(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-12-22
(45)【発行日】2024-01-05
(54)【発明の名称】中子造型装置および中子造型装置の制御方法
(51)【国際特許分類】
B22C 9/10 20060101AFI20231225BHJP
B22C 15/08 20060101ALI20231225BHJP
B22C 15/272 20060101ALI20231225BHJP
B22C 15/24 20060101ALI20231225BHJP
B22D 46/00 20060101ALI20231225BHJP
【FI】
B22C9/10 G
B22C15/08
B22C15/272
B22C15/24 C
B22D46/00
(21)【出願番号】P 2018195433
(22)【出願日】2018-10-16
【審査請求日】2021-09-24
(32)【優先日】2017-10-17
(33)【優先権主張国・地域又は機関】EP
(73)【特許権者】
【識別番号】506138269
【氏名又は名称】マグマ ギエッセレイテクノロジ ゲーエムベーハー
【氏名又は名称原語表記】MAGMA Giessereitechnologie GmbH
【住所又は居所原語表記】Kackertstrasse11 D-52072 Aachen Germany
(74)【代理人】
【識別番号】100101340
【氏名又は名称】丸山 英一
(74)【代理人】
【識別番号】100205730
【氏名又は名称】丸山 重輝
(74)【代理人】
【識別番号】100213551
【氏名又は名称】丸山 智貴
(72)【発明者】
【氏名】カール グロネン
(72)【発明者】
【氏名】インゴ ワグナー
【審査官】祢屋 健太郎
(56)【参考文献】
【文献】国際公開第2006/104149(WO,A1)
【文献】特開2008-149352(JP,A)
【文献】実公昭50-016011(JP,Y1)
(58)【調査した分野】(Int.Cl.,DB名)
B22C 9/10
B22C 15/08
B22C 15/272
B22C 15/24
B22D 46/00
(57)【特許請求の範囲】
【請求項1】
中子造型機に付随する中子取りの内部の少なくとも1つの空洞に粒状粒子
を含む中子砂混合物を投入する工程によって中子を製造する中子造型機であって、
前記工程の調整可能加工条件としての調整可能初期機械圧力を有する圧縮気体源と、
電子制御式投入弁を含む少なくとも1本の導管によって流体的に前記圧縮気体源に接続され、前記工程の調整可能加工条件としてのある充填度になるように、ある量の粒状粒子
を含む前記中子砂混合物を収容するように構成され、前記中子砂混合物中に前記圧縮気体を流し、空気流を砂流の駆動力にして、前記量の中子砂混合物を前記少なくとも1つの空洞に送り込むことが可能である投入ヘッドと、
前記中子造型機に付随し、前記工程のモデルを用いて前記工程のシミュレーションを実行するように構成され、前記調整可能加工条件を含むいくつかの加工条件に基づいて前記工程のシミュレーションを実行し、実行されたシミュレーションの結果に基づいて、1つ以上の調整可能加工条件の改善または最適化された値を決定し、決定された改善または最適化された値に従って、前記調整可能加工条件のうちの1つまたは複数を調整し、リアルタイム工程制御を行うように構成された、演算装置と、を備えることを特徴とする、
中子造型機。
【請求項2】
前記演算装置は、工程サイクル毎または所定数の工程サイクル毎に、1工程サイクルよりも短時間で、シミュレーションを実行するように構成されたことを特徴とする、
請求項1に記載の中子造型機。
【請求項3】
前記モデルは前記工程の数理物理モデルであることを特徴とする、
前記請求項1または請求項2に記載の中子造型機。
【請求項4】
前記モデルは、前記工程の簡易化された1次元(1D)表現であり、主要な局部的流れ方向を考慮したものであることを特徴とする。
前記請求項1~3のうちいずれか1項に記載の中子造型機。
【請求項5】
前記演算装置は、下記加工条件の情報:
・電子制御式投入弁の開放時間の長さ
・前記電子制御式投入弁の特性
・前記電子制御式投入弁の開度プロファイル
・前記投入弁上流の前記導管の形状と寸法
・前記投入弁下流の前記導管の形状と寸法
・前記投入ヘッドの形状と寸法、または容積
・投入シリンダの形状と寸法、または容積
・開口部の形状、寸法、および数
・前記圧縮気体源の特性
・投入ノズルの形状、寸法、および数
・空洞の形状、寸法、および数
・通気部の数、特性、および位置
・中子砂混合物の特性
のうち1つ以上を受け取り、前記モデルはそれを考慮したものであることを特徴とする、
前記請求項1~4のうちいずれか1項に記載の中子造型機。
【請求項6】
前記モデルは、過渡的な加工条件に従って、前記中子造型機と、接続された前記空洞との間の相互依存性を考慮したものであることを特徴とする、
前記請求項1~5のうちいずれか1項に記載の中子造型機。
【請求項7】
前記演算装置は、データ的に前記中子造型機と接続されるか、または前記中子造型機の一部であることを特徴とする、
前記請求項1~6のうちいずれか1項に記載の中子造型機。
【請求項8】
前記演算装置と接続され、前記充填度を検出するセンサー、および/または、前記演算装置と接続され、初期圧力を検出する圧力センサーを備えることを特徴とする、
前記請求項1~7のうちいずれか1項に記載の中子造型機。
【請求項9】
前記演算装置は、実行された前記シミュレーションの結果に基づいて、前記初期機械圧力および/または前記充填度(H)に対する最適推奨値を提供するように構成されたことを特徴とする、
前記請求項1~8のうちいずれか1項に記載の中子造型機。
【請求項10】
中子造型機に付随する中子取りの内部の少なくとも1つの空洞に粒状粒子
を含む中子砂混合物を投入する工程によって中子を製造する中子造型機を制御する方法であって、
前記中子造型機は、
前記工程の調整可能加工条件としての調整可能初期機械圧力を有する圧縮気体源と、
電子制御式投入弁を含む少なくとも1本の導管によって流体的に前記圧縮気体源に接続され、前記工程の調整可能加工条件としてのある充填度になるように、ある量の粒状粒子
を含む前記中子砂混合物を収容するように構成され、前記中子砂混合物中に前記圧縮気体を流し、空気流を砂流の駆動力にして、前記量の中子砂混合物を前記少なくとも1つの空洞に送り込むことが可能である投入ヘッドと、を備え、
前記調整可能加工条件を含む複数の加工条件に基づき、前記工程のモデルを用いて、演算装置上で、前記工程のシミュレーションを実行することと、
実行されたシミュレーションの結果に基づいて、1つ以上の調整可能加工条件の改善または最適化された値を決定することと、
前記決定された改善または最適化された値に従って、1つ以上の前記調整可能加工条件を調整し、リアルタイム工程制御を行うことと、を含むことを特徴とする、
方法。
【請求項11】
前記シミュレーションにおいて、連立方程式を解いて、前記中子砂混合物と前記気体の
過渡的流量を決定し、
前記モデルは、過渡的な加工条件に従って、前記中子造型機と、接続された前記空洞との間の相互依存性を考慮したものであることを特徴とする、
請求項10に記載の方法。
【請求項12】
前記モデルは前記工程の数理物理モデルであることを特徴とする、
請求項10または請求項11に記載の方法。
【請求項13】
前記モデルは、前記工程の簡易化された1D表現であり、主要な局部的流れ方向を考慮したものであることを特徴とする、
請求項10から請求項12のうちいずれか1項に記載の方法。
【請求項14】
実行されたシミュレーションの結果に基づいて、前記初期機械圧力および/または前記充填度(H)に対する推奨値を提供することを含むことを特徴とする、
請求項10から請求項13のうちいずれか1項に記載の方法。
【請求項15】
プロセッサ上で実行された時に、前記プロセッサに、請求項10から請求項14のうちいずれか1項に記載の方法を実行させるためのコンピュータプログラムコードを備えたコンピュータ読み取り可能な記憶媒体であって、
中子造型機を使って中子を造型する工程のコンピュータモデルのソフトウェアコードと、
前記モデルを使って前記工程の数値シミュレーションを実行するためのソフトウェアコードと、
前記工程の調整可能加工条件に対する推奨値または最適値を出力するためのソフトウェアコードと、を含むことを特徴とする、
コンピュータ読み取り可能な記憶媒体。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、例えば、金属の鋳込みに使用する鋳型中に用いる砂中子等の中子を作製するために、圧縮空気の膨張を駆動力として空洞に粒状材料を充填する、粒状材料の流動を伴う工程に関する。本開示は、また、砂中子等の、粒状材料から成る造型体を製造するための機械を制御するコンピュータ実装方法に関する。
【背景技術】
【0002】
広範囲の用途に用いられる、様々な種類の金属合金を使用した金属鋳物部品を製造するための、様々な鋳造工程において、砂中子が広く用いられている。砂中子は、鋳物の内部中空構造を表す。砂中子の基本要件は、機械的強度、寸法精度、および化学安定性に関するものである。砂中子は、基砂(粒状材料)と結合剤のシステムで構成される。中子の主製造工程に先立って、砂、結合剤成分、および、必要に応じ添加剤が、特定の装置を用いて混合される。主製造工程には、中子造型機が使用される。
【0003】
いわゆる中子造型機を使用した砂中子の製造は、産業的な実施において、幅広く実施されている。中子造型は、空気と砂の連成流を特徴とする高度に複雑な工程である。実際には、この工程は、機械に連結した特定の中子取りに対して工程が適切に動作するまで、試行錯誤を繰り返しながら制御される。この工程は、実際には、多くの不確実性を有しており、中子品質のばらつきにつながっている。最先端の機械においても、変動する加工条件に応じて加工圧力やその他の加工条件を再調整できる可能性のある、利用可能な動的機械制御は、実際には存在しない。
【0004】
当該技術においては、過渡的な加工手順を決定する重要な状態変数の測定において、基本的に欠けているものがある。実際には、過渡的な質量流量、すなわち、機械の関連位置と中子取りの範囲内における局所位置での速度を、空気と砂に対して別個に決定するための、利用可能な測定能力が欠けている。
【0005】
欠如している情報を入手すれば、産業的な実施において、中子製造の信頼性の大幅な改善が可能になるであろう。(計算時間がサイクル時間より短く)過渡的な加工条件をリアルタイムに決定すれば、1つの製造サイクルと次の製造サイクルの間に加工条件を調整することが可能になるであろう。これによって、動的なリアルタイム工程制御が可能になるであろう。
【発明の概要】
【0006】
本開示は、上記問題を克服もしくは少なくとも減じる中子造型機を提供することを目的とする。
【0007】
前記およびその他の目的は、独立請求項の特徴によって達成される。さらなる実施形態は、従属請求項、明細書、および図面から明らかである。
【0008】
本開示の第1の態様によれば、中子造型機に付随する中子取りの内部の少なくとも1つの空洞に中子砂混合物を投入する工程によって中子を製造する中子造型機は、
工程の調整可能加工条件としての調整可能初期機械圧力P0を有する圧縮空気源と、
電子制御式投入弁を含む少なくとも1本の導管によって流体的に圧縮空気源に接続され、工程の調整可能加工条件としてのある充填度になるように、ある量の中子砂混合物を収容するように構成された投入ヘッドと、
中子造型機に付随し、工程のモデルを用いて工程のシミュレーションを実行するように構成され、調整可能加工条件を含む複数の加工条件の情報を受け取るよう構成された、演算装置と、を備える。
【0009】
中子造型工程をシミュレートするように構成された演算装置を中子造型機に設けることによって、中子造型機のあらゆる調整可能な設定値/加工条件に対して推奨値を提供することができるようになる。これによって、変化する条件に応じて、製造された中子の品質が不合格レベルに悪化する前に、中子造型機を調整することができる。その結果、製造された中子の品質を安定した高レベルに維持することができ、そうでない場合に、調整可能な設定値/加工条件の経験的(試行錯誤的)な調整に費やされてしまう時間が、節約される。
【0010】
第1の態様の実現可能な実施態様では、演算装置は、工程のシミュレーションを実行し、実行されたシミュレーションの結果に基づいて、1つ以上の調整可能加工条件の改善または最適化された設定値を決定するように構成されている。
【0011】
第1の態様の実現可能な実施態様では、演算装置は、工程サイクル毎または所定数の工程サイクル毎に、シミュレーションを実行するように構成されている。
【0012】
第1の態様の実現可能な実施態様では、演算装置は、1工程サイクルよりも短時間で、好適には各工程サイクル期間中に、シミュレーションを実行するように構成されている。
【0013】
第1の態様の実現可能な実施態様では、モデルは工程の数理物理モデルであり、好適には工程の簡易化された数理物理モデルである。
【0014】
第1の態様の実現可能な実施態様では、モデルは、設定工程の簡易化された1次元(1D)表現であり、好適には主要な局部的流れ方向を考慮したものである。
【0015】
第1の態様の実現可能な実施態様では、演算装置は、下記加工条件の情報:
・電子制御式投入弁の開放時間の長さ
・電子制御式投入弁の特性
・投入弁の開度プロファイル
・投入弁上流の導管の形状と寸法
・投入弁下流の導管の形状と寸法
・投入ヘッドの形状と寸法、または容積
・投入シリンダの形状と寸法、または容積
・開口部の形状、寸法、および数
・圧縮空気源に付随する圧縮空気容器の容積等の、圧縮空気源の特性
・投入ノズルの形状、寸法、および数
・空洞の形状、寸法、および数
・通気部の数、特性、および位置
・粒度、レオロジー特性、結合剤特性等の、中子砂混合物の特性
のうち1つ以上を受け取り、モデルはそれを考慮したものである。
【0016】
第1の態様の実現可能な実施態様では、演算装置は中子造型機と接続されている。
【0017】
第1の態様の実現可能な実施態様では、演算装置は中子造型機の一部である。
【0018】
第1の態様の実現可能な実施態様では、中子造型機は、演算装置と接続された充填度を検出するセンサーを備える。
【0019】
第1の態様の実現可能な実施態様では、演算装置は、実行されたシミュレーションの結果に基づいて、初期機械圧力P0および/または充填度Hに対する推奨値を提供するように構成されている。
【0020】
本開示の第2の態様によれば、中子造型機に付随する中子取りの内部の少なくとも1つの空洞に中子砂混合物を投入する工程によって中子を製造する中子造型機は、
工程の調整可能加工条件としての調整可能初期機械圧力P0を有する圧縮空気源と、
電子制御式投入弁を含む少なくとも1本の導管によって流体的に圧縮空気源に接続され、工程の調整可能加工条件としてのある充填度になるように、ある量の中子砂混合物を収容するように構成された投入ヘッドと、を備え、
中子造型機を制御する方法は、
調整可能加工条件を含む複数の加工条件に基づき、工程のモデルを用いて、演算装置上で、工程のシミュレーションを実行することと、
実行されたシミュレーションの結果に基づいて、1つ以上の調整可能加工条件の改善または最適化された値を決定することと、
決定された改善または最適化された値に従って、1つ以上の調整可能加工条件を調整することと、を含む。
【0021】
第2の態様の実現可能な実施態様では、方法は、連立結合方程式を解いて、中子砂混合物と空気の過渡的流量を決定することを含む。
【0022】
第2の態様の実現可能な実施態様では、モデルは工程の数理物理モデルであり、好適には工程の簡易化された数理物理モデルである。
【0023】
第2の態様の実現可能な実施態様では、モデルは、工程の簡易化された1次元(1D)表現であり、好適には主要な局部的流れ方向を考慮したものである。
【0024】
第2の態様の実現可能な実施態様では、方法は、実行されたシミュレーションの結果に基づいて、初期機械圧力P0および/または充填度Hに対する推奨値を提供することを含む。
【0025】
本開示の第3の態様によれば、プロセッサ上で実行された時に第2の態様の実現可能な実施態様のうちいずれか1つに係る方法を実行させるためのコンピュータプログラムコードを含むコンピュータ読み取り可能な記憶媒体が提供され、コンピュータ読み取り可能な記憶媒体は、
中子造型機を使って中子を造型する工程のコンピュータモデルのソフトウェアコードと、
モデルを使って工程の数値シミュレーションを実行するためのソフトウェアコードと、
工程の調整可能加工条件に対する推奨値または最適値を出力するためのソフトウェアコードと、を含む。
【0026】
上記およびその他の態様は、以下に述べる実施形態によって明らかにされる。
【図面の簡単な説明】
【0027】
下記の本開示の詳細説明において、以下の図面によって示される実施形態例を参照して、その態様、実施形態、および実施例をさらに詳細に説明する。
【
図1】
図1は、代表的な中子造型機の基本構成を示し、加工に使用される機能部品、および、製造すべき砂中子の形状を表す空洞を含む中子取りを表す。
【
図2】
図2は、
図1の中子造型機の概略構成を示し、代表的な直径、関連機械部分の容積、および中子造型機に付随する弁を示す。
【
図3】
図3は、
図1の中子造型機の制御方法を示すフローチャートである。
【
図4A】
図4Aは、投入ノズル数が小さい場合の、異なる点における過渡的圧力曲線の計算出力を表すグラフの一例である。
【
図4B】
図4Bは、投入ノズル数が増加された場合の、異なる点における過渡的圧力曲線の計算出力を表すグラフの一例である。
【
図4C】
図4Cは、過渡的な空気の質量流量と砂の質量流量の計算出力を表すグラフの一例である。
【
図5A】
図5Aは、中子造型機の制御ユニットに接続された制御モジュールの概略図である。
【
図5B】
図5Bは、中子造型機の制御ユニットに組み込まれた制御モジュールの概略図である。
【
図6】
図6は、3次元(3D)シミュレーションソフトウェアに組み込まれるか、または接続された工程制御モジュールの概略図である。
【発明を実施するための形態】
【0028】
以下の詳細説明において、中子造型機、および中子造型機の制御方法について、実施形態例を参照して詳細を説明する。
【0029】
図1は、中子造型装置(または中子造型機)1の実施形態例を示し、主要機能部品を表す。実際には、各種タイプの中子造型機1は、詳細には異なってもよいが、加工原理は一般に同等である。
【0030】
中子造型装置には圧力タンク(調整可能初期機械圧力P
0を有する圧縮空気源)10が設けられている。圧力タンク10は、製造サイクルに先立って、所定量の圧縮空気(他の気体を用いることも可能)を貯蔵するために用いられる。中子造型機1の本体は投入ヘッド13であり、通常、上部が、カバー13a等で、閉じられている。投入ヘッド13は、ホッパー、ブローヘッド、またはマガジンとも称される。圧力タンク10と投入ヘッド13は、1本以上の管(導管)12によって接続されている。1つ以上の電子制御式投入弁11が、管12を通過する空気を制御する。電子制御弁(すなわち、投入弁)11は、中子造型機1の一部を成すか、中子造型機1に付随するか、または中子造型機1に接続された演算装置60(
図5)の制御下で動作する。図示された実施形態では、投入シリンダ15が投入ヘッド13に挿入されている。図示された実施形態では、投入ヘッド13内部の、投入シリンダ15の外側に、外部空間14が存在する。空気/気体を透過可能な開口部15aが、投入シリンダ15に流入する空気の通路を形成している。1つの実施形態(図示せず)では、中子造型機1は投入シリンダ15の無い構成となっている。本実施形態では、単純な空洞14が投入ヘッド13内に存在する。投入ヘッド13の底部は、投入板16で閉じられている。図示された実施形態では、投入ヘッド13の下部23は投入板16に向かって広がり、中子取り18との相互作用のためのより広い面積を与えている。投入板16には、一般的に、中子砂混合物の空気と砂が流出できる穴を有している。1つの実施形態では、投入板16は中子取り18に直接接続されている。本実施形態では、投入ノズル17が投入板16の穴に挿入されている。投入ノズル17は吹管(ブローチューブ)とも称される。
【0031】
投入ノズル17は、中子造型機1と中子取り18とを接続する。一般的には、
図1の実施形態に示すように、投入板16と中子取り18の間には、隙間が形成されている。中子取り18は、製造すべき1個または複数の砂中子の形状を表す1つ以上の空洞19を有する。中子取り18は、一般的には、砂中子の複雑さに応じて、2個以上の部品から構成される。
【0032】
中子取り18は、一般的に、中子取り18からの空気放出用に数本の通路20を有している。これらの通路20に対する砂の流入を極力抑えるために、通気部20aと呼ばれる開口面積を小さくした物体が、通路20の端の空洞19との境界面に置かれている。異なる開口面積量を持つ数種類の通気部20aが利用可能である。通気部20aは、スロット状の通路を有する金属体の代表的なデザイン形状を示している。スロットの幅は、一般的には、使用する基砂の粒度分布に応じて、例えば、0.2mm~0.6mmの範囲である。中子造型機1は、演算装置60と接続され充填度Hを検出するセンサー、および/または、演算装置60と接続され初期圧力P0を検出する圧力センサーを備えてもよい。
【0033】
中子造型機1を使用した砂中子の製造は、以下の通りである。
【0034】
所定量の調製された中子砂混合物21が、投入ヘッド13に充填される。中子砂混合物21の充填高さH(
図2)は、その他の考えられる特性のうち、中子造型機1のサイズ、および、充填する中子空洞19の形状、寸法、および数に依存する。圧力タンク10には、同時に、所定の投入圧力P
0に達するまで圧縮空気を充填することが望ましい。一般的には、投入圧力として、例えば、2barおよび8barの、2つの極限値の間の範囲から選択することができる。従来技術では、与えるべき投入圧力は、品質基準に従って、試行錯誤を経て決定される。一般的には、投入圧力値を高くすることで中子品質の向上につながるが、摩耗(損耗)の影響が増すことによって、中子取り18の寿命の短縮も起きる。
【0035】
中子造型工程は、演算装置60からの指令の下に、1つ以上の電子制御式投入弁11を開くことによって、作動する。投入弁11には、例えば、0.1~0.3秒の高速で開くような特殊な種類の弁が使用される。次に、圧縮空気が膨張し、圧力タンク10から、管12を通って、投入ヘッド13に流入する。領域14内、および、投入シリンダ15内の砂より上の容積部22は、急速に高圧レベルP1(<P0)に達する。空気も、最大圧力勾配の方向に、投入シリンダ15内部を、中子砂混合物21を通って、投入ノズル17に向かって流下を開始する。中子砂混合物の粒子性と、場所によって変動する締め固め度によって、大きな圧力損失が引き起こされる。圧力勾配は、特に垂直方向に大きい。その他の相関効果として、中子砂混合物21が充填されている領域内における圧力上昇の進行に大幅な時間のずれがある。空気流は、中子砂混合物の粒状粒子と干渉する。これによって、空気流は砂流の駆動力になる。砂は空気流に従って、投入ノズル17を通って、中子取りの空洞19に流入する。砂は、中子取り18に流入する間に加速され、一定の運動エネルギーを得る。流入する砂は、空洞19内で密集し、減速する。空気が通気部20aを通って中子取り18から排出される一方、中子砂混合物は、好適には高い締め固め度で、中子取りの空洞19の中に留まる。
【0036】
造型工程が予定通りに進行した場合、造型工程の終了時には、空洞19には砂が完全に充填され、高く、均一な締め固め度を持つ砂中子が得られる。所定時間後、すなわち、空洞19に砂が完全に充填された時、投入弁11が閉じられる。投入ヘッド弁(図示せず)を開くことによって、投入ヘッド13は、その内部が大気圧に達するまで、通気される。次に、投入ヘッド13を上昇させることによって、砂中子を硬化させて取り出すために、中子取り18を取り外して、その後、中子造型機1に戻すことができる。
【0037】
中子砂混合物21は結合剤を含み、両方を合わせて、一般的に、結合剤システムと称される。次に、中子を硬化させるために、結合剤システムの化学的性質に応じて異なる技術が適用される。硬化中に、砂粒および砂粒上の表面層の間の結合剤は、3次元(3D)立体ネットワークを形成し、その結果、得られた砂中子の所定の機械的強度がもたらされる。硬化工程の後、中子取り18は開放され、中子造型機1から取り出され、硬化した砂中子が取り出される。厳密な手順は、機械の種類や中子取りの設計に応じて異なってもよい。砂中子が取り出された後、中子取り18は中子造型機1に戻され、閉じられる。その後、製造工程が上述のように繰り返される。
【0038】
中子造型機1を使用した砂中子製造は生産性が高い。例えば、中子のサイズ、空洞19内の中子数、サイクル時間等によっては、1日当たりかなりの数の中子を製造することができる。
【0039】
中子製造工程は、多くの不確実性を伴っている。製造条件については、一般的に、希望通りの再現性は得られず、そのため、中子品質やスクラップ発生率が予想外に変動することがある。機械の観点からは、主として、製造サイクルの開始時における圧力タンク10内の初期圧力P0によって、工程が制御される。その他の、さらなる工程制御の手段として、投入弁11の動作を変化させてもよいし、互いに独立に制御可能な弁および接続管を追加してもよい。この種の工程制御は、WO2016095179A1およびDE112014005849T5に記載されている。
【0040】
1つの製造サイクルと次の製造サイクルの間で、加工条件(調整可能加工条件)がある程度変化する可能性がある。投入ヘッド13に砂を補給すると、一般的に、砂の初期高さHが変化する。投入ヘッド13が空の状態で2~3サイクル投入が行われ、その後補給される可能性がある。中子造型機1内の過渡的な加工条件も、中子造型機1に接続された特定の中子取り18に強く依存する。空洞19の総容積、および、投入ノズル17の数、位置、および口径は、通気部20aの数、位置、および開口面積と共に、過渡的な加工条件に影響を及ぼす。さらに、砂粒や硬化した結合剤による開口部の目詰まりのために、通気部20aの開口面積が、サイクル動作中に変化する可能性もある。
【0041】
従来技術の機械においては、上述した変動する加工条件に従って加工圧力を再調整することを可能にするような動的機械制御は、実際には、できない。例えば、投入ヘッド13内の砂の高さHが個々の製造サイクル毎に変化する場合、一定の工程状態変数を維持し、信頼性のある中子品質を実現するために、加工条件を再調整する必要がある。従来技術において決定(測定)される唯一の工程要因は、圧力タンク10内の初期空気圧P0である。
【0042】
公知技術においては、過渡的な加工手順を決定するその他の重要な工程変数の測定において、基本的に欠けているものがある。実際には、従来技術においては、過渡的な質量流量、すなわち、関連位置の範囲内における局所位置での速度を、空気と砂に対して別個に決定するための測定能力が、中子造型機1の範囲内においても中子取り18の範囲内においても、欠けている。
【0043】
そこで、中子造型機1の内部(1つの実施形態では、さらに中子取り18の内部)の条件の、モデルを用いた数値シミュレーションによって、欠如している情報を求めることが提案される。数値シミュレーションでは、現実の中子造型工程および中子造型機1の時間の経過に沿った動作をシミュレートする。数値シミュレーションは、中子造型工程や中子造型機の数理物理モデル、または、論理的表現を必要とする。このモデルは、選択された中子造型機および中子造型工程の主要特性、挙動、および機能を表現する。モデルはシステム/工程そのものを表現し、シミュレーションはシステム/工程の時間の経過に沿った動作を表現する。数値シミュレーションは、シミュレーションのベースとして、モデル、すなわち、システム、実体、現象、または工程の数学的または論理的表現を用いる。
【0044】
欠如している情報が数値シミュレーションを通じて利用可能になると、産業的な実施において、中子製造の信頼性の大幅な改善が可能になる。さらに、(計算時間がサイクル時間より短く)過渡的な加工条件をリアルタイムに決定することによって、1つの製造サイクルと次の製造サイクルの間に加工条件を調整することを可能にすることが提案される。これによって、リアルタイム工程制御が可能になる。
【0045】
空気と砂の非常に動的な連成流の測定において、基本的に欠けているものがあっても、計算を通じて、過渡的工程を決定することができる。数理物理モデルを用いて、工程をコンピュータでシミュレートすることができる。数理物理モデルを用いて、3D工程シミュレーションを実行することができる。このような、例えば、MAGMASOFT(登録商標)のようなソフトウェアによって、中子取り設計の最適化を含む、中子製造の工程シミュレーションに関する包括的な能力を提供することができる。
【0046】
実際には、目標は、中子取り18を製作する前に安定した中子取り18を設計し、加工条件の予期しない変動によって中子品質が大きく影響されないようにすることである。3D工程シミュレーションにおいては、中子造型機1と中子取り18のすべての関連部分は、3D容積として表現される。工程シミュレーションでは、空気と砂の完全な過渡流れが計算される。このようにして、工程の完全な透明性が得られる。
【0047】
しかし、中子造型の製造サイクルは、一般的に、1分間程度であり、上記ソフトウェアによる3Dシミュレーションはそれよりも大幅に時間がかかるので、リアルタイム工程制御に適したツールとは言えない。
【0048】
ここでは、必要な情報を迅速にリアルタイムで計算する方法を提供する。中子造型工程においては、空気と砂の流れは空気の圧力勾配によって駆動される。工程の複雑な3D表現は、主要な局部的流れ方向を考慮した、簡易化された1次元(1D)表現に単純化することができる。
【0049】
中子造型機1の関連部分および接続された中子取り18は、局部の幾何学的容積(V)、口径(d)、および距離(高さhと長さl)と、例えば、圧力タンク10内の初期空気圧P
0や投入ユニット15内の中子砂混合物21の高さ等の、製造関連加工条件とを使って、単純化した仕方で表現することができる。
図2は、計算のためのインプットを示す。
【0050】
全工程のあらゆる位置におけるすべての過渡的状態変数が計算される。一般的に、過渡的流れ条件の異なる領域を調べることが重要である。仮定された1次元流に沿った工程の概要を述べると、本実施形態における最初の領域は、投入弁11より前(上流)の圧力タンク10と管12である。次の注目領域は、投入弁11である。空気圧と空気の流れ条件は、投入弁11の前後で大きく異なる。投入ヘッド13は、2つの異なる領域を含む。単相の気体流は、空気と砂の連成した2相流と比べて非常に高速であるため、空気だけを含む外部空間14と投入シリンダ15上部は、ほとんど同じ過渡的挙動を示す。中子砂混合物21を充填されている投入ヘッド13の下側内部領域は、特に注目すべき領域である。加工期間中、投入ヘッド13内の砂のレベルHは、中子取り18への充填に応じて低下する。砂のレベルの低下に合わせて、砂の上側の空気の体積22が増加する。投入ノズル17は、特に注目すべき領域である。様々な形状の口径は、投入ヘッド13と比べてはるかに小さい。砂は、主として、投入ノズル17を通って、加速される。投入ノズル17を通る空気と砂の連成流に対しては、調整された圧力損失条件を考慮する必要がある。中子取りへの充填の初期には、空気は容易に通気部20aから流出することができる。その時、中子取りの空洞19内では圧力はあまり発生せず、垂直方向の圧力勾配は減少するであろう、そのため、投入ヘッドからの流体の流出は減少するであろう。中子取り18の底部から上部への充填度の増加に伴って、通気部20aにおける通気のための開口面積が漸減する。通気部20aの前部に砂が詰まると、通気効果が低下する。加えて、空気は詰まった砂を通って流れる必要があるため、流動抵抗がさらに増加し、圧力損失が動的に増加する。空気と砂の全体的な質量バランスを監視する必要がある。砂がシステム内を移動する期間中、投入ヘッド13と、投入ノズル17と、中子取りの空洞19の間の質量バランスが計算される。空気の質量バランスは、機械と中子取り18の様々な部分の中の空気の初期質量と、空気が通気部20aを通って流出してシステムから離脱する工程の期間中における、空気の損失を含む。
【0051】
過渡的工程を決定するためには、流体力学分野の知識を有する者にとって最新の、標準的な流体力学の教科書から得られる、基本方程式のうちのいくつかが必要である。1次元の計算を行うための式は、以下のように立てられる。
【0052】
1)空気の圧縮性に依存する圧力の構成方程式:
P/Pref=(ρ/ρref)κ
通常、空気の圧縮に対する断熱指数κは、1.4で近似できる。
【0053】
2)空気は圧縮性で、砂は非圧縮性であるとした場合の連続方程式:
∂(εiρi)/∂t+div(εiρiUi)=0
ここで、空気の場合はi=a、砂の場合はi=sである。
【0054】
a)圧縮性の空気ではρaであり、1次元方程式は:
∂(εaρa)/∂t+∂(εaρaWa)/∂z=0
となる。
b)非圧縮性の砂ではρs=一定値であり、1次元方程式は:
∂εs/∂t+∂(εsWs)/∂z=0
となる。
【0055】
3)運動量方程式:
∂(εaρaWa)/∂t+∂(εaρaWa
2)/∂z=-∂P/∂z+Σソース項
【0056】
ソース項は以下を含む:
a)摩擦損失(例えば、壁面摩擦、乱流損失)
b)機械に固有の圧力弁損失で、固有のKv値を用いる。
c)機械に固有の管損失で、固有の摩擦係数λを適用する。
d)投入シリンダ内等の、空気~砂間の界面力(ただし、Ws≪Wa):
Fa,s:=-(β1+β2*Mp(z,t))*Wa(z,t)
e)投入ノズル内の砂の加速による損失
f)中子取りの空洞への充填中の、d)による損失
g)通気部内の圧力損失で、固有のζ値を用いる。
h)z方向の砂の重量による重力に起因する加速度
【0057】
使用する変数の説明:
Fa,s 空気~砂間の界面力[N]
Kv Kv値、圧力弁に固有の圧力損失[-]
Mp(z) 圧縮性空気の質量流量[kg/s]
P 総空気圧[Pa]
Pref 空気の基準圧(標準状態)[Pa]
Qp 圧縮性空気の体積流量[m3/s]
t 時間[s]
t0 圧力タンク管の弁の開放時間[s]
Ui(x,y,z,t) i相の速度ベクトル
Wa 空気の位相速度[m/s]
Ws 砂の位相速度[m/s]
β1 界面力Fa,sの1次項
β2 界面力Fa,sの2次項
εa 空気の体積分率[-]
εs 砂の体積分率[-]
ΔP 圧力差[Pa]
ζ ζ値、(例えば、通気部の)一定圧力損失係数[-]
κ 圧縮性空気の一定断熱指数κ:=cP/cV=1.4[-]
λ 管内の摩擦係数[-]
ρ 密度[kg/m3]
ρa 圧縮性空気の密度[kg/m3]
ρref 空気の基準密度[kg/m3](標準状態)
ρs 砂粒の一定密度[kg/m3]
【0058】
流体力学分野の知識を有する者には、システム中のあらゆる位置に対して、基本方程式と追加項を組み合わせる方法は明らかである。また、空気を非圧縮性と見なした場合、本願を単純化できることも明らかである。さらに、数値数学分野の知識を有する者には、得られた連立結合方程式の解法は明らかである。
【0059】
図3のフローチャートは、工程制御モジュール50(演算装置、または電子制御ユニットとも称される)の1つの実施形態を示し、1次元モデルに基づく過渡流れの繰り返し解法を表している。フローチャートの記述は、圧縮性の空気と非圧縮性の砂の連成流を支配する圧縮性空気の計算に注目している。計算は、すべての領域の空気と砂を考慮に入れている。工程の記述は、すべての領域(容積)に空気が存在することを示し、また、投入ヘッド13と、投入ノズル17と、中子取りの空洞19の領域に砂が存在することを示している。
【0060】
計算の始めに、ステップ30で、
図1および
図2に示すような形状および工程の関連データが読み込まれる。図に示す中子造型機1に関する関連データは、例えば、以下の通りである:
・初期圧力P
0、および圧力タンク10の容積
・管12の圧力タンク10から投入弁11への口径および長さ
・投入弁11の、K
v値や弁開放時間等の特性
・管12の投入弁11から投入ヘッドへの長さおよび口径
・外部空間14の容積、(有効)径、および高さ
・最初に空気が充満している、投入シリンダ15の口径および高さ
・投入ヘッド13の、砂が充填された部分(
図2の指標3から5の部分に対応)の、口径と高さ、および容積(口径と高さから計算されない場合)。
【0061】
中子取り18に関する有用なデータは以下の通りである:
・それぞれタイプが異なる可能性のある、すべての投入ノズル17の、数、口径、長さ、および、固有の圧力損失
・空洞19の容積、および形状に固有の情報
・それぞれタイプが異なる可能性のある、すべての通気部20aの、数、位置(基本的に垂直方向に区別される)、および圧力損失特性。
【0062】
なお、上記の形状および工程データのすべてが、有意義なシミュレーションを行うために、必要であるわけではないし、さらに形状および工程データを追加して用いてもよい。
【0063】
投入ノズル17は、中子造型機1を、中子取りに接続する。中子造型機1または中子取り18を別々に解析する場合、投入ノズル17は、双方のシステムの一部となる。
【0064】
機械に固有のデータを、データベースによって提供してもよい。また、適切なインターフェースを用いて、入力データをキーボードから手動で打ち込んでもよい。
【0065】
ステップ31で、計算するための初期値が設定される。その後、主たる繰り返し計算は、ステップ32で投入弁11が開き始める最初の時間ステップから開始される。
【0066】
ステップ33で、投入弁11を通過する質量流量が計算される。時間ステップの終了時点では、圧力タンク10と投入ヘッド13における質量、密度、および圧力が新しい値になっている。
【0067】
ステップ34で、その結果得られた、投入ヘッド13の空気容積(外部空間14の容積および砂の上側の空気の体積22)の領域内の空気質量の変化、およびその領域の容積変化が(領域21内の中子砂混合物レベルHの低下を考慮して)計算される。
【0068】
ステップ35で、外部空間14の容積および砂の上側の空気の体積22の空気密度が計算される。結果には、新しい空気圧と、すべての砂領域の新しい圧力損失と、中子砂混合物21および投入ノズル17の中における新しい速度が含まれる。
【0069】
ステップ36で、新しい圧力損失によって、中子取りの空洞19内の新しい圧力の、直前値との比較結果が、閾値以内になったかどうかがチェックされる。閾値以内でない場合、ステップ34と35が繰り返される。
【0070】
要求精度が達成されたら、ステップ37で、中子空洞19への質量流量が計算される。異なる2つの質量を考慮する必要がある。それらは、空洞19内の新しい空気質量(排出された空気の分だけ減少している可能性がある)と、新しい砂質量である。ここで、中子砂混合物は空洞19内に、底部から上部にわたって詰まっていると仮定することができる。
【0071】
ステップ38で、(中子砂混合物が充填された領域の上側の)新しい空気密度が計算される。新しい密度から、通気部20aからの空気の流出と局所的な圧力損失の変化を考慮して、新しい空気圧が求められる。
【0072】
ステップ39で、通気部20aの外部の新しい圧力が基準圧と比較される。差が閾値未満でなければ、ステップ37と38が繰り返される。
【0073】
ステップ40で、実際の時間ステップがチェックされ、計算に対して考慮すべき総工程動作時間に達するか、または、例えば、詰まった砂(中子砂混合物)が完全に中子取りの空洞19に充填されるまで、ステップ32に戻って計算が行われる。すべての計算は非常に短時間で実行され、高性能演算装置を必ずしも必要としない。
【0074】
計算が終了すると、システム内の様々な領域のすべてに対して、詳細な計算結果が利用できる。過渡的な結果には、空気と砂(中子砂混合物)に対して別々に、質量流量と速度が含まれている。砂と空気の両方が存在する領域のすべてに対して、空気と砂の分率を利用することができる。すべての領域に対して過渡的質量バランスを利用することができる。これらの結果は実際に測定することはできないため、中子造型機1の設計および作動と、中子取り18の最適化のための重要な情報を提供する。
【0075】
すべての領域に対して空気圧の過渡的結果を利用することができる。
図4Aおよび
図4Bに、異なる中子取り18に関して得られた、代表的な曲線の例を示す。これらの図は、中子造型機1の特定領域内の過渡的圧力が、投入ノズル17の変化に如何に影響されるかを示している。
図4Cに、空気と砂の過渡的な質量流量の例を示す。
【0076】
圧力データは、中子造型機1の設計や最適化に加えて、機械の動作の較正や調整にも、直接用いることができる。この概念は、あらゆる適切な演算装置によって、中子造型機1に依存することなく用いることができる。工程制御モジュール50(演算装置または電子制御ユニット)を用いて計算されたデータは、3D工程シミュレーションにおける動的境界条件としても用いることができる。
【0077】
1つの実施形態では、演算装置内の工程制御モジュール50は、中子造型機1に連結されるか、または組み込まれている。
図5は実施形態例を示す。
【0078】
従来技術の中子造型機1は、従来の演算装置に連結可能な演算装置または機械制御装置を備えている。演算装置は様々な機能を実行することができる。工程制御は、演算装置が実行する代表的なタスクである。
【0079】
中子造型の主工程を動作させるために、上述したように、特に、圧力タンク10内の初期機械圧力P0が制御されている。一旦、所定の中子取りを用いて、所定の中子を製造するために調整されたら、その値(例えば、4bar)は一定に維持される。
【0080】
従来技術においては、その他の変動する加工条件を考慮した動的な調整は行われない。特に、初期機械圧力P0と、投入ヘッド13の充填度と、中子取り18の動作状態と、その他の機械に固有の変動条件と、結果として生じる動的中子造型工程に対する影響との間に法則に基づく相関はない。
【0081】
上記実施形態においては、中子造型工程の動的動作に関連する情報が提供される。特に、システムのすべての関連部分の条件は、空気と砂の過渡的な質量流量と関連付けられる。それによって、工程制御モジュール50は、工程の評価と、加工条件のリアルタイムな調整を経た動的最適化を可能にする。
【0082】
例:
例えば、投入ヘッド13の充填度、すなわち、投入シリンダ15内の砂の高さHが、2つの製造サイクルの間で異なる場合、工程制御モジュールを用いて新しい状態を計算することができ、好適には、新しい砂高さの入力値が中子造型機1の中で測定される。
【0083】
好適には、データは中子造型機1の演算装置60で利用可能であり、計算のインプットとして、直接、かつ、好適には自動的に用いることができる。計算のアウトプットは、上述のように、中子取り18を含む全体システム内の過渡的圧力である。また、工程期間中の空気と砂の過渡流れが利用可能で、それにより、連結された中子取り18中の中子空洞19を実現するための充填条件が示される。
【0084】
工程制御モジュール50を使用して、充填条件を前回のサイクルと比較するか、または、例えば、現在の機械と使用中の中子取りとの組み合わせでの最適状態(少なくとも望ましい状態)を規定する基準条件と比較することができる。例えば、基準加工条件を求めるために、変動する加工条件を反復的に変化させることができる。計算が非常に短時間で実行されるため、次回の製造サイクルまでに、反復的調整が実行される。機械の圧力およびその他の調整可能なパラメータを、次回の製造サイクルのために設定することができ、その結果、可能な限り最良の中子製造のための公称値(目標値)である加工条件が得られる。
【0085】
演算装置は、一般的に、データおよびデータベースを生成または提供できる記憶媒体を備えている。データベースは、機械および連結された中子取りの組み合わせに対して生じたすべての状況に対する最適加工条件を、追加的に記憶することができる。同一の状況が再び発生した場合、計算を再実行することなく、最適加工条件を利用することができる。本開示を適用するためのこの拡張手法は、自己学習システムと考えることができる。
【0086】
変動する加工条件のその他の例として、投入ノズル17または通気部20aが変化する可能性がある場合の、中子取りの変化がある。加工条件を時間と共に変化させる代表的な影響要因として、通気部20aの目詰まりがある。砂粒や硬化した結合剤は、通気部20aの開口面積を減少させる。過渡的な質量流量と過渡的圧力がその影響を受ける。工程制御モジュールを用いて、初期圧力P0等の加工条件を動的に再調整することができる。
【0087】
上述したように、中子造型工程のシミュレーションは、工程の動的制御に対して極めて有効である。さらに、本シミュレーションプロセスを中子造型機1の設計および最適化に利用することができる。投入ヘッド13の形状やサイズは可変である。また、弁11の種類やサイズも、他の関連機械部分と組み合わせ、かつ、関連させて、最適化することができる。
【0088】
本開示の各態様および各実施例は、機械1の演算装置60に組み込むか、または、例えば、工程の動的調整のためのネットワークとネットワークインターフェースを介してデータ的に機械1と接続された演算装置60に連結することができる。その概念は、中子造型機の設計や最適化のために、あらゆる演算装置によって、中子造型機1に依存することなく用いることができる。
【0089】
3D工程シミュレーション用シミュレーションソフトウェアを使って、中子造型工程をシミュレートすることもできる。
図6は、ワークステーション60(演算装置60)上の構成例の概要を示す。
【0090】
3D工程シミュレーションは今日の最先端技術である。空気と砂の2相流の工程シミュレーションは高度に複雑である。一般的に、使用する利用可能な数理物理モデルによって、その複雑な実態を単純化できる。一般的に、変動する加工条件を調整するための測定データは欠如している。実際にシミュレーションを実行するには、一般的に妥当と認められた適正なデータが用いられる。
【0091】
シミュレーションにおいて、
図1に示す全体システムを表現すると、一般的に、計算負荷が高くなる。機械に固有の細部を詳細に解析するには、全体システムを可能な限り十分に表現する必要がある。
【0092】
通常、工程シミュレーションの目標は、中子取り18の設計を最適化することであり、中子の品質を向上させることである。シミュレーションの適用範囲は、好適には、中子取りの関連部分19を含み、好適には、投入ノズル17を含む。
【0093】
機械に固有の条件は境界条件として設定される。圧力および空気と砂の境界条件が投入ノズル17部に設定される。過渡的圧力条件の適切な定義は、一般的に、ユーザーの経験によって設定される。圧力タンク10の初期圧力P0は、投入ノズル17部における条件を直接表現しない。
【0094】
上記実施形態によって、欠如していた、過渡的圧力と、空気と砂の両方に対する個別の過渡的質量流量および過渡的速度が提供され、造型工程の進行に従って動的に使用される。
【0095】
シミュレーションソフトウェアのユーザーは、関連するすべての具体的データを含む機械データセットをロードすることができる。適切なインターフェースを用いて、データを直接打ち込んでもよい。さらに入力する必要のあるものは、実際の中子造型機1で使用される実際の加工条件だけである。ユーザーは、例えば、初期機械圧力P0と投入ヘッド13内の砂高さを適用することができる。
【0096】
工程シミュレーションに先立って、工程制御モジュールを使った計算により、過渡的圧力と、上記の空気および砂の過渡データが準備される。
【0097】
過渡データは、3Dシミュレーションに対する動的境界条件として用いられる。空気圧と、空気と砂の質量流量および速度は、工程の進行と共に動的に変化する。本教示を工程シミュレーションに適用することによって、結果の精度は大幅に向上する。シミュレーションのユーザーは、ユーザーの経験に関係なく、高精度の境界条件を入手する。
【0098】
3D工程シミュレーションは中子取り18の設計に適したツールである。シミュレーションを、投入ヘッド形状の設計に対して用いてもよく、そこで、適用すべき中子取り18をさらに考慮してもよい。それによって、精度は大幅に向上するであろう。シミュレーション結果は、演算装置60から、ネットワークを介して、受信側に送信することができる。
【0099】
他の応用として、中子造型機1の、中子造型工程と3D工程シミュレーションのそれぞれとの相互リンクがある。シミュレーションを実際の工程データによって調整することができ、先進的なシミュレーション結果によって実際の工程を改善することができる。いずれの場合も、工程制御モジュールは同じデータを使用し、データは、両システム間で交換可能である。
【0100】
中子造型機1は、ネットワーク、および、工程シミュレーションを実行するワークステーション60と接続されている。中子造型機1とシミュレーションソフトウェアは直接的にデータを交換することができ、そこでは、工程制御モジュールが、上述の共通言語と工程決定情報を提供するリンクとなる。
る。
【0101】
1つの実施形態では、本方法は、次のサイクルに先立って実際の製造条件と公称状態の比較し、その結果、ずれがあれば公称条件を確保するために再調整することを通じて、加工条件を較正するために用いられる。
【0102】
1つの実施形態では、予め定義された加工条件を実現するために、本方法を使用して、中子造型機の設定が制御される、すなわち、本方法を使用して、製造ユニットの「物理的」構成が最適化される(最適加工条件)。
【0103】
中子造型機1および/または演算装置60には、例えば、モデルや出力表示に必要なデータ等の、ユーザー入力を受け付けるためのユーザーインターフェースを設けることができる。ユーザー入力には、(非網羅的リストとして)関連する製造工程条件、および成型部品/空洞を定義するデータを含んでもよい。ユーザーインターフェースには、シミュレーション結果を表示するディスプレイを含んでもよい。
【0104】
実施形態においては、シミュレーション結果はデータベースに保存される。データベースは演算装置60またはワークステーション60の一部であってもよいし、コンピュータ読み取り可能な媒体であってもよい。
【0105】
1つの実施形態では、シミュレーションを実行するためのソフトウェアはコンピュータ読み取り可能な媒体に保存される。
【0106】
本明細書では、様々な態様および実施例を様々な実施形態と関連して説明してきた。しかし、開示された実施形態に対する他の変形は、請求された内容の実施において、図面、開示内容、および添付の特許請求の範囲を検討することにより当業者が理解し、達成することができる。請求項において、「備える(comprising)」の用語は、他の要素またはステップを除外せず、単数であること(不定冠詞「a」または「an」)は複数を除外しない。単一のプロセッサまたは他のユニットが、請求項に列挙される複数の項目の機能を果たしてもよい。特定の手段が互いに異なる従属請求項において引用されているという単なる事実は、これらの手段の組み合わせを有利に活用できないということを示すものではない。コンピュータプログラムは、他のハードウェアと共にまたは他のハードウェアの一部として供給される光学記憶媒体またはソリッドステート媒体等の適切な媒体上に格納/分散配置されてもよいが、インターネットまたは他の有線もしくは無線通信システムを介する形態等の他の形態で分散されてもよい。
【0107】
請求項において使用される参照符号は、範囲を限定するものとして解釈すべきではない。