IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 住友重機械工業株式会社の特許一覧

<>
  • 特許-二段パルス管冷凍機 図1
  • 特許-二段パルス管冷凍機 図2
  • 特許-二段パルス管冷凍機 図3
  • 特許-二段パルス管冷凍機 図4
  • 特許-二段パルス管冷凍機 図5
  • 特許-二段パルス管冷凍機 図6
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-12-22
(45)【発行日】2024-01-05
(54)【発明の名称】二段パルス管冷凍機
(51)【国際特許分類】
   F25B 9/00 20060101AFI20231225BHJP
【FI】
F25B9/00 311
【請求項の数】 7
(21)【出願番号】P 2020051333
(22)【出願日】2020-03-23
(65)【公開番号】P2021148396
(43)【公開日】2021-09-27
【審査請求日】2022-11-16
(73)【特許権者】
【識別番号】000002107
【氏名又は名称】住友重機械工業株式会社
(74)【代理人】
【識別番号】100105924
【弁理士】
【氏名又は名称】森下 賢樹
(74)【代理人】
【識別番号】100116274
【弁理士】
【氏名又は名称】富所 輝観夫
(72)【発明者】
【氏名】平山 貴士
【審査官】森山 拓哉
(56)【参考文献】
【文献】特開2005-106297(JP,A)
【文献】特開2012-057871(JP,A)
【文献】特開2008-051408(JP,A)
【文献】特開2014-169852(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
F25B 9/00
(57)【特許請求の範囲】
【請求項1】
ダブルインレット型の二段パルス管冷凍機であって、
二段パルス管と、
前記二段パルス管の低温端に接続された蓄冷器と、
前記蓄冷器をバイパスして前記二段パルス管の高温端に接続されたダブルインレット流路であって、パルス管流入流れとパルス管流出流れが交互に流れる双方向流路であるダブルインレット流路と、
前記ダブルインレット流路に配置され、前記パルス管流入流れに第1圧力損失をもたらし、前記パルス管流出流れに第1圧力損失と異なる第2圧力損失をもたらすDCフロー発生器と、
前記DCフロー発生器と直列に前記ダブルインレット流路に配置され、前記パルス管流入流れおよび前記パルス管流出流れの流量を調整する流量調整器と、を備えることを特徴とする二段パルス管冷凍機。
【請求項2】
4バルブ型の二段パルス管冷凍機であって、
二段パルス管と、
圧縮機と、
前記二段パルス管の高温端を前記圧縮機の吐出口と吸入口に交互に接続する圧力切替バルブと、
前記圧力切替バルブを前記二段パルス管の高温端に接続する双方向流路であって、パルス管流入流れとパルス管流出流れが交互に流れる双方向流路と、
前記双方向流路に配置され、前記パルス管流入流れに第1圧力損失をもたらし、前記パルス管流出流れに第1圧力損失と異なる第2圧力損失をもたらすDCフロー発生器と、
前記DCフロー発生器と直列に前記双方向流路に配置され、前記パルス管流入流れおよび前記パルス管流出流れの流量を調整する流量調整器と、を備えることを特徴とする二段パルス管冷凍機。
【請求項3】
前記流量調整器は、前記パルス管流入流れおよび前記パルス管流出流れに等しい圧力損失をもたらすことを特徴とする請求項1または2に記載の二段パルス管冷凍機。
【請求項4】
前記流量調整器は、前記双方向流路の流路断面積を変化させる可変オリフィスを備えることを特徴とする請求項1から3のいずれかに記載の二段パルス管冷凍機。
【請求項5】
前記DCフロー発生器は、固定オリフィスを備え、前記パルス管流入流れに前記第1圧力損失をもたらす第1テーパ部を前記固定オリフィスの入口側に有し、前記パルス管流出流れに前記第2圧力損失をもたらす第2テーパ部を前記固定オリフィスの出口側に有し、前記第1テーパ部と前記第2テーパ部は、互いに異なるテーパ角度を有することを特徴とする請求項1からのいずれかに記載の二段パルス管冷凍機。
【請求項6】
前記DCフロー発生器は、前記パルス管流入流れを前記DCフロー発生器の入口側で第1温度に調整し、前記パルス管流出流れを前記DCフロー発生器の出口側で前記第1温度と異なる第2温度に調整するように、前記双方向流路に設けられた温度調整器を備えることを特徴とする請求項1からのいずれかに記載の二段パルス管冷凍機。
【請求項7】
前記流量調整器は、入口側と出口側で対称な流路形状を有することを特徴とする請求項1から6のいずれかに記載の二段パルス管冷凍機。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、パルス管冷凍機に関する。
【背景技術】
【0002】
パルス管冷凍機には、パルス管と蓄冷器を含む冷媒ガスのループ経路が形成されるタイプがある。このループ経路には、「DCフロー」とも称される、直流成分をもつガス流れが生成されうる。DCフローは、パルス管冷凍機の冷凍性能に影響する。そこで、DCフローを調節するために、オリフィスが組み込まれたニードルバルブがループ経路に配置される。このオリフィスは、ニードルバルブを通過する流れ方向に応じて流路の幾何学的形状が異なるように設計される(例えば、特許文献1参照。)。
【先行技術文献】
【特許文献】
【0003】
【文献】特開2016-57013号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら、上述のDCフロー調節機構は、流路の形状が複雑であり、設計および製作が煩雑であり、コストも掛かる。また、DCフローを調節するオリフィスがニードルバルブに組み込まれているため、ニードルの位置を調整するときDCフローが変化するだけでなく、ニードル位置に依存してニードルバルブを通過する総流量も変わる。流量とDCフローを独立して調節することが望まれる場面では、調節の困難さが増す。
【0005】
本発明のある態様の例示的な目的のひとつは、パルス管冷凍機のDCフローを調節する簡易な構成を提供することにある。
【課題を解決するための手段】
【0006】
本発明のある態様によると、パルス管冷凍機は、パルス管と、パルス管に接続され、パルス管流入流れとパルス管流出流れが交互に流れる双方向流路と、双方向流路に配置され、パルス管流入流れに第1圧力損失をもたらし、パルス管流出流れに第1圧力損失と異なる第2圧力損失をもたらすDCフロー発生器と、DCフロー発生器と直列に双方向流路に配置され、パルス管流入流れおよびパルス管流出流れの流量を調整する流量調整器と、を備える。
【0007】
なお、以上の構成要素の任意の組み合わせや本発明の構成要素や表現を、方法、装置、システムなどの間で相互に置換したものもまた、本発明の態様として有効である。
【発明の効果】
【0008】
本発明によれば、パルス管冷凍機のDCフローを調節する簡易な構成を提供することができる。
【図面の簡単な説明】
【0009】
図1】実施の形態に係るパルス管冷凍機の一部を概略的に示す図である。
図2】実施の形態に係るDCフロー発生器の例示的な構成を概略的に示す図である。
図3】他の実施の形態に係るパルス管冷凍機の一部を概略的に示す図である。
図4】実施の形態に係るDCフロー発生器における圧力損失の温度依存性を示すグラフである。
図5】実施の形態に係るパルス管冷凍機を概略的に示す図である。
図6】実施の形態に係るパルス管冷凍機の他の例を概略的に示す図である。
【発明を実施するための形態】
【0010】
以下、図面を参照しながら、本発明を実施するための形態について詳細に説明する。説明および図面において同一または同等の構成要素、部材、処理には同一の符号を付し、重複する説明は適宜省略する。図示される各部の縮尺や形状は、説明を容易にするために便宜的に設定されており、特に言及がない限り限定的に解釈されるものではない。実施の形態は例示であり、本発明の範囲を何ら限定するものではない。実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも発明の本質的なものであるとは限らない。
【0011】
図1は、実施の形態に係るパルス管冷凍機10の一部を概略的に示す図である。パルス管冷凍機10は、パルス管50と、パルス管50に接続された双方向流路52と、を備える。双方向流路52は、パルス管50の高温端に接続され、パルス管50に出入りする作動ガス(たとえばヘリウムガス)の流れが許容される。
【0012】
双方向流路52には、DCフロー発生器40と流量調整器80が直列に配置されている。なお図1に示される例では、流量調整器80、DCフロー発生器40、パルス管50の高温端の順に接続されているが、流量調整器80とDCフロー発生器40の配置は逆でもよく、すなわちDCフロー発生器40、流量調整器80、パルス管50の高温端の順でもよい。
【0013】
双方向流路52には、パルス管流入流れ56とパルス管流出流れ58が交互に流れる。パルス管流入流れ56とパルス管流出流れ58は、互いに反対向きの作動ガス流れである。パルス管流入流れ56は、DCフロー発生器40をその入口側から通過し、パルス管50に流入する。パルス管流出流れ58は、パルス管50から流出し、DCフロー発生器40をその出口側から通過する。パルス管流入流れ56は、パルス管冷凍機10の冷凍サイクルの一部分(例えば吸気工程の一部)において生成され、パルス管流出流れ58は、パルス管冷凍機の冷凍サイクルの他の一部分(例えば排気工程の一部)において生成される。
【0014】
知られているように、パルス管冷凍機10は、作動ガスの圧力振動に対しパルス管50内のガス要素(ガスピストンとも呼ばれる)の変位振動の位相を適切に遅らせることによって、パルス管50の低温端にPV仕事を発生し、パルス管50の低温端に設けられた冷却ステージを冷却することができる。このようにして、パルス管冷凍機10は、冷却ステージに接触する気体、液体、または、冷却ステージに熱的に結合された物体を冷却することができる。パルス管冷凍機10が二段式である場合、第1段の冷却ステージは例えば100K未満(たとえば30K~60K程度)に冷却され、第2段の冷却ステージは例えば約4K程度またはそれ以下に冷却される。振動流発生源や位相制御機構などパルス管冷凍機10の基本的な構成要素には、様々な公知の構成が適宜採用されうる。いくつかの例示的な構成は、図5および図6を参照して後述される。
【0015】
DCフロー発生器40は、パルス管流入流れ56に第1圧力損失をもたらし、パルス管流出流れ58に第1圧力損失と異なる第2圧力損失をもたらす。DCフロー発生器40は、入口側と出口側で異なる流路形状をもつ。この実施形態では、DCフロー発生器40は、固定オリフィス41を備え、第1テーパ部42を固定オリフィス41の入口側に有し、第2テーパ部43を固定オリフィス41の出口側に有する。DCフロー発生器40のオリフィス形状は固定されている。
【0016】
第1テーパ部42は、双方向流路52を固定オリフィス41に接続する。第1テーパ部42の流路断面積は、作動ガスの流れ方向に沿って双方向流路52から固定オリフィス41へと徐々に小さくなっている。固定オリフィス41は、流れ方向に沿って一定の流路断面積を有する。第2テーパ部43は、流れ方向において第1テーパ部42とは反対側で双方向流路52を固定オリフィス41に接続する。第2テーパ部43の流路断面積は、流れ方向に沿って双方向流路52から固定オリフィス41へと徐々に小さくなっている。
【0017】
ただし、第1テーパ部42と第2テーパ部43は、互いに異なるテーパ角度を有する。第1テーパ部42の第1テーパ角度θ1は、第2テーパ部43の第2テーパ角度θ2とは異なる。これにより、第1テーパ部42がパルス管流入流れ56に第1圧力損失をもたらし、第2テーパ部43がパルス管流出流れ58に第2圧力損失をもたらす。
【0018】
補足すると、固定オリフィス41は、パルス管流入流れ56、パルス管流出流れ58に縮流を発生させる。縮流に起因する圧力損失は、パルス管流入流れ56とパルス管流出流れ58それぞれが固定オリフィス41に流入する流路形状に応じて異なる。
【0019】
この実施形態では、パルス管流入流れ56は第1テーパ部42から固定オリフィス41を通過する一方、パルス管流出流れ58は第2テーパ部43から固定オリフィス41を通過する。第1テーパ部42の第1テーパ角度θ1は、第2テーパ部43の第2テーパ角度θ2よりも大きい。テーパ角度が大きいほど、固定オリフィス41を通過する流れに生じる圧力損失は増加すると考えられる。よって、パルス管流入流れ56に生じる第1圧力損失は、パルス管流出流れ58に生じる第2圧力損失よりも大きくなると見込まれる。
【0020】
本発明者の計算例によると、第1テーパ角度θ1を80度、第2テーパ角度θ2を30度とするとき、パルス管流入流れ56には94.5kPa、パルス管流出流れ58には79.5kPaの圧力損失がもたらされる。また、パルス管流入流れ56の最大流速は883m/s、パルス管流出流れ58の最大流速は812m/sとなる。この計算では、固定オリフィス41の流路径を0.6mm、流路長さを0.5mm、第1テーパ部42からの入口流量を3.96×10-5kg/s、第2テーパ部43の出口圧力を0Pa、流体をヘリウム(理想気体)とし、気体の圧縮性を考慮している。
【0021】
このように、DCフロー発生器40の入口と出口で固定オリフィス41へのテーパ角度を異ならせることによって、DCフロー発生器40がパルス管流入流れ56、パルス管流出流れ58にもたらす流路抵抗を異ならせることができる。DCフロー発生器40における流れ方向に依存する流路抵抗の違いは、パルス管冷凍機10にDCフローを発生させる。上述の計算例では、パルス管流入流れ56がパルス管流出流れ58よりも流れにくくなっている。この場合、本発明者の知見によると、パルス管50の低温端から高温端に向かうDCフロー68が促進される。DCフロー発生器40のオリフィス形状を適切に設計することにより、DCフロー68を調節することができる。
【0022】
DCフロー発生器40を逆向きで双方向流路52に配置すれば、逆向きのDCフローを発生させることができる。すなわち、パルス管流入流れ56が第2テーパ部43から流入し、パルス管流出流れ58が第1テーパ部42から流入する場合、パルス管50の高温端から低温端に向かうDCフローが促進される。
【0023】
一般に、パルス管50の高温端から低温端に向かうDCフローは望ましくないと考えられている。なぜなら、DCフローが、パルス管高温端からパルス管低温端へと貫通する作動ガス流れを含む場合には、そうした作動ガス流れはパルス管高温端からパルス管低温端への熱侵入をもたらし、それによりパルス管冷凍機10の冷凍効率が低下しうるためである。
【0024】
しかしながら、例えばパルス管冷凍機10が大型で蓄冷器の流路抵抗が大きい場合など、パルス管冷凍機10の設計に起因して、パルス管50の低温端から高温端に向かう過剰なDCフローが発生し、冷凍性能に影響することも起こりうる。これを緩和するには、パルス管50の高温端から低温端に向かうDCフローを発生させることが望まれる。
【0025】
DCフロー発生器40は、上述のように、パルス管50の高温端から低温端に向かうDCフローを発生させうるので、上述の過剰なDCフローを緩和し、それにより起こりうるパルス管冷凍機10の冷凍性能の低下を抑えることができる。
【0026】
パルス管流入流れ56とパルス管流出流れ58に異なる大きさの圧力損失をもたらすのは、入口側と出口側のテーパ角度の相違には限られない。DCフロー発生器40の入口側と出口側の流路形状の相違は、パルス管流入流れ56とパルス管流出流れ58に異なる圧力損失をもたらすと考えられる。よって、DCフロー発生器40は、パルス管流入流れ56に第1圧力損失をもたらすように入口側に第1の幾何学的な流路形状を有し、パルス管流出流れ58に第1圧力損失と異なる第2圧力損失をもたらすように出口側に第2の幾何学的な流路形状を有してもよい。第2の幾何学的な流路形状は、第1の幾何学的な流路形状とは異なる。
【0027】
流量調整器80は、パルス管流入流れ56およびパルス管流出流れ58の流量を調整する。流量調整器80は、双方向流路の流路断面積を変化させる可変オリフィスを備えてもよい。一例として、流量調整器80は、流れの方向に垂直な方向に移動可能な弁体82が双方向流路に配置されてもよい。これにより、流量調整器80は、双方向流路52の作動ガス流量を調整可能であってもよい。
【0028】
流量調整器80は、パルス管流入流れ56およびパルス管流出流れ58に等しい圧力損失をもたらすように構成される。流量調整器80は、入口側と出口側で対称な流路形状を有してもよい。このようにして、流量調整器80は、DCフロー68を発生しないように構成される。
【0029】
本発明者の検討によれば、流量調整器80によって調整される流量は、流量調整器80の入口側と出口側の流路形状には依存せず、流量調整器80の最小流路断面積にのみ依存することが判明している。
【0030】
したがって、DCフロー発生器40と流量調整器80を別々に設置することにより、流量とDCフローの相互依存の度合いは顕著に低減され、または皆無となる。DCフロー発生器40の設計によりDCフロー68を調節することができ、流量調整器80を操作することによりパルス管流入流れ56およびパルス管流出流れ58の流量を調整することができる。流量とDCフローを独立して調節することが容易である。
【0031】
流量調整すなわち流路を絞る機能は流量調整器80が担うので、DCフロー発生器40の流路断面積(例えば固定オリフィス41の流路断面積)は、流量調整器80の流路断面積(例えば流量調整器80が実現しうる最小の流路断面積)よりも大きくてよい。DCフロー発生器40と流量調整器80を分けることによって、DCフロー発生器40の流路断面積を比較的大きく設計することが許容される。これは、DCフロー発生器40の製作を容易にすることに役立つ。
【0032】
図2は、実施の形態に係るDCフロー発生器40の例示的な構成を概略的に示す図である。DCフロー発生器40は、固定オリフィス41を有する固定オリフィス部品44と、第1テーパ部42を有する第1テーパ流路部品45と、第2テーパ部43を有する第2テーパ流路部品46と、を備えてもよい。固定オリフィス部品44の一方側に第1テーパ流路部品45が気密に固定され、第1テーパ部42が固定オリフィス41に接続される。固定オリフィス部品44の他方側に第2テーパ流路部品46が気密に固定され、第2テーパ部43が固定オリフィス41に接続される。また、第1テーパ流路部品45と第2テーパ流路部品46はそれぞれ双方向流路52に気密に固定され、それによりDCフロー発生器40が双方向流路52に設置される。固定オリフィス部品44、第1テーパ流路部品45、第2テーパ流路部品46は、それぞれ取り外し可能に取り付けられてもよい。
【0033】
テーパ角度の異なる複数のテーパ流路部品があらかじめ準備されてもよい。テーパ流路部品を交換することによって、DCフロー発生器40がパルス管流入流れ56、パルス管流出流れ58にもたらす圧力損失を調整し、それによりパルス管冷凍機10のDCフロー68を調節することができる。
【0034】
図3は、他の実施の形態に係るパルス管冷凍機10の一部を概略的に示す図である。この実施形態においては、DCフロー発生器40の構成が異なる。DCフロー発生器40は、パルス管流入流れ56をDCフロー発生器40の入口側で第1温度に調整し、パルス管流出流れ58をDCフロー発生器40の出口側で第1温度と異なる第2温度に調整するように、双方向流路52に設けられた温度調整器62を備える。
【0035】
以下に述べるように、DCフロー発生器40は、温度調整器62を使用して、DCフロー68をオリフィス形状に依存せずに発生させることができる。そのため、DCフロー発生器40のオリフィス形状が入口側と出口側で異なることはもはや必須ではない。よって、DCフロー発生器40は、入口側と出口側で同じ流路形状をもつシンプルな固定オリフィスであってもよい。固定オリフィスは、パルス管流入流れ56およびパルス管流出流れ58の方向に直交しオリフィスの中心を通る対称面60に関して面対称である。
【0036】
温度調整器62は、パルス管流入流れ56をDCフロー発生器40の入口側で加熱するヒーター64を備える。ヒーター64は、DCフロー発生器40の入口側で双方向流路52に配置される。ヒーター64は、例えば電気ヒーターなど適宜の加熱器具であってもよい。あるいは、ヒーター64は、バッファ容積、圧縮機など発熱するパルス管冷凍機10の構成要素または周辺機器からの排熱を利用して加熱する加熱器具でもよい。ヒーター64は、作動ガスよりも高温の温調流体と作動ガスの熱交換により作動ガスを加熱する熱交換器でもよい。
【0037】
パルス管流入流れ56はヒーター64によって第1温度に加熱された状態でDCフロー発生器40に流入する。そして、パルス管流入流れ56は、DCフロー発生器40を通過してパルス管50の高温端からパルス管50に流入する。パルス管50の高温端の周りは周囲温度(例えば室温)であるから、パルス管50に流入した作動ガスは放熱し温度が下がり、第2温度となる。第2温度は、第1温度よりも低い。こうして、DCフロー発生器40の出口側からDCフロー発生器40に流入するときのパルス管流出流れ58は、DCフロー発生器40の入口側でのパルス管流入流れ56に比べて低い温度を有する。DCフロー発生器40に流入する作動ガス流れは、流れの方向によって温度が異なる。
【0038】
図4は、実施の形態に係るDCフロー発生器40における圧力損失の温度依存性を示すグラフである。図4には、図3に示されるDCフロー発生器40をヘリウムガスが通過するときガス流れに生じる流路抵抗についての解析と実験の結果が示される。横軸は、DCフロー発生器40の最小断面積(mm)、すなわち対称面60における流路断面積を示す。縦軸は、DCフロー発生器40の流路抵抗(MPa)を示し、これはDCフロー発生器40の出口側を大気圧としたときの入口側での圧力に相当する。
【0039】
図4において、三角の符号は、DCフロー発生器40に流入するガスの温度を400Kに加熱した場合についての計算結果を示し、菱形の符号は、DCフロー発生器40に流入するガスの温度が300Kである場合についての計算結果を示す。丸印は実験結果を示す。
【0040】
計算結果は、実験結果と同様に、流路断面積が大きくなるほど流路抵抗が小さくなることを示している。よって、計算結果が示す流路抵抗の変化の傾向は、実験により裏付けられ、信頼できると評価される。300Kでの流路抵抗(約0.11MPa@0.28mm)と400K(約0.15MPa@0.28mm)での流路抵抗を比べると、400Kでの流路抵抗が300Kでの流路抵抗に対しておよそ1.3倍に増えている。
【0041】
このように、DCフロー発生器40に流入するガスの温度を異ならせることによって、DCフロー発生器40がそこを通過するガス流れにもたらす流路抵抗を異ならせることができる。DCフロー発生器40における流れ方向に依存する流路抵抗の違いは、パルス管冷凍機10にDCフロー68を発生させる。
【0042】
パルス管流入流れ56がDCフロー発生器40の入口側で第1温度(例えば400K)を有し、パルス管流出流れ58がDCフロー発生器40の出口側で第2温度(例えば300K)を有するとき、DCフロー発生器40の流路抵抗差により、パルス管流入流れ56がパルス管流出流れ58よりも流れにくくなる。この場合、本発明者の知見によると、パルス管50の低温端から高温端に向かうDCフロー68が促進される。
【0043】
第1温度と第2温度の温度差は、上述の例では100Kであり、例えば50K~150Kの範囲にあってもよい。温度調整器62は、この温度範囲から選択される温度差を、DCフロー発生器40の入口側でのパルス管流入流れ56とDCフロー発生器40の出口側でのパルス管流出流れ58との間に発生させるように構成されてもよい。
【0044】
また、温度調整器62は、温度差を制御するように構成されてもよい。温度差を変え、流路抵抗差を変化させることによって、温度調整器62は、DCフロー68を制御することができる。
【0045】
図3に示されるように、温度調整器62は、パルス管流出流れ58をDCフロー発生器40の出口側で冷却するクーラー66を備えてもよい。クーラー66は、DCフロー発生器40の出口側で双方向流路52に配置される。クーラー66は、液冷式の熱交換器、空冷式の熱交換器、例えばペルチェ素子など冷却素子を用いる冷却器、またはその他適宜の冷却器であってもよい。
【0046】
ヒーター64と組み合わせてクーラー66を設けることにより、所定の温度差を実現するためのヒーター64の加熱温度を低くすることができる。例えば、クーラー66が無くDCフロー発生器40の出口側で作動ガスが室温(例えば20℃)にあるとき、100℃の温度差を発生させるには、ヒーター64は作動ガスを120℃に加熱しなければならない。しかし、クーラー66が作動ガスを例えば-20℃に冷却する場合には、100℃の温度差を発生させるために、ヒーター64は作動ガスを80℃に加熱するだけで十分である。ヒーター64の構成やパルス管冷凍機10の耐熱性を簡素化しうる。
【0047】
また、ヒーター64がDCフロー発生器40の入口側で作動ガスの温度調整をするだけでなく、クーラー66がDCフロー発生器40の出口側でも作動ガスの温度調整をすることによって、より確実に温度差を管理することができる。
【0048】
クーラー66によって、ヒーター64で加熱されたパルス管流入流れ56をパルス管50に流入する前に冷却することができる。ガスが高温のままパルス管50に流入し、パルス管冷凍機10の冷凍性能に影響を及ぼすことを避けられる。
【0049】
温度調整器62は、逆方向の温度差を生成することによって、逆向きのDCフローを発生させることもできる。例えば、ヒーター64とクーラー66を入れ替えて配置することによって、第1温度が第2温度よりも低くなる。DCフロー発生器40の入口側でのパルス管流入流れ56が、DCフロー発生器40の出口側でのパルス管流出流れ58に比べて低い温度を有する。パルス管流出流れ58がパルス管流入流れ56よりも流れにくくなり、パルス管50の高温端から低温端に向かうDCフロー70が促進される。
【0050】
図5は、実施の形態に係るパルス管冷凍機10を概略的に示す図である。パルス管冷凍機10は、GM(Gifford-McMahon)方式のダブルインレット型の二段パルス管冷凍機であり、二段部のDCフローを調節するために、上述のDCフロー発生器40が適用される。また、流量調整器80がDCフロー発生器40と直列に設けられている。
【0051】
パルス管冷凍機10は、圧縮機12と、コールドヘッド14とを備える。コールドヘッド14は、主圧力切替弁22、第1段パルス管116、第1段蓄冷器118、第1段冷却ステージ120、第1段バッファ容積126、第1段ダブルインレット流路134、第1段バッファライン136を備える。主圧力切替弁22は、蓄冷器連通路32により第1段蓄冷器118に接続されている。第1段ダブルインレット流路134には第1段ダブルインレットオリフィス128が設けられ、第1段バッファライン136には第1段バッファオリフィス130が設けられている。
【0052】
加えて、パルス管冷凍機10は、第2段パルス管216、第2段蓄冷器218、第2段冷却ステージ220、第2段バッファ容積226、第2段ダブルインレット流路234、第2段バッファライン236を備える。第2段蓄冷器218は、第1段蓄冷器118に直列に接続され、第2段蓄冷器218の低温端は、第2段パルス管216の低温端216bと連通している。
【0053】
第2段ダブルインレット流路234は、蓄冷器(118、218)をバイパスするように主圧力切替弁22を第2段パルス管216に接続する。第2段ダブルインレット流路234が図1に示される双方向流路52に相当し、第2段ダブルインレット流路234にはDCフロー発生器40と流量調整器80が設けられている。第2段ダブルインレット流路234は、蓄冷器連通路32上の分岐部32aからDCフロー発生器40と流量調整器80を介して第2段パルス管高温端216aに接続されている。第2段バッファライン236には、第2段バッファオリフィス230が設けられ、第2段バッファライン236は、第2段バッファオリフィス230を介して第2段バッファ容積226を第2段パルス管高温端216aに接続する。
【0054】
GM方式のダブルインレット型のパルス管冷凍機それ自体はよく知られているから、パルス管冷凍機10の各構成要素の詳細な説明は省略する。
【0055】
図5に示されるパルス管冷凍機10は、第2段パルス管216、第2段ダブルインレット流路234、および蓄冷器(118、218)を含むループ経路を有する。したがって、このループ経路にDCフロー68が発生しうる。第2段ダブルインレット流路234にDCフロー発生器40を設けることにより、パルス管冷凍機10のDCフロー68を調節することができる。流量調整器80をDCフロー発生器40とは別に設けることにより、流量とDCフローを独立して調節することができる。
【0056】
図5に示されるパルス管冷凍機10は第1段にもループ経路を有するから、DCフロー発生器40と流量調整器80が第1段ダブルインレット流路134に設けられてもよい。
【0057】
図6は、実施の形態に係るパルス管冷凍機10の他の例を概略的に示す図である。図6に示されるパルス管冷凍機10は、GM方式の4バルブ型の二段パルス管冷凍機である。よって、パルス管冷凍機10は、ダブルインレット流路に代えて、第1段副圧力切替弁(V3,V4)と第2段副圧力切替弁(V5,V6)を備える。以下では、両者の異なる構成を中心に説明し、共通する構成については簡単に説明するか、あるいは説明を省略する。
【0058】
第1段副圧力切替弁(V3,V4)は、第1段パルス管116の高温端を圧縮機12の吐出口と吸入口に交互に接続する。第1段副圧力切替弁(V3,V4)は、第1段パルス管連通路140により第1段パルス管116の高温端に接続される。第1段パルス管連通路140は、第1段流量調整要素142を有する。同様に、第2段副圧力切替弁(V5,V6)は、第2段パルス管216の高温端を圧縮機12の吐出口と吸入口に交互に接続する。第2段副圧力切替弁(V5,V6)は、第2段パルス管連通路240により第2段パルス管216の高温端に接続される。第2段パルス管連通路240が図1に示される双方向流路52に相当し、DCフロー発生器40と流量調整器80が第2段パルス管連通路240に設けられている。GM方式の4バルブ型のパルス管冷凍機それ自体はよく知られているから、パルス管冷凍機10の各構成要素の詳細な説明は省略する。
【0059】
図6に示されるパルス管冷凍機10は、圧縮機12、第2段パルス管216、および蓄冷器(118、218)を含むループ経路を有する。したがって、このループ経路にDCフロー68が発生しうる。第2段パルス管連通路240にDCフロー発生器40を設けることにより、パルス管冷凍機10のDCフロー68を調節することができる。流量調整器80をDCフロー発生器40とは別に設けることにより、流量とDCフローを独立して調節することができる。
【0060】
図6に示されるパルス管冷凍機10は第1段にもループ経路を有するから、DCフロー発生器40と流量調整器80が第1段パルス管連通路140に設けられてもよい。
【0061】
以上、本発明を実施例にもとづいて説明した。本発明は上記実施形態に限定されず、種々の設計変更が可能であり、様々な変形例が可能であること、またそうした変形例も本発明の範囲にあることは、当業者に理解されるところである。ある実施の形態に関連して説明した種々の特徴は、他の実施の形態にも適用可能である。組合せによって生じる新たな実施の形態は、組み合わされる実施の形態それぞれの効果をあわせもつ。
【0062】
上述の実施の形態では、DCフロー発生器40と流量調整器80が双方向流路52において隣接して配置される。しかし、ある実施の形態においては、DCフロー発生器40と流量調整器80の間にパルス管冷凍機10の他の構成要素が設けられてもよい。例えば、DCフロー発生器40を蓄冷器の高温端に接続し、流量調整器80をパルス管の高温端に接続する配置も可能である。つまり、DCフロー発生器40と流量調整器80の間に、蓄冷器、冷却ステージ、パルス管が配置されてもよい。あるいは、DCフロー発生器40が蓄冷器の低温端とパルス管の低温端との間に接続されてもよい。つまり、DCフロー発生器40と流量調整器80の間にパルス管が配置されてもよい。言い換えれば、DCフロー発生器40と流量調整器80が配置される双方向流路52は、パルス管冷凍機10におけるループ経路の全体を含みうる。DCフロー発生器40と流量調整器80は、双方向流路52としてのループ経路のなかで任意の場所に配置されうる。
【0063】
上述の実施の形態では、ダブルインレット型、4バルブ型のパルス管冷凍機を例に挙げて説明したが、本実施形態に係るDCフロー発生器と流量調整器80の分離配置は、パルス管を含む作動ガスのループ経路が形成されるそのほかのパルス管冷凍機にも適用できる。また、パルス管冷凍機は、単段式、または三段そのほかの多段式のパルス管冷凍機であってもよい。
【0064】
実施の形態にもとづき、具体的な語句を用いて本発明を説明したが、実施の形態は、本発明の原理、応用の一側面を示しているにすぎず、実施の形態には、請求の範囲に規定された本発明の思想を逸脱しない範囲において、多くの変形例や配置の変更が認められる。
【符号の説明】
【0065】
10 パルス管冷凍機、 12 圧縮機、 40 DCフロー発生器、 41 固定オリフィス、 42 第1テーパ部、 43 第2テーパ部、 50 パルス管、 52 双方向流路、 56 パルス管流入流れ、 58 パルス管流出流れ、 62 温度調整器、 80 流量調整器。
図1
図2
図3
図4
図5
図6