(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-12-22
(45)【発行日】2024-01-05
(54)【発明の名称】力センサ
(51)【国際特許分類】
G01L 5/1627 20200101AFI20231225BHJP
【FI】
G01L5/1627
(21)【出願番号】P 2021511181
(86)(22)【出願日】2020-02-13
(86)【国際出願番号】 JP2020005491
(87)【国際公開番号】W WO2020202821
(87)【国際公開日】2020-10-08
【審査請求日】2023-01-10
(31)【優先権主張番号】P 2019071572
(32)【優先日】2019-04-03
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000173795
【氏名又は名称】公益財団法人電磁材料研究所
(73)【特許権者】
【識別番号】000139403
【氏名又は名称】株式会社ワコム
(74)【代理人】
【識別番号】100091546
【氏名又は名称】佐藤 正美
(74)【代理人】
【識別番号】100206379
【氏名又は名称】丸山 正
(72)【発明者】
【氏名】丹羽 英二
(72)【発明者】
【氏名】杉山 義久
(72)【発明者】
【氏名】鈴木 謙
【審査官】大森 努
(56)【参考文献】
【文献】独国特許出願公開第10307978(DE,A1)
【文献】実開平07-016132(JP,U)
【文献】特開平10-153499(JP,A)
【文献】国際公開第2018/150994(WO,A1)
【文献】特開平08-145767(JP,A)
【文献】特開2014-035239(JP,A)
【文献】特開2018-146309(JP,A)
【文献】特開2007-127580(JP,A)
【文献】特開平07-209104(JP,A)
【文献】特開2017-211297(JP,A)
【文献】特開2003-044218(JP,A)
【文献】特開2012-173287(JP,A)
【文献】特開平08-086702(JP,A)
【文献】特公昭40-025392(JP,B1)
【文献】特表2008-533481(JP,A)
【文献】特開2016-200473(JP,A)
【文献】欧州特許出願公開第01793211(EP,A2)
【文献】米国特許第08256306(US,B1)
【文献】国際公開第99/027338(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G01L 5/1627
(57)【特許請求の範囲】
【請求項1】
板状部材の少なくとも一方の面部の絶縁材上にひずみ受感材が配設されており、前記板状部材の前記面部に印加された力に応じて前記板状部材に生じるひずみを前記ひずみ受感材で感知することで、前記印加された力を感知する力センサであって、
前記ひずみ受感材は、ひずみの受感感度に方向性依存がないストリップ状の導電性材で構成されているとともに、前記板状部材の面部において前記力の印加部からの距離が異なる第1のリング状領域と第2のリング状領域とのそれぞれと、前記面部において前記力の印加部を中心とした円周方向をn(n≧2の整数)個に分割して形成された少なくとも1つの扇形領域とが重なる領域に配置されており、
前記少なくとも1つの扇形領域において、前記ストリップ状の導電性材は、前記第1のリング状領域に2本及び前記第2のリング状領域に2本の合計4本が、それぞれ成膜されて薄膜として形成されていると共に、導体パターンが成膜されて形成されていることで、前記4本の前記ストリップ状の導電性材によってブリッジ回路が構成されており、
前記第1のリング状領域と前記第2のリング状領域は、一方のリング状領域では伸長ひずみが発生し、他方のリング状領域では収縮ひずみが発生するように設定されている
ことを特徴とする力センサ。
【請求項2】
前記板状部材は円板状の形状を有し、前記一方の面部は円形の面であり、前記力の印加部は、前記円形の前記一方の面部の中心部である
ことを特徴とする請求項1に記載の力センサ。
【請求項3】
前記n個の前記扇形領域の全てにおいて、前記第1のリング状領域に薄膜として形成されている前記2本の前記ストリップ状の導電性材と、前記第2のリング状領域に薄膜として形成されている2本の前記ストリップ状の導電
性材と、成膜されて形成されている導体パターンとにより形成されたブリッジ回路が構成されている
ことを特徴とする請求項1に記載の力センサ。
【請求項4】
前記ひずみ受感材は、前記ストリップ状の導電性材の長手方向が、前記板状部材の前記面部に印加される前記力の印加部を中心とした放射状の方向に対して交差する方向となるように前記板状部材に配設されていることを特徴とする請求項1に記載の力センサ。
【請求項5】
前記ストリップ状の導電性材は、弧形状を有していることを特徴とする請求項1に記載の力センサ。
【請求項6】
前記ストリップ状の導電性材は、直線形状を有していることを特徴とする請求項1に記載の力センサ。
【請求項7】
前記ストリップ状の導電性材の長手方向は、前記板状部材の前記面部に印加される前記力の印加部を中心とした放射状の方向に対して所定角度変位していることを特徴とする請求項1に記載の力センサ。
【請求項8】
第1のリング状領域あるいは前記第2のリング状領域に対応して、前記力の印加部を中心とした放射状の方向に対して交差する方向に複数本の前記ストリップ状の導電性材が配設されているとともに、前記複数本の前記ストリップ状の導電性材は互いが順次連結されていることを特徴とする請求項1に記載の力センサ。
【請求項9】
前記ストリップ状の導電性材は、Crおよび不可避不純物からなるCr薄膜、またはCr、N及び不可避不純物からなるCr-N薄膜で構成されていることを特徴とする請求項1に記載の力センサ。
【請求項10】
前記板状部材は絶縁性基板で構成されていることを特徴とする請求項1に記載の力センサ。
【請求項11】
前記絶縁性基板は金属基板に絶縁材が配設されて構成されていることを特徴とする請求項
10に記載の力センサ。
【発明の詳細な説明】
【技術分野】
【0001】
この発明は、受けた力に応じて生じるひずみなどの変位を検出することに基づいて、前記受けた力を検出するようにする力センサに関する。
【背景技術】
【0002】
力センサとして、ひずみ受感材の電気抵抗が、当該ひずみ受感材のひずみ(弾性ひずみだけでなく塑性ひずみを含む)によって変化する現象を利用したひずみゲージを用いるものが知られている。ひずみゲージは、ひずみ受感材の電気抵抗率が応力により変化するピエゾ抵抗効果(piezoresistive effect)や、印加された力に比例した分極(表面電荷)が現れる圧電効果(piezoelectric effect)を利用したものである。
【0003】
ひずみゲージを用いた力センサとしては、印加された力の互いに直交する3軸方向(X軸方向、Y軸方向、Z軸方向)の力成分を検出する、いわゆる3軸力センサも提案されている(特許文献1参照)。このひずみゲージを用いた3軸力検出部材を、電子ペンに用いた場合、電子ペンの軸心方向の圧力(筆圧)のみならず、電子ペンの傾き角や電子ペンのペン先の摩擦力なども検出することができて便利である。
【0004】
図7は、前述の特許文献1の3軸力検出部材の一例を示すものである。この例の力検出部材は、起歪部101と、この起歪部101に一体に結合された力受付部102と、起歪部101に取り付けられる力センサ103とからなる。この例では、起歪部101の平面に対して直交する方向をZ軸方向、起歪部101の平面に平行な方向であって、互いに直交する方向をX軸方向及びY軸方向としている。
【0005】
図7(A)は、この例の力検出部材を横方向(X軸方向あるいはY軸方向)から見た図であり、
図7(B)は、この例の力検出部材の斜視図である。そして、
図7(C)~(E)は、この例の力検出部材の縦断面図(Z軸方向を含む方向の断面図)であり、
図7(C)は、力受付部102に何等の力も受けていない状態、
図7(D)は、力受付部102にZ軸方向の力を受けた状態、
図7(E)は、力受付部102にX軸方向又はY軸方向の力を受けた状態、をそれぞれ示している。なお、
図7(B)~(E)では、便宜上、力受付部102は起歪部101の近傍のみ示している。
【0006】
力受付部102は、起歪部101との結合側とは反対側の先端部に印加される力を受け付けて、起歪部101に伝達する機能を備えるもので、この例では、棒状部材とされる。
【0007】
起歪部101は、
図7(B)及び
図7(C)に示すように、円筒状のダイヤフラム保持部101bの一方の開口部側に、薄い円板状のダイヤフラム101aが設けられた構造を備えている。そして、起歪部101は、円板状のダイヤフラム101aの中央部において棒状の力受付部102と結合されている。
【0008】
ダイヤフラム101aの、力受付部102との結合側と反対側の面には、力センサ103が貼り付けられて取り付けられている。
図8(A)は、力センサ103の従来の構成の一例を示すものである。
【0009】
この例の力センサ103は、
図8(A)に示すように、例えば円板形状の絶縁性フィルムシートからなるフレキシブル基板103a上に、受けたひずみ変位に応じて抵抗値を変えるひずみ受感材104が、複数個配設されたものからなる。
図8(A)に示すように、この例では、ひずみ受感材104としては、6個のひずみ受感材104X1,104X2,104Y1,104Y2,104Z1,104Z2,104Z3,104Z4がフレキシブル基板上に配設されている。この例では、ひずみ受感材104X1,104X2,104Y1,104Y2,104Z1,104Z2,104Z3,104Z4の抵抗値は、ひずみが印加されていないときには、互いに等しくなるようにされている。なお、以下の説明で、複数個のひずみ受感材104のそれぞれを区別する必要がないときには、ひずみ受感材104と記述することとする。
【0010】
ひずみ受感材104X1と104X2とは、力受付部102の軸心方向に直交する方向であるX軸方向のひずみを検知するためのもので、フレキシブル基板103aの中心位置103ac(力の印加位置)を通るX軸方向の直線上において、中心位置103acを挟む両側において、当該中心位置103acから等距離の位置にそれぞれ設けられている。
【0011】
ひずみ受感材104Y1と104Y2とは、力受付部102の軸心方向に直交すると共にX軸方向と直交する方向であるY軸方向のひずみを検知するためのもので、中心位置103acを通るY軸方向の直線上において、中心位置103acを挟む両側において、当該中心位置103acから等距離の位置にそれぞれ設けられている。
【0012】
そして、ひずみ受感材104Z1,104Z2,104Z3,104Z4は、力受付部102の軸心方向であるZ軸方向のひずみを検知するためのものである。
図8(A)の例では、中心位置103acを通る直線であって、他のひずみ受感材104X1,104X2,104Y1,104Y2と重ならないように所定角度傾いた直線上において、中心位置103acを挟む両側において、2個ずつのひずみ受感材104Z1,104Z3と、ひずみ受感材104Z2,104Z4とが点対称の位置に設けられている。
【0013】
この例の力検出部材において、Z軸方向の力が力受付部102を介して起歪部101に印加された場合には、起歪部101のダイヤフラム101aは、引張・圧縮応力を受け、
図7(D)に示すように、力受付部102のZ軸方向の変位に応じて下側に凸となるように湾曲する。そして、力センサ103も、ダイヤフラム101aの湾曲に応じて変位する。この場合に、
図7(D)に示すように、ダイヤフラム101a、つまり、力センサ103においては、中心位置103acの近傍においては、伸長変位を生じ、中心位置103acから離れたダイヤフラム保持部101b側においては、収縮変位を生じる。
【0014】
したがって、ひずみ受感材104Z1と104Z3とでは、一方は増加する方向の抵抗変化をし、他方は減少する方向の抵抗変化をするので、ひずみ受感材104Z1とひずみ受感材104Z3との抵抗値の差を検出することで、Z軸方向の力成分を検出することができる。ひずみ受感材104Z2とひずみ受感材104Z4とにおいても、同様となる。そこで、ひずみ受感材104Z1とひずみ受感材104Z3との抵抗値の差の出力と、ひずみ受感材104Z2とひずみ受感材104Z4との抵抗値の差の出力とを加算して、Z軸方向の力成分の検出出力とすることができる。
【0015】
すなわち、4個のひずみ受感材104Z1,104Z2,104Z3,104Z4により、
図9(A)に示すようなブリッジ回路を構成することで、力検出部材は、印加された力のZ軸方向の力成分の検出出力を得ることができる。
図9(A)において、端子Eには電源電圧が印加され、端子Gは接地され、端子Za,Zb間に、Z軸方向の力成分の検出出力電圧が得られる。
【0016】
また、力検出部材においては、印加された力のX軸方向の力成分あるいはY軸方向の力成分は、力受付部102の長さに応じた曲げモーメントとして作用し、起歪部101のダイヤフラム101aには、曲げ応力及びせん断応力が加わる。これにより、
図7(E)に示すように、X軸方向あるいはY軸方向の力の印加方向において、力受付部102との結合部(ダイヤフラム101aの中心位置101ac)を挟む両側の一方側では、ダイヤフラム101aが収縮するように変位し、他方側では、ダイヤフラム101aが伸長するように変位する。
【0017】
力センサ103に配設されているひずみ受感材104X1と104X2、あるいはひずみ受感材104Y1と104Y2は、生じた変位に応じて、一方は増加する方向の抵抗変化をし、他方は減少する方向の抵抗変化をする。したがって、ひずみ受感材104X1とひずみ受感材104X2との抵抗値の差を検出することで、X軸方向の力成分を検出することができ、ひずみ受感材104Y1と104Y2との抵抗値の差を検出することで、Y軸方向の力成分を検出することができる。
【0018】
図9(B)にY軸方向の力の検出出力電圧を得るブリッジ回路の構成例を、
図9(C)にX軸方向の力の検出出力電圧を得るブリッジ回路の構成例を、それぞれ示す。なお、
図9(B)及び
図9(C)において、RY1,RY2及びRX1,RX2は、抵抗値がひずみ受感材104X1,X2,Y1,Y2にひずみが印加されていないときと同一の抵抗値を示す固定抵抗(リファレンス抵抗)であり、これらは、この例の力センサ103の外部に設けられる。
【0019】
従来、ひずみ受感材104を構成する材料として例えばCu-Ni合金が、ひずみ感度を決定するゲージ率は小さい(例えばゲージ率は2)が、温度定数が直線的で安定しているので、ブリッジ回路でひずみ受感材の抵抗値の互いの温度変換分を打ち消せるため温度変化に対して安定であるという点で良く用いられている。なお、ひずみ受感材104としては、半導体の炭素、ケイ素、ゲルマニウム等も知られているが、これらはゲージ率は比較的大きい(ゲージ率は10~170)が、ひずみ受感方向の異方性が大きく、また、温度係数が高く、また、非直線的であるために、温度変化に対する変動が大きく安定性に欠けるので、その用途は限定的となっている。
【0020】
ひずみ受感材104が、例えばCu-Ni合金からなる場合には、その金属細線や金属箔を、
図8(B)の拡大図に示すように、その長手方向が半径方向(ひずみの発生方向)に沿うような状態で、ジグザグ状に折り曲げて半径方向に直交する方向(円周方向)に配設したものとして構成されている。
図8(B)では、ひずみ受感材104Y1の例を示しているが、他のひずみ受感材104X1,104X2,104Y1,104Z1,104Z2,104Z3,104Z4も同様である。
【0021】
このように、金属細線や金属箔からなるストリップ状のひずみ受感材104の長手方向が半径方向に沿うようにすると共に、ジグザグ状に折り曲げて円周方向にも配設するのは、以下のような理由による。すなわち、従来のひずみ受感材では、長手方向のひずみ受感感度は大きいが、幅方向(長手方向に直交する方向)のひずみ受感感度は非常に低いものであるため、ストリップ状の導電性材からなるひずみ受感材は、その長手方向を、印加される力に応じてダイヤフラム101aに生じるひずみの発生方向であるダイヤフラム101aの半径方向に沿って配設する必要がある。
【0022】
しかし、従来のひずみ受感材104では、1本のストリップ状の導電部材を半径方向に配設しただけでは抵抗値が小さすぎるために、金属細線や金属箔の全長を長くして所望の抵抗値を確保して適当な検出出力電圧を得るようにする必要があった。
【0023】
したがって、ひずみ受感材104X1,104X2,104Y1,104Y2,104Z1,104Z2,104Z3,104Z4のそれぞれは、
図8(B)に示すように、ダイヤフラム102の半径方向の長さLが有効なひずみ受感長であるが、周方向にジグザク状に折り曲げることで大きな抵抗値を確保しているために、比較的大きな面積を必要とすることになる。
【0024】
なお、ダイヤフラム101aには、半径方向のみではなく、周方向にもひずみ変形は生じる。そして、上述のように、ひずみ受感材104は、ダイヤフラム101aの周方向にも配設されているような状態となるが、前述もしたように、従来のひずみ受感材104は、ストリップ状の導電性材の幅方向にはひずみ受感感度は非常に小さい(殆ど感知しない)ので、従来のひずみ受感材104では、周方向のひずみ変形は殆ど検知しない。
【0025】
なお、ひずみ受感材104を炭素、ケイ素、ゲルマニウムなどの半導体材料で構成する場合にも、上記に倣ってそれらの半導体材料のゲージ率の高い結晶方位を長手方向に配し、その長手方向が半径方向(ひずみの発生方向)に沿うような状態で設けられる。
【先行技術文献】
【特許文献】
【0026】
【文献】特開2010-164495号公報
【文献】特許第6084393号公報
【発明の概要】
【発明が解決しようとする課題】
【0027】
ところで、最近は、この種の力センサについては、更なる小型化の要請が大きくなっている。しかしながら、
図7及び
図8を用いて説明した力センサ103では、更なる小型化が困難となる問題があった。
【0028】
すなわち、その主たる理由は、上述した従来のひずみ受感材104(104X1,104X2,104Y1,104Y2,104Z1,104Z2,104Z3,104Z4)は、上述したように、ほぼその長手方向のみでしかひずみを受感することができず、このため、ひずみを受感する有効部分が、力センサ103の半径方向(ひずみの発生方向)の長さ部分であるため、印加される力を所定のひずみ感度で検出するには、力センサ103の径を小さくすることが困難であるということである。
【0029】
また、上述したように、印加された力を検出するためには、各軸方向用のブリッジ回路が必要となるが、当該ブリッジ回路を構成するための導体パターンは、力センサ103のフレキシブル基板103a上に形成することが多い。しかし、上述のように、従来のひずみ受感材104が、力センサ103の半径方向及び周方向に大きな占有面積を占めるので、ブリッジ回路を構成するためのスペースが取り難くなるという問題もある。さらに、上述の従来の力センサ103の例では、X軸方向用及びY軸方向用のブリッジ回路としては基準抵抗を必要とし、この基準抵抗は、力センサ103の外部に設ける必要があるという問題もある。
【0030】
この発明は、以上の問題点を解決することができるようにした力センサを提供することを目的とする。
【課題を解決するための手段】
【0031】
上記の課題を解決するために、
板状部材の少なくとも一方の面部の絶縁材上にひずみ受感材が配設されており、前記板状部材の前記面部に交差する方向に印加された力に応じて前記板状部材に生じるひずみを前記ひずみ受感材で感知することで、前記印加された力を感知する力センサであって、
前記ひずみ受感材は、ひずみの受感感度に方向性がないストリップ状の導電性材で構成されているとともに、前記板状部材の面部において前記力の印加部からの距離が異なる第1のリング状領域と第2のリング状領域とのそれぞれと、前記面部において前記力の印加部を中心とした円周方向をn(n≧2の整数)個に分割して形成された少なくとも1つの扇形領域とが重なる領域に配置されており、
前記少なくとも1つの扇形領域において、前記ストリップ状の導電性材は、前記第1のリング状領域に2本及び前記第2のリング状領域に2本の合計4本が、それぞれ成膜されて薄膜として形成されていると共に、導体パターンが成膜されて形成されていることで、前記4本の前記ストリップ状の導電性材によってブリッジ回路が構成されており、
前記第1のリング状領域と前記第2のリング状領域は、一方のリング状領域では伸長ひずみが発生し、他方のリング状領域では収縮ひずみが発生するように設定されている
ことを特徴とする力センサを提供する。
【0032】
上述の構成の力センサにおいては、板状部材の面部に印加される力の印加部を中心とした第1のリング部と前記第1のリング部とにひずみ受感材が配置されており、第1のリング部のひずみ受感材と、第2のリング部のひずみ受感材との一方で伸長ひずみ、他方で収縮ひずみを検知するようにすることが可能である。
【0033】
ひずみ受感材として、ひずみの受感感度に方向性がないストリップ状の導電性材、例えばCrおよび不可避不純物からなるCr薄膜、またはCr、N及び不可避不純物からなるCr-N薄膜で構成されているストリップ状の導電性材を用いることで、小型で高感度の力センサを得ることができる。
【図面の簡単な説明】
【0034】
【
図1】この発明による力センサの実施形態を備える力検出部材の構成例を説明するための図である。
【
図2】この発明による力センサの実施形態の構成例を説明するための図である。
【
図3】この発明による力センサの実施形態の構成例を説明するための図である。
【
図4】この発明による力センサの実施形態に適用される回路の例を示す回路図である。
【
図5】この発明による力センサの実施形態と比較例とのシミュレーション結果の例を説明するための図である。
【
図6】この発明による力センサの他の実施形態の構成を説明するための図である。
【
図7】従来の力センサを備える力検出部材の例を説明するための図である。
【
図8】従来の力センサの一例を説明するための図である。
【
図9】従来の力センサの一例を説明するための回路図である。
【発明を実施するための形態】
【0035】
以下、この発明による力センサの実施形態を、図を参照しながら説明する。
【0036】
図1は、この実施形態の力センサ1を用いた力検出部材2を示すものである。この例の力検出部材2は、台座部21と、力受付部22と、力センサ1とにより構成される。
図1(A)は、この例の力検出部材2を、力センサ1の板状部材10の面部10aに平行な方向から見た側面図、
図1(B)は、板状部材10の一方の面部10aとは反対側の面部10bを斜め方向から見た斜視図、
図1(C)は、板状部材10の一方の面部10a側を斜め方向から見た斜視図、
図1(D)は、板状部材10の面部10aを当該面部10aに直交する方向から見た底面図である。
図1(E)は、力検出部材2における、台座部21側の縦断面図である。
【0037】
図2及び
図3は、この発明の実施形態の力センサ1の構成例を説明するための図である。この例の力センサ1は、弾性を有する絶縁性部材からなる板状部材10の一方の面部10aに、複数個のひずみ受感材11が配設されて形成されている。
図2は、この実施形態の力センサ1の板状部材10の一方の面部10aに配設される複数のひずみ受感材11の配設位置と、印加された力に応じて板状部材10に発生するひずみとの関係を示している。
図3(A)に示すように、板状部材10の一方の面部10aには、複数のひずみ受感材11と共に、それらを電気的に接続するための導電パターン12も形成されるが、
図2(A)では、その導電パターン12は省略してある。
【0038】
図2(A)及び
図3(A)は、力センサ1を、その板状部材10の一方の面部10aに対して直交する方向であって、当該一方の面部10a側から見た図を示している。また、
図3(B)は、力センサ1を、板状部材10の面部に平行な方向から見た側面図である。この
図3(B)に示すように、この例では、板状部材10は、一定の厚さdを有する円板状で構成されている。
【0039】
この実施形態の力センサ1では、板状部材10は、弾性を有する材料からなる板例えば金属板、この例では、SUSで構成されている。この例では、板状部材10の一方の面10a側に絶縁層(図示は省略)が設けられて絶縁性部材とされる。そして、板状部材10の一方の面10a側の絶縁層上に、後述するように、ひずみ受感材11及び導電パターン12が成膜されて形成されることで、力センサ1が形成される。この実施形態の力センサ1では、従来のようにフレキシブル基板にひずみ受感材を配設したものを、ダイヤフラムを構成する起歪体に接着材により接着する構成ではないので、従来のような接着材の影響によりひずみ受感特性がばらつくなどという不具合を回避することができる。
【0040】
図1(A)~(C)に示すように、力検出部材2の台座部21は、力センサ1の円板状の板状部材10と同じ外径を有する筒状部材で構成されている。台座部21は、この例では、SUSで構成されている。この台座部21の外径と内径とにより決まる厚さ分の端面に対して、力センサ1の板状部材10の面部10aの周縁部10E(
図2及び
図3参照)が、例えば接合されることで、台座部21に力センサ1が固定される。
【0041】
なお、この場合の接合方法は、溶接でもよいし、接着材により接合する方法でもよい。また、台座部21と力センサ1との結合方法は、この例のような接合に限られる訳ではなく、台座部21と板状部材10とを一体に構成してもよいし、台座部21と外径及び内径寸法が等しい筒状体により、板状部材10を挟持して固定するように構成してもよい。
【0042】
力受付部22は、印加される力を受け付けて、力センサ1の板状部材10に伝達する機能を備えるもので、この例では、例えばSUSで構成された棒状部材とされる。この力受付部22は、その軸心方向の一方の端部が、力センサ1の板状部材10の中心部において、板状部材10と結合される。この例では、
図1(E)の断面図に示すように、板状部材10を介してネジ23が力受付部22の軸心方向の端部に対してねじ込まれることにより、力受付部22が、板状体部10に対して結合される。力センサ1の板状部材10の中心部には、
図1(DE)に示すように、ネジ23が挿入される貫通孔10cが形成されている。この例では、板状部材10が、その中心部において、ネジ23の円柱状頭部23aと力受付部22の軸心方向の端部とにより挟持されることにより、力受付部22が力センサ1に対して結合される。
【0043】
なお、力受付部22と力センサ1との結合方法は、この例のようなネジ止めに限られるものではないことは言うまでもない。例えば、力受付部22の軸心方向の一方の端部が、板状部材10の面部10aの反対側の中心部と溶接などにより接合されていてもよいし、接着材により接合するようにしてもよい。また、力受付部22と板状部材10とを一体に構成してもよい。
【0044】
なお、この例では、力受付部22の軸心方向の一方の端部は、力センサ1の一方の面部10aとは反対側の面部の中央で結合するようにしたが、板状部材10の面部10a側において結合するようにしても、勿論よい。
【0045】
この例では、以上のように、力センサ1の板状部材10は、その周縁部10Eが台座部21に固定されると共に、その中心部において力受付部22が例えばネジ23によりネジ止めされて結合されるので、
図1(D)に示すように、ネジ23の円柱状頭部23aの周縁の位置と、筒状の台座部21の内径の位置との間の幅Wのリング状領域RGが、力受付部22に印加される力に応じて弾性ひずみを生じることが可能である領域となる。
【0046】
すなわち、ねじ23の円柱状頭部23aの半径をri、台座部21の内径をroとすると、
図1(D)及び
図2(A)に示すように、力センサ1の板状部材10において、その中心位置Ocを中心とする半径が、ri≦r≦roの範囲であるリング状領域RGが、力受付部22から伝達される力に対応して弾性ひずみが発生する領域となる。
【0047】
図1(D)、
図2(A)及び
図3(A)に示すように、この実施形態の力センサ1においては、板状部材10の一方の面部10aの、幅Wのリング状領域RGに、ひずみ受感材11が複数個設けられる。
【0048】
ところで、この例の力検出部材2においては、力センサ1の板状部材10は、一定の厚さdを有する円板形状であって、その周縁部10Eで固定されると共に、その中心位置Oc(
図2(A)参照)に、力受付部22を通じて力が印加される。
【0049】
ここで、板状部材10の幅Wのリング状領域RGの幅方向の中心位置の半径をrc(rc=(ri+ro)/2)に設定して、当該リング状領域RGを、半径ri~半径rcの範囲の内側に位置する第1のリング状領域RG1と、半径rc~半径roの範囲の外側に位置する第2のリング状領域RG2とに分割する。すると、リング状領域RGの内側の第1のリング状領域RG1と外側の第2のリング状領域RG2とでは、力受付部22に力が印加されたときには、互いに逆向きのひずみが生じる。
【0050】
すなわち、力センサ1の板状部材10が、力受付部22を介して面部10aに直交する方向の力(Z軸方向の力)を受けると、板状部材10は、
図2(B)に示すように、下に突となるように弾性変形する。この場合に、Z軸方向の力以外の力が零であるときには、板状部材10においては、中心Ocから放射方向における同じ半径位置においては、全周に亘って等しいひずみを生じる。そして、そのひずみは、印加された力の大きさに応じたものとなると共に、
図2(B)に示すように、第1のリング状領域RG1では、伸長ひずみとなり、また、第2のリング状領域RG2では、収縮ひずみとなって、互いに逆方向のひずみが生じる。
【0051】
したがって、第1のリング状領域RG1と第2のリング状領域RG2とに、それぞれひずみ受感材11を設けて、第1のリング状領域RG1での伸長ひずみと、第2のリング状領域RG2での収縮ひずみとをそれぞれ検知することで、Z軸方向の力を検出することができる。すなわち、第1のリング状領域RG1に設けたひずみ受感材11と第2のリング状領域RG2に設けたひずみ受感材と、互いに逆方向(増加方向と減少方向)に抵抗値が変化するので、その抵抗値の変化分に基づいて、力センサ1に印加されるZ軸方向の力を検出することができる。
【0052】
また、力受付部22を介して力センサ1の板状部材10の面部10aに平行する方向の力(X軸方向またはY軸方向の力)を受けると、板状部材10は、
図2(C)に示すように、板状部材10の中心位置Ocを中心として非対称に波打つようなひずみ変形をする。そして、そのひずみ変形の度合は、印加された力の大きさに応じたものとなると共に、
図2(C)に示すように、板状部材10では、中心Ocを中心として互いに逆向きのひずみが生じる。
【0053】
すなわち、
図2(C)に示すように、力受付部22に印加される力の方向から見て、中心位置Ocよりも手前側においては、第1のリング状領域RG1では収縮ひずみが生じ、また、第2のリング状領域RG2では伸長ひずみが生じる。また、力受付部22に印加される力の方向から見て、中心位置Ocよりも後ろ側においては、第1のリング状領域RG1では伸長ひずみが生じ、また、外側の第2のリング状領域RG2では収縮ひずみが生じる。なおこの例の場合、
図2(C)に示すように、第1のリング状領域RG1では、その最内周側の部分におけるひずみが大きくなり、また、第2のリング状領域RG2では、その最外周側の部分におけるひずみが大きくなるので、ひずみ受感材11は、そのひずみが大きくなる部分に対応して配設されている。
【0054】
したがって、第1のリング状領域RG1に配設されたひずみ受感材11のひずみに応じた抵抗値の変化と、第2のリング状領域RG2に配設されたひずみ受感材11のひずみに応じた抵抗値の変化とから、X軸方向又はY軸方向の力成分を検出することができる。そして、この場合に、中心位置Ocよりも手前側の第1のリング状領域RG1及び第2のリング状領域RG2と、後ろ側の第1のリング状領域RG1及び第2のリング状領域RG2とでは、発生するひずみの態様が逆向きであることから、中心位置Ocよりも手前側と後ろ側とのそれぞれにおいてひずみ受感材11で検出したひずみ検出出力の差分を取ることで、X軸方向又はY軸方向の力成分の検出出力として、相乗的な大きさの検出出力が得られる。
【0055】
この実施形態の力検出部材2の力センサ1の板状部材10では、以上のようなひずみ発生態様となることを踏まえて、実施形態の力検出部材2では、この力センサ1の板状部材10上に、以下に説明するように、ひずみ受感材11を配設することで、3軸力センサを構成するようにする。
【0056】
この実施形態の力検出部材2においては、力センサ1の板状部材10の面部10aに直交する、力受付部22の軸心方向に印加される力をZ軸方向の力として受けて、その大きさを検出する。また、この実施形態の力検出部材2においては、力センサ1の板状部材10の面部10aに平行な、力受付部22の軸心方向に直交する方向に印加される力であって、互いに直交する方向の力を、X軸方向及びY軸方向の力として受けて、その大きさを検出する。
【0057】
そこで、この実施形態の力センサ1においては、3軸力センサとするために、
図2(A)及び
図3(A)において点線で分割して示すように、円板からなる板状部材10の一方の面部10aは、円周方向が4分割されて、それぞれ90度角範囲の4個の扇形領域SX1,SY1,SX2,SY2に領域分割される。この場合に、
図2(A)に示すように、この例では、扇形領域SX1とSX2とは、中心位置Ocを中心としてX軸方向に対向し、扇形領域SY1とSY2は、中心位置Ocを中心としてY軸方向に対向するように構成される。
【0058】
そして、この実施形態では、各扇形領域SX1,SY1,SX2,SY2のそれぞれにおいて、力受付部22を介して板状部材10に印加される力に応じて第1のリング状領域RG1及び第2のリング状領域RG2で互いに逆向きに生じるひずみ(伸長ひずみと収縮ひずみ)を検知するようにひずみ受感材11を配設する。
【0059】
すなわち、この実施形態では、板状部材10の一方の面部10aの各扇形領域SX1,SY1,SX2,SY2のそれぞれにおけるリング状領域RGの第1のリング状領域RG1と第2のリング状領域RG2とのそれぞれにひずみ受感材11を設ける。
【0060】
そして、この実施形態では、各扇形領域SX1,SY1,SX2,SY2のそれぞれにおいて、ひずみ検出回路を構成するブリッジ回路を構成することができるように、第1のリング状領域RG1と第2のリング状領域RG2とのそれぞれの周方向に、2個ずつのひずみ受感材11を設ける。
【0061】
図2(A)及び
図3(A)では、板状部材10の一方の面部10aの各扇形領域SX1,SY1,SX2,SY2のそれぞれに設けるひずみ受感材11を区別することができるように、参照符号11に括弧を付随させ、その括弧内に別の参照符号を付している。以下の説明において、ひずみ受感材11を区別する必要がないときには、そのままの参照符号を用いてひずみ受感材11と記載し、区別する必要があるときには、括弧内の参照符号を用いて説明することとする。
【0062】
すなわち、
図2(A)及び
図3(A)に示すように、扇形領域SX1においては、第1のリング状領域RG1には、その周方向に沿って2個のひずみ受感材X1,X2が、第2のリング状領域RG2には、その周方向に沿って2個のひずみ受感材X3,X4が、それぞれ設けられる。また、扇形領域SX2においては、第1のリング状領域RG1には、その周方向に沿って2個のひずみ受感材X5,X6が、第2のリング状領域RG2には、その周方向に沿って2個のひずみ受感材X7,X8が、それぞれ設けられる。
【0063】
また、扇形領域SY1においては、第1のリング状領域RG1には、その周方向に沿って2個のひずみ受感材Y1,Y2が、第2のリング状領域RG2には、その周方向に沿って2個のひずみ受感材Y3,Y4が、それぞれ設けられる。また、扇形領域SY2においては、第1のリング状領域RG1には、その周方向に沿って2個のひずみ受感材Y5,Y6が、第2のリング状領域RG2には、その周方向に沿って2個のひずみ受感材Y7,Y8が、それぞれ設けられる。
【0064】
ここで、ひずみ受感材11としては、この実施形態では、ひずみ変形に応じて抵抗値が変化する導電性材であって、所定幅kの帯状導体(ストリップ状の導体)を用いるが、この例では、以下に説明するような優れた特徴を備えるひずみ受感材のストリップ状の導電性材を用いるようにする。
【0065】
前述したように、従来、一般的に使用されているCu-Ni合金などのひずみ受感材を用いた帯状導体(ストリップ状の導体)は、ほぼその長手方向にしかひずみの受感感度を有していない。そのため、ストリップ状の導体からなるひずみ受感材は、
図8(B)に示したように、ひずみの発生方向である半径方向(力の印加点から見た放射方向)に、その長手方向を合わせて配置すると共に、材料の抵抗値が低いために、円周方向に複数折り返すようなジグザグ状パターンを形成して抵抗値を大きくするようにしなければならない。
【0066】
このため、従来のひずみ受感材を用いる場合は、そのパターン面積が大きくなり、特に、ひずみ受感材のパターンの板状部材10の半径方向の長さを所定長さにする必要があるために、これを、第1のリング状領域RG1と、第2のリング状領域RG2とに配設するようにすると、板状部材10(ダイヤフラム)の大きさ(径)を小さくすることができず、力センサ1の小型化は困難である。
【0067】
この実施形態では、このような欠点を改善したひずみ受感材を用いる。すなわち、この例においては、ひずみ受感材として用いるストリップ状の導電性材は、Crおよび不可避不純物からなるCr薄膜、またはCr、N及び不可避不純物からなるCr-N薄膜で構成する(特許第6084393号公報(特許文献2として先行技術文献の欄に記載)参照)。以下に説明する実施形態では、ひずみ受感材11としては、Cr-N薄膜を用いる。
【0068】
このCr-N薄膜で構成されるストリップ状の導電性材は、ひずみの受感感度に方向性はなく(等方性)、長手方向だけでなく、幅方向(横方向)にも感度を備え、しかも、その感度の大きさを規定するゲージ率も高い。また、前記特許文献2にも記載されているように、Cr-N薄膜は、ゲージ率が高いだけでなく、抵抗温度係数(TCR)が約ゼロ(<±50ppm/℃)に制御可能であって温度変化に対して安定であり、さらには、高抵抗(数10kΩ)であってひずみ受感材11のパターン面積は小さくてよいという特徴もある。
【0069】
この実施形態の力センサ1では、ひずみ受感材11の上記の特徴を利用して、以下に説明するように、板状部材10の一方の面部10a上にひずみ受感材11を配置する。高抵抗率のひずみ受感材11により、小さな面積で高抵抗値が得られ、これにより発生するひずみをピンポイントで検出できるために高感度化が可能であり、更に、高抵抗のために小面積のひずみ受感材11で良く、力センサ1を小型化することができる。
【0070】
すなわち、この実施形態では、ストリップ状の導電性材からなるひずみ受感材11は、
図2(A)及び
図3(A)においてハッチングを付して示すように、その長手方向を、板状部材10における力の印加点(板状部材10の中心位置)から見た放射方向を長手方向に揃えるのではなく、円周方向に沿うように配設する。すなわち、この実施形態では、複数個のひずみ受感材11のそれぞれは弧形状を有するものとして、円周方向に沿うようにして、板状部材10の面部10a上に配設する。この場合に、この実施形態では、ひずみ受感材11を構成するそれぞれストリップ状の導電性材は、板状部材10が印加された力に応じて第1のリング状領域RG1と第2のリング状領域RG2とのそれぞれに生じるひずみの発生部位に、その幅方向をピンポイントに合わせて配設するようにする。
【0071】
このようにひずみ受感材11を配設することで、力センサ1では、ひずみを十分な感度で、かつ、検出出力電圧の大きさを保持して検出することができる。すなわち、幅kのストリップ状の導電性材からなるひずみ受感材11の長手方向を、円周方向に沿って配設した場合、当該ひずみ受感材11の幅kの長さの幅方向部分においてひずみが検知され、その幅kの長さの幅方向部分におけるひずみ検知が、ひずみ受感材11の長手方向の長さ分に亘って行われることになる。
【0072】
また、印加された力に応じて板状部材10が弾性変形をするので、板状部材10の中心位置Ocを中心とした放射方向のみでなく、円周方向にもひずみが生じるが、ひずみ受感材11は、その円周方向のひずみに応じても変位して、その抵抗値を変えることで、当該円周方向のひずみをも検知する。さらに、この実施形態のひずみ受感材11を構成する導電性材の抵抗値は高く、低消費電力を維持しつつ、局所的なひずみに合わせて、小さな面積のひずみ受感材を設けることできる。したがって、この実施形態の力センサ1では、ひずみ受感材11のそれぞれにおいて、印加された力に対応したひずみを十分に検知することができる。
【0073】
そして、この実施形態では、板状部材10の一方の面部10aにおいて、第1のリング状領域RG1に配設されるひずみ受感材X1、X2,X5、X6及びひずみ受感材Y1,Y2,Y5,Y6は、当該第1のリング状領域RG1において印加された力に応じて発生するひずみが大きく発生する位置、この例では、第1のリング状領域RG1の幅方向(半径方向)の、中心位置Ocから半径ri分だけ離れた最内周側位置又はその近傍に配設される。すなわち、ひずみ受感材X1、X2,X5、X6及びひずみ受感材Y1,Y2,Y5,Y6のそれぞれを構成するストリップ状の導電性材の幅方向を、第1のリング状領域RG1において、発生するひずみが大きい幅方向(半径方向)の、中心位置Ocから半径ri分だけ離れた最内周側位置又はその近傍にピンポイントに合わせると共に、ストリップ状の導電性材の長手方向を、当該ひずみが発生している周方向に合わせて配設される。
【0074】
以上のようにして、ひずみ受感材X1、X2,X5、X6及びひずみ受感材Y1,Y2,Y5,Y6は、板状部材10の一方の面部10aにおいて、中心位置Ocから同一の半径位置において、周方向に沿って、ひずみ発生位置に合わせて配設される。
【0075】
同様に、第2のリング状領域RG2に配設されるひずみ受感材X3、X4,X7、X8及びひずみ受感材Y3,Y4,Y7,Y8は、当該第2のリング状領域RG2において印加された力に応じたひずみが大きく発生する位置、この例では、第2のリング状領域RG2の幅方向(半径方向)の、中心位置Ocから半径r0分だけ離れた最外周側位置又はその近傍に配設される。したがって、ひずみ受感材X3、X4,X7、X8及びひずみ受感材Y3,Y4,Y7,Y8は、板状部材10の一方の面部10aの第2のリング状領域RG2において、中心位置Ocから同一の半径位置において、周方向に沿って、ひずみ発生位置に合わせて配設される。
【0076】
なお、
図3では、説明の便宜上、ひずみ受感材11の配設位置は、第1のリング状領域RG1及び第2のリング状領域RG2の半径方向の中央となっているが、実際上は、
図2に示したのと同様に、ひずみの大きさが最大となる位置に配置されているのは勿論である。
【0077】
そして、第1のリング状領域RG1に配設されるひずみ受感材X1、X2,X5、X6及びひずみ受感材Y1,Y2,Y5,Y6と、第2のリング状領域RG2に配設されるひずみ受感材X3、X4,X7、X8及びひずみ受感材Y3,Y4,Y7,Y8とは、
図2(A)及び
図3(A)に示すように、板状部材10の中心位置Ocを中心とした放射方向、すなわち、ひずみの発生方向に整列するように配設される。
【0078】
さらに、この実施形態においては、第1のリング状領域RG1に配設されるひずみ受感材X1、X2,X5、X6及びひずみ受感材Y1,Y2,Y5,Y6と、第2のリング状領域RG2に配設されるひずみ受感材X3、X4,X7、X8及びひずみ受感材Y3,Y4,Y7,Y8との内、少なくとも中心位置Ocから放射方向(半径方向)に並ぶ2個ずつのひずみ受感材11は、ひずみが発生していないときの抵抗値が等しくなるように構成されている。
【0079】
この実施形態では、板状部材10の中心位置Ocとした放射方向の全てで、ひずみの受感感度が等しくなるようにするために、第1のリング状領域RG1に周方向に配設されるひずみ受感材X1、X2,X5、X6及びひずみ受感材Y1,Y2,Y5,Y6は、ひずみが発生していないときの抵抗値が、全て同一の値となるようにしている。したがって、この例では、ひずみ受感材X1~X8及びひずみ受感材Y1~Y8の全てを、ひずみが発生していないときの抵抗値が等しくなるように形成している。
【0080】
この場合に、ひずみ受感材11の抵抗値は、ストリップ状の導電性材の幅と、長手方向の長さと、厚さ及び導電性材の材料により決まるが、導電性材の材料としては、この例では、ひずみ受感材X1~X8及びひずみ受感材Y1~Y8の全てのストリップ状の導電性材の材料としてはCr-Nが用いられているので、導電性材の幅と、長手方向の長さと、厚さとを等しくすることで、ひずみが発生していないときの抵抗値が等しくなるようにしている。しかし、ひずみ受感材X1~X8及びひずみ受感材Y~Y8のストリップ状の導電性材の幅と、長手方向の長さと、厚さとをそれぞれ調整することで、ひずみが発生していないときの抵抗値が等しくなるようにしてもよい。
【0081】
この実施形態の力センサ1のひずみ受感材11で用いられるCr-Nからなるストリップ状の導電性材は、前記特許文献2に開示されているように、従来例のようにフレキシブル基板に形成するのではなく、薄膜として起歪体である板状部材10自身に直接的に形成することができる。
【0082】
そこで、この実施形態の力センサ1は、板状部材10の一方の面部10aに、予め、ひずみ受感材11のそれぞれが、成膜処理されて薄膜として形成されると共に、導体パターン12が同様に成膜処理されることで形成される。したがって、この実施形態の力センサ1の製造には、ひずみ受感材がパターニングされて配設されたフレキシブル基板を接着材により接着する工程が不要であるので、量産が容易である。そして、この実施形態の力センサ1を、その板状部材10の周縁部10Eで台座部21に結合し、力受付部22を、板状部材10の中央部において例えばネジ止めして結合することで、力検出部材2を生成することができるので、力検出部材2の製造も簡単であるという特徴も備える。
【0083】
この実施形態の力センサ1においては、前述したように、板状部材10の一方の面部10aの各扇形領域SX1,SY1,SX2,SY2のそれぞれに配設される4個のひずみ受感材により、ひずみ検出回路を構成するブリッジ回路が構成される。導電パターン12は、
図3(A)に示すように配設されることで、各扇形領域SX1,SY1,SX2,SY2のそれぞれにおいて、ブリッジ回路が形成される。なお、
図3(A)においては、ハッチングを付して示したひずみ受感材11と区別するために、導電パターン12は、白抜きの線路パターンとして示している。
【0084】
各扇形領域SX1,SY1,SX2,SY2のそれぞれに配設される4個のひずみ受感材11で構成されるブリッジ回路は、同様の構成を有する。
図4は、扇形領域SX1において、4個のひずみ受感材X1~X4が導電パターン12により電気的に接続されて形成されるブリッジ回路の構成を、その代表例として示す図である。
【0085】
すなわち、
図4に示すように、電源電圧Vccが供給される端子tVと、接地される端子tGとの間に、ひずみ受感材X1とひずみ受感材X3との直列回路と、ひずみ受感材X2とひずみ受感材X4との直列回路とが並列に接続される。そして、ひずみ受感材X1とひずみ受感材X3との接続点から第1の出力端子tO(-)が、また、ひずみ受感材X2とひずみ受感材X4との接続点から第2の出力端子tO(+)が、それぞれ導出される。端子tV,tG,tO(-),tO(+)は、
図3(A)に示すように、板状部材10の面部10aに形成されている。
【0086】
この
図4の回路において、ひずみが生じていない場合には、ひずみ受感材X1~X4の抵抗値は全て等しいので、出力端子tO(-)及び出力端子tO(+)の出力電圧は等しく、その差の出力電圧はゼロである。
【0087】
そして、力センサ1に力が印加されたときには、ひずみ受感材X1が存在する第1のリング状領域RG1と、ひずみ受感材X3が存在する第2のリング状領域RG2とでは、印加された力に応じて互いに逆向きのひずみを受けるので、ひずみ受感材X1とひずみ受感材X3とでは逆方向に抵抗値が変化する。そして、出力端子tO(-)には、ひずみ受感材X1の抵抗値とひずみ受感材X3の抵抗値との差分に応じた電圧が得られると共に、出力端子tO(+)には、ひずみ受感材X2の抵抗値とひずみ受感材X4の抵抗値との差分に応じた、出力端子tO(-)とは逆向きの電圧が得られる。したがって、出力端子tO(-)に得られる電圧と、出力端子tO(+)に得られる出力電圧との差分の電圧として、力センサ1に印加された力のX軸方向の力成分に応じた出力電圧EX1が得られる。
【0088】
前述もしたように、他の扇形領域SX2,SY1,SY2においても、同様によりブリッジ回路が形成されて、力センサ1に印加された力に応じた出力電圧が得られる。すなわち、扇形領域SX2の場合には、
図4において、括弧内に示すように、扇形領域SX1のひずみ受感材X1に代えてひずみ受感材X5が、ひずみ受感材X2に代えてひずみ受感材X6が、ひずみ受感材X3に代えてひずみ受感材X7が、ひずみ受感材X4に代えてひずみ受感材X8が、接続されることで、出力端子tO(-)に得られる電圧と、出力端子tO(+)に得られる出力電圧との差分の電圧として、力センサ1に印加された力のX軸方向の力成分に応じた出力電圧EX2が得られる。
【0089】
また、扇形領域SY1の場合には、
図4における、ひずみ受感材X1に代えてひずみ受感材Y1が、ひずみ受感材X2に代えてひずみ受感材Y2が、ひずみ受感材X3に代えてひずみ受感材Y3が、ひずみ受感材X4に代えてひずみ受感材Y4が、接続されることで、出力端子tO(-)に得られる電圧と、出力端子tO(+)に得られる出力電圧との差分の電圧として、力センサ1に印加された力のY軸方向の力成分に応じた出力電圧EY1が得られる。
【0090】
さらに、扇形領域SY2の場合には、
図4における、ひずみ受感材X1に代えてひずみ受感材Y5が、ひずみ受感材X2に代えてひずみ受感材Y6が、ひずみ受感材X3に代えてひずみ受感材Y7が、ひずみ受感材X4に代えてひずみ受感材Y8が、接続されることで、出力端子tO(-)に得られる電圧と、出力端子tO(+)に得られる出力電圧との差分の電圧として、力センサ1に印加された力のY軸方向の力成分に応じた出力電圧EY2が得られる。
【0091】
そして、以上のようにして、扇形領域SX1,SX2,SY1,SY2に形成されている4個のブリッジ回路のそれぞれの出力電圧EX1,EX2,EY1,EY2を用いることで、力検出部材2の力受付部22に印加された力のZ軸方向の力成分についての出力電圧EZ、X軸方向の力成分についての出力電圧EX及びY軸方向の力成分についての出力電圧EYが、次のような演算式より得られる。
【0092】
すなわち、Z軸方向の力成分については、
図2(B)に示したように、板状部材10の中心位置Ocを中心とする放射方向に同様のひずみ変形が生じるので、力検出部材2の検出出力電圧EZは、
EZ=EX1+EX2+EY1+EY2
として算出される。
【0093】
また、X軸方向の力成分については、
図2(C)に示したように、板状部材10の中心位置Ocの手前側と、後ろ側とで、逆向きのひずみが生じるので、力検出部材2の検出出力電圧EXは、
EX=EX1-EX2
として算出される。
【0094】
また、Y軸方向の力成分についても、同様に、
図2(C)に示したように、板状部材10の中心位置Ocの手前側と、後ろ側とで、逆向きのひずみが生じるので、力検出部材2の検出出力電圧EYは、
EY=EY1-EY2
として算出される。
【0095】
[実施形態の効果]
以上説明したように、上述の実施形態の力センサ1によれば、円板状の板状部材10の中心位置から放射方向(半径方向)に異なる位置の領域である第1のリング状領域RG1と、第2のリング状領域RG2とのそれぞれに、ひずみ受感材11を配置することで、力センサ1に印加される力を検出することができる。
【0096】
この場合に、ひずみ受感材11は、ストリップ状の導電性材の幅方向位置を、リング状領域RG1,RG2のそれぞれの、ひずみ発生位置に合わせた半径方向位置とすると共に、ストリップ状の導電性材の長手方向を、ひずみ発生位置に合わせた円周方向に沿って配置するので、円板状の板状部材10の半径方向に占めるひずみ受感材11の領域面積を小さくでき、このため、板状部材10の半径を小さくできて、力センサ1の小型化が可能となる。
【0097】
そして、この実施形態の力センサ1では、板状部材10に直接的にひずみ受感材11の薄膜を形成すると共に、ブリッジ回路を構成するためのひずみ受感材11間を電気的に接続するための導電パターンも、板状部材10上に形成するようにしたので、冒頭で説明した従来の力センサのように、フレキシブル基板にひずみ受感材を形成して当該フレキシブル基板を起歪体としての板状部材に接着材により接着する必要はない。このため、力センサ1の製造が容易になると共に、従来のような接着材の存在によるひずみの受感感度の低下やばらつき、及び、応力-ひずみ特性の変化、は生じないというメリットがある。また、フレキシブル基板(ポリイミドなど)は、温度特性がダイヤフラムや板状部材とは異なるので、力センサの温度特性に影響を与えていたが、これを考慮する必要がないというメリットもある。
【0098】
また、この実施形態の力センサ1では、ひずみ受感材11は、Cr、N及び不可避不純物からなるCr-N薄膜で構成されているので、ひずみの受感感度に方向性依存がなく、高感度の力センサを実現できると言う効果もある。なお、上述したように、ひずみ受感材11としては、Crおよび不可避不純物からなるCr薄膜であってもよい。
【0099】
そして、この実施形態の力センサ1では、上述したように、円板状の板状部材10を円周方向に分割した扇形領域のそれぞれにおいて、印加される力に応じて当該扇形領域に生じるひずみを検知するブリッジ回路を構成することができ、その複数のブリッジ回路の出力を用いて、印加された力のX軸方向の成分、Y軸方向の成分、Z軸方向の成分を、高感度で検出することができる。
【0100】
出願人は、上述した実施形態の力センサ1の効果を確認するために、従来のひずみ受感材料を用いた力センサを比較例として作成し、両者のひずみ検出についてのシミュレーションを行った。この比較例及びシミュレーション結果について、
図5を参照しながら説明する。
【0101】
従来一般的に用いられているひずみ受感材料の一例としてのCu―Ni合金を用いて、この実施形態の力センサ1と同様の構成を有する力センサ1´を作成すると、
図5(A)のような構成となる。比較を容易にするために、
図5(B)に、この実施形態の力センサ1を示す。
【0102】
図5(A)と
図5(B)とから分かるように、比較例の力センサ1´においては、各扇形領域SX1,SX2,SY1,SY2に配設するひずみ受感材の形状が、この実施形態の力センサ1のひずみ受感材11とは異なる。すなわち、比較例の力センサ1´のひずみ受感材は、図示のようなジグザグ状パターンとされている。なお、説明の簡単のため、
図5(A)及び(B)では、扇形領域SX1を代表して符号を配しており、比較例の力センサ1´においては、この扇形領域SX1に、ジグザグ状パターンのひずみ受感材X1´~X4´が配されている。
【0103】
前述したように、従来一般的に用いられているひずみ受感材料は、Cu―Ni合金に限らず、ひずみ受感方向の異方性が大きく、ストリップ状のひずみ受感材の幅方向の感度がほとんどないために、板状部材10の径方向に長さが変わるようにパターンを配置する必要があった。そして、ひずみ受感材料の抵抗値が低いために、発熱・消費電流の観点から、
図5(A)に示すように、ひずみ受感材X1´~X4´は複数回折り返したジグザグ状パターンとして抵抗値を大きくするようにしているのである。
【0104】
以上のような構成とされた
図5(A)の比較例の力センサ1´と、
図5(B)のこの実施形態の力センサ1に対して、その板状部材10の中心位置に結合された棒状の力受付部22(
図5では図示は省略)を介して、Z軸方向(板状部材10に対して直交する方向)の同じ力を印加したときのシミュレーション結果は、
図5(C)の表に示すようなものとなる。
図5(C)の右端に示す検出歪み量は、力センサ1´において、ひずみ受感材X1´~X4´により扇形領域SX1において検出されるトータルの歪み量である。
【0105】
なお、このシミュレーションにおいては、力センサ1及び力センサ1´の板状部材10の外径は6mm、板状部材10の厚さは0.5mm、力受付部22の径は2mm、板状部材10が固定される周縁部10Eの幅は0.7mmとされている。
【0106】
この
図5(C)の表に示されるように、
図5(A)の比較例の従来パターンの力センサ1´においては、ひずみ受感材X1´~X4´は、板状部材10の径方向のひずみ変化のみを検出し、板状部材10の周方向のひずみ変化は検出できないことが分かる。
【0107】
比較例の力センサ1´においては、ひずみ受感材X1´~X4´は、抵抗値を大きくするためジグザグ状パターンとしているために、検出面積が大きくなってしまい、ピンポイントに集中する最大ひずみを検出することは困難となっている。そして、比較例の力センサ1´では、ひずみ受感材X1´~X4´をフルブリッジ構成などを精度良くパターンとして形成することを考えると、実用的な抵抗値を得ることができず(板状部材10の径が6mmでは100Ω以下)、
図4に示すようなブリッジ回路を構成したときに検出される検出出力は、例えば0.1mV/V以下の値しか得られない。
【0108】
これに対して、この実施形態の力センサ1のひずみ受感材X1~X4においては、板状部材10の径方向のひずみ変化のみならず、板状部材10の周方向のひずみ変化も検出できることが分かる。そして、
図5(C)の右端に示すように、この実施形態の力センサ1の扇形領域SX1において検出されるトータルの歪み量は、比較例の力センサ1´の扇形領域SX1において検出されるトータルの歪み量の2倍以上となっていることが分かる。
【0109】
この実施形態の力センサ1のひずみ受感材X1~X4は、薄膜を微細プロセスでパターン形成することができるCr-N薄膜で構成されるので、高抵抗(微細プロセスで50μm以下の細いパターンが形成可能であり、膜が薄いため面抵抗が高く、kΩオーダーが可能)である。また、この実施形態の力センサ1のひずみ受感材X1~X4によれば、微細パターンにより形成されることと、ストリップ状のパターンの幅方向の感度(横感度)による検出が可能であるので、省スペースで、且つ、ピンポイントのひずみ検出が可能となる。さらに、Cr-N薄膜自体がゲージ率が高いため、同じひずみ値でも、高い出力を得ることができる。
図4に示すようなブリッジ回路を構成したときの出力として、数mV/Vの出力が得られ、高出力の小型の力センサを実現できる。
【0110】
[力センサの変形例]
<ひずみ受感材のパターンの他の例>
上述の実施形態では、ひずみ受感材11は、ストリップ状の導電性材の長手方向を板状部材10の円周方向に沿わせて配置するので、板状部材10を円周方向に分割した扇形領域のそれぞれに配設する場合には、その長手方向の長さは、その扇形領域の角度分よりも短くなって、ストリップ状の導電性材の長手方向の長さが制限され、抵抗値も制限されることになる。
【0111】
この問題を改善した例の力センサ1Aを、
図6に示す。なお、
図6の例の力センサ1Aにおいて、上述した実施形態の力センサ1と同一部分には、同一参照符号を付して、その詳細な説明は省略する。
【0112】
図6に示すように、この例の力センサ1Aにおいては、上述した力センサ1と同様に、4個の扇形領域SX1,SY1,SX2,SY2のそれぞれにおいて、第1のリング状領域RG1と、第2のリング状領域RG2とに、その周方向にそれぞれ2個ずつのひずみ受感材11Aが設けられるが、この例の力センサ1Aにおけるひずみ受感材11Aのパターン形状は、上述の実施形態の力センサ1のひずみ受感材11と異なる。その他の構成は、この例の力センサ1Aと、上述の実施形態の例の力センサ1とは、同様である。なお、
図6においては、ひずみ受感材11Aの部分は、ハッチングを付して示し、ひずみ受感材11Aの間を電気的に接続する導電パターン12Aは、白抜きの線路パターンとして示す。
【0113】
なお、
図6では、説明の便宜上、ひずみ受感材11Aの配設位置は、第1のリング状領域RG1及び第2のリング状領域RG2の半径方向の中央となっているが、実際上は、
図2に示したのと同様に、ひずみの大きさが最大となる位置に配置されているのは勿論である。
【0114】
上述の実施形態の力センサ1と同様に、
図6では、この例の力センサ1Aの板状部材10の一方の面部10aの各扇形領域SX1,SY1,SX2,SY2のそれぞれに設けるひずみ受感材11Aを区別することができるように、参照符号11Aに括弧を付随させ、その括弧内に別の参照符号を付している。以下の説明において、ひずみ受感材11Aを区別する必要がないときには、そのままひずみ受感材11Aと記載し、区別する必要があるときには、括弧内の参照符号を用いて説明することとする。
【0115】
すなわち、
図6に示すように、板状部材10の扇形領域SX1においては、第1のリング状領域RG1に2個のひずみ受感材X1A,X2Aが、第2のリング状領域RG2に2個のひずみ受感材X3A,X4Aが、その周方向にそれぞれ設けられる。また、扇形領域SX2においては、第1のリング状領域RG1に、2個のひずみ受感材X5A,X6Aが、第2のリング状領域RG2に、2個のひずみ受感材X7A,X8Aが、その周方向にそれぞれ設けられる。
【0116】
また、扇形領域SY1においては、第1のリング状領域RG1に2個のひずみ受感材Y1A,Y2Aが、第2のリング状領域RG2に2個のひずみ受感材Y3A,Y4Aが、その周方向にそれぞれ設けられる。また、扇形領域SY2においては、第1のリング状領域RG1に2個のひずみ受感材Y5A,Y6Aが、第2のリング状領域RG2に2個のひずみ受感材Y7A,Y8Aが、その周方向にそれぞれ設けられる。
【0117】
ここで、ひずみ受感材11Aとしては、上述の実施形態のひずみ受感材11と同様に、Crおよび不可避不純物からなるCr薄膜、またはCr、N及び不可避不純物からなるCr-N薄膜で構成する所定幅のストリップ状の導電性材が用いられる。
図6の例においても、ひずみ受感材11Aのストリップ状の導電性材は、Cr-N薄膜を用いている。
【0118】
そして、この例の力センサ1Aにおいては、ひずみ受感材11Aは、
図6に示すように、ストリップ状の導電性材の長手方向を、板状部材10の円周方向に沿った方向とすると共に、半径方向においてジグザグ状に折り返すことで、ストリップ状の導電性材の長手方向の全長を、上述の実施形態の力センサ1のひずみ受感材11より長くするようにしている。
【0119】
すなわち、この例のひずみ受感材11Aは、板状部材10の中心位置Ocを中心とした周方向の複数本のストリップ状の導電性材が、板状部材10の中心位置Ocを中心とした放射方向に配設されると共に、それらの複数本のストリップ状の導電性材の長手方向の端部が互いに順次連結されて1本のストリップ状の導電性材となるように形成されている。
【0120】
この例の場合においても、ひずみ受感材X1A~X8A及びひずみ受感材Y1A~Y8Aの全てを、ひずみが発生していないときの抵抗値が等しくなるように形成している。この例では、ひずみ受感材X1A~X8A及びひずみ受感材Y1A~Y8Aの全てのストリップ状の導電性材の幅と、厚さと、長手方向の全長とを等しくすることで、ひずみが発生していないときの抵抗値が等しくなるようにしている。
【0121】
この場合において、上述した実施形態の力センサ1においては、ひずみ受感材11は、折り返しの無い1本のストリップ状の導電性材で構成されているので、第1のリング状領域RG1に配設するひずみ受感材X1,X2,X5,X6及びY1,Y2,Y5,Y6と、第2のリング状領域RG2に配設するひずみ受感材X3,X4,X7,X8及びY3,Y4,Y7,Y8とでは、
図2(A)及び
図3(A)に示したように、ストリップ状の導電性材の円周方向の長さ(長手方向の)を、等しくするようにした。
【0122】
しかし、この
図6の例では、ひずみ受感材11Aは、板状部材10の半径方向に折り返すように構成されるので、ひずみ受感材11Aのストリップ状の導電性材の長手方向の全長は、折り返し分を含めた長さとすることができる。このため、
図6に示すように、第1のリング状領域RG1に配設するひずみ受感材X1,X2,X5,X6及びY1,Y2,Y5,Y6と、第2のリング状領域RG2に配設するひずみ受感材X3,X4,X7,X8及びY3,Y4,Y7,Y8とでは、円周方向の長さを異ならせることが可能である。この場合に、ひずみ受感材11Aのストリップ状の導電性材の長手方向の全長を等しくして無ひずみ時の抵抗値を等しくするために、
図6に示すように、第1のリング状領域RG1に配設するひずみ受感材X1,X2,X5,X6及びY1,Y2,Y5,Y6と、第2のリング状領域RG2に配設するひずみ受感材X3,X4,X7,X8及びY3,Y4,Y7,Y8とでは、折り返しの回数などが異なる。
【0123】
この
図6の例においても、力センサ1Aの板状部材10の各扇形領域SX1,SY1,SX2,SY2のそれぞれに配設される4個のひずみ受感材11Aが、導体パターン12Aにより、
図6に示すように接続されてブリッジ回路が構成される。例えば扇形領域SX1では、
図4において、ひずみ受感材X1がX1Aに、ひずみ受感材X2がX2Aに、ひずみ受感材X3がX3Aに、ひずみ受感材X4がX4Aに、それぞれ変更されたブリッジ回路が生成される。
【0124】
したがって、
図6の例の力センサ1Aにおいても、出力端子tO(-)に得られる電圧と、出力端子tO(+)に得られる出力電圧との差分の電圧として、印加された力に応じた出力電圧EX1Aが得られる。そして、他の扇形領域SX2,SY1,SY2においても、同様によりブリッジ回路が形成されて、力センサ1に印加された力に応じた出力電圧EX2A、EY1A、EY2Aが得られる。
【0125】
そして、力センサ1Aに印加される力のZ軸方向の力成分についての検出出力電圧EZA、X軸方向の力成分についての検出出力電圧EXA及びY軸方向の力成分についての検出出力電圧EYAは、
EZA=EX1A+EX2A+EY1A+EY2A
EXA=EX1A-EX2A
EYA=EY1A-EY2A
として算出される。
【0126】
この
図6の例の力センサ1Aによれば、ひずみ受感材11Aの長手方向の全長を、当該ひずみ受感材11Aが配される扇形領域の周方向の長さよりも長くすることができるので、ひずみ受感材11Aの抵抗値を大きくすることができ、感度の低下を極力抑えながら、抵抗値を大きくすることで消費電力を低下させることができるという効果を奏する。
【0127】
<その他の変形例>
上述の実施形態では板状部材の10の一方の面部10aにひずみ受感材11が配設されている例を説明してきたが、ひずみ受感材11は面部10aとは反対側の面部10bに配設して形成されていてもよい。その場合は生じるひずみは面部10aとは符号が反対になるだけで、同様の受感状態を示す。
【0128】
また、上述の実施形態では、弾性歪が発生する領域として、リング状領域RG内、第1のリング状領域RG1、第2のリング状領域RG2のそれぞれを取り上げたが、弾性歪が発生する領域としてはこれらの領域に限定されるものではない。例えば、力センサ1の1Aの外周部が固定されいる場合にはこの外周部の領域にも弾性歪が発生しており、板状部材の10の一方の面部10bにおいてこの外周部10Eの領域に発生する弾性歪を検出することもできる。
【0129】
上述の実施形態では、力センサ1,1Aに印加される力のZ軸方向の力成分、X軸方向の力成分及びY軸方向の力成分の3軸方向の力成分に応じたひずみ検出出力を得るようにしたので、板状部材10の一方の面部10aを、4個の扇形領域SX1,SX2,SY1,SY2に分けて、それぞれの領域にひずみ受感材11,11Aを設けるようにしたが、このような構成に限られる訳ではない。
【0130】
例えば、力センサ1,1Aに印加される力のZ軸方向の力成分と、X軸方向の力成分及びY軸方向の力成分の一方との2軸方向の力成分に応じたひずみ検出出力を得るようにする場合には、板状部材10の一方の面部10aをX軸方向に2分割、あるいはY軸方向に2分割することで形成される2個の半円形領域のそれぞれにおいて、第1のリング状領域RG1に2個のひずみ受感材11又は11Aを、第2のリング状領域RG1に2個のひずみ受感材11又は11Aを、それぞれ配設すればよい。
【0131】
ただし、力センサ1,1Aに印加される力のX軸方向の力成分とY軸方向の力成分との2軸方向の力成分に応じたひずみ検出出力を得るようにする場合には、上述した力センサ1と同様にする必要がある。
【0132】
また、力センサ1,1Aに印加される力のZ軸方向の力成分のみを検出する場合において、板状部材10の一方の面部10a上にブリッジ回路を構成する場合には、上述の2軸方向を検出する場合と同様に、2個の半円形領域のそれぞれにおいて、第1のリング状領域RG1に2個のひずみ受感材11又は11Aを、第2のリング状領域RG2に2個のひずみ受感材11又は11Aを、それぞれ配設すればよい。
【0133】
なお、力センサ1,1Aに印加される力のZ軸方向の力成分のみを検出する場合においては、第1のリング状領域RG1にリング状の1個のひずみ受感材11又は11Aを配設すると共に、第2のリング状領域RG2にリング状の1個のひずみ受感材11又は11Aを、それぞれ配設するようにしてもよい。その場合において、当該2個のリング状のひずみ受感材11又は11Aの抵抗値は、互いに等しくなるように形成すると共に、外部に同じ抵抗値のリファレンスの抵抗器を設けて、それらにより、ブリッジ回路を構成することで、力センサ1,1Aに印加される力のZ軸方向の力成分を検出することが可能である。
【0134】
なお、力センサ1,1Aに印加される力のX軸方向の力成分のみを検出する場合には、板状部材10の一方の面部10aを、X軸方向に2分割した2個の半円領域のそれぞれにおいて、第1のリング状領域RG1にひずみ受感材11又は11Aを配設すると共に、第2のリング状領域RG2にひずみ受感材11又は11Aを、それぞれ配設すればよい。
【0135】
同様に、力センサ1,1Aに印加される力のY軸方向の力成分のみを検出する場合には、板状部材10の一方の面部10aを、Y軸方向に2分割した2個の半円領域のそれぞれにおいて、第1のリング状領域RG1にひずみ受感材11又は11Aを配設すると共に、第2のリング状領域RG2にひずみ受感材11又は11Aを、それぞれ配設すればよい。
【0136】
なお、上述の実施形態では、ひずみ受感材11,11Aは、板状部材10の円周方向に沿って、弧形状に形成するようにしたが、直線状に形成してもよい。
【0137】
また、ひずみ受感材11,11Aの長手方向は、板状部材10の第1及び第2のリング状領域RG1及びRG2において、円周方向に正確に沿わせて配設する必要はなく、円周方向に対して交差する方向に配設するようにしてもよい。
【0138】
換言すれば、ひずみ受感材11,11Aの長手方向は、力センサ1,1Aにおける力の印加部である中心位置Ocを中心とした放射方向に直交する方向に沿わせなくてもよく、力の印加部を中心として放射状の方向に生じる歪の方向に対して、例えば時計回り方向を+方向としたとき、+方向側または-方向側に90度の角度まで変位していてもよい。
【0139】
なお、上述の実施形態では、力センサ1,1Aの板状部材10は、SUSで構成したが、板状部材10は、SUSに限らず、その他の弾性材料を用いることができることは言うまでもない。
【0140】
また、ひずみ受感材11,11Aを構成する導電性材は、Crおよび不可避不純物からなるCr薄膜、またはCr、N及び不可避不純物からなるCr-N薄膜に限られるものではなく、ストリップ状の導電性材として、その幅方向にも、ひずみ受感感度を有する材料であればよい。
【0141】
また、力センサの板状部材10の一方の面部10a上に、ひずみ受感材と共に形成する回路は、ブリッジ回路の全部ではなく、一部であってもよい。また、ひずみ受感材と共に形成する回路は、ブリッジ回路に限らず、ひずみ受感材を用いて印加された力に応じたひずみを感知するための回路であれば、どのような回路であってもよい。更には、ブリッジ回路を構成するひずみ受感材のそれぞれは異なる抵抗値であっても良く、ひずみ受感材のそれぞれの抵抗値はブリッジ回路の平衡条件を満たすように設定されれば良い。
【0142】
また、力センサの板状部材10は、円板ではなく、多角形状であってもよく、その場合のリング状領域も、多角形状であってもよい。
【0143】
また、力センサの板状部材10は、一定の厚さとしたが、力の印加部を中心とした放射方向において厚さが変化しているものであってもよい。例えば、上述の実施形態の力センサ1,1Aの場合において、第1のリング状領域RG1及び第2のリング状領域RG2において、ひずみ受感材を配設する部分近傍は、ひずみ変形がし易いように厚さを他の部分よりも薄く構成してもよい。
【符号の説明】
【0144】
1,1A…力センサ、2…力検出部材、10…板状部材、11,11A…ひずみ受感材、12,12A…導体パターン、21…台座部、22…力受付部、RG…リング状領域、RG1…第1のリング状領域、RG2…第2のリング状領域、SX1,SX2,SY1,SY2…扇形領域