(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-12-22
(45)【発行日】2024-01-05
(54)【発明の名称】生体試料の少なくとも一部を凍結することに関する装置および方法
(51)【国際特許分類】
A01N 1/02 20060101AFI20231225BHJP
C12M 1/00 20060101ALN20231225BHJP
C12N 1/04 20060101ALN20231225BHJP
【FI】
A01N1/02
C12M1/00 A
C12N1/04
(21)【出願番号】P 2020534388
(86)(22)【出願日】2018-12-20
(86)【国際出願番号】 EP2018086163
(87)【国際公開番号】W WO2019122106
(87)【国際公開日】2019-06-27
【審査請求日】2021-11-22
(32)【優先日】2017-12-22
(33)【優先権主張国・地域又は機関】GB
【前置審査】
(73)【特許権者】
【識別番号】517322156
【氏名又は名称】アシンプトート リミテッド
【氏名又は名称原語表記】ASYMPTOTE LTD
(74)【代理人】
【識別番号】100188558
【氏名又は名称】飯田 雅人
(74)【代理人】
【識別番号】100154922
【氏名又は名称】崔 允辰
(74)【代理人】
【識別番号】100207158
【氏名又は名称】田中 研二
(72)【発明者】
【氏名】ジョージ・モリス
(72)【発明者】
【氏名】スティーヴン・ラム
(72)【発明者】
【氏名】ピーター・キルブライド
【審査官】松井 一泰
(56)【参考文献】
【文献】米国特許出願公開第2013/0091890(US,A1)
【文献】国際公開第2016/178635(WO,A1)
【文献】米国特許出願公開第2014/0165645(US,A1)
【文献】米国特許出願公開第2014/0335614(US,A1)
【文献】米国特許出願公開第2012/0090160(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
C12M 1/00- 3/10
A01N 1/00- 65/48
A01P 1/00- 23/00
C12N 1/00- 7/08
(57)【特許請求の範囲】
【請求項1】
レセプタクル内の生体試料の少なくとも一部を凍結する際に使用するためのデバイスであって、
ベースと、
前記ベースから延在する複数の壁と、
前記複数の壁によって少なくとも部分的に提供されたレセプタクルホルダーとを備え、前記レセプタクルホルダーは、
第1の部分であって、冷却器デバイスを使用した前記ベースの冷却中に前記レセプタクルホルダーによって保持される前記レセプタクルにより、第1の熱引き出し速度で前記レセプタクルの第1の部分から熱エネルギーを引き出すように構成されている第1の部分と、
第2の部分であって、前記冷却器デバイスを使用した前記ベースの冷却中に前記レセプタクルホルダーによって保持される前記レセプタクルにより、前記第2の部分を介した前記レセプタクルの第2の部分からの熱エネルギー引き出しの第2の熱引き出し速度が前記第1の熱引き出し速度より遅くなるように構成されている第2の部分とを備
え
前記複数の壁は、前記ベースに摺動可能に装着されている、デバイス。
【請求項2】
前記レセプタクルホルダーの前記第1の部分は、前記レセプタクルの前記第1の部分を少なくとも部分的に囲むように構成され、前記レセプタクルホルダーの前記第2の部分は、前記レセプタクルの前記第2の部分を少なくとも部分的に囲むように構成され、前記レセプタクルホルダーの前記第1の部分は前記レセプタクルホルダーの前記第2の部分よりも前記ベースに近い請求項1に記載のデバイス。
【請求項3】
前記レセプタクルホルダーの前記第2の部分は、前記第2の熱引き出し速度で前記レセプタクルの前記第2の部分から熱エネルギーを引き出すように構成される請求項1または請求項2に記載のデバイス。
【請求項4】
前記レセプタクルホルダーの前記第1の部分は、熱伝導率の第1の値を有する第1の材料を含み、前記レセプタクルホルダーの前記第2の部分は前記第1の値と異なる、前記熱伝導率の第2の値を有する材料を含む、請求項1から3のいずれか一項に記載のデバイス。
【請求項5】
前記第1の値は、少なくとも10W/mKの熱伝導率を含む、請求項4に記載のデバイス。
【請求項6】
前記ベースはプレートであり、前記レセプタクルホルダーの前記第1の部分は前記プレートの表面の一部である請求項1から5のいずれか一項に記載のデバイス。
【請求項7】
前記ベースはプレートであり、前記レセプタクルホルダーの前記第1の部分は前記壁の第1の壁部分であり、前記レセプタクルホルダーの前記第2の部分は前記壁の第2の壁部分であり、前記壁の第1の壁部分は前記壁の第2の壁部分よりも前記ベースに近い、請求項1から6のいずれか一項に記載のデバイス。
【請求項8】
前記壁は前記壁を通る開口部を備る、請求項7に記載のデバイス。
【請求項9】
前記壁のベース部分は前記壁の非ベース部分より広く、前記壁の前記ベース部分は、前記壁の前記非ベース部分よりも前記ベースに近い請求項7または請求項8に記載のデバイス。
【請求項10】
前記レセプタクルホルダーは、前記ベースから離れる方向に延在する凍結動作温度勾配軸に沿って前記レセプタクルを保持するように構成され、前記レセプタクルホルダーの前記第1の部分は第1の表面を備え、前記レセプタクルホルダーの前記第2の部分は、前記第1の表面より温度勾配軸から遠い第2の表面を備える請求項1から
9のいずれか一項に記載のデバイス。
【請求項11】
前記レセプタクルホルダーは、前記レセプタクルホルダーによって保持された前記レセプタクルにより、前記レセプタクルの前記第1の表面と前記第1の部分との間の雰囲気ガスの第1の体積が前記レセプタクルの前記第2の表面と前記第2の部分との間の雰囲気ガスの第2の体積より小さくなるように構成される請求項
10に記載のデバイス。
【請求項12】
前記レセプタクルホルダーの前記第1の部分は第1の表面を備え、前記レセプタクルホルダーの前記第2の部分は第2の表面を備え、前記レセプタクルホルダーは前記レセプタクルを受け入れるための陥凹部を備え、前記レセプタクルホルダーの前記第1の部分は前記陥凹部を挟んで前記第1の表面に対向する第3の表面を備え、前記レセプタクルホルダーの前記第2の部分は前記陥凹部を挟んで前記第2の表面に対向する第4の表面を備え、前記第1の表面と前記第3の表面との間に取られた前記陥凹部の第1の幅は、前記第2の表面と前記第4の表面との間に取られた前記陥凹部の第2の幅より小さい、請求項1から
11のいずれか一項に記載のデバイス。
【請求項13】
前記レセプタクルホルダーの前記第1の部分は金属を含み、前記レセプタクルホルダーの前記第2の部分はポリマーを含む、請求項4に記載のデバイス。
【請求項14】
前記第2の値は、せいぜい1W/mKの熱伝導率を含む、請求項5に記載のデバイス。
【請求項15】
前記開口部の第1の幅は前記開口部の第2の幅より狭く、前記第1の幅は前記第2の幅よりも前記ベースに近く、前記開口部は三角形形状を有する、請求項8に記載のデバイス。
【請求項16】
前記陥凹部は前記ベースに向かって先細りである、請求項
12に記載のデバイス。
【発明の詳細な説明】
【技術分野】
【0001】
凍結技術(freezing technique)は、生体材料を保存するために使用され得る。
【背景技術】
【0002】
生体材料を保存するために生体材料を凍結する異なる方法がある。たとえば、フリーズドライ(凍結乾燥)は、生体試料が凍結されるプロセスであり、凍結ステップに従って、試料から水が取り除かれ、試料は乾燥状態で貯蔵される。凍結保存(cryopreservation)は、生体試料を凍結する別の方法である。凍結保存は、生体材料が凍結され、次いで、凍結状態で貯蔵されるプロセスである。凍結保存は、医学、バイオテクノロジー、および獣医学におけるその後の応用のために、生体試料の長期生存性を維持するのに使用される技術である。生体材料は、生体材料への損傷、または生体材料の劣化が最小限度に抑えられるような方法で保存されることが重要であり得る。たとえば、ヒト卵母細胞または受精した胚は、細胞生存性を維持することが考慮すべき重要な事柄である、体外受精(IVF)プロセスの一部として凍結保存され得る。
【0003】
凍結保存は、試料を、低温、典型的には-196℃(液体窒素の沸点)に冷却し、潜在的にそれらを長期間にわたってそのような低温に維持することを伴う。生体試料を-196℃に冷却することによって、そうしなかった場合に試料を劣化させることになる化学および/または酵素反応の反応速度は、試料がもはや劣化しなくなる程度まで遅くなる。したがって、生体試料は長期間にわたって貯蔵され、その後、必要に応じて室温に戻され得る。
【0004】
凍結保存は、細胞および遺伝子療法、特に免疫療法において、特に有用である。コールドチェーン、たとえば、凍結保存された生体試料の生産、流通、および貯蔵に関する一連の段階を含む温度制御サプライチェーンは、これらの療法の効果的な臨床送達(clinical delivery)に使用され得る。そのようなコールドチェーンにおいて、患者から抽出された細胞を含む初期生体試料は、いわゆる製造センターに出荷できるように凍結され得る。製造センターにおいて、それらの細胞は解凍され、たとえば、細胞を培養して細胞集団を増やすことによって、および/または細胞を治療することによって製造され得る。次いで、製造された細胞は、病院などの臨床送達センターに輸送するために凍結保存され、製造された細胞は解凍され患者に送達され得る。
【発明の概要】
【発明が解決しようとする課題】
【0005】
解凍後の細胞の生存および/または機能の可能性によって示される、細胞生存性は、凍結プロセスの様々な要因に依存するものとしてよく、その一部は変動性が高く、および/または予測が困難であり得る。凍結プロセスにおける細胞生存性を改善することが望ましい。
【図面の簡単な説明】
【0006】
【
図1】温度値および対応する時間値の例示的なデータ系列の表現を示す図である。
【
図6】第1の視点から見た例示的なデバイスの概略を示す図である。
【
図7】第1の視点から見た例示的なデバイスの概略を示す図である。
【
図8】別の例示的なデバイスの概略を示す図である。
【
図9】第1の視点から見た例示的なデバイスの概略を示す図である。
【
図10】第2の視点から見た例示的なデバイスの概略を示す図である。
【
図11】第3の視点から見た例示的なデバイスの概略を示す図である。
【
図12】第1の視点から見た別の例示的なデバイスの概略を示す図である。
【
図13】第2の視点から見た別の例示的なデバイスの概略を示す図である。
【
図14】第3の視点から見た別の例示的なデバイスの概略を示す図である。
【
図20】例示的なレセプタクルの概略を示す図である。
【
図22】温度値および対応する時間値の例示的なデータ系列の表現を示す図である。
【発明を実施するための形態】
【0007】
本明細書において提示されている装置および方法は、知られている技術と比較して、生体試料の凍結時に氷形成の制御を改善する。例では、ベースおよびレセプタクルホルダーを備えるデバイスが提示され、レセプタクルホルダーは異なる熱引き出し速度で試料の異なる領域から熱エネルギーを引き出すように各々構成されている少なくとも2つの部分を備える。この異なる熱引き出し速度は、氷核形成が試料の一方の領域内で生じ、氷核形成が試料の第2の領域内で生じないように凍結プロセスにおいて試料内の温度勾配を確定することを可能にする。そのようなものとして、試料中の過冷却の程度が下がり、それによって細胞生存性が高まる。本明細書の例で提示されている装置および方法は、氷形成が繰り返し可能で柔軟な方式で制御されることを可能にする。本明細書の例で提示されている装置および方法による氷形成を制御することは、凍結プロセスの改善された制御を円滑にする。
【0008】
次の説明で、装置および方法のいくつかの例に従って、具体的詳細を述べ、その特定の特徴を説明し、さらに詳しく述べる。
【0009】
氷形成は、生体試料の凍結において考慮すべき重要な事柄である。試料中の温度が試料の平衡融点以下に下がると、氷核形成が生じ(いわゆる氷核粒子の周りに)、その後、試料全体にわたって氷の結晶が成長する。氷形成が進行するにつれ、細胞などの生体材料は、氷の結晶の間の溶質密度の高いチャネル内に濃縮し得る。次いで、そのようなチャネルは、たとえば、ガラス化を通じて固化し得る。
【0010】
比較的小さい試料、たとえば、クライオバイアルに貯蔵されている試料の凍結において、全試料は、均一に冷却された場合に、実質的に試料の平衡融点より低い温度に過冷却し得る。過冷却、または過冷もしくはサブクールは、流体の温度を流体が固化することなく融点を超える温度まで下げるプロセスを指す。いくつかの試料は、試料の融点より10℃超低い温度に過冷却され得る。過冷却の程度は、試料の体積により変わり得る。特に、体積が小さければ小さいほど過冷却の程度は、より大きい体積に比べて大きくなり得る。過冷却された試料中に氷核形成が生じると、試料中の温度は、結晶化の潜熱から放出されるエネルギーにより試料の融点近くまで上昇し得る。次いで、温度は、急激に下がり、たとえば、望んでいる以上にかなり速い速度で低下し、解凍後の細胞生存性に影響を及ぼし得る。解凍後の生存性および/または機能は、凍結/解凍プロセスを受ける細胞の種類に依存し得る。
【0011】
図1は、試料に対して凍結動作が実行されたときの試料中の温度値の、時間に対する例示的なデータ系列の表現100を示している。表現100における3本の線の各々は、試料中の異なる配置に置かれている熱電対によって取得される測定済み温度データに対応する。
図1の例では、試料全体が、氷核形成が約1500秒で生じるまで、-15℃から-10℃の間の温度に過冷却し、それにより、試料全体における温度の急上昇が生じる。
図1の例では、試料は生体細胞を含んでいないが、溶液中の細胞の存在はそのような溶液中の核形成挙動に影響を及ぼさない。
【0012】
過冷却された試料の1つまたは複数の領域内の氷核形成に続き、氷の結晶の樹木状ネットワーク構造が、溶質および細胞が分配され得る凍結濃縮物質の連続相と共存する。氷核形成は、自然発生的であり得る。自然発生的核形成は確率現象であり、したがって制御が本質的に困難であり得る。たとえば、氷核形成が自然発生的に生じる温度は、異なる試料同士の間で異なり得る。核形成時に形成される氷のネットワーク構造および対応する凍結濃縮マトリックスは、核形成が生じる温度に依存し得る。
【0013】
代替的に、氷核形成は、促進氷核形成(facilitated ice nucleation)として知られているプロセスにおいて、誘発またはトリガーされ得る。促進氷核形成、または不均一氷核形成は、均一核形成が生じる温度より高い温度、たとえば、試料の融解点に近い温度で生じ得る。促進氷核形成は、核形成トリガーの使用を伴い得る。核形成トリガーの例は、クライオコンテナ(cryocontainer)の外側の冷点の生成、試料中への化学氷核形成触媒の導入、および超音波の適用を含む。しかしながら、氷核形成を誘発する知られている方法は短所を有し得る。たとえば、知られている方法は、ユーザ干渉を必要とし、生体適合性を有しない化学核形成剤を使用し、標準化された方式で繰り返し可能でないことがあり、またはそれ以上に、法外に高くおよび/または実装するのに複雑な場合がある。
【0014】
本明細書の例で提示されているデバイス、レセプタクル、および方法は、凍結動作時に氷形成が繰り返し可能で柔軟な方式で制御されることを可能にする。別に方向性固化(directional solidification)と称されることもある、漸進的固化(progressive solidification)は、氷形成を制御し、試料の過冷却の程度を低くするために使用される。漸進的固化は、典型的には軸に沿って、試料を漸進的に固化させるプロセスを指す。たとえば、固化は、試料の一方の領域内で始まり、試料の第2の領域の方へ試料を通り、軸に沿って、進行し得る。漸進的固化では、氷核形成は、固化が開始する試料の領域、たとえば、第1の領域に制限され得る。漸進的固化は、試料内の、たとえば、第1のより冷たい領域と第2のより暖かい領域との間の温度勾配を確定し、試料を温度勾配の軸に沿ってより冷たい領域からより暖かい領域へ漸進的に固化させることによって遂行され得る。過冷却を低減することで、試料の解凍後の細胞生存の可能性を高め、標準化された方法で氷核形成の発生率および/または配置を制御することで、凍結手順の確率的変動の低減を可能にし得る。
【0015】
本明細書ではレセプタクル内の生体試料の少なくとも一部を凍結する際に使用するためのデバイスが例として提供される。デバイスは、ベースとレセプタクルホルダーとを備える。ベースおよびレセプタクルホルダーは一体形成され得るか、または別々の本体部であってよい。レセプタクルホルダーは、1つまたは複数のレセプタクル、入れ物、クライオコンテナ、または同様のものを保持するように構成される。ベースは、冷却器デバイスによって冷却されるように構成される。冷却器デバイスは、スターリングクライオクーラー(Sterling cryocooler)などのクライオクーラーの一部であってもよいが、使用され得る冷却器デバイスの他の例も以下で説明される。デバイスのベースは、冷却表面によって接触可能であるものとしてよい。そのような冷却表面は、ヒートシンクの一部であってよい。ヒートシンクは、試料に対して実行される冷却動作において試料から熱エネルギーを吸収するか、または引き出すものとしてよい。そのようなものとして、デバイスのベースは、冷却表面を介した伝導によって冷却され得る。
【0016】
レセプタクルホルダーは、冷却器デバイスを使用したベースの冷却中にレセプタクルホルダーによって保持されるレセプタクルにより、第1の熱引き出し速度でレセプタクルの第1の部分から熱エネルギーを引き出すように構成されている第1の部分を備える。そのようなものとして、熱エネルギーは、レセプタクルホルダーの第1の部分を介して試料の第1の領域から引き出されるものとしてよく、試料の第1の領域はレセプタクルの第1の部分と接触している。例では、レセプタクルの第1の部分は、レセプタクルホルダーの第1の部分と伝導接触させられ、これにより、熱エネルギーをレセプタクルホルダーの第1の部分を介して引き出すことができる。例では、第1の部分は、レセプタクルの第1の部分を少なくとも部分的に囲むように構成される。
【0017】
レセプタクルホルダーは、また、冷却器デバイスを使用してベースの冷却時にレセプタクルホルダーによって保持されているレセプタクルにより、第2の部分を介してレセプタクルの第2の部分からの熱エネルギー引き出しの第2の熱引き出し速度が第1の熱引き出し速度より遅くなるように構成されている第2の部分を備える。そのようなものとして、試料の第2の領域は、試料の第1の領域がレセプタクルホルダーの第1の部分を介して熱を喪失する速度より低い速度でレセプタクルホルダーの第2の部分を介して熱エネルギーを喪失するものとしてよく、試料の第2の領域はレセプタクルの第2の部分と接触している。いくつかの例では、レセプタクルの第2の部分は、レセプタクルホルダーの第2の部分と伝導接触させられる。他の例では、レセプタクルの第2の部分は、レセプタクルホルダーの第2の部分と伝導接触させられない。たとえば、レセプタクルの第2の部分は、レセプタクルホルダーの第2の部分に関して離間し得る。例では、第2の部分は、レセプタクルの第2の部分を少なくとも部分的に囲むように構成される。
【0018】
いくつかの例では、レセプタクルホルダーの第1の部分は、レセプタクルホルダーの第2の部分よりもベースに近い。言い換えると、第1の部分より第2の部分の方がベースから離れ得る。したがって、デバイスは、デバイスのベースに近いほど高い速度で、デバイスのベースから遠いほど低い速度で試料から熱を引き出すように構成され得る。
【0019】
いくつかの例では、レセプタクルホルダーの第2の部分は、第2の熱引き出し速度でレセプタクルの第2の部分から熱エネルギーを引き出すように構成される。言い換えると、レセプタクルホルダーの第2の部分は、レセプタクルの第2の部分から熱を能動的に引き出し得る。いくつかの場合において、レセプタクルホルダーの第2の部分は、レセプタクルの第2の部分からの熱損失を低減するか、阻止するか、または防ぐように構成される。
【0020】
いくつかの例では、レセプタクルホルダーの第1の部分は、熱流量特性の第1の値を有する第1の材料を含み、レセプタクルホルダーの第2の部分は、熱流量特性の第2の、異なる値を有する第2の材料を含む。熱流量特性は、熱伝達特性、熱引き出し特性、冷却速度特性、または同様のものとして考えられ得る。所与のレセプタクルホルダー部分の熱流量特性は、いくつかの例では、レセプタクルの一部から所与のレセプタクルホルダー部分への熱エネルギーの流れに影響を及ぼす、所与のレセプタクルホルダー部分を構成する材料の特性またはパラメータとして考えられ得る。所与のレセプタクルホルダー部分の熱流量特性は、その所与のレセプタクルホルダー部分を介してレセプタクルからの熱引き出し速度を決定し得る。
【0021】
第1の熱引き出し速度と第2の熱引き出し速度との間の差は、試料の第2の領域内に氷核形成を生じることなく、冷却デバイスを使用して凍結動作を行っているとき、試料の第1の領域内に氷核形成が生じるようにレセプタクル内の試料中の温度勾配を確定するのに少なくとも十分であり得る。いくつかの例では、第1および第2の熱引き出し速度は、試料中の所望の温度勾配に基づき決定され、および/または構成され、所望の温度勾配は、試料中の氷核形成を試料の第1の領域に制限し、および/または試料の第2の領域内の氷核形成を防ぐ温度勾配である。温度勾配は、デバイスのベースに実質的に垂直な軸を有し得る。
【0022】
いくつかの例では、第1の熱引き出し速度と第2の熱引き出し速度との間の差は、5ミリリットル(ml)の体積を有する試料について、ベースを冷却している間のレセプタクルの第1の部分と接触している試料の第1の領域とレセプタクルの第2の部分と接触している試料の第2の領域との間の温度差が少なくとも15℃となるような差である。
【0023】
試料の第1の領域内で氷核形成を誘発し、試料の第2の領域内で氷核形成を防ぐことで、生体材料、たとえば、細胞が核形成に関連する急激な熱変化に曝されることを低減し得る。たとえば、第1の領域内の細胞のみが、そのような熱変化に曝されるものとしてよい。したがって、試料中の細胞生存性は、氷核形成が試料全体を通して生じることを許される場合と比較して高められ得る。
【0024】
さらに、第1の領域内の核形成は、たとえば、レセプタクルの外面に冷たい鉗子を接触させて外面上に冷点を発生させることを伴い得る、ユーザ介入または別個の手動による核形成ステップなしで誘発され得る。したがって、凍結プロセスの繰り返し性は、高められ得る。本明細書において説明されている例では、氷核形成の誘発は、レセプタクルホルダーそれ自体によって冷却プロセスの一部として、たとえば、レセプタクルホルダーの少なくとも一部がレセプタクルと接触している間にレセプタクルホルダーを冷却することによって実行され得る。したがって、レセプタクルホルダーは、別個の核形成トリガー手段を必要とすることなく、試料の冷却と氷核形成のトリガーの両方を実行し得る。そのようなものとして、核形成を誘発するために試料に化学触媒を加える必要がない場合があり、そのような化学触媒は、生体適合性を有しないことがあり、および/または化学触媒を取り除くために解凍後に生体材料を洗浄する余分なステップを必要とし得る。本明細書において提供される対策は、別個の氷核形成手段を使用して氷核形成が誘発されるシステムに比べて複雑度が低い場合もある。
【0025】
さらに、第1のレセプタクル部分および第2のレセプタクル部分は、各々、個別に最適化またはチューニングされ得る熱伝達特性を有し得る。たとえば、第1のレセプタクル部分および第2のレセプタクル部分の両方の材質および/または幾何学的特性は、試料中の所望の温度勾配が達成されるように最適化され得る。そのようなものとして、試料の凍結時に試料からレセプタクルホルダーへの熱流量特性を修正するための複数の自由度が提供される。第1および/または第2のレセプタクル部分に対する異なる特性は、異なる種類の試料、異なる種類のレセプタクル、異なる凍結モード、異なる種類の冷却装置、または異なる試料体積に使用され得る。したがって、生体試料中の温度勾配を最適化し、方向性固化を達成するための柔軟な適応可能機構が提供される。
【0026】
次に、デバイスおよびその特徴の例が詳しく説明される。
【0027】
図2は、レセプタクル(図示せず)内の生体試料の少なくとも一部を凍結する際に使用するための例によるデバイス200を示している。この例では、デバイス200は凍結保存バッグ、すなわちクライオバッグ内の生体試料を凍結するためのものであり、他の種類のレセプタクルが他の例で使用することができることは理解される。クライオバッグは、たとえば、凍結保存において生体試料を貯蔵するのに適しているスペシャリスト用フレキシブルバッグである。クライオバッグは、比較的大きい、たとえば、5ミリリットル(ml)から1000mlの間の試料体積を貯蔵するように構成され得る。
【0028】
試料は、冷却または凍結されるべき流体または液体、たとえば、水溶液を含み得る。生体試料は、生体材料(または物、物質、または媒質)を含む試料と考えられ得る。生体材料は、生命体内で産生される、または生命体中に存在する材料と考えられ得る。生体材料の例は、限定はしないが、細胞、オルガネラ、ウイルス、ワクチン、器官、マトリックス、微生物、および組織を含む。試料は、入れ物またはレセプタクル、たとえば、クライオコンテナまたはクライオバッグ内に収容され得る。レセプタクルは、例では容器、試験管、バイアル、ストロー、またはバッグであってよい。
【0029】
デバイス200は、ベース210およびベース210から延在する複数の壁220を備える。ベース210は、デバイス200の底部または下側部分と考えられてよく、その表面にデバイス200が載るものとしてよい。たとえば、デバイスがそのベースに載った状態で、デバイスによって保持され、試料を保持する非バッグタイプレセプタクルは、直立位置に配向され得る。ベース210は、一般的に平面状の形状を有するものとしてよく、たとえばそれがプレートである場合である。ベースは、たとえばデバイスが載るものとしてよい平面を有し得る。ベース210は、たとえばベースの平面を介して、冷却器デバイス、たとえば、クライオクーラー上に装着されるか、または他の何らかの手段で接触するものとしてよい。複数の壁220は、壁225を含む。デバイス200は、複数のレセプタクル、たとえば、クライオバッグを持つか、または保持するように構成されてよく、各レセプタクルは一対の壁の間に実質的に直立するように置かれる。そのようなものとして、デバイス200はレセプタクルホルダーを備えるものとして考えられ得る。壁220は、ベース210に対して実質的に垂直である(許容可能な測定公差の範囲内で)、またはベース210に関して非垂直な角度を付けられ得る。この例では、壁220は、互いに関して実質的に平行である(たとえば、許容可能な測定公差の範囲内で)。他の例では、壁220は、互いに関して非平行であってもよい。
【0030】
この例では、ベース210はプレートを備える。プレート210は、熱伝導プレートを含み得る。プレート210、またはパネルは、ヒートシンクとして働き得る。プレート210は、クライオクーラーなどの冷却器デバイスによって冷却され得る。いくつかの例では、プレート210はクライオクーラーの一部である。この例では、デバイス200の第1のレセプタクルホルダー部分230は、プレート210の表面の一部である。表面は、プレート210の上側表面であってよい。表面は、熱伝導表面であるものとしてよい。第1のレセプタクルホルダー部分230は、ベース210が冷却器デバイスによって冷却されるときに、第1の熱引き出し速度でレセプタクルの第1の部分から熱エネルギーを引き出すように構成される。この例では、第1のレセプタクルホルダー部分230は、試料の冷却時に、レセプタクルの一番下側部分、たとえば、レセプタクルのベースと接触するように構成される。
【0031】
この例では、第2のレセプタクルホルダー部分240は、プレート210から延在する壁225、たとえば、複数の壁220のうちの1つ、の一部である。いくつかの例では、第2のレセプタクルホルダー部分240は、壁225全体である。いくつかの例では、第2のレセプタクルホルダー部分240は、複数の壁220内の複数の壁の一部を含む。第2のレセプタクルホルダー部分240は、第2のレセプタクルホルダー部分240を介したレセプタクルの第2の部分からの熱エネルギー引き出しの第2の熱引き出し速度が第1の熱引き出し速度より低くなるように構成される。たとえば、レセプタクルが一対の壁の間に実質的に直立している場合、熱は、レセプタクルのベースから場所210の上側表面に熱が伝達される速度より低い速度でレセプタクルから一対の壁のうちの一方または両方に伝達され得る。
【0032】
第2のレセプタクルホルダー部分240は、第1のレセプタクルホルダー部分230と異なる熱流量特性を有するものとしてよい。たとえば、第1および第2のレセプタクルホルダー部分は、異なる熱伝導率を有する材料を備えるものとしてよい。第1および第2のレセプタクルホルダー部分の熱流量特性の間の差は、レセプタクルの第1の部分と接触している試料の第1の領域内で氷核形成を誘発するのに十分であるが、レセプタクルの第2の部分と接触している試料の第2の領域内ではそうでない試料の冷却時に試料中の温度勾配を確定することを可能にする。
【0033】
図3は、レセプタクル(図示せず)内の生体試料の少なくとも一部を凍結する際に使用するための例示的なデバイス300を示している。
図3に示されているいくつかの項目は、
図2に示されている項目と類似している。100ずつ番号が大きくなる、対応する参照記号は、したがって、類似の項目に対して使用され、対応する記述も適用されると解釈すべきである。
【0034】
この例では、壁325のベース部分は、壁325の非ベース部分より幅が広く、壁325のベース部分は壁325の非ベース部分よりもベース310に近い。この例では、レセプタクルホルダー330の第1の部分は、壁325の第1の壁部分、たとえば、壁325のベース部分であり、レセプタクルホルダー340の第2の部分は、壁325の第2の壁部分、たとえば、壁325の非ベース部分である。レセプタクルホルダー330の第1の部分は、それに加えて、いくつかの例ではプレート310の上面を含み得る。
【0035】
壁325のベース部分は、壁325の非ベース部分より広いので、壁325のベース部分とデバイス300によって保持されるレセプタクルとの間の接触領域は、壁325の非ベース部分とレセプタクルとの間の接触領域より大きくなり得る。所与のレセプタクルホルダー部分とレセプタクルとの間の接触領域の面積は、所与のレセプタクルホルダー部分の熱伝達特性の一例である。壁325の非ベース部分とレセプタクルとの間の比較的小さい接触領域は、壁325のベース部分を介したレセプタクルからの熱伝達率と比較して、ベース310の冷却時に壁325の非ベース部分を介したレセプタクルからの比較的低い熱伝達率を可能にする。そのようなものとして、温度勾配は、試料中に漸進的固化が生じることを可能にするように試料中で確定され得る。壁325の異なる部分の相対的幅は、異なる試料の種類、体積、または冷却速度について温度勾配を制御するか、または修正するために適応され、および/または最適化され得る。
【0036】
この例では、複数の壁320の各々は、比較的広いベース部分と比較的狭い非ベース部分とを有する。いくつかの例では、複数の壁320のうちの1つまたは複数はベース310から伸長するときに変化する幅を有し、複数の壁320のうちの1つまたは複数の他方はベース310から伸長するときに変化する幅を有しない。
【0037】
図4は、レセプタクル(図示せず)内の生体試料の少なくとも一部を凍結する際に使用するための例示的なデバイス400を示している。
図4に示されているいくつかの項目は、
図3に示されている項目と類似している。100ずつ番号が大きくなる、対応する参照記号は、したがって、類似の項目に対して使用され、対応する記述も適用されると解釈すべきである。
【0038】
この例では、壁425は、壁425を通る開口部450を備える。開口部450、または穴は、たとえば、壁425の一部を切り取ることによって形成され得る。開口部450の第1の幅456は、開口部450の第2の幅455より狭く、第1の幅456は第2の幅455よりもベース410に近い。そのようなものとして、開口部450の幅は、ベース410に垂直な軸に沿って異なり得る。レセプタクルが壁425と複数の壁420のうちの隣接する壁との間に置かれたときに、壁425と開口部450が第1の幅456を有するレセプタクルとの間の接触領域と比較して、壁425と開口部450が第2の幅456を有するレセプタクルとの間の接触面積は少ないものとしてよい。そのようなものとして、レセプタクルから開口部450の第2の幅455を有する壁425の領域への低い熱伝達率は、レセプタクルから開口部450の第1の幅456を有する壁425の領域への熱伝達率と比較して確定され得る。壁425の高さに沿った開口部450の変化する幅は、試料の漸進的固化を達成するのに十分な試料中の温度勾配の確定を円滑にし得る。壁325の異なる部分の開口部450の相対的幅は、異なる試料の種類、体積、または冷却速度について温度勾配を制御するか、または修正するために適応され、および/または最適化され得る。
【0039】
この例では、壁425は、比較的広いベース部分と比較的狭い非ベース部分とを備え、非ベース部分のみが開口部450を備える。他の例では、ベース部分および非ベース部分の両方が開口部を備えてよく、これは類似のサイズでも異なるサイズでもよい。
【0040】
この例では、壁425は、比較的広いベース部分とベース部分に関して比較的狭い非ベース部分とを備えるが、他の例では、類似のまたは同じ幅のベース部分および非ベース部分を有する壁が使用されてもよく、非ベース部分は、ベース部分に比べて広い開口部を備え得るか、または非ベース部分のみが開口部を備える。
【0041】
図5は、レセプタクル(図示せず)内の生体試料の少なくとも一部を凍結する際に使用するための例示的なデバイス500を示している。
図5に示されているいくつかの項目は、
図4に示されている項目と類似している。100ずつ番号が大きくなる、対応する参照記号は、したがって、類似の項目に対して使用され、対応する記述も適用されると解釈すべきである。
【0042】
この例では、第1の壁525は、上の
図4を参照しつつ説明されているような開口部などの、開口部550を備え、第2の壁526は、開口部を備えない。そのようなものとして、第1の壁525とレセプタクルとの間の接触領域は、第1の壁525内に開口部550が存在し、第2の壁526内に開口部が存在していないので、第2の壁526とレセプタクルとの間の接触面積より小さくなり得る。第1の壁525内の開口部550の第1の幅は、開口部550の第2の幅より大きく、第1の幅は、第2の幅よりもベース510から遠い。
【0043】
第1の壁525および第2の壁526は、複数の壁520内の隣接する壁であってよい。そのようなものとして、所与のレセプタクルは、デバイス500によって保持されたときに、第1の壁525および第2の壁526の両方と接触させられるものとしてよい。そのような場合、第1の壁525内に開口部550が存在するので、第1の壁525を介したレセプタクルからの熱エネルギー引き出し率より第2の壁526を介したレセプタクルからの熱エネルギー引き出し率が高くなることがある。
【0044】
いくつかの例では、第2の壁526は開口部も備える。第2の壁526内の開口部は、第1の壁525内の開口部550と異なるサイズおよび/または形状を有するものとしてよい。
【0045】
一対の隣接する壁のうちの一方または両方に開口部、もしくは穴を備えることで、試料の凍結時に試料中の温度勾配を最適化するための追加の自由度が得られる。開口部の存在、位置、サイズ、および形状、さらにはレセプタクルが間に受け入れられるべき一対の壁のうちの一方または両方にそのような開口部が存在するかどうかは、すべて、別々に最適化可能であり得るパラメータである。たとえば、異なる種類およびサイズの開口部が試料の異なる種類および/または体積に対して規定され、それにより、繰り返し可能で柔軟な方式で試料の漸進的固化を達成するものとしてよい。
【0046】
図6および
図7は、レセプタクル(図示せず)内の生体試料の少なくとも一部を凍結する際に使用するための例示的なデバイス600を示している。
図6および
図7に示されているいくつかの項目は、
図2に示されている項目と類似している。400ずつ番号が大きくなる、対応する参照記号は、したがって、類似の項目に対して使用され、対応する記述も適用されると解釈すべきである。
【0047】
図6および
図7に示されている例では、デバイス600は、スロット650、またはトラックを備える。スロット650は、デバイス600のベース610の一部である。複数の壁620は、スロット650を介してベース610上に摺動可能に装着され得る。そのようなものとして、スロット650は、複数の壁620内の隣接する壁の間の分離距離を調整することを可能にする。壁を摺動可能に装着していることで、たとえば、デバイス600が異なるサイズのレセプタクルを受け入れることが可能になり得る。それに加えて、または代替的に、摺動可能に装着された壁は、それらの壁が凍結動作時にレセプタクルと接触することを確実にし得る。たとえば、摺動可能に装着された壁は、レセプタクルと熱的に接触するようにレセプタクルの側部に確実に押し当てられ、次いで、凍結動作が完了した後にレセプタクルの側部から引き離され得る。
【0048】
図8は、レセプタクル(図示せず)内の生体試料の少なくとも一部を凍結する際に使用するための例示的なデバイス800を示している。
図8に示されているいくつかの項目は、
図6に示されている項目と類似している。200ずつ番号が大きくなる、対応する参照記号は、したがって、類似の項目に対して使用され、対応する記述も適用されると解釈すべきである。
【0049】
この例では、壁825は、ベース部分と非ベース部分とを備える。第1のレセプタクルホルダー部分830は、壁825のベース部分を備える。第2のレセプタクル部分840は、壁825の非ベース部分を備える。第1のレセプタクルホルダー部分830は、それに加えて、ベース810の上側表面を備えるものとしてよい。
【0050】
この例では、壁825のベース部分は第1の材料、すなわち物質を備え、壁825の非ベース部分は、第2の異なる材料を備える。いくつかの例では、第1の材料は金属を含む。たとえば、第1の材料は、アルミニウム、銀、銅、または真鍮を含み得る。他の例では、第1の材料は非金属を含む。たとえば、第1の材料はサファイアを含み得る。第2の材料はポリマーを含み得る。たとえば、第2の材料は、ポリプロピレン、ポリスチレン、またはポリテトラフルオロエチレン(PTFE)を含み得る。第1の材料は第1の熱伝導率を有するものとしてよく、第2の材料は、第2の熱伝導率を有するものとしてよい。熱伝導率は、たとえば、熱エネルギーが特定の材料を通して伝導される率である。一例では、第1の熱伝導率は、少なくとも10ワット/メートル・ケルビン(W/mK)である。一例では、第2の熱伝導率はせいぜい1W/mKである。第1の材料および/または第2の材料は、凍結動作時に試料中の所定の温度勾配が確定されるように選択され得る。たとえば、第1の材料は、試料から壁825のベース部分への第1の熱伝達速度を達成するように選択されるものとしてよく、第2の材料は、試料から壁825の非ベース部分への第2の、より低い、熱伝達速度を達成するように選択されるものとしてよい。第1および/または第2の材料は、その熱伝導特性に基づき選択され得る。第1および第2のレセプタクルホルダー部分830、840に対して異なる材料を使用することで、試料の凍結時に試料内の温度勾配を最適化するための追加の自由度を提供する。レセプタクルホルダー部分830、840の各々の材料、および材料特性は、別々に最適化可能であり得る。たとえば、第1および第2のレセプタクルホルダー部分830、840に使用される材料の一方または両方は、繰り返し可能で柔軟な方式で試料の漸進的固化を達成するために、試料の異なる種類、体積、または冷却速度に対して適応されるか、または変更され得る。
【0051】
いくつかの例では、ベース810および壁825のベース部分は、同じ材料で構成される。たとえば、レセプタクルホルダー830の第1の部分は、ベース810の上側表面および壁825のベース部分の両方を含み得る。いくつかの例では、ベース810は、壁825のベース部分の材料と異なる材料で構成される。
【0052】
この例では、壁825は、スロット850を介してベース810上に摺動可能に装着される。他の例では、壁825は、ベース810に固定される。この例では、壁825のベース部分は、許容可能な製造公差の範囲内で、壁825の非ベース部分と同じ幅を有する。他の例では、壁825のベース部分は、壁825の非ベース部分より広く、そのため、壁825のベース部分とレセプタクルとの間の接触領域は、壁825の非ベース部分とレセプタクルとの間の接触領域より大きい。いくつかの例では、壁825のベース部分および/または壁825の非ベース部分は、上でより詳しく説明されているように、1つまたは複数の開口部を備える。
【0053】
図9から
図11は、レセプタクル905内の生体試料の少なくとも一部を凍結する際に使用するための例によるデバイス900を示している。この例では、レセプタクル905はクライオバイアルを含み、他の例では他の種類のレセプタクルが使用され得ることは理解されるであろう。クライオバイアルは、冷凍保存時に生体試料を貯蔵するのに適しているスペシャリストチューブまたはバイアルであるものとしてよい。クライオバイアルは、比較的小さい、たとえば、0.5から50mlの間の試料体積を貯蔵するように構成され得る。
【0054】
デバイス900はベース910を備える。ベース910は、たとえば、デバイス900を支持するように構成されるか、またはデバイス900が上に載るデバイス900の底部である。ベース910は、クライオクーラーまたは熱伝導プレートなどの、冷却器デバイスの冷却表面と接触可能であるものとしてよい。この例では、デバイス900は、レセプタクル905などの1つまたは複数のレセプタクルをそれぞれ保持するための1つまたは複数のレセプタクルホルダーを備える。レセプタクルホルダーは、バイアル内の試料を凍結するための試料プレートの一部と考えられ得る。他の例では、デバイスは、単一のレセプタクルのみ、たとえば、レセプタクル905を保持するように構成されている単一のレセプタクルホルダーを備える。
【0055】
この例では、レセプタクルホルダーは、レセプタクル905を受け入れるための陥凹部を備える。陥凹部、または空洞は、固体プレート内に穴あけ器またはドリルで穴をあけることによって形成され得る。陥凹部は、許容可能な測定公差の範囲内で、中に置かれるべきレセプタクルに類似する寸法を有するように構成されてよく、これにより、レセプタクルの壁は陥凹部の壁と同一平面になっている。
【0056】
レセプタクルホルダーは、第1のレセプタクルホルダー部分930と第2のレセプタクルホルダー部分940とを備える。第1のレセプタクルホルダー部分930は、ベース部分と考えられてよく、第2のレセプタクルホルダー部分940は、非ベース部分と考えられてよいが、それは、第2のレセプタクルホルダー部分940に比べて第1のレセプタクルホルダー部分930の方がベース910に近いからである。第1のレセプタクルホルダー部分930は、レセプタクル905の第1の部分、たとえば、レセプタクル905の下側部分と接触するように構成され得る。第2のレセプタクルホルダー部分930は、レセプタクル905の第2の部分、たとえば、レセプタクル905の上側部分と接触するか、または他の何らかの形で保持するように構成され得る。この例では、第1のレセプタクルホルダー部分930は、レセプタクル905が受け入れられる陥凹部の壁を上に途中まで伸長する。いくつかの例では、第1のレセプタクルホルダー部分は、レセプタクルが立つベースの一部であるが、陥凹部の壁の一部ではない。他のいくつかの例では、第1のレセプタクルホルダー部分930は、ベース910の一部と陥凹部の壁の一部とを備える。
【0057】
この例および他の例では、第1のレセプタクルホルダー部分930は、レセプタクル905の第1の部分を少なくとも部分的に囲むように構成され、第2のレセプタクルホルダー部分940は、レセプタクル905の第2の部分を少なくとも部分的に囲むように構成される。レセプタクルの所与の部分を囲むことは、レセプタクルの所与の部分の周りに少なくとも部分的に延在するそれぞれのレセプタクルホルダー部分の表面を伴い、たとえば、所与のレセプタクル部分の表面の半分を超える部分はそれぞれのレセプタクルホルダー部分の表面に面する。以下の例で説明されているように、所与のレセプタクル部分の表面は、囲むレセプタクルホルダー部分と接触しているか、またはそれから離間しているものとしてよい。
【0058】
この例では、第1のレセプタクルホルダー部分930は、第1の材料で構成され、第2のレセプタクルホルダー部分940は、第1の材料と異なる、第2の材料で構成される。第1の材料は、第2の材料と比較して高い熱伝導率を有するものとしてよく、第2の材料は、第1の材料と比較して低い熱伝導率を有するものとしてよい。第2のレセプタクルホルダー部分940は、断熱材で構成されてよい。
【0059】
いくつかの例では、第1のレセプタクルホルダー部分930および第2のレセプタクルホルダー部分940は異なる多孔率を有する。たとえば、第2のレセプタクルホルダー部分940は、第1のレセプタクルホルダー部分930の材料と比較して高い多孔率を有する材料で構成されてよく、第1のレセプタクルホルダー部分930は、第2のレセプタクルホルダー部分940の材料と比較して低い多孔率を有する材料で構成されてよい。第1のレセプタクルホルダー部分930に関して第2のレセプタクルホルダー部分940の多孔率が高いほど、結果として、第1のレセプタクルホルダー部分930に関して第2のレセプタクルホルダー部分940の熱伝導率が低くなり得る。いくつかの例では、第1のレセプタクルホルダー部分930および第2のレセプタクルホルダー部分940の材料は、その相対的多孔率についてのみ異なり得る。異なる多孔率を有する材料は、デバイス900に関して説明されているが、異なる多孔率を有する材料も、上の
図8を参照しつつ説明されているデバイス800などの、他の例示的なデバイスにおいて使用され得ることは理解されるであろう。一例では、第2のレセプタクルホルダー部分940は、中空部分を中に有する材料で構成されるものとしてよく、第1のレセプタクルホルダー部分930は、固体材料で構成されてよい。中空部を有する材料は、第2のレセプタクルホルダー部分940内に、絶縁ガスの層、たとえば、中空部内の空気を設け、それにより、第2のレセプタクルホルダー部分940の有効熱伝導率を下げるものとしてよい。使用される材料および/または材料特性が異なるので、第1のレセプタクルホルダー部分930および第2のレセプタクルホルダー部分940は異なる熱伝達特性を有し、凍結動作時に異なる速度で試料から熱エネルギーを引き出すことを可能にする。
【0060】
デバイス900は、ベース910から離れる方へ延在する凍結動作温度勾配軸950に沿ってレセプタクル905を保持するように構成される。温度勾配軸950は、いくつかの例ではベース910の平面に対して実質的に垂直である(許容可能な測定公差の範囲内で)ものとしてよい。温度勾配軸950は、凍結動作時に試料が漸進的に固化する方向を定めるものとしてよい。たとえば、固化は、試料のベース領域から始まり、試料の上側領域の方へ上に向かって進むものとしてよい。試料のベース領域は、氷核形成が生じる領域、および氷核形成が制限される領域であってよい。温度勾配軸950を有する試料中の温度勾配は、第1および第2のレセプタクルホルダー部分930、940の異なる熱引き出し速度を介して実装され得る。温度勾配軸950が
図9から
図11に示されているが、温度勾配軸を有する温度勾配は本明細書で説明されている他の例でも実装され得ることは理解されるであろう。
【0061】
図12から
図14は、レセプタクル1205内の生体試料の少なくとも一部を凍結する際に使用するための例示的なデバイス1200を示している。この例では、レセプタクル1205はクライオバイアルを含む。
図12から
図14に示されているいくつかの項目は、
図9から
図11に示されている項目と類似している。300ずつ番号が大きくなる、対応する参照記号は、したがって、類似の項目に対して使用され、対応する記述も適用されると解釈すべきである。
【0062】
レセプタクルホルダーは、第1のレセプタクルホルダー部分1230と第2のレセプタクルホルダー部分1240とを備える。レセプタクルホルダーは、ベース1210から離れる方へ延在する凍結動作温度勾配軸1250に沿ってレセプタクル1205を保持するように構成される。温度勾配軸1250は、いくつかの例では、たとえば許容可能な測定公差の範囲内で、ベース1210の平面に対して実質的に垂直であるものとしてよい。第1のレセプタクルホルダー部分1230は、第1の表面1232を備える。第2のレセプタクルホルダー部分1240は、第2の表面1242を備える。第1および第2の表面1232、1242は、陥凹部の内面であってよい。第1の表面1232は、レセプタクル1205がデバイス1200によって受け入れられたときにレセプタクル1205に当接し得る。第1の表面1232より第2の表面1242の方がベース1210から遠い。この例では、第1の表面1232より第2の表面1242の方が温度勾配軸から遠い。この例では、第2の表面1242は、レセプタクル1205がデバイス1200によって受け入れられたときにレセプタクル1205に当接しない。したがって、第2の表面1242は、レセプタクル1205がデバイス1200によって受け入れられたときに所定の量だけレセプタクル1205から離間する。いくつかの例では、第1の表面1232は、たとえば、許容可能な公差の範囲内で、温度勾配軸1250に対して実質的に平行である。いくつかの例では、第2の表面1242は、温度勾配軸1250に関して非平行になる角度で曲げられるが、他の例では、第2の表面1242は、温度勾配軸1250に対して(許容可能な測定公差の範囲内で)実質的に平行である。
【0063】
そのようなものとして、レセプタクル1205がレセプタクルホルダーによって保持される場合に、第1の表面1232とレセプタクル1205の第1の部分との間の雰囲気ガスの第1の体積は、第2の表面1242とレセプタクル1205の第2の部分との間の雰囲気ガスの第2の体積より小さいものとしてよい。典型的には、雰囲気ガスは、レセプタクルを囲むガス状媒質であり、これは空気または別のガスもしくはガス混合物であってよい。冷却動作、たとえば、冷却器デバイスによるベース1210の冷却時に、雰囲気ガスの温度は、ベース1210の温度より高くなることがある。雰囲気ガスの第1の体積は、いくつかの例では、たとえば、第1の表面1232がレセプタクル1205の第1の部分と同一平面にある場合にゼロであり得る。雰囲気ガスは、絶縁層を、たとえば、レセプタクル1205とレセプタクルホルダーの所与の表面との間に形成し得る。そのような絶縁ガス層の存在および/または厚さは、熱エネルギーを、第2の表面1242を介してレセプタクルの第2の部分から、第1の表面1232を介してレセプタクルの第1の部分から熱エネルギーを引き出す速度より遅い速度で引き出すことを可能にし得る。
【0064】
この例では、第1のレセプタクルホルダー部分1230は、第3の表面1234も備える。第3の表面1234は、陥凹部を挟んで第1の表面1232に対向する。第2のレセプタクルホルダー部分1240は、陥凹部を挟んで第2の表面1242に対向する第4の表面1244を備える。第1の表面1232と第3の表面1234との間に取られた陥凹部の第1の幅は、この例における第2の表面1242と第4の表面1244との間に取られた陥凹部の第2の幅より小さい。そのようなものとして、陥凹部は、ベース1210に近い平行な平面内よりベース1210から遠い平面内でより広くなっているものとしてよい。
【0065】
この例では、陥凹部は、ベース1210に向かって先細りである。他の例では、陥凹部の幅は、非連続的にベース1210に垂直な軸に沿って増大する。たとえば、陥凹部の幅は階段関数に従って変化するものとしてよく、陥凹部のベース部分はレセプタクル1205に当接し、陥凹部の非ベース部分はレセプタクル1205から所定の量だけ離間し、ベース部分および非ベース部分は、たとえば許容可能な製造公差の範囲内で、互いに関して実質的に平行である。
【0066】
図12から
図14に示されている例では、第1のレセプタクルホルダー部分1230および第2のレセプタクルホルダー部分1240は、幾何学的特性の異なる値を有する。たとえば、幾何学的特性は、それぞれのレセプタクルホルダー部分の2つの対向する表面の間に取られた陥凹部の幅、および/またはそれぞれのレセプタクルホルダー部分の表面と凍結動作時のレセプタクルの対応する表面との間の距離を含み得る。そのような幾何学的特性は、所与のレセプタクルホルダー部分の熱流量特性の一例であるが、それは、幾何学的特性が、レセプタクルから所与のレセプタクルホルダー部分に熱エネルギーがどれだけ伝達され得るかに影響を及ぼすからである。たとえば、レセプタクルと所与のレセプタクルホルダー部分との間の空気層の厚さは、所与のレセプタクルホルダー部分を介してレセプタクルからの熱エネルギーの所望の引き出し速度に応じて決定され得る。
【0067】
本明細書で説明されているデバイスは、様々な冷却機器を使用して冷却され得る。
【0068】
いくつかの知られているシステムにおいて、入れ物内の流体、たとえば、室温での流体は、非常に低い温度、たとえば-130℃未満の温度に維持される冷表面上にその入れ物を置くことによって冷却され得る。入れ物を等温である、すなわち、温度が固定されている、そのような冷表面に置くことで、流体の温度を急速に変化させ得る。
【0069】
しかしながら、細胞などの生体試料は、冷却時に、そのような冷却が適切な方式で制御されていない場合に、損傷を受けたり、または傷つけられたりする危険性がある。たとえば、冷却時に氷核形成が生じ、氷の結晶が形成されるときに、細胞は氷の結晶から直接的損傷を受け、徐々に氷が形成されて行くにつれ試料中の溶質の濃度が増大することによって引き起こされる損傷も受ける可能性がある。損傷した細胞は、試料が解凍されるときに回復するおよび/または機能する可能性は低いことがある。
【0070】
生体試料を制御しながら冷却することで、そのような効果によって引き起こされる生体材料への損傷を低減し、解凍後の細胞生存性および機能を保持することを助け得る。たとえば、生体試料は、冷却プロトコルに従って、一定であるか、または時間とともに変化し得る制御された速度で冷却され得る。
【0071】
冷却プロトコルは、たとえばAsymptote Limited社が製造するVIA Freeze(商標)機器などの冷却システムの一部として構成される、冷却装置によって実装され得る。いくつかの冷却システムは、複数の試料が冷却システムによって冷却されるべき試料にまたがって、または試料の間で不均一な冷却速度、または冷却プロファイル(たとえば、時間または温度に関する冷却速度の変化を表す)を引き起こし得る冷却ガスを試料の上に吹き付ける。VIA Freeze(商標)冷却システムは、試料の下側の伝導性によって試料を冷却し、したがって、すべての試料は同じ冷却プロファイルを適用され得る。
【0072】
冷却速度は、凍結される試料の性質に依存し得る。解凍後の試料品質、たとえば、細胞生存性または機能は、凍結後の冷却速度が過剰に速いか、または遅い場合にひどく低下することがある。たとえば、-80℃または-100℃に凍結された後、試料は、VIA Freeze(商標)システムから取り出され、長期冷凍保存状態に置かれ得る。
【0073】
図15は、試料を冷却するための例示的な冷却装置1500を示している。冷却装置1500は、冷蔵庫または冷凍庫デバイス、たとえば、冷却速度制御冷凍庫を備え得る。いくつかの例では、冷却装置1500は、試料を極低温に冷却するために使用可能なクライオクーラーを備え、および/または使用する。極低温は、上で説明されているように、-50℃未満または-180℃未満の温度であると考えられ得る。たとえば、冷却装置1500は、試料を-196℃に冷却するために使用可能であるものとしてよい。冷却装置1500として使用され得るクライオクーラーの例は、スターリングクライオクーラー、音響スターリングクライオクーラー、Kleemencoサイクルクライオクーラー、パルスチューブクライオクーラー、およびジュール-トンプソンクライオクーラーを含む。
【0074】
冷却装置1500は、冷却器デバイス1510を備える。この例では、冷却器デバイス1510は冷却装置1500の動作時に冷却されるべき冷却装置1500の局所化された、冷却装置1500のコールドフィンガーを含む。冷却装置1500は、コールドフィンガー1510から熱を引き出すための1つまたは複数のコンプレッサ、ピストン、熱交換器、または同様のものをさらに備え得る。
【0075】
コールドフィンガー1510は、たとえば、熱伝導プレート1520と直接接触して、熱伝導プレート1520を冷却し得る。レセプタクルホルダーを備えるデバイスが、熱伝導プレート1520と接触させられ得る。いくつかの例では、熱伝導プレート1520はデバイスの一部である。デバイスは、上で説明されているデバイス200、300、400、500、600、800、900、1200のうちの1つであってよい。そのようなものとして、冷却器デバイス1510は、デバイス200、300、400、500、600、800、900、1200を冷却するために使用され得る。
【0076】
異なる種類のレセプタクルホルダーが、たとえば、異なる種類および/またはサイズのレセプタクルを収容するために使用され得る。レセプタクルホルダーは、たとえば、前に説明されているデバイスの一部として冷却装置1500から取り外し可能であるものとしてよく、それにより、試料の追加または取り出しを容易に行える。熱伝導プレート1520および/または冷却器デバイス1510は、ヒートシンク、言い換えると、試料に対して実行される冷却動作において試料から熱エネルギーを吸収するか、または引き出す冷却装置1500の領域もしくは一部であると考えられ得る。
【0077】
冷却装置1500は、試料に対して冷却動作を実行するものとしてよく、冷却動作は、冷却プロファイルに関連付けられ得る。冷却プロファイル、または温度プロファイルは、冷却プロセスの時間間隔での目的温度を含むデータセットであってよい。たとえば、冷却プロファイルは、たとえば試料の測定された温度が冷却動作において時間とともにどのように変化すべきであるかを記述する。目的冷却速度、たとえば、時間に関する温度変化は、冷却プロファイルの異なる段階で設定され得る。いくつかの例では、一定の目的冷却速度は、冷却プロファイル内に設定され得る。
【0078】
冷却プロファイルは、冷却装置1500の動作を制御するように構成されている制御モジュールに事前プログラムされ得る。制御モジュールは、制御回路を備え、たとえば、1つまたは複数のプロセッサと冷却装置を制御するために1つまたは複数のプロセッサによって実行可能な適切な命令を収めたコンピュータ可読記憶装置とを含むものとしてよい。たとえば、制御モジュールは、冷却動作時の所与の時刻における試料、および/またはいくつかの例では冷却チャンバーの測定された温度を表す、1つもしくは複数の温度センサ、またはプローブから温度データを受信し得る。制御モジュールは、対応する時刻における特定の冷却プロファイルに従って受信された温度データを目的温度値と比較し、比較結果に基づき冷却動作を調整し得る。たとえば、所与の時刻において測定された温度が温度プロファイルに従って対応する時刻における標的温度より高かった場合に、制御モジュールは冷却動作を制御して、測定対象(すなわち、試料および/またはチャンバー)の温度を下げるものとしてよい。そのような比較および可能な結果として得られる調整は、冷却動作時の所定の時刻に行われてよく、および/または定期的時間間隔で行われ得る。この方法で、制御モジュールは、冷却動作時にリアルタイムで冷却プロファイルを追跡し、設定冷却プロファイルに従うように冷却動作を調整するものとしてよい。
【0079】
図16は、試料を冷却するための例示的な冷却装置1600を示している。
【0080】
この例では、レセプタクルホルダーを備えるデバイスが、高熱伝導性ヒートシンク1620との接触によって冷却され得る。ヒートシンク1620は、熱伝導プレートを含み得る。ヒートシンク1620は、チャンバー1630内の液体窒素などの極低温ガスの内部流れによって冷却され得る。ヒートシンク1620の温度は冷却プロセス全体を通して等温であり得るか、または変化してもよい。ヒートシンク1620の温度は、チャンバー1630を通るガスの流れを修正することによって、またはヒーターをヒートシンク1620の頂面上に置き、その温度を制御することによって制御され得る。冷却装置1600を使用する冷却プロセスは、単一の試料の処理を可能にするバッチプロセスであってよい。ヒートシンク1620および/またはチャンバー1630は、上で説明されているデバイス200、300、400、500、600、800、900、1200などのデバイスを冷却するために使用可能である冷却器デバイスと考えられ得る。
【0081】
図17は、試料を冷却するための例示的な冷却装置1700を示している。
【0082】
冷却装置1700は、複数のヒートシンク1720とチャンバー1730とを備える。複数のヒートシンク1720は、チャンバーを通る極低温ガスの流れによって冷却され得る。複数のヒートシンク1720の各々はそれぞれのデバイスを受け入れるように構成されるものとしてよく、各デバイスはそれぞれのレセプタクルホルダーを備える。異なるヒートシンクは、異なる特性を有するデバイスを受け入れるように構成され得る。たとえば、第1のそれぞれのレセプタクルホルダー部分と第2のそれぞれのレセプタクルホルダー部分との間の第1の特徴的な温度差を有する第1のデバイスは、冷却装置1700の第1のヒートシンクによって受け入れられるものとしてよく、第1のそれぞれのレセプタクルホルダー部分と第2のそれぞれのレセプタクルホルダー部分との間の第2の特徴的な温度差を有する第2のデバイスは、冷却装置1700の第2のヒートシンクによって受け入れられるものとしてよい。そのようなものとして、異なる熱引き出し特性を有する異なるデバイスは、冷却装置1700によって同時に冷却されてよい。冷却装置1700を使用する冷却プロセスは、複数の異なる試料の同時冷却を可能にし得る。異なる試料は、異なる種類の試料、異なる体積の試料であり得るか、または異なる種類のレセプタクルに収容され得る。
【0083】
図18は、試料を冷却するための例示的な冷却装置1800を示している。
図18に示されているいくつかの項目は、
図17に示されている項目と類似している。100ずつ番号が大きくなる、対応する参照記号は、したがって、類似の項目に対して使用され、対応する記述も適用されると解釈すべきである。
【0084】
冷却装置1800は、ヒートシンク1820とチャンバー1830とを備える。ヒートシンク1820は、チャンバー1830を通る極低温ガスの流れによって冷却され得る。複数のデバイスは、各々それぞれのレセプタクルホルダーを備え、ヒートシンク1820上に置かれるものとしてよい。異なる熱引き出し特性を有する異なるデバイスは、冷却装置1800によって同時に冷却されてよい。
【0085】
図19は、試料を冷却するための例示的な冷却装置1900を示している。
【0086】
冷却装置1900は、ヒートシンク1920と冷凍庫1930とを備える。冷凍庫1930は、実験用冷凍庫、たとえば、-80℃の冷凍庫であってよい。ヒートシンク1920は、冷凍庫1930の内側に置かれて、ヒートシンク1920を受動的に冷却し得る。レセプタクルホルダーを備えるデバイスが、ヒートシンク1920上に置かれ、次いで、ヒートシンク1920との接触によって冷却され得る。
【0087】
上で説明されている例は、試料の冷却時に試料中の温度勾配を確定するために異なる熱引き出し特性を備える異なる部分を有する、デバイスの、レセプタクルホルダーを使用して、試料の第1の領域内で氷核形成を誘発し、試料の第2の領域では氷核形成を防ぐことを伴う。それに加えておよび/または代替的に、そのような効果は、以下の例で説明されているように、異なる熱伝達特性を備える異なる部分を有するように適合されているレセプタクルを使用することで達成され得る。そのようなレセプタクルは、上で説明されている例示的なデバイスのうちの1つとともに使用され得るか、または知られているレセプタクルホルダーとともに使用され得る。
【0088】
図20は、中に収容されている生体試料を凍結する際に使用するためのレセプタクル2000を示している。この例では、レセプタクル2000はクライオバイアルであり、レセプタクル2000は他の例では異なる種類の入れ物またはクライオコンテナとすることも可能であることは理解されるであろう。
【0089】
レセプタクル2000は第1の部分2010を備える。第1の部分2010は、第1の内面2012と第1の外面2014とを備える。第1の内面2012は、レセプタクル2000の内面であり、第1の外面2014は、レセプタクルの外面である。第1の部分2010は、第1の部分2010の第1の内面2012からの熱エネルギーを第1の熱伝達速度で第1の部分2010の第1の外面2014に伝達するように構成される。
【0090】
レセプタクル2000は第2の部分2020も備える。第2の部分2020は、第2の内面2022と第2の外面2024とを備える。第2の内面2022は、レセプタクル2000の内面である。第2の外面2024は、レセプタクル2000の外面である。第2の部分2020は、第2の部分2020の第2の内面2022からの熱エネルギーを第2の熱伝達速度で第2の部分2020の第2の外面2024に伝達するように構成される。第2の熱伝達速度は、第1の熱伝達速度より小さい。いくつかの例では、第2の熱伝達速度は、第1の熱伝達速度より大きい。
【0091】
いくつかの例では、第1の部分2010は、熱流量特性の第1の値を有する第1の材料を含み、第2の部分2020は、熱流量特性の第2の値を有する第2の材料を含む。第2の値は第1の値と異なる。熱流量特性は、熱伝導率であってよい。いくつかの例では、第1の部分2010の壁および第2の部分2020の壁は異なる厚さを有し得る。たとえば、レセプタクル2000の主軸2030と実質的に垂直な平面内で取られた第1の内面2012と第1の外面2014との間の距離は、レセプタクル2000の主軸2030と実質的に垂直な平面内で取られた第2の内面2022と第2の外面2016との間の距離と異なっていてもよい。主軸は、たとえば、レセプタクルの縦軸である。
【0092】
いくつかの例では、熱流量特性は幾何学的特性である。たとえば、第1の部分2010は、第2の部分2020より広いものとしてよい。所与のレセプタクル部分の幅は、レセプタクル2000の主軸2030に垂直に取られ得る。所与のレセプタクル部分の幅は、レセプタクルの断面に全体として対応し得る。そのようなものとして、第2の部分2020と比べて、第1の部分2010の方がレセプタクルホルダーとの大きな接触面積を有するように構成され得る。いくつかの例では、たとえば、レセプタクル2000が円筒形である場合に、第1の部分2010の周は、第2の部分2020の周より大きいものとしてよい。いくつかの例では、第1の部分2010の半径は、第2の部分2020の半径より大きいものとしてよい。
【0093】
いくつかの例では、レセプタクル2000は、生体試料を受け入れるための内部空洞、または容積部を備える。第1の部分2010は、空洞を挟んで第1の内面2012と対向する第3の内面2016を備え得る。第3の内面2016は、レセプタクル2000の主軸2030に垂直な平面内で第1の内面2012と対向する。第2の部分2020は、空洞を挟んで第2の内面2022と対向する第4の内面2026を備え得る。第4の内面2026は、レセプタクル2000の主軸2030に垂直な平面内で第2の内面2022と対向する。第2の内面2022と第4の内面2026との間の平面は、第1の内面2012と第3の内面2016との間の平面に平行である。第1の内面2012と第3の内面2016との間の距離2032は、第2の内面2022と第4の内面2026との間の距離2034より大きいものとしてよい。したがって、第1の部分2010は、第2の部分2020より広いものとしてよい。そのようなものとして、第1の部分2010は、第2の部分2020より広い表面積を有することにより、第2の部分2020より大きい熱流量特性を有するように構成され得る。
【0094】
例では、第1の熱伝達速度と第2の熱伝達速度との間の差は、第1の部分2010および第2の部分2020を介した熱伝達による凍結動作において、試料の第1の領域内で氷核形成が生じ、第1の領域は第1の部分2010と接触し、試料の第2の領域内で氷核形成が生じない場合に、第2の領域は第2の部分2020と接触するように、レセプタクル2000内の試料中の温度勾配を確定するのに少なくとも十分である。したがって、試料中の氷形成は、試料の冷却時に制御され得る。
【0095】
図21は、レセプタクル内に貯蔵される生体試料の一部を凍結する方法2100を例示する流れ図である。
【0096】
ブロック2110において、試料を収容するレセプタクルはレセプタクルホルダー内に配置される。レセプタクルホルダーは、上で説明されているデバイス200、300、400、500、600、800、900、1200のうちの1つなどのデバイスの一部であってよい。いくつかの例では、レセプタクルホルダーは、デバイス200、300、400、500、600、800、900、1200の一部として説明されているものと異なるレセプタクルホルダーである。レセプタクルは、いくつかの例では、上で説明されているレセプタクル2000であってよい。
【0097】
ブロック2120で、レセプタクルホルダーは、冷却器デバイスを使用して冷却される。たとえば、レセプタクルホルダーのベースは、冷却器デバイスの冷却表面と接触させられ得る。冷却表面の温度は、冷却器デバイスによって実行される冷却動作の間中、変化し得る。冷却器デバイスは、クライオクーラーを含み得る。いくつかの例では、レセプタクルホルダーは、制御された速度で冷却される。たとえば、レセプタクルホルダーは、速度が制御された冷凍庫によって冷却されてよい。
【0098】
ブロック2130で、冷却器デバイスを使用したレセプタクルホルダーの冷却中に、熱エネルギーは、レセプタクルホルダーの第1のレセプタクルホルダー部分を介してレセプタクルの第1の部分から引き出される。熱エネルギーは、第1の熱引き出し速度で第1のレセプタクルホルダー部分を介してレセプタクルの第1の部分から引き出される。たとえば、レセプタクルの第1の部分は、第1のレセプタクルホルダー部分と伝導接触するように配置され得る。
【0099】
ブロック2140で、冷却器デバイスを使用したレセプタクルホルダーの冷却中に、レセプタクルホルダーの第2のレセプタクルホルダー部分を介したレセプタクルの第2の部分からの熱エネルギー引き出しの第2の熱引き出し速度は、第1の熱引き出し速度より遅くされる。第1のレセプタクルホルダー部分より第2のレセプタクルホルダー部分の方がレセプタクルホルダーのベースから遠いものとしてよい。いくつかの例では、熱エネルギーは、第2の熱引き出し速度で第2のレセプタクルホルダー部分を介してレセプタクルの第2の部分から引き出される。第1の熱引き出し速度と第2の熱引き出し速度との間の差は、冷却器デバイスを使用した凍結動作中に、試料の核形成が試料の第1の領域において生じ、第1の領域はレセプタクルの第1の部分と接触し、試料の核形成が試料の第2の領域において生じない場合、第2の領域はレセプタクルの第2の部分と接触するように、生体試料中の温度勾配を確定するのに少なくとも十分であり得る。
【0100】
図22は、漸進的固化による凍結動作を受ける試料中の温度の、時間に対する例示的な表現2200を示している。
【0101】
図22において、第1の直線2210は、試料のベース領域内の第1の熱電対によって取得される測定データに対応し、第2の直線2220は、試料の中間領域内の第2の熱電対によって取得される測定データに対応し、第3の直線2230は、試料の上側領域内の第3の熱電対によって取得される測定データに対応する。試料は、本明細書において説明されているような方法を使用して冷却された。
【0102】
図22に示されているように、試料のベース領域は、-10℃程度まで過冷却し、ベース領域内に氷核形成が生じた後、ベース領域内の温度は急速に上昇する。しかしながら、試料の中間領域または上側領域内に対応する急激な温度上昇はなく、またそれらの領域内の過冷却もない。したがって、核形成が生じる領域とは別に、試料の残り部分は過冷却を伴うことなく凍結し、少なくともベース領域以外の試料の領域内で細胞生存性を改善し得る。ベース領域内の氷核形成に続き、試料全体にわたって氷が形成し得る。説明に役立つ実例として、人工多能性幹細胞(iPS)由来のニューロンおよび哺乳動物胚の解凍後生存性は、本明細書で説明されている対策を使用することで改善され得る。他の種類の細胞、および他の種類の生体材料の解凍後生存性も、本明細書で説明されている対策によって改善され得る。
【0103】
上記の例は、例示的であると理解されるべきである。さらなる例も企図される。
【0104】
1つの例に関して説明されている特徴は、単独で、または説明されている他の特徴と組み合わせて使用されてよく、これらの例のうちの他のものの1つまたは複数の特徴と組み合わせて、またはこれらの例の他のものと組み合わせても使用され得ることは理解されるべきである。さらに、上で説明されていない等価形態および修正形態も、付属の請求項において定められている本発明の範囲から逸脱することなく採用され得る。
【符号の説明】
【0105】
100 表現
200 デバイス
210 ベース、プレート
220 壁
225 壁
230 第1のレセプタクルホルダー部分
240 第2のレセプタクルホルダー部分
300 デバイス
310 ベース
325 壁
330 レセプタクルホルダー
340 レセプタクルホルダー
400 デバイス
410 ベース
425 壁
450 開口部
455 第2の幅
456 第1の幅
500 デバイス
510 ベース
520 壁
525 第1の壁
526 第2の壁
550 開口部
600 デバイス
610 ベース
620 壁
650 スロット
800 デバイス
810 ベース
825 壁
830 第1のレセプタクルホルダー部分
840 第2のレセプタクル部分
850 スロット
900 デバイス
905 レセプタクル
910 ベース
930 第1のレセプタクルホルダー部分
940 第2のレセプタクルホルダー部分
1200 デバイス
1205 レセプタクル
1210 ベース
1230 第1のレセプタクルホルダー部分
1232 第1の表面
1234 第3の表面
1240 第2のレセプタクルホルダー部分
1242 第2の表面
1244 第4の表面
1250 凍結動作温度勾配軸
1500 冷却装置
1510 冷却器デバイス、コールドフィンガー
1520 熱伝導プレート
1600 冷却装置
1620 高熱伝導性ヒートシンク
1630 チャンバー
1700 冷却装置
1720 ヒートシンク
1730 チャンバー
1800 冷却装置
1820 ヒートシンク
1830 チャンバー
1900 冷却装置
1920 ヒートシンク
1930 冷凍庫
2000 レセプタクル
2010 第1の部分
2012 第1の内面
2014 第1の外面
2016 第3の内面
2020 第2の部分
2022 第2の内面
2024 第2の外面
2026 第4の内面
2030 主軸
2032 距離
2034 距離
2100 方法
2200 表現
2210 第1の直線
2220 第2の直線
2230 第3の直線