組み合わされた高いパワーレベルにより、ビルド動作中に溶融金属のボールアップが生じる。堆積された粉末層の厚さを変えると、伝導モードゾーンをキーホール形成ゾーンから分離する線のシフトおよび融合ゾーンの欠如をもたらす可能性があることに留意されたい。例えば、粉末層の厚さを厚くすると、一般に厚い層が液化を受けるためにより多くのエネルギーを必要とするため、キーホールを伝導モードゾーンから分離する線の勾配と溶融領域の欠如を大きくする効果がある。
【0076】
[0100]また、
図14Cは、伝導モードゾーンに対応するパワーおよびスキャン速度の設定が一般に前述の重大な欠陥のいずれももたらさない方法を示しているが、プロセスウィンドウ1404内の値に対応するレーザ設定を維持することにより、結果として生じる粒子構造および/または部品の密度を最適化することができる。プロセスウィンドウ1404内にエネルギー源設定を維持することの別の利点は、これらの設定が熱エネルギー密度の読み取り値を狭い範囲内に維持する必要があることである。製造動作中に熱エネルギー密度の値が所定の範囲外にある場合、製造プロセスの問題を示している可能性がある。これらの問題は、設定をプロセスウィンドウの中央領域に近づけたり、後続の部品のプロセスウィンドウを更新したりすることで対処できる。いくつかの実施形態では、製造業者は、障害が、欠陥のある粉末または後続の製造プロセスに考慮されるべきでない他のまれな収差によって引き起こされたことを発見する可能性がある。描かれたプロセスウィンドウは部品のすべての部分で同じではなく、特定の時間に部品のどの領域または特定の層が作業されていたかによって大きく異なる可能性があることを理解されたい。プロセスウィンドウ1404のサイズおよび/または形状はまた、いくつかの実施形態では、ハッチ間隔、スキャン長およびスキャン方向などの他の要因に従って変化し得る。
【0077】
[0101]
図14Dは、溶融プールのサイズおよび形状が、レーザパワーおよびスキャン速度設定に従ってどのように変化し得るかを示している。例示的な溶融プール1406~1418は、さまざまなレーザパワーおよび速度設定に対して例示的な溶融プールサイズおよび形状を示す。一般的に、より大きな溶融プールは、より高い量のレーザパワーと低いスキャン速度から生じることがわかる。しかし、この特定の構成では、溶融プールのサイズは速度よりもレーザパワーに大きく依存する。
【0078】
[0102]
図15A~
図15Fは、付加製造動作を特徴付けて制御するために、どのようにグリッドを動的に作成できるかを示している。
図15Aは、ビルド面1504の一部の上に配置された円筒状ワークピース1502の上面図を示している。ワークピース1502は、付加製造動作が行われている様子が示されている。
図15Bは、円筒状ワークピース1502が複数のトラック1506にどのように分割され、それに沿ってエネルギー源が円筒状ワークピース1502の上面に分散された粉末を溶融できるかを示している。いくつかの実施形態では、エネルギー源は図示のように方向1506を交互に変えることができ、他の実施形態では、エネルギー源は常に一方向に動くことができる。さらに、ワークピース1502をビルドするために使用されるスキャンの方向をさらにランダム化するために、トラック1506の方向は層ごとに変化し得る。
【0079】
[0103]
図15Cは、ワークピース1502の一部を形成するときのエネルギー源の例示的なスキャンパターンを示している。矢印1508で示されるように、例示的なエネルギー源のワークピース1502を横切る動きの方向は斜めである。エネルギー源の個々のスキャン1510は、トラック1506に沿ったエネルギー源の移動方向に垂直な方向に向けられ、トラック1506を完全に横切ることができる。エネルギー源は、連続する個々のスキャン1510の間で短時間オフにすることができる。いくつかの実施形態では、エネルギー源のデューティサイクルは、トラック1506のそれぞれを横断するときに約90%であり得る。このタイプのスキャン戦略を採用することにより、エネルギー源は、ワークピース1502を横断するときにトラック1506の幅をカバーできる。いくつかの実施形態では、スワス1510は約5mmの幅を有することができる。いくつかの実施形態では、エネルギー源によって生成される溶融プールの幅は約80ミクロン程度であり得るため、これにより、ワークピース1502を形成するのに必要なトラックの数を実質的に減らすことができる。
【0080】
[0104]
図15D~
図15Eは、グリッド領域1512を各トラック1506に沿って動的に生成し、個々のスキャン1510の幅に対応するようにサイズ設定する方法を示している。システムは、エネルギー源に向かうエネルギー源駆動信号を参照することにより、後続のスキャンの正確な位置を予測できる。いくつかの実施形態では、グリッド1512の幅は、個々のスキャン1512の長さに一致するか、個々のスキャン1512の長さの10%または20%以内であり得る。繰り返しになるが、エネルギー源駆動信号を参照することにより、個々のスキャン1512のスキャン長を予測することができる。いくつかの実施形態において、グリッド領域1512は、正方形または長方形の形状であり得る。エネルギー源がトラック1506に沿って継続するにつれて、グリッド領域1512のそれぞれについて熱エネルギー密度を決定することができる。いくつかの実施形態では、グリッド領域1512-1内の熱エネルギー密度読み取り値を使用して、次のグリッド領域、この場合グリッド領域1512-2内のエネルギー源の出力を調整することができる。例えば、グリッド領域1512-1内の個々のスキャン1510によって生成される熱エネルギー密度の読み取り値が予想よりも大幅に高い場合、エネルギー源のパワー出力を減らすことができ、個々のスキャン1510にわたるエネルギー源スキャンの速度を上げることができ、および/または、グリッド領域1512-2内で個々のスキャン1510の間隔を広げることができる。これらの調整は、閉ループ制御システムの一部として行うことができる。各領域内に5つの個々のスキャン1510のみが示されているが、これは例示目的のみのために行われ、グリッド領域1512内の個々のスキャンの実際の数を実質的に多くすることができる。例えば、エネルギー源によって生成される溶融ゾーンの幅が約80ミクロンである場合、5mmの正方形グリッド領域1512内のすべての粉末が溶融ゾーン内に入るためには、約60回の個々のスキャン1510が必要になる場合がある。
【0081】
[0105]
図15Fは、エネルギー源がトラック1506のパターンの横断を終了した後のワークピース1502のエッジ領域を示している。いくつかの実施形態において、エネルギー源は、粉末の大部分が溶融および再固化した後、ワークピース1502にエネルギーを追加し続けることができる。例えば、輪郭スキャン1514は、ワークピース1502に表面仕上げを施すために、ワークピース1502の外周1516に沿って追跡することができる。図示の輪郭スキャン1514は、個々のスキャン1510よりも実質的に短いことを理解されたい。このため、グリッド領域1518を、グリッド領域1512よりもかなり狭くすることができる。また、グリッド領域1518は、この場合、ワークピース1502の外周の輪郭に従うので、形状が純粋に長方形ではないことにも留意されたい。スキャン長に違いが生じる可能性のある別の例として、ワークピースにさまざまな厚さの壁が含まれる場合がある。壁の厚さが変化すると、単一のグリッド領域内でスキャン長が変化する可能性がある。このような場合、個々のスキャンの長さの変化に合わせて幅を狭くしながらグリッド領域の長さを増やすことにより、各グリッド領域の面積を一貫性があるように保つことができる。
【0082】
[0106]
図16は、付加製造動作のフィードバック制御を確立および維持するためのフィードバック制御ループ1600を示す閉ループ制御例を示している。ブロック1602で、エネルギー源が横断しようとしている次のグリッド領域のベースライン熱エネルギー密度が制御ループに入力される。このベースライン熱エネルギー密度の読み取り値は、モデリングおよびシミュレーションプログラムから、および/または以前に実行した実験/テストランから確立できる。いくつかの実施形態では、このベースライン熱エネルギー密度データは、前の層の間に記録されたさまざまなグリッド領域のエネルギー密度読み取り値を含むエネルギー密度バイアスブロック1604によって調整され得る。エネルギー密度バイアスブロック1604は、前の層が受け取るエネルギーが多すぎる、または少なすぎる場合のベースラインエネルギー密度ブロックへの調整を含むことができる。例えば、光学センサ読み取り値がワークピースの1つの領域の公称より低い熱エネルギー密度を示す場合、エネルギー密度のバイアス値は、公称の熱エネルギー密度の読み取り値を下回るグリッド領域と重なるグリッド領域のベースラインエネルギー密度の値を増やすことができる。このようにして、エネルギー源は、前の1つまたは複数の層の間に完全に融合されなかった追加の粉末を融合することができる。
【0083】
[0107]
図16は、ブロック1602および1604からの入力が、コントローラ1606によって受信されるエネルギー密度制御信号をどのように協働して生成するかも示している。コントローラ1606は、エネルギー密度制御信号を受信して、現在のグリッド領域内で所望の熱エネルギー密度を生成するように構成された熱源入力パラメータを生成するように構成される。入力パラメータには、パワー、スキャン速度、ハッチ間隔、スキャン方向、スキャン時間を含めることができる。次に、入力パラメータはエネルギー源1608によって受け取られ、入力パラメータの変更は現在のグリッド領域のエネルギー源1608によって採用される。光学センサが現在のグリッド領域を構成するエネルギー源1608のスキャンを測定すると、ブロック1610で、現在のグリッド領域の熱エネルギー密度が計算され、エネルギー密度制御信号と比較される。2つの値が同じ場合、光学センサデータに基づいてエネルギー密度制御信号は変更されない。しかし、2つの値が異なる場合、次のグリッド領域で行われたスキャンのエネルギー密度制御信号に対して差が加算または減算される。
【0084】
[0108]いくつかの実施形態では、現在の層および前のすべての層のグリッド領域は、エネルギー源によって実行されるスキャンの経路およびスキャン長/幅に従って方向付けられた動的に生成されたグリッド領域であり得る。このタイプの構成では、ベースラインエネルギー密度とエネルギー密度バイアスの両方が、動的に生成されたグリッド領域に基づいていてもよい。他の実施形態では、現在の層のグリッド領域を動的に生成することができ、エネルギー密度バイアスデータ1604は、付加製造動作の開始前に定義された静的グリッド領域に関連付けられたエネルギー密度読み取り値に基づいていてもよく、その結果、静的グリッド領域は部品全体で固定されたままになり、位置、サイズ、または形状は変化しない。グリッドは、デカルトグリッドシステムが必要な場合、均一な形状と間隔で配置され得るが、極グリッドシステムを構成するグリッド領域の形をとることもできる。他の実施形態において、現在の層のグリッド領域は、ビルド動作が実行される前に静的に生成され、エネルギー密度バイアスデータも静的に生成され、現在の層に使用される同じグリッドを共有できる。
【0085】
[0109]いくつかの実施形態では、制御ループ1600の熱エネルギー密度の代わりに熱放射密度を使用することができる。熱放射密度は、熱エネルギー密度に加えて他の要因を指す場合がある。例えば、熱放射密度は、ピーク温度、最低温度、加熱速度、冷却速度、平均温度、平均温度からの標準偏差、時間の経過に伴う平均温度の変化率などの1つまたは複数の他の特徴と共に、熱エネルギー密度を含む複数の特徴の加重平均にすることができる。他の実施形態では、1つまたは複数の他の特徴を使用して、各グリッド領域を構成するスキャンが所望の温度、加熱速度または冷却速度に達していることを検証することができる。そのような実施形態では、検証特徴は、所望の温度、加熱速度または冷却速度を達成するために、定義された制御ウィンドウ内でエネルギー源の入力パラメータを調整する必要があり得ることを示すフラグとして使用できる。例えば、グリッド領域内のピーク温度が低すぎる場合、パワーを上げたり、スキャン速度を下げたりできる。さまざまなタイプのグリッドTEDに関連する前述の制御ループ1600の説明は、当業者がスキャンTEDメトリックも同様のループ構成で使用できることも理解することを留意されたい。
リコータアームショートフィードのTED分析
【0086】
[0110]
図17Aは、ビルドプレート1704にわたる粉末1702の正規分布を示している。この描写は、高さのばらつきなしに粉末がどのように均一に広がるかを示している。対照的に、
図17Bは、不十分な量の粉末1702がリコータアームによって回収されるとき、粉末層1702の厚さがどのように大きく変わり得るかを示している。リコータアームが粉末1702を使い果たし始めると、ビルドプレート1704の部分が粉末1702から完全にむき出しになるまで、粉末1702の層の厚さが徐々に先細りになる。この種のエラーは部品の全体的な品質に非常に悪影響を及ぼす可能性があるため、この種の現象の早期検出は正確な欠陥検出にとって重要である。
【0087】
[0111]
図17Cは、ビルドプレートの白黒写真であり、ここでは、粉末1702のショートフィードにより、ビルド面上に配置された9つのワークピースが部分的にしか覆われていない。特に、写真の右側の3つのワークピースは完全に覆われているが、左側の3つのワークピースはほぼ完全に覆われていない。
【0088】
[0112]
図17Dは、同じ入力パラメータを使用してエネルギー源が9つすべてのワークピース全体を走査するとき、検出される熱エネルギー密度がどのように実質的に異なるかを示している。領域1706は、粉末の放射率が実質的に高く、ビルドプレートまたは固化粉末材料の熱伝導率が粉末の有効熱伝導率よりも高いため、実質的に高い熱エネルギー密度の読み取り値を生成する。熱伝導率が高いと、光学センサに戻る放射に利用できるエネルギー量が減少し、それにより検出される熱放射が減少する。さらに、材料自体の放射率が低いため、放射される熱エネルギーの量も減少する。
熱エネルギー密度とグローバルエネルギー密度
【0089】
[0113]エネルギー源から供給されるパワーがワークピースに提供されると、ワークピースを作る材料が溶けるが、そのパワーは、付加製造プロセス中の他のいくつかの熱および質量移動プロセスによっても消費され得る。次の式は、エネルギー源が粉末床を横切るレーザスキャンである場合、放出されるパワーを吸収できるさまざまなプロセスを説明している。
PTOTAL LASER POWER=POPTICAL LOSSES AT THE LASER+PABSORPTION BY CHAMBER GAS+PREFLECTION+PPARTICLE AND PLUME INTERACTIONS+PPOWER NEEDED TO SUSTAIN MELT POOL+PCONDUCTION LOSSES+PRADIATION LOSSES+PCONVECTION LOSSES+PVAPORIZATION LOSSES 式(13)
【0090】
[0114]レーザでの光損失(OPTICAL LOSSES AT THE LASER)とは、ビルド面でレーザ光を透過および集束させる光学システムの不完全性によるパワー損失を指す。不完全性により、光学システム内で放出されたレーザの吸収および反射損失が生じる。チャンバガスによる吸収(ABSORPTION BY CHAMBER GAS)とは、レーザパワーのごく一部を吸収する付加製造システムのビルドチャンバ内のガスによるパワー損失を指す。このパワー損失の影響は、レーザの波長でのガスの吸収率に依存する。反射損失とは、粉末床に決して吸収されないレーザ光を逃がす光のために失われるパワーを指す。粒子とプルームの相互作用(PARTICLE AND PLUME INTERACTIONS)は、レーザとプルームとの間の相互作用、および/または堆積プロセス中に放出される粒子を指す。これらの影響によるパワー損失はビルドチャンバを循環するシールドガスにより改善できるが、通常、少量のパワー低下は完全に回避することはできない。溶融プールを維持するために必要なパワー(POWER NEEDED TO SUSTAIN MELT POOL)とは、粉末を溶融し、溶融プールによって最終的に達成される温度まで最終的に過熱するために、作業材料によって吸収されるレーザパワーの部分を指す。伝導損失(CONDUCTION LOSSES)とは、粉末の下の固化した金属と粉末床自体への伝導によって吸収されるパワーの部分を指す。このようにして、部品を構成する粉末床と固化した材料は、溶融プールから熱を伝導する。この熱エネルギーの伝導性伝達は、溶融プールからのエネルギー損失の主な形態である。放射損失(RADIATION LOSSES)とは、溶融プールおよび溶融プールを囲む材料から放出されるレーザパワーのうち、熱放射を放出するのに十分な高温の部分を指す。対流損失(CONVECTION LOSSES)とは、ビルドチャンバを循環するガスへの熱エネルギーの移動によって生じる損失を指す。最後に、蒸発損失(VAPORIZATION LOSSES)とは、レーザ照射下で蒸発する粉末材料のごく一部を指す。気化の潜熱は非常に大きいため、これは溶融プールに対する強力な冷却効果であり、レーザビームの合計パワーが高くなると無視できないエネルギー損失の原因になる可能性がある。
【0091】
[0115]熱エネルギー密度(TED)メトリックは、加熱された領域からの光の放射、光学系を介したこの光の透過、検出器による光の収集、およびこの光の電気信号への変換の結果である光学的な光の測定に基づいている。すべての可能な周波数にわたる黒体放射を支配する方程式は、以下の式(14)に示すステファンボルツマン方程式によって与えられる:
【数13】
【0092】
[0116]式(14)の変数を以下の表(1)に示す。
【0093】
[0117]センサによって収集される前、およびその結果TEDメトリックの計算に使用される電圧になる前に、放射された光に影響を与える追加の介在因子がある。これは式(15)で以下にまとめられている。
VVOLTAGE USED BY TED={PRADIATED-PVIEW FACTOR-POPTICAL LOSSES AT RADIATED WAVELENGTHS-PSENSOR LOSS FACTOR}*(SENSOR SCALING FACTOR)式(15)
【0094】
[0118]式(15)からのこれらのさまざまな項は、以下の表(2)で説明される。
【0095】
[0119]多くの場合、付加製造で使用される性能指数は、グローバルエネルギー密度(GED)である。これは、以下の式(16)に示すように、さまざまなPROCESS INPUTを結合するパラメータである:
GED=(BEAM POWER)/{(TRAVEL SPEED)*(HATCH SPACING)} 式(16)
【0096】
[0120]GEDの単位面積あたりのエネルギー単位は次のとおりである:(JOULES/SEC)/{(CM/SEC)*(CM)}=JOULES/CM2。しかし、GEDはTEDと同じ単位を有する場合があるが、GEDとTEDは一般に同等ではないことに留意されたい。例として、TEDは、熱い領域からの放射パワーを面積で除算して得られるが、GEDは入力パワーの測定値である。本明細書で説明するように、TEDはRESPONSEまたはPROCESS OUTPUTに関連し、GEDはPROCESS INPUTに関連する。発明者は、結果として、TEDとGEDは互いに異なる測定値であると信じている。いくつかの実施形態では、TEDを決定する際に利用される面積は、溶融プール面積とは異なる。結果として、いくつかの実施形態は、TEDと溶融プール面積との間に直接的な相関関係を持たない。好適には、TEDは、付加製造プロセスに直接影響するさまざまな要因に敏感である。
【0097】
[0121]本明細書に記載の実施形態は、光学センサによって生成されたデータを使用して熱エネルギー密度を決定したが、本明細書に記載の実施形態は、インプロセスの物理変数の他の徴候を測定するセンサによって生成されたデータを使用して実装され得る。インプロセスの物理変数の徴候を測定するセンサには、例えば、力および振動センサ、接触熱センサ、非接触熱センサ、超音波センサ、渦電流センサが含まれる。上記の教示に鑑みて、多くの修正および変形が可能であることは、当業者には明らかであろう。
【0098】
[0122]説明された実施形態のさまざまな態様、実施形態、実装または特徴は、別々にまたは任意の組み合わせで使用され得る。説明された実施形態のさまざまな態様は、ソフトウェア、ハードウェア、またはハードウェアとソフトウェアの組み合わせによって実装され得る。また、説明された実施形態は、製造動作を制御するためのコンピュータ可読媒体上のコンピュータ可読コードとして、または製造ラインを制御するためのコンピュータ可読媒体上のコンピュータ可読コードとして実現され得る。コンピュータ可読媒体は、その後コンピュータシステムによって読み取ることができるデータを格納できる任意のデータストレージデバイスである。コンピュータ可読媒体の例には、読み取り専用メモリ、ランダムアクセスメモリ、CD-ROM、HDD、DVD、磁気テープ、および光データストレージデバイスが含まれる。また、コンピュータ可読媒体は、ネットワークで結合されたコンピュータシステムに分散されてもよく、その結果、コンピュータ可読コードが分散された形で格納および実行される。
【0099】
[0123]前述の説明は、説明の目的で、特定の用語を使用して、説明された実施形態の完全な理解を提供した。しかし、説明された実施形態を実施するために特定の詳細が必要とされないことは、当業者には明らかであろう。したがって、特定の実施形態の前述の説明は、例示および説明の目的で提示されている。それらは網羅的であること、または説明された実施形態を開示された正確な形態に限定することを意図していない。上記の教示に鑑みて、多くの修正および変形が可能であることは、当業者には明らかであろう。