(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-12-22
(45)【発行日】2024-01-05
(54)【発明の名称】細菌発酵プロセスからタンパク質富化栄養素サプリメントを得るためのシステム
(51)【国際特許分類】
C12M 1/00 20060101AFI20231225BHJP
C12M 1/04 20060101ALI20231225BHJP
C12M 1/33 20060101ALI20231225BHJP
C12N 1/00 20060101ALI20231225BHJP
C12P 7/00 20060101ALI20231225BHJP
C12P 21/00 20060101ALI20231225BHJP
【FI】
C12M1/00 D
C12M1/04
C12M1/33
C12N1/00 A
C12N1/00 K
C12N1/00 N
C12P7/00
C12P21/00 B
(21)【出願番号】P 2021516528
(86)(22)【出願日】2019-05-21
(86)【国際出願番号】 US2019033396
(87)【国際公開番号】W WO2019226703
(87)【国際公開日】2019-11-28
【審査請求日】2022-04-06
(32)【優先日】2019-05-17
(33)【優先権主張国・地域又は機関】US
(32)【優先日】2018-05-21
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】520314674
【氏名又は名称】ジュペン バイオ (エイチケイ) リミテッド
(74)【代理人】
【識別番号】100094569
【氏名又は名称】田中 伸一郎
(74)【代理人】
【識別番号】100103610
【氏名又は名称】▲吉▼田 和彦
(74)【代理人】
【識別番号】100109070
【氏名又は名称】須田 洋之
(74)【代理人】
【識別番号】100119013
【氏名又は名称】山崎 一夫
(74)【代理人】
【識別番号】100123777
【氏名又は名称】市川 さつき
(74)【代理人】
【識別番号】100111796
【氏名又は名称】服部 博信
(74)【代理人】
【識別番号】100123766
【氏名又は名称】松田 七重
(72)【発明者】
【氏名】セナラトネ ライアン エイチ
(72)【発明者】
【氏名】フルクトル マッキンジー エス
(72)【発明者】
【氏名】プライス アベル
【審査官】山▲崎▼ 真奈
(56)【参考文献】
【文献】特表2000-513233(JP,A)
【文献】特開昭49-048895(JP,A)
【文献】米国特許出願公開第2009/0170184(US,A1)
【文献】特表平09-508024(JP,A)
【文献】米国特許出願公開第2016/0338380(US,A1)
【文献】特表2013-542710(JP,A)
【文献】米国特許出願公開第2016/0281115(US,A1)
【文献】国際公開第2011/149956(WO,A2)
【文献】特表2016-500258(JP,A)
【文献】米国特許出願公開第2012/0316320(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
C12M
C12N
A23
(57)【特許請求の範囲】
【請求項1】
嫌気性細菌を使用した発酵プロセスからタンパク質富化栄養素サプリメントを製造するためのシステムであって、
ガス状基質および培地を発酵液体ブロスに発酵させるための、ガス状基質を発酵容器中へ流し入れるためのガス入口ラインおよび嫌気性細菌を含有する発酵容器中に培地を供給するための液体入口ラインに接続された発酵容器と、
前記発酵容器から発酵液体ブロスの第1の流れを受け取り、前記発酵液体ブロスの第1の流れを、第1の細胞含有懸濁液と第1の細胞非含有浸透液とに分離するための、前記発酵容器の1つまたは複数の第1の出口ラインに接続された第1の細胞セパレータと、
前記第1の細胞非含有浸透液を前記第1の細胞セパレータから受け取り、前記第1の細胞非含有浸透液を含酸素炭化水素質化合物に加工するための、前記第1の細胞セパレータの1つまたは複数の第2の出口ラインに接続された
、蒸留室である加工チャンバーと、
前記発酵容器から発酵液体ブロスの第2の流れを受け取り、前記発酵液体ブロスの第2の流れを、第2の細胞含有懸濁液と第2の細胞非含有浸透液とに分離するための、前記発酵容器の1つまたは複数の第2の出口ラインに接続された第2の細胞セパレータと、
前記第
2の細胞含有懸濁液を受け取り、前記第
2の細胞含有懸濁液の細胞膜を破壊し、ホモジネートを生成するための、前記第
2の細胞セパレータに接続された1つまたは複数の
細胞破壊装置と、
ここで、細胞膜の破壊が、マイクロ流体装置、超音波処理装置、超音波装置、フレンチプレス、およびこれらの組合せからなる群から選択される、1つまたは複数の細胞破壊装置により行われ、
前記1つまたは複数の細胞破壊装置から前記ホモジネートを受け取り、前記ホモジネートを第1のタンパク質含有画分とタンパク質含有細胞残屑画分とに分画するための、前記1つまたは複数の細胞破壊装置の1つまたは複数の第3の出口ラインに接続された1つまたは複数の分画装置と、
を含む、システム。
【請求項2】
前記ガス状基質が、炭素源基質、一酸化炭素(CO)、二酸化炭素(CO2)、水素ガス(H2)、合成ガス、およびこれらの組合せからなる群から選択される1種または複数のガスを含む、請求項1に記載のシステム。
【請求項3】
前記発酵容器が、連続撹拌槽型反応器(CSTR)、固定化細胞反応器(ICR)、トリクルベッド反応器(TBR)、気泡塔、ガスリフト発酵槽、静的ミキサー、容器、配管、塔、ループ型反応器、およびこれらの組合せからなる群から選択される、請求項1に記載のシステム。
【請求項4】
前記第1の細胞含有懸濁液を受け取るための、前記第1の細胞セパレータに接続された細胞含有保持タンク
をさらに含む、請求項1に記載のシステム。
【請求項5】
第1の量の第2の細胞非含有浸透液が前記加工チャンバーへ送達される、請求項
1に記載のシステム。
【請求項6】
第2の量の第2の細胞非含有浸透液が、前記加工チャンバーに接続された細胞非含有保持タンクへ送達される、請求項
1に記載のシステム。
【請求項7】
前記第2の細胞含有懸濁液を受け取るための前記第2の細胞セパレータに接続された細胞含有保持タンクをさらに含み、前記第2の細胞セパレータが、濾過装置、中空糸濾過装置、螺旋巻き濾過装置、限外濾過装置、セラミックフィルター装置、クロスフロー濾過装置、サイズ排除カラム濾過装置、クロスフローフィルターを有する濾過装置、遠心分離装置、およびこれらの組合せからなる群から選択される、請求項
1に記載のシステム。
【請求項8】
前記第1の細胞セパレータが、濾過装置、中空糸濾過装置、螺旋巻き濾過装置、限外濾過装置、セラミックフィルター装置、クロスフロー濾過装置、サイズ排除カラム濾過装置、クロスフローフィルターを有する濾過装置、遠心分離装置、およびこれらの組合せからなる群から選択される、請求項1に記載のシステム。
【請求項9】
前記1つまたは複数の分画装置が、固液分画装置、遠心分離装置、連続遠心分離装置、デカンター遠心分離装置、ディスクスタック遠心分離装置、濾過装置、中空糸濾過装置、螺旋巻き濾過装置、セラミックフィルター装置、クロスフロー濾過装置、サイズ排除装置、1本または一連のサイズ排除カラム、1本または一連のイオン交換カラム、1本または一連の炭素重合体カラム、流入式磁気分別装置、およびこれらの組合せからなる群から選択される、請求項1に記載のシステム。
【請求項10】
前記1つまたは複数の分画装置から得られた1つまたは複数の画分を受け取り、前記1つまたは複数の画分を脱水してタンパク質富化栄養素サプリメントを製造するための、1つまたは複数の脱水チャンバーをさらに含むシステムであって、前記1つまたは複数の画分が、第1のタンパク質含有画分、タンパク質含有細胞残屑画分、およびこれらの組合せからなる群から選択され、前記1つまたは複数の脱水チャンバーが、噴霧乾燥装置、ドラム乾燥機、フリーズドライヤー、凍結乾燥装置、およびこれらの組合せからなる群から選択される、請求項1に記載のシステム。
【請求項11】
嫌気性細菌を使用した発酵プロセスからタンパク質富化栄養素サプリメントを製造するためのシステムであって、
ガス状基質および培地を発酵液体ブロスに発酵させるための、ガス状基質を発酵容器中へ流し入れるためのガスラインおよび嫌気性細菌を含有する発酵容器中に培地を供給するための液体入口ラインに接続された発酵容器と、
発酵液体ブロスの第1の流れを受け取り、発酵液体ブロスの第1の流れを第1の細胞含有懸濁液と第1の細胞非含有浸透液とに分離するための、前記発酵容器の1つまたは複数の第1の出口ラインに接続された第1の細胞セパレータと、
前記第1の細胞非含有浸透液を受け取るための、前記第1の細胞セパレータの1つまたは複数の第2の出口ラインに接続された細胞非含有保持タンクと、
前記第1の細胞非含有浸透液を前記細胞非含有保持タンクから受け取り、前記第1の細胞非含有浸透液を含酸素炭化水素質化合物に加工するための、前記細胞非含有保持タンクの1つまたは複数の第3の出口ラインに接続された
、蒸留室である加工チャンバーと、
前記発酵容器から発酵液体ブロスの第2の流れを受け取り、前記発酵液体ブロスの第2の流れを、第2の細胞含有懸濁液と第2の細胞非含有浸透液とに分離するための、前記発酵容器の1つまたは複数の第2の出口ラインに接続された第2の細胞セパレータと、
前記第
2の細胞含有懸濁液を受け取り、前記第
2の細胞含有懸濁液中に含まれる細胞の細胞膜を破壊し、ホモジネートを生成するための、1つまたは複数の細胞破壊装置と、
ここで、細胞膜の破壊が、マイクロ流体装置、超音波処理装置、超音波装置、フレンチプレス、およびこれらの組合せからなる群から選択される、1つまたは複数の細胞破壊装置により行われ、
前記1つまたは複数の細胞破壊装置から前記ホモジネートを受け取り、前記ホモジネートを第1のタンパク質含有画分とタンパク質含有細胞残屑画分とに分画するための、1つまたは複数の細胞破壊装置の1つまたは複数の第4の出口ラインに接続された1つまたは複数の分画装置と、
を含む、システム。
【請求項12】
第1の量の前記第2の細胞非含有浸透液が前記発酵容器へ送達される、請求項
11に記載のシステム。
【請求項13】
第2の量の前記第2の細胞非含有浸透液が前記細胞非含有保持タンクへ送達される、請求項
11に記載のシステム。
【請求項14】
第3の量の前記第2の細胞非含有浸透液が前記加工チャンバーへ送達される、請求項
11に記載のシステム。
【請求項15】
前記第2の細胞含有懸濁液を受け取るための前記第2の細胞セパレータに接続された細胞含有保持タンク
をさらに含む、請求項
11に記載のシステム。
【請求項16】
嫌気性細菌を使用した発酵プロセスからタンパク質富化栄養素サプリメントを製造するためのシステムであって、
ガス状基質および培地を発酵液体ブロスに発酵させるための、ガス状基質を発酵容器中へ流し入れるためのガス入口ラインおよび発酵容器中に培地を供給するための液体入口ラインに接続された発酵容器と、
前記発酵容器から発酵液体ブロスの第1の流れを受け取り、前記発酵液体ブロスの第1の流れを、第1の細胞含有懸濁液と第1の細胞非含有浸透液とに分離するための、前記発酵容器の1つまたは複数の第1の出口ラインに接続された第1の細胞セパレータと、
前記第1の細胞非含有浸透液を前記第1の細胞セパレータから受け取り、前記第1の細胞非含有浸透液を含酸素炭化水素質化合物に加工するための、前記第1の細胞セパレータの1つまたは複数の第2の出口ラインに接続された
、蒸留室である加工チャンバーと、
第2の発酵液
体ブロスの第2の流れを前記発酵容器から受け取り、前記第2の発酵液
体ブロスの前記第2の流れを第2の細胞含有懸濁液と第2の細胞非含有浸透液とに分離するための、前記発酵容器に接続された第2の細胞セパレータと、
前記第2の細胞含有懸濁液を受け取るための前記第2の細胞セパレータに接続されている細胞含有保持タンクと、
前記第2の細胞含有懸濁液を受け取り、前記第2の細胞含有懸濁液のホモジネートを生成するための、1つまたは複数の細胞破壊装置と、
ここで、細胞膜の破壊が、マイクロ流体装置、超音波処理装置、超音波装置、フレンチプレス、およびこれらの組合せからなる群から選択される、1つまたは複数の細胞破壊装置により行われ、
前記ホモジネートを受け取り、前記ホモジネートを第1のタンパク質含有画分とタンパク質含有細胞残屑画分とに分離するための、前記1つまたは複数の細胞破壊装置に接続された1つまたは複数の分画装置と、
を含む、システム。
【請求項17】
前記細胞含有保持タンクが、前記第2の細胞含有懸濁液を受け取り、前記第2の細胞含有懸濁液を1種または複数の添加剤で処理して、前処理された細胞懸濁液を生成するための前処理チャンバーとして機能する、請求項
16に記載のシステム。
【請求項18】
前記1種または複数の添加剤が、界面活性剤、洗剤、EDTA、
ポリソルベート20、
オクチルフェノールエチレンオキシド縮合物、ドデシル硫酸ナトリウム、CHAPS、酵素、プロテアーゼ、リゾチーム、ベンゾナーゼ、ヌクレアーゼ、pH調整剤、およびこれらの組合せからなる群から選択される、請求項
17に記載のシステム。
【請求項19】
前記1つまたは複数の細胞破壊装置が、前記細胞含有保持タンクに接続され、前記前処理された細胞懸濁液を前記保持タンクから受け取る、請求項
17に記載のシステム。
【請求項20】
前記第1の細胞セパレータの1つまたは複数の第3の出口が、前記発酵容器に接続され、前記第1の細胞含有懸濁液が前記第1の細胞セパレータから前記発酵容器へ送達される、請求項
16に記載のシステム。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願の相互参照
本出願は、2018年5月21日に出願された米国特許仮出願第62/674,604号および2019年5月17日に出願された米国特許出願第16/416,133号の利益を主張するものであり、上記の出願はすべて、参照により本明細書に組み込まれる。
【背景技術】
【0002】
微生物発酵は、微生物が炭素基質を与えられると生じ、微生物は炭素基質を利用して様々な産物に加工することができ、こうした産物を回収、分離、および精製することができる。選択される炭素基質は、使用する微生物のタイプおよびその代謝経路によって決まり、使用する微生物のタイプは、所望の産物のタイプをもたらす能力を有する微生物菌株の識別および選択に基づく。炭素基質としては、一酸化炭素(CO)、二酸化炭素(CO2)、メタノール、メチル、エタノール、n-アルカン、グルコース、セルロース、バガス、糖蜜、および亜硫酸廃液を挙げることができる。細菌発酵によって生成される有用な産物および物質としては、エタノール、乳酸、アセテート、ならびに他のバイオ燃料および化学物質が挙げられ、これらは、エネルギー源および様々な追加の用途として使用することができる。
【0003】
例として、嫌気性微生物(酢酸生成微生物など)による細菌発酵は、一酸化炭素(CO)、水素ガス(H2)、および/または二酸化炭素(CO2)などのガス状基質の発酵を通して、発酵産物(例えば、エタノール、ブタノール、アセテート、ブチレート、酪酸、2,3-ブタンジオール、および他の関連産物)を生成することができる。エタノールおよびブタノールは、多くの場合、輸送に関連する液体燃料として使用され、一方、アセテートおよび2,3-ブタンジオールは、化学産業において使用される。微生物発酵に使用されるバイオエタノール生産アセトゲンの例としては、クロストリジウム属およびアセトバクテリウム属に由来するものが挙げられる。例えば、米国特許第5,173,429号は、合成ガスからエタノールおよびアセテートを生成するClostridium Ijungdahlii ATCC番号49587の嫌気性微生物を記載する。米国特許第5,807,722号は、Clostridium Ijungdahlii ATCC番号55380を使用して、廃ガスを有機酸およびアルコールに変換するための方法および装置を記載する。米国特許第6,136,577号は、Clostridium Ijungdahlii ATCC番号55988および55989を使用して、廃ガスをエタノールに変換するための方法および装置を記載する。
【0004】
発酵産物に加えて、大規模の微生物発酵は、大量の微生物発酵培養ブロスも生成し、死滅細胞または不活性細胞の大部分の除去を必要とし得る。過剰のまたは細胞除去された培養ブロスから微生物バイオマスへの過剰細菌細胞の回収は、動物用飼料および/または動物用飼料の栄養素もしくはサプリメントのための供給原料として有用な単細胞タンパク質(SCP)ならびにタンパク質、アミノ酸、および炭水化物源として再利用するための他の成分の生成につなげることができる。すべての動物は、最適成長、繁殖、授乳、および維持に必要なタンパク質の構成要素であるアミノ酸を必要とする。ウシの小腸内で吸収されるアミノ酸は、第一胃で消化されるタンパク質に由来し、一般的に、その消化系は、ウシが自己生成できない10種の必須アミノ酸(アルギニン、ヒスチジン、イソロイシン、ロイシン、リジン、メチオニン、フェニルアラニン、トレオニン、トリプトファン、およびバリンなど)を供給しなければならない。理論的には、1種が不足すると、他種の利用を制限し得るため、吸収される各必須アミノ酸の相対的比率は、ウシが必要とするアミノ酸供給に正確に一致すると考えられる。
【0005】
しかしながら、単細胞タンパク質を標的とする本方法は、動物用飼料または水産養殖に使用するための全細胞バイオマスとして微生物細胞を直接取り入れることが多い。微生物発酵プロセスにおいて、発酵ブロスは、細菌細胞および細胞残屑を含む。これらの方法は、2つを区別せず、動物または水産養殖生物(例えば、魚またはエビなど)に有害であり得るバイオマス内容物を含有することが多い。例えば、微生物全細胞バイオマスは、消化に適さない高含有量の核酸または適切に消化することができない他の内容物を含有し得る。これらの従来の方法のほとんどは、動物用飼料に全細胞バイオマスを取り入れる前に、追加の細胞破壊または細胞分裂技法による全細胞バイオマスの加工を行わない。加えて、細菌発酵から細菌タンパク質を回収する本方法は、栄養に関連した目的に適した十分に高いタンパク質含有量を達成しない。細菌発酵プロセスからタンパク質富化サプリメントを得るための方法およびシステム、ならびにそのような任意の栄養素サプリメントおよび動物用飼料の組成物が必要とされている。
【発明の概要】
【0006】
本発明の実施形態は、無数の細胞破壊およびタンパク質分画および精製技法を用いた嫌気性細菌発酵プロセス後の微生物細胞バイオマスに由来するタンパク質富化栄養素サプリメントおよび/または動物用飼料を製造して得るための方法、システム、および組成物を提供する。タンパク質富化栄養素サプリメントは、直接供給原料として、またはヒトもしくは動物用のサプリメントとして他の栄養素と一緒に使用することができる。
一実施形態において、発酵プロセスからタンパク質含有部分を製造する細菌発酵システムが提供され、これは、1つまたは複数の発酵容器、1つまたは複数の細胞セパレータ、1つまたは複数の加工チャンバー、1つまたは複数の細胞破壊装置、および1つまたは複数の分画装置を含む。別の実施形態では、本発明は、様々な動物およびヒトが摂取するために有用な用途を有する嫌気性細菌を使用した発酵プロセスから生成されるタンパク質富化栄養素サプリメントの組成物をさらに提供する。
【0007】
さらに別の実施形態において、嫌気性細菌発酵によって得られる微生物細胞バイオマスからタンパク質富化画分を抽出し、タンパク質富化画分を栄養素サプリメントとして使用するための方法を提供する。一態様において、方法は、液体培地を含有する発酵容器中で、嫌気性細菌によって固体、液体またはガス状基質を発酵することと、発酵容器から、第1の濃度の第1の嫌気性細菌細胞のバッチを含有する発酵液体ブロスのある程度の量を得ることと、発酵液体ブロスからの嫌気性細菌の細胞を、細胞非含有浸透液と、第2の濃度の第2の嫌気性細菌細胞のバッチを含有する細胞含有懸濁液とに分離することと、を含む。一例において、第2のバッチ中の嫌気性細菌細胞の第2の濃度は、第1のバッチ中の嫌気性細菌細胞の第1の濃度より高い。方法は、細胞含有懸濁液が得られたら、細胞含有懸濁液中の嫌気性細菌細胞の細胞膜を破壊してホモジネートを生成することと、1つまたは複数の分画装置を使用して、ホモジネートを第1のタンパク質含有画分とタンパク質含有細胞残屑画分とに分画することと、第1のタンパク質含有画分を得ることと、をさらに含む。
一態様において、第1のタンパク質含有画分および/またはタンパク質含有細胞残屑画分を加工して、タンパク質富化栄養素サプリメントとして製造することができる。別の態様において、第1のタンパク質含有画分を、タンパク質含有量が約10%以上、例えば40%以上、50%以上、60%以上、70%以上、または80%以上、90%以上、例えば約10%~約80%、または約10%~約95%、例えば約10%~約98%のタンパク質富化栄養素サプリメントとして製造する。
【0008】
さらに別の態様において、本発明の方法は、嫌気性細菌細胞を含有する細胞含有懸濁液を細胞含有保持タンク中に保持することと、細胞含有懸濁液を細胞含有保持タンクから、ある送達速度で破壊装置へ送達することと、をも含んでよい。細胞含有保持タンクは、細胞含有懸濁液の貯蔵容器または前処理チャンバーとして機能することもできる。一例において、細胞含有保持タンクを使用して、嫌気性細菌細胞を含有する細胞含有懸濁液を、細胞含有保持タンクに接続された入口ラインに通して供給される1種または複数の添加剤で処理する前処理工程を実施する。添加剤の例としては、これらに限定されないが、界面活性剤、洗剤、EDTA、Tween-20、Triton X-100、ドデシル硫酸ナトリウム、CHAPS、酵素、プロテアーゼ、リゾチーム、ベンゾナーゼ、ヌクレアーゼ、pH調整剤、およびこれらの組合せが挙げられる。
別の態様において、本発明の方法は、嫌気性細菌細胞の細胞膜を破壊する前に、嫌気性細菌細胞を含有する細胞含有懸濁液を1種または複数の添加剤で処理することをさらに含む。あるいは、方法は、細胞含有細胞残屑画分から第1のタンパク質含有画分を分離する前に、嫌気性細菌細胞を含有する細胞含有懸濁液を1種または複数の添加剤で処理することを含む。
【0009】
さらに別の態様において、本発明の方法は、嫌気性細菌の細胞を含有する細胞含有懸濁液を濃縮して、第2の細胞含有懸濁液にすることをさらに含んでもよい。一例では、第2の細胞含有懸濁液を細胞含有保持タンクへ送達し、その中で濃縮および/または貯蔵される。別の例では、保持タンク中の第2の細胞含有懸濁液は、嫌気性細菌細胞を含有する第2の細胞含有懸濁液を、細胞含有保持タンクに接続された入口を通して供給される1種または複数の添加剤で処理する前処理工程を経る。次いで、第2の細胞含有懸濁液を保持タンクから破壊装置へ送達する。破壊装置は、第2の細胞含有懸濁液中の嫌気性細菌細胞の細胞膜を破壊し、ホモジネートを生成する。次いで追加のタンパク質含有画分を、ホモジネート中の細胞含有細胞残屑画分から分離する。
【0010】
さらに別の態様において、本発明の方法は、第1のタンパク質含有画分を1つまたは複数の分画装置へ送達することと、1つまたは複数の分画装置を使用して、第1のタンパク質含有画分を、第2のタンパク質含有画分および/または第3以上のタンパク質含有画分に分画することと、第2および第3以上のタンパク質含有画分を収集することと、をさらに含んでもよい。分画装置の例としては、これらに限定されないが、固液分画装置、遠心分離装置、連続遠心分離装置、デカンター遠心分離装置、ディスクスタック遠心分離装置、濾過装置、中空糸濾過装置、螺旋巻き濾過装置、セラミックフィルター装置、クロスフロー濾過装置、サイズ排除装置、1本または一連のサイズ排除カラム、1本または一連のイオン交換カラム、1本または一連の炭素重合体カラム、流入式磁気分別装置、限外濾過装置、1本または一連のアフィニティクロマトグラフィーカラム、1本または一連のゲル濾過カラム、およびこれらの組合せが挙げられる。
【0011】
一実施形態において、第1のタンパク質含有画分を濾過装置へ送達して、濾過装置を通して濾過し、保持液画分と濾過液画分とに分画することによって濾過液画分をタンパク質富化栄養素サプリメントとして製造することができる。別の実施形態では、保持液画分をタンパク質富化栄養素サプリメントとして製造する。さらに別の実施形態において、第1のタンパク質含有画分を遠心分離機へ送達し、遠心分離によって上清タンパク質含有画分とペレットタンパク質含有画分とに分画することで、上清タンパク質含有画分および/またはペレットタンパク質含有画分をタンパク質富化栄養素サプリメントとして製造することができる。
【0012】
本発明の別の実施形態は、嫌気性細菌発酵プロセスからタンパク質富化栄養素サプリメントを製造するための細菌発酵システムを提供する。細菌発酵システムは、ガス状基質および培地を発酵液体ブロスに発酵させるための、ガス状基質を発酵容器中へ流し入れるためのガス入口ラインおよび嫌気性細菌を含有する発酵容器中に培地を供給するための液体入口ラインに接続された発酵容器と、発酵容器から発酵液体ブロスの第1の流れを受け取り、発酵液体ブロスの第1の流れを、第1の細胞含有懸濁液と第1の細胞非含有浸透液とに分離するための、発酵容器の第1の出口ラインに接続された1つまたは複数の細胞セパレータと、第1の細胞非含有浸透液を第1の細胞セパレータから受け取り、第1の細胞非含有浸透液を含酸素炭化水素質化合物(oxygenated hydrocarbonaceous compound)に加工するための、第1の細胞セパレータの第2の出口ラインに接続された加工チャンバーと、を含む。
細菌発酵システムは、第1の細胞含有懸濁液を受け取り、第1の細胞含有懸濁液中に含まれる細胞の細胞膜を破壊し、ホモジネートを生成するための、1つまたは複数の細胞破壊装置と、1つまたは複数の細胞破壊装置からホモジネートを受け取り、ホモジネートを第1のタンパク質含有画分とタンパク質含有細胞残屑画分とに分画するための、1つまたは複数の細胞破壊装置の出口ラインに接続された1つまたは複数の分画装置と、をさらに含む。
【0013】
一実施形態において、細胞の破壊は、マイクロ流体装置によって達成される。別の実施形態では、細胞の破壊は、超音波発生装置を使用して達成される。さらに別の実施形態では、細胞の破壊は、5,000~25,000ポンド/平方インチ(psi)の範囲の加工圧力でマイクロ流体装置を使用して達成される。さらに別の実施形態では、細胞の破壊は、15,000~20,000ポンド/平方インチ(psi)の範囲の加工圧力でマイクロ流体装置を使用して達成される。さらに別の実施形態では、細胞の破壊は、15,000ポンド/平方インチ(psi)の加工圧力でマイクロ流体装置を使用して達成される。
一態様において、細菌発酵システムは、発酵容器および破壊装置に接続された第1の細胞セパレータを含む。第1の細胞セパレータは、第1の細胞濃度の発酵液を発酵容器から受け取り、発酵液を細胞非含有浸透液と第2の細胞濃度の細胞含有懸濁液とに分離する。別の態様において、細菌発酵システムは、ある量の第1の細胞含有懸濁液を受け取るために第1の細胞セパレータに接続された細胞含有保持タンクをさらに含む。さらに別の態様において、細菌発酵システムは、第2の発酵液体ブロス流を発酵容器から受け取り、第2の発酵液体ブロス流を第2の細胞含有懸濁液と第2の細胞非含有浸透液とに分離するための、発酵容器の第4の出口ラインに接続された第2の細胞セパレータをさらに含む。
【0014】
1種または複数の細胞含有懸濁液を加工し、破壊してホモジネートにした後、1つまたは複数の分画装置によってホモジネートを1つまたは複数のタンパク質含有画分と1つまたは複数のタンパク質含有細胞残屑画分とに分画する。加えて、1種または複数の細胞含有懸濁液を、1つまたは複数の細胞セパレータの1つまたは複数の出口から破壊装置および/または細胞含有保持タンクへ送達することができ、細胞含有保持タンクは、1種または複数の細胞含有懸濁液の保持、収容または濃縮のいずれかができ、1種または複数の細胞含有懸濁液を、破壊装置または1つまたは複数の分画装置へ、ある送達速度で、さらなる加工のために送達する。
【0015】
別の態様において、嫌気性細菌によるガス状基質の発酵の後、第1の細胞セパレータは、細菌細胞を含有する第1の発酵液体ブロスの第1の流れを受け取る。発酵容器に接続された第2の細胞セパレータは、細菌細胞を含有する第2の発酵液体ブロスの第2の流れを受け取る。第2の細胞セパレータは、第2の発酵液体ブロスを、第2の細胞非含有浸透液と、嫌気性細菌細胞を含有する第2の細胞含有懸濁液とに分離する。この態様において、破壊装置を使用して、第2の細胞含有懸濁液を第2の細胞セパレータから受け取り、第2の細胞含有懸濁液の細胞膜を破壊し、ホモジネートを生成する。別の態様において、保持タンクは、第2の細胞含有懸濁液を第2の細胞セパレータから受け取り、第2の細胞含有懸濁液を破壊装置へ送達する。
【0016】
さらに別の態様において、細菌発酵システムは、細胞含有懸濁液中の嫌気性細菌細胞の細胞膜を破壊するための1つまたは複数の破壊装置を設ける。破壊装置の例としては、これらに限定されないが、マイクロ流体装置、超音波処理装置(sonication device)、超音波装置(ultrasonic device)、機械的破砕装置、フレンチプレス、冷凍器、加熱器、熱交換器、蒸留塔、プロセスの流れおよび保持タンクの温度を上昇させる装置、低温殺菌装置、紫外線殺菌装置、ガンマ線殺菌装置、反応器、ホモジナイザー、およびこれらの組合せが挙げられる。
別の実施形態において、本発明は、酢酸生成菌培養物を使用する発酵プロセスから生成されるタンパク質富化栄養素サプリメントの組成物である。一態様において、組成物は、ホモジネートから分画されるタンパク質含有画分を含み、該ホモジネートは、嫌気性細菌の細胞を含有する細胞含有懸濁液を破壊して得られ、該細胞含有懸濁液は、嫌気性細菌によるガス状基質の発酵中に発酵容器から送り出された発酵液体ブロスから得られ、発酵液体ブロスから得られた嫌気性細菌の細胞は、細胞含有懸濁液と細胞非含有浸透液とに分離される。別の態様において、本発明の組成物は、ホモジネートから分画されたタンパク質含有細胞残屑画分を含む。
【0017】
さらに別の態様において、本発明の組成物は、発酵由来タンパク質を含み、該発酵由来タンパク質は、液体培地中の固体、液体またはガス状基質を、天然のまたは遺伝子組み換えされたクロストリジウム属、アセトバクテリウム属、ブチリバクテリウム属、ユーバクテリウム属、およびこれらの類似の変異体の酢酸生成菌で発酵して得られる。基質は、限定されないが、炭水化物、カルボン酸、メタノール、メタン、一酸化炭素(CO)、二酸化炭素(CO2)、水素(H2)ガス、窒素ガス(N2)、合成ガス、およびこれらの組合せを含む1種または複数の液体、固体、またはガスで構成される。一実施形態において、発酵は、天然または非天然のメタン資化細菌(methanotrophic bacteria)を使用して達成される。
【0018】
さらに別の実施形態として、本発明の組成物は、第1の量のホモジネートのタンパク質含有画分と第2の量のホモジネートのタンパク質含有細胞残屑画分から分画された精製タンパク質産物を含み、該ホモジネートは、酢酸生成菌培養物の細胞を含有する細胞含有懸濁液を破壊して得られ、該細胞含有懸濁液は、酢酸生成菌培養物を使用したガス状基質の発酵の間に発酵容器から送り出される発酵液から得られる。
【0019】
したがって、上述の本発明の特徴、より具体的には上記で簡潔にまとめた本発明の説明を詳細に理解することができるように、実施形態を参照してよく、そのいくつかは、添付の図面に例示されている。しかしながら、添付の図面は、本発明の典型的な実施形態のみを例示するものであり、したがって、その範囲を限定するものとはみなさず、他の同等に有効な実施形態が認められ得ることに留意されたい。
【図面の簡単な説明】
【0020】
【
図1A】嫌気性細菌の培養物をその中に有する発酵プロセスから得た細胞含有懸濁液を加工し、本発明の1つまたは複数の実施形態によるタンパク質富化栄養素サプリメントとして第1のタンパク質含有部分および/またはタンパク質含有細胞残屑部分を得る方法のフローチャートを示す。
【
図1B】嫌気性細菌の培養物をその中に有する発酵プロセスから得た細胞含有懸濁液を加工し、本発明の1つまたは複数の実施形態によるタンパク質富化栄養素サプリメントとして第1のタンパク質含有部分および/またはタンパク質含有細胞残屑部分を得る別の方法のフローチャートを示す。
【
図2A】嫌気性細菌の培養物をその中に有する発酵プロセスから得た細胞含有懸濁液を加工し、本発明の1つまたは複数の実施形態によるタンパク質富化栄養素サプリメントとして第2のタンパク質含有部分を得る方法のフローチャートを示す
【
図2B】嫌気性細菌の培養物をその中に有する発酵プロセスから得た細胞含有懸濁液を加工し、本発明の1つまたは複数の実施形態によるタンパク質富化栄養素サプリメントとして第3のタンパク質含有部分を得る別の方法のフローチャートを示す。
【
図3A】嫌気性細菌の培養物を使用した発酵プロセスから細胞含有懸濁液および1種または複数の含酸素炭化水素質化合物を製造するための細菌発酵システム300Aであって、本発明の1つまたは複数の実施形態による、1つまたは複数の細胞セパレータ、1つまたは複数の加工チャンバー、および任意の1つまたは複数の脱水チャンバーを含む細菌発酵システム300Aの概略図を示す。
【
図3B】嫌気性細菌の培養物を使用した発酵プロセスから1種または複数の細胞含有懸濁液および1種または複数の含酸素炭化水素質化合物を製造するための細菌発酵システム300Bであって、本発明の1つまたは複数の実施形態による、2つの細胞セパレータ、無細胞保持タンク、加工チャンバー、および任意の脱水チャンバーを含む細菌発酵システム300Bの概略図を示す。
【
図4A】本発明の1つまたは複数の実施形態による嫌気性細菌の培養物を使用した発酵プロセスのための細菌発酵システム400Aであって、1つまたは複数の細胞セパレータ、1つまたは複数の加工チャンバー、1つまたは複数の破壊装置、1つまたは複数の分画装置、および1つまたは複数の脱水チャンバーを有する細菌発酵システム400Aの概略図を示す。
【
図4B】本発明の1つまたは複数の実施形態による嫌気性細菌の培養物を使用した発酵プロセスのための細菌発酵システム400Bであって、2つの細胞セパレータ、1つの加工チャンバー、1つの破壊装置、2つの分画装置および3つの脱水チャンバーを有する細菌発酵システム400Bの概略図を示す。
【
図4C】本発明の1つまたは複数の実施形態による嫌気性細菌の培養物を使用した発酵プロセスのための細菌発酵システム400Cであって、1つの細胞セパレータ、1つの細胞非含有保持タンク、1つの加工チャンバー、1つの破壊装置、1つの分画装置、および2つ以上の脱水チャンバーを有する細胞発酵システム400Cの概略図を示す。
【
図4D】本発明の1つまたは複数の実施形態による嫌気性細菌の培養物を使用した発酵プロセスのための細菌発酵システム400Dであって、1つの細胞セパレータ、1つの細胞非含有保持タンク、1つの加工チャンバー、1つの破壊装置、2つの分画装置、および任意の追加の脱水チャンバーを有する細胞発酵システム400Dの概略図を示す。
【
図4E】本発明の1つまたは複数の実施形態による嫌気性細菌の培養物を使用した発酵プロセスのための細菌発酵システム400Eであって、2つの細胞セパレータ、1つの細胞非含有保持タンク、1つの加工チャンバー、1つの破壊装置、2つの分画装置、および任意の3つの脱水チャンバーを有する細胞発酵システム400Eの概略図を示す。
【
図4F】本発明の1つまたは複数の実施形態による嫌気性細菌の培養物を使用した発酵プロセスのための細菌発酵システム400Fであって、1つの細胞セパレータ、1つの細胞非含有保持タンク、1つの加工チャンバー、1つの細胞含有保持タンク、1つの破壊装置、2つの分画装置、および任意の3つの脱水チャンバーを有する細胞発酵システム400Fの概略図を示す。
【
図4G】本発明の1つまたは複数の実施形態による嫌気性細菌の培養物を使用した発酵プロセスのための細菌発酵システム400Gであって、2つの細胞セパレータ、1つの細胞非含有保持タンク、1つの加工チャンバー、1つの細胞含有保持タンク、1つの破壊装置、2つの分画装置、および任意の3つの脱水チャンバーを有する細胞発酵システム400Gの概略図を示す。
【
図4H】本発明の1つまたは複数の実施形態による嫌気性細菌の培養物を使用した発酵プロセスのための細菌発酵システム400Hであって、2つの細胞セパレータ、1つの細胞非含有保持タンク、1つの加工チャンバー、1つの破壊装置、2つの分画装置、および任意の3つの脱水チャンバーを有する細胞発酵システム400Hの概略図を示す。
【
図5A】本発明の1つまたは複数の実施形態による、嫌気性細菌発酵プロセスから収集された細胞を破壊し、ホモジネートから1つまたは複数のタンパク質含有画分を得るための例示的な細菌発酵システムの概略図である。
【
図5B】本発明の1つまたは複数の実施形態による、嫌気性細菌発酵プロセスから収集された細胞を破壊し、ホモジネートから1つまたは複数のタンパク質含有画分を得るための別の例示的な細菌発酵システムの概略図である。
【
図5C】本発明の1つまたは複数の実施形態による、嫌気性細菌発酵プロセスから収集された細胞を破壊し、ホモジネートから1つまたは複数のタンパク質含有画分を得るための細菌発酵システムの別の例の概略図である。
【
図5D】本発明の1つまたは複数の実施形態による、嫌気性細菌発酵プロセスから収集された細胞を破壊し、ホモジネートから1つまたは複数のタンパク質含有画分を得るための細菌発酵システムのさらに別の例の概略図である。
【
図5E】本発明の1つまたは複数の実施形態による、嫌気性細菌発酵プロセスから収集された細胞を破壊し、ホモジネートから1つまたは複数のタンパク質含有画分を得るための別の例示的な細菌発酵システムの概略図である。
【
図6】本発明の1つまたは複数の実施形態による、嫌気性細菌発酵プロセスから収集された細胞を破壊し、ホモジネートから1つまたは複数のタンパク質含有画分を得るための細菌発酵システムのさらに別の例の概略図である。
【
図7A】本発明の1つまたは複数の実施形態による、細胞含有懸濁液中の嫌気性細菌細胞を破壊してホモジネートを得る前の細胞含有懸濁液の一例の電子顕微鏡写真を示す。
【
図7B】本発明の1つまたは複数の実施形態による、細菌発酵液体ブロスの細胞含有懸濁液中の嫌気性細菌細胞を破壊した後に破壊装置から得られたホモジネートの一例の電子顕微鏡写真を示す。
【
図7C】本発明の1つまたは複数の実施形態による、破壊装置内で破壊した後の細胞含有懸濁液中の嫌気性細菌細胞を示す電子顕微鏡写真のさらに別の例である。
【
図7D】本発明の1つまたは複数の実施形態による、破壊装置によって高圧で破壊した後の細胞含有懸濁液中の嫌気性細菌細胞の破壊された細胞膜を示すホモジネートの電子顕微鏡写真の別の例である。
【
図7E】本発明の1つまたは複数の実施形態による、本発明の1つまたは複数の実施形態による、破壊装置によって非常に高圧で破壊した後の細胞含有懸濁液中の嫌気性細菌細胞の破壊された細胞膜を示すホモジネートの電子顕微鏡写真のさらに別の例である。
【
図8A】本発明の1つまたは複数の実施形態による、一例の細胞含有懸濁液中の嫌気性細菌細胞を破壊した後に破壊装置から得られるホモジネート中の一例の可溶性タンパク質の濃度のグラフを示す。
【
図8B】本発明の1つまたは複数の実施形態による、別の例の細胞含有懸濁液中の嫌気性細菌細胞の細胞膜を破壊した後に破壊装置から得られる別の例の可溶性タンパク質の濃度の別のグラフを示す。
【発明を実施するための形態】
【0021】
本発明の実施形態は、無数の細胞破壊ならびにタンパク質の分画および精製技法を用いた嫌気性細菌発酵プロセスの後、微生物細胞バイオマス由来のタンパク質富化栄養素サプリメントおよび/または動物用飼料を製造して得るための方法、システムおよび組成物を提供する。より具体的には、本発明は、発酵プロセスから微生物バイオマスを分離し、微生物バイオマスの細胞を破壊してホモジネートを得、ホモジネートから1つまたは複数のタンパク質含有画分を分画および精製することによって、1つまたは複数のタンパク質含有画分をさらに加工して、動物およびヒトの両方より摂取可能な栄養素サプリメントとなる組成物とすることができる方法に関する。タンパク質富化栄養素サプリメントは、供給原料として直接使用しても、ヒトまたは動物用のサプリメントとしての他の栄養素と一緒に使用してもよい。
【0022】
タンパク質富化栄養素サプリメントおよび動物用飼料サプリメントは、合成ガス、炭素源基質、一酸化炭素(CO)含有ガス、二酸化炭素(CO2)、水素ガス(H2)、合成ガス、およびこれらの組合せなどの1種または複数のガス状基質を使用する細菌発酵システムにおける発酵プロセス後に加工して、1つまたは複数のタンパク質含有画分から得ることができる。本発明は、動物およびヒトによる摂取に有用な用途を有するタンパク質富化栄養素サプリメントの組成物をさらに提供する。
【0023】
I.発酵由来タンパク質を生成するための微生物バイオマスの加工
細菌発酵プロセスは、一般的に、合成ガスまたは一酸化炭素(CO)含有ガス状基質などのガス状基質を、特に嫌気性細菌または酢酸生成細菌などの細菌によって発酵することと、二酸化炭素(CO2)、エタノール、ブタノール、酪酸、酢酸などを含む発酵製品を生成することと、を含む。さらに重要なことには、嫌気性細菌発酵プロセス後、大量の微生物バイオマスが得られる。大量の微生物バイオマスは、細菌発酵プロセスの間またはその後に除去することができる。細胞除去が完了した際、または細菌発酵プロセスの間、このような大量の微生物バイオマスは、他の用途に有用であり得る。しかしながら、例えば栄養素サプリメントまたは動物用供給原料として有用になるような高品質(すなわち、有害物質または汚染物質がない状態)になるまで発酵由来タンパク質を大量に抽出するには、さらに複雑な加工が必要となる。具体的には、本発明は、このような発酵由来タンパク質を細菌発酵プロセス由来の細胞バイオマスから抽出するプロセスを含む。より具体的には、本発明は、栄養素サプリメントまたは動物用飼料に加工するための、1つまたは複数の発酵由来タンパク質含有画分を細胞集団または微生物バイオマスから抽出する細菌発酵プロセスのためのシステムを含む。
【0024】
図1Aは、細菌発酵システムからタンパク質富化栄養素サプリメントを製造する方法100の一例のフローチャートである。ガス状基質の細菌発酵の方法100は、所望の発酵製品レベル、例えばアルコール製造レベルを維持しながら、炭化水素質化合物、炭水化物、特異タンパク質、特異アミノ酸、および/または他の所望の成分の形成が有利な条件下で操作してよい。
工程110で、発酵培地を発酵容器に加えて細菌発酵プロセスを実施する。加えて、1種または複数のガス状基質を発酵容器に送達し、細菌培養物(嫌気性細菌を含有する培養物など)によって発酵する。最初に、発酵容器に含まれる液体発酵培地は、様々なタイプの好適な細菌培地、発酵培地または液体栄養培地を含んでもよい。栄養培地は、使用する微生物の増殖を可能にする、かつ/または特定の生成物の生成に有利な有効量の1種または複数のビタミンおよびいくつかのミネラルを含む。
【0025】
合成ガス、例えば一酸化炭素および水素ガスまたは別の好適な基質を使用して、1種または複数の含酸素炭化水素質化合物、例えば、特に様々なタイプのエタノール、ブタノール、酢酸などを製造する際に発酵プロセスに適した嫌気性細菌増殖に適した培地を使用することができる。好適な発酵培地の一例は、参照により本明細書に組み込まれる米国特許第7,285,402号に記載されている。他の好適な培地の例は、米国特許第61/650,098号および同第61/650,093号に記載されており、両方とも参照により本明細書に組み込まれる。
加えて、方法100の細菌発酵プロセスで使用する1種または複数のガス状基質としては、様々な合成用ガス(synthesis gas)(すなわち、合成ガス(syngas))、鋼生産プロセス由来の排ガス、鉄生産プロセス由来の排ガス、石炭生産プロセス由来の排ガス、または任意の他の好適な工業生産プラント由来のガス源を挙げることができる。一実施形態において、細菌発酵プロセスで使用されるガス状基質としては、一酸化炭素(CO)含有ガス状基質および/または追加のガス、例えば水素ガス、二酸化炭素(CO2)、窒素ガス(N2)、およびこれらの組合せが挙げられる。
【0026】
一例において、一酸化炭素含有ガス状基質は、大量の一酸化炭素含有産業煙道ガスであってもよい。いくつかの態様において、一酸化炭素を含むガスは、炭素含有排ガスに由来する。炭素含有排ガスとしては、産業排ガスまたは他の都市固形もしくは液状廃棄物のガス化が挙げられる。そのようなものとして、該産業プロセスは、周辺環境に排気されると思われる炭素を捕捉するための効果的なプロセスを表す。産業煙道ガスの例としては、鉄類製品の製造、非鉄製品の製造、石油精製プロセス、石炭のガス化、バイオマスのガス化、電力生産、カーボンブラック生産、アンモニア生産、メタノール生産、コークス製造の間に生成されるガスが挙げられる。
【0027】
一例において、一酸化炭素含有合成ガスを、使用する発酵容器のサイズおよびタイプに応じて様々な速度で、発酵容器中に導入する。一態様において、合成ガスを、約10~約50フィート3/秒の速度でガス入口に導入する。別の態様において、合成ガスを、約25~約35フィート3/秒の速度で導入する。用語「合成ガス(syngas)」または「合成用ガス(synthesis gas)」は、これらに限定されないが、一酸化炭素(CO)および水素(H2)を多く含むガス混合物、例えば水素を生成する天然ガスまたは炭化水素の蒸気改質から生成されるガス混合物、石炭のガス化、またはいくつかのタイプの廃棄物熱源転換ガス化設備で生成される他のガスにおける合成ガスが挙げられる。合成ガスは、可燃性であり、燃料源としてまたは他の化学物質の生成のための中間体として使用されることが多い。合成ガスは、任意の既知の源から得ることができる。
【0028】
例えば、合成ガスは、炭素質材料のガス化から供給してもよい。ガス化は、酸素供給が限られた環境内のバイオマスの部分燃焼を要する。得られるガスは、主に、一酸化炭素ガスおよび水素ガスを含む。合成ガスは、少なくとも約10モル%の一酸化炭素、または少なくとも約20モル%、または10~約100モル%、または20~約100モル%、30~約90モル%の一酸化炭素、または約40~約80モル%の一酸化炭素、または約50~約70モル%の一酸化炭素を含有する。合成ガスは、少なくとも約0.75、また少なくとも1.0、または少なくとも約1.5のモル比の一酸化炭素/二酸化炭素を有する。好適なガス化方法およびその装置は、米国特許出願第13/427,144号、同第13/427,193号、および同第13/427,247号ならびに米国特許出願第61/516,667号、同第61/516,704号、および同第61/516,646号で提供されており、これらはすべて、参照により本明細書に組み込まれる。
【0029】
さらに、工程110で、細菌培養物を発酵容器中に植菌する。発酵培地を滅菌して不要な微生物を除去し、細菌発酵容器または発酵バイオリアクターに、選択した微生物または混合細菌培養物を植菌する。一態様において、細菌培養物に使用する細菌は、嫌気性細菌である。使用する嫌気性細菌の例としては、酢酸生成細菌、例えば、クロストリジウム属のもの、例えば、国際公開第2000/68407号、欧州特許第117309号、米国特許第5,173,429号、同第5,593,886号および同第6,368,819号、国際公開第1998/00558号および国際公開第2002/08438号に記載のものを含めたクロストリジウム・リュングダリイの菌株など、国際公開第2007/117157号および国際公開第2009/151342号に記載のものを含めたクロストリジウム・オートエタノゲナムの菌株(DSMZ GermanyのDSM 10061およびDSM 19630)、ならびにクロストリジウム・ラグスダレイ(P11、ATCC BAA-622)ならびに米国特許第7,704,723号および「Biofuels and Bioproducts from Biomass-Generated Synthesis Gas」, Hasan Atiyeh, presented in Oklahoma EPSCoR Annual State Conference, April 29, 2010のそれぞれに記載のものを含めたアルカリバクルム・バッキ(CP11、ATCC BAA-1772)ならびに米国特許出願第2007/0276447号に記載のクロストリジウム・カルボキシディボランスが挙げられる。これらの各参考文献は、参照により本明細書に組み込まれる。他の好適な細菌としては、モーレラ種HUC22-1などのモーレラ属のもの、およびカルボキシドサーマス属のものが挙げられる。一実施形態において、混合細菌培養物を使用し、混合細菌培養物は、2種以上の細菌性微生物を含む。
【0030】
この方法100の発酵プロセスにおいて培養するのに有用な細菌としては、アセトゲニウム・キブイ、アセトアナエロビウム・ノテラエ、アセトバクテリウム・ウッディイ、アルカリバクルム・バッキCP11(ATCC BAA-1772)、ブラウティア・プロダクタ、ブチリバクテリウム・メチロトロフィカム、カルダナエロバクター・サブテラネウス、カルダナエロバクター・サブテラネウス・パシフィカス、カルボキシドサーマス・ヒドロゲノホルマンス、クロストリジウム・アセチカム、クロストリジウム・アセトブチリカム、クロストリジウム・アセトブチリカムP262(DSMZ GermanyのDSM 19630)、クロストリジウム・オートエタノゲナム(DSMZ GermanyのDSM 19630)、クロストリジウム・オートエタノゲナム(DSMZ GermanyのDSM 10061)、クロストリジウム・オートエタノゲナム(DSMZ GermanyのDSM 23693)、クロストリジウム・オートエタノゲナム(DSMZ GermanyのDSM 24138)、クロストリジウム・カルボキシジボランスP7(ATCC PTA-7827)、クロストリジウム・コスカティイ(ATCC PTA-10522)、クロストリジウム・ドラケイ、クロストリジウム・リュングダリイPETC(ATCC 49587)、クロストリジウム・リュングダリイERI2(ATCC 55380)、クロストリジウム・リュングダリイC-01(ATCC 55988)、クロストリジウム・リュングダリイ0-52(ATCC 55889)、クロストリジウム・マグナム、クロストリジウム・パストゥリアナム(DSMZ GermanyのDSM 525)、クロストリジウム・ラグスダリP11(ATCC BAA-622)、クロストリジウム・スカトロゲネス、クロストリジウム・サーモアセチカム、クロストリジウム・ウルツネンセ、デスルホトマクルム・クズネツォビイ、ユーバクテリウム・リモーサム、ゲオバクター・スルフレデュセンス、メタノサルシナ・アセチボランス、メタノサルシナ・バーケリ、モーレラ・サーモアセチカ、モーレラ・サーモオートトロフィカ、オキソバクター・フェニギイ、ペプトストレプトコッカス・プロダクツス、ルミノコッカス・プロダクツス、サーモアナエロバクター・キブイ、およびこれらの組合せが挙げられる。他の酢酸生成細菌または嫌気性細菌も、本明細書に記載の方法100における使用のために選択することができる。
【0031】
一例において、使用する細菌は、約50%以下のゲノムDNA G+C含有量を有する酢酸生成細菌細胞を含む。酢酸生成細菌は、活性、不活性または両方の組合せであってもよい。この態様において、G+C含有量は、当該技術分野において公知の任意の方法によって決定することができる。例えば、Sambrookら、(1989) Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor)(「Maniatis」としても公知で、参照により本明細書に組み込まれる)に記載のものなどの方法を用いてゲノムが配列され得る。次いでG+C含有量は、手動で、または例えばBohlinら、「Analysis of Intragenomic GC Content Homogenicity within Prokaryotes」, BMC Genomics 2010, 11: 464(参照により本明細書に組み込まれる)などのいくつものプログラムを用いて決定することができる。他のG+C含有量の決定方法としては、米国特許第8,143,037号、Mesbahら、(1989) 「Measurement of Deoxyguanosine/Thymidine Ratios in Complex Mixtures by High-Performance Liquid Chromatography for Determination of the Mole Percentage Guanine + Cytosine of DNA. J. Chromatogr. 479: 279-306、およびTanner ら、 「Costridium ljungdahlii sp. nov., an Acetogenic Species in Clostridial rRNA Homology Group I」, International Journal of Systematic Bacteriology, Apr. 1993, p.232-236(これらはすべて、参照により本明細書に組み込まれる)が挙げられる。
【0032】
工程110で、細菌培養物を発酵容器中に植菌する際、微生物(例えば、嫌気性細菌)の初期集団の有効な増殖および後続する発酵のための初期供給ガスの供給速度が確立する。発酵容器は、嫌気性細菌を培養するための環境を提供する。好適な発酵容器としては、これらに限定されないが、連続撹拌槽型反応器(CSTR)、固定化細胞反応器(ICR)、トリクルベッド反応器(TBR)、移動床生物膜反応器(MBBR)、気泡塔、ガスリフト発酵槽、膜反応器(例えば、中空繊維膜バイオリアクター(HFMBR))、静的ミキサー、容器、配管、塔、ループ型反応器、およびこれらの組合せのうちの1つまたは複数を挙げることができる。方法100において、任意の既知の発酵容器または発酵バイオリアクターを利用してもよい。バイオリアクターのいくつかの例が、2011年6月30日に出願された米国特許第61/571,654号および同第61/571,565号、2011年9月13日に出願された米国特許第61/573,845号、2012年5月15日に出願された米国特許第13/471,827号および同第13/471,858号、ならびに2012年5月16日に出願された米国特許第13/473,167号に記載されており、これらすべては、参照により本明細書に組み込まれる。
一実施形態において、発酵容器は、第2のバイオリアクターに接続された第1のバイオリアクターを含み、第1のバイオリアクターは、発酵液を第2のバイオリアクターに供給し、第2のバイオリアクター中でエタノール製造が行われる。例えば、発酵容器は、培養安定性の改善のために2段階CSTRシステムであってもよい。例として、発酵容器は、第1のCSTR室を用いた第1の増殖段階と、第2のCSTR室を用いた第2の製造段階とを任意で含んでもよい。
【0033】
一例において、増殖段階CSTRに液体培地を供給し、製造段階CSTRから非変換基質ガスを増殖段階CSTRに供給する。一般に、製造段階CSTRに新しいガス供給が供給され、新しい培地および細菌培養物が増殖段階CSTRから供給される。製造段階CSTRから細菌細胞を得るために細胞のリサイクルを用い、発酵生成物から分離し、製造段階CSTRに送り戻して、高い細菌発酵効率を得てもよい。一般に、細菌細胞は、増殖段階CSTRにはリサイクルされない。米国特許第10/311,655号は、連続発酵プロセスを記載しており、参照により本明細書に組み込まれる。用語「発酵」、「発酵プロセス」、「細菌発酵プロセス」、「発酵反応」、「細菌発酵反応」などは、プロセスの増殖段階と生成物の生合成段階の両方を包含することが意図される。一態様において、発酵は、一酸化炭素からアルコールへの変換を指す。一態様において、細菌発酵プロセスは、その中に細菌を含有する発酵容器への好適な発酵培地および1種または複数のガス状基質の添加と共に開始する。
【0034】
一般に、発酵液体ブロスは、細菌発酵プロセスが開始すると、発酵容器内で生成される。発酵液体ブロスは、発酵容器内に含まれる培地、1種または複数のガス状基質、および細菌に加えて、1種または複数の発酵生成物を含んでもよい。発酵液体ブロス中に含まれ、発酵容器内で細菌発酵プロセスによって生成される発酵生成物は、1種または複数の含酸素炭化水素質化合物、例えば、アルコールなど、例えばこれらに限定されないが、エタノール、2-ブタノール、2-ブタノン、2,3-ブタンジオール、アセトン、ブタジエン、ブタン、ブタノール、ブチレート、酪酸、エチレン、および脂肪酸、酢酸、ならびにこれらの組合せを含んでもよい。
【0035】
一態様において、エタノールと酢酸との混合物を生成することができる。別の態様では、エタノールとブタノールとの混合物が生成される。一例において、発酵容器中にて、1日当たり10g/L超の比産出力でエタノールを生成し、一方、5g/L未満の遊離酢酸で遊離酢酸濃縮液が維持される。発酵液体ブロス中に存在するエタノールおよびアセテートのエタノール:アセテート比は、1:1~20:1の範囲であってもよい。
発酵容器内に含まれる発酵液体ブロスは、希釈濃度のエタノールを含有してよく、品質および/または濃度の面でさらに加工する必要があり得る。例えば、発酵液体ブロス中に含まれる発酵生成物を発酵容器から蒸留室または他のタイプの反応器へ送達して、高濃度の最終蒸留生成物を得、それをさらに加工し、回収することができる。
【0036】
発酵液体ブロスは、死滅または不活性細菌細胞も含み得る。これらの細菌細胞は、その他の場合では細菌細胞または嫌気性細菌細胞として公知である。大規模の細菌発酵プロセスによる細胞の蓄積は、細胞集団または使用済みバイオマスとして公知である。用語「不活性酢酸生成細菌」または「不活性細菌細胞」は、細菌発酵プロセスを経た後に複製能力を失った死滅細胞を指す。用語「細胞集団」は、全体として微生物バイオマスを形成する細菌細胞を指す。微生物バイオマスは、細菌発酵中に蓄積し得、本明細書に記載の方法およびシステムによって加工して発酵由来タンパク質を得るのに有用である。発酵液体ブロスは、様々なタンパク質、アミノ酸、炭水化物、核酸、および他の部分も含み得る。核酸の例としては、ヌクレオチド、例えばDNA、RNAおよびこれらの任意の誘導体および類似体が挙げられる。発酵ブロス中の細胞集団または微生物バイオマスの蓄積により、発酵ブロス自体が有意なカロリー値をもたらし得る。発酵液体ブロスは、約0.5%、1%、5%、10%、20%、25%、30%、35%、40%、45%、および約50%の乾燥分を有し得る。
【0037】
図1Aに示すように、方法100の工程120で、ある程度の量の第1の濃度の嫌気性細菌の細胞を含有する発酵液体ブロスおよび発酵生成物が、細菌発酵容器から送達される。一般に、細胞が発酵容器内で恒常的増殖に達したとき、細菌細胞を含有する発酵液体ブロスは、発酵容器から送達され得る。恒常的増殖段階の後の発酵プロセスでは、発酵液体ブロス中に含まれる細菌細胞の第1のバッチの第1の濃度は、0.5g/L(乾燥細胞集団)、例えば1.0g/L以上、または2.0g/L以上、または5.0g/L以上、または15.0g/L以上、または30.0g/L以上であってもよい。
【0038】
次に工程130で、例えば1つまたは複数の細胞セパレータを使用して、発酵液体ブロス由来の嫌気性細菌の細胞を、細胞非含有浸透液と細胞含有懸濁液とに分離する。この工程での目的は、発酵液体ブロスから細菌細胞を分離して取り出し、細胞非含有浸透液と細胞含有懸濁液を別々に得ることである。細胞非含有浸透液は、発酵プロセスによって生成された発酵生成物を主に含有し、蒸留および他のプロセスによるさらなる加工の準備ができている。細胞含有懸濁液は、発酵プロセス後の細菌細胞から主に構成される。細胞含有懸濁液中の細菌細胞は、第2の濃度(または第2の細胞密度)で測定することができ、一実施形態において、細胞含有懸濁液中の第2の濃度の細菌細胞は、発酵液体ブロス中に含まれる第1の濃度の細菌細胞より同じか、またはより高い濃度である。
発酵容器中の微生物培養物の所望の細胞濃度を維持するために、細菌発酵プロセスは、一部の発酵液体ブロスを除去することを含む。細胞濃度の増加に伴い、発酵中の操作に関連する問題、例えば不要な遊離酢酸の濃度の増加が多くなり、アセテート製造がエタノール製造より優先されるようになる。したがって、細胞密度を監視し、発酵液体ブロスの定期的または連続的な細胞除去を行うことが重要となる。用語「細胞密度」は、発酵培地の単位体積当たりの微生物の質量、例えばグラム/リットルを意味する。
【0039】
細菌発酵容器中の細胞の濃度の安定化は、バイオリアクター中のすべての還元ガスまたは栄養基質を利用し、発酵バイオリアクターブロス中に存在するアセテートの遊離酢酸画分が高濃度を超える場合(例えば、1g/L以上、または2g/L以上の濃度の遊離酢酸)に水の供給速度を高めて、安定性の恒常的濃度より低い細胞濃度まで発酵容器から細菌細胞を除去することによって達成される。大規模の連続細菌発酵は、追加の培養補給なしで発酵容器中の細胞濃度を一定に維持することによって、長期間(例えば、何カ月も)維持することができる。発酵容器中の細菌培養物に、この期間中、ビタミンおよび他の必須栄養素を含有する液体栄養培地と共に、1種または複数のガス(例えば、CO、CO2、H2および他の炭素源基質)を供給する。
【0040】
発酵液体ブロス中の細胞含有懸濁液から細胞非含有浸透液を分離するために使用することができる好適な細胞セパレータとしては、これらに限定されないが、任意の濾過装置、中空糸濾過装置、螺旋巻き濾過装置、限外濾過装置、セラミックフィルター装置、クロスフロー濾過装置、サイズ排除カラム濾過装置、またはこれらの組合せが挙げられる。本発明の濾過式細胞セパレータで使用することができる好適なフィルターとしては、これらに限定されないが、螺旋巻き膜/フィルター、クロスフローフィルターが挙げられる。加えて、細胞非含有浸透液からの細胞分離の別の好適な手段は、1つまたは複数の遠心分離装置の使用によるものである。
一実施形態において、工程130で使用する細胞セパレータは、細菌細胞を細菌含有懸濁液と細胞非含有浸透液とに分離し、かつ/または細胞含有懸濁液を、細胞セパレータによって細胞分離する前の発酵液体ブロス中の細胞濃度より高い濃度になるように濃縮するように機能する。代替の実施形態において、発酵液体ブロス中の細胞を、細胞セパレータに数回通過させて(例えば、1つもしくは複数のフィルター型濾過装置に数回通過させて、または同一もしくは異なる遠心分離速度で1つもしくは複数の遠心分離機に数回かけて遠心分離することによって)、分離および濃縮することができる。
【0041】
好ましい実施形態において、細胞分離の後、細胞含有懸濁液中の細胞濃度(または細胞密度)は、発酵液体ブロスの細胞濃度より高い。本発明の一態様において、螺旋巻きフィルターを有する1つまたは複数の濾過装置を使用して、発酵液体ブロスを螺旋巻きフィルターに数回通過させて細胞を濃縮する。
別の態様において、細胞のリサイクルを実施し、これは一般に、細胞非含有浸透液から細菌細胞含有懸濁液を分離して、この分離した細菌細胞の全部または一部を発酵容器に戻すことを指す。一実施形態において、濾過装置などの細胞セパレータによる限外濾過を用いて、細胞の分離および/または細胞のリサイクルを達成する。
【0042】
さらに別の態様において、発酵容器中で培養される細菌の恒常的細菌増殖の間、発酵容器からの細胞除去を行い、細菌細胞を高濃度の細胞含有懸濁液または半乾性微生物バイオマスで収集する。一実施形態において、細胞除去は、細菌細胞および発酵培地に含まれる他の物質を含有する発酵液体ブロスをある程度の量で必要とする。例えば、細胞除去は、細菌発酵中に発酵容器から除去された発酵物または発酵液体ブロスであってもよい。別の実施形態において、細胞除去は、発酵容器から第1の細胞濃度の発酵液を除去し、第2の細胞濃度の細胞含有懸濁液になるように細胞をさらに濃縮することによって、濃縮された細胞含有懸濁液を得ることを必要とし得る。細胞含有懸濁液は、発酵容器から除去された発酵液の細胞密度より高い細胞密度を有する。これらの工程は、特定の粒子の効果的な除去をもたらし、方法100から製造される最終タンパク質富化栄養素サプリメント中の高収率のタンパク質含有量を可能にする。
一態様において、細胞除去は、連続細菌発酵中に行われる。別の態様において、細胞除去は、細菌発酵の後に行われ、ここで、細菌発酵プロセスを中断または停止して、発酵容器からの微生物バイオマスの除去を可能にする。
【0043】
方法100の工程140で、細胞含有懸濁液中に含まれる細菌細胞をホモジネートに破壊する。破壊装置は、細胞含有懸濁液中の細菌細胞の細胞膜を破壊および/または溶解するために使用することができる。細菌細胞を破壊するための破壊装置の例としては、これらに限定されないが、様々なタイプのマイクロ流体装置、超音波処理装置、超音波装置、機械的破砕装置、フレンチプレス、冷凍器、加熱器、熱交換器、蒸留塔、プロセスの流れおよび保持タンクの温度を上昇させる装置、低温殺菌装置、紫外線殺菌装置、ガンマ線殺菌装置、反応器、ホモジナイザー、およびこれらの組合せが挙げられる。
【0044】
図1Aに示すように、細胞含有懸濁液中の細菌細胞が壊れて開いた、および/または破壊した後、得られる破壊細胞混合物、例えばホモジネートを、工程150で、微生物バイオマスのホモジネート中の細胞残屑画分からタンパク質含有画分を分離して取り出し、追加のタンパク質含有画分をさらに精製および抽出してタンパク質富化栄養素サプリメントを製造することによってさらに加工することができる。このような分離は、1つまたは複数の分画装置を使用して実施されることが企図される。一態様において、1つまたは複数のタンパク質含有画分が得られ、1つまたは複数のタンパク質は、遊離アミノ酸、全アミノ酸、およびペプチドも含み得る。
工程150で、ホモジネートを分画するための1つまたは複数の分画装置の好適な例としては、これらに限定されないが、様々なタイプの固液分画装置、遠心分離装置、連続遠心分離装置、デカンター遠心分離装置、ディスクスタック遠心分離装置、濾過装置、中空糸濾過装置、螺旋巻き濾過装置、セラミックフィルター装置、クロスフロー濾過装置、サイズ排除装置、1本または一連のサイズ排除カラム、1本または一連のイオン交換カラム、1本または一連の炭素重合体カラム、流入式磁気分別装置、限外濾過装置、1本または一連のアフィニティクロマトグラフィーカラム、1本または一連のゲル濾過カラム、およびこれらの組合せが特に挙げられる。
【0045】
一実施形態において、工程150で、1つまたは複数の破壊装置によって細菌細胞を破壊した後に得られるホモジネートを第1の分画装置に送達し、第1のタンパク質含有画分と第1のタンパク質含有細胞残屑画分とが得られる。一態様において、第1のタンパク質含有画分は、少なくとも1%以上、3%以上、5%以上、10%以上、20%以上、30%以上、40%以上、50%以上、60%以上、70%以上、80%以上、または95%以上のタンパク質含有量を有する。
【0046】
一実施形態において、工程160で、ホモジネートに由来する第1のタンパク質含有画分は、タンパク質富化栄養素サプリメント組成物、細胞増殖培地サプリメント/組成物、医薬組成物、および/または動物用飼料(例えば、魚飼料、エビ飼料、鶏用飼料など)に直接取り入れることができる。このような混入は、第1のタンパク質含有画分を乾燥して低水分(例えば、ペーストまたは粉末形態)にすることと、1つまたは複数のタイプの栄養素サプリメントを作製するために、第1のタンパク質含有画分を他の成分(例えば、追加の動物用飼料の栄養素、医薬充填剤、配合剤、可塑剤など)と直接ブレンドすることと、を要し得る。本明細書に記載の工程160は、第1のタンパク質含有画分の品質および濃度を向上および増強するために、第1のタンパク質含有画分のpHの調節、1種または複数の溶解度増強剤の添加、第1のタンパク質含有画分からの有害なタンパク質の除去、および/またはこれらの組合せの追加の加工工程を含んでもよい。加えて、第1のタンパク質含有画分は、細菌発酵由来タンパク質の抽出および精製を実施し、タンパク質富化栄養素サプリメントとして使用するために再度目的を持たせることによって、さらなる下流加工を施してもよい。このような例を、
図2Aおよび
図2Bに示す。
【0047】
あるいは、工程165で、ホモジネートに由来する第1のタンパク質含有細胞残屑画分を、タンパク質富化栄養素サプリメント組成物、医薬組成物、細胞増殖培地サプリメント/組成物、および/または動物用飼料(例えば、魚飼料、エビ飼料、鶏用飼料など)に直接混入させてもよい。同様に、第1のタンパク質含有細胞残屑画分の品質および濃度を向上および増強するために、第1のタンパク質含有細胞残屑画分のpHの調整、タンパク質含有細胞残屑画分への1種または複数の溶解度増強剤の添加、第1のタンパク質含有細胞残屑画分からの有害なタンパク質の除去、および/またはこれらの組合せの追加の加工工程が必要なことがある。一態様において、第1のタンパク質含有細胞残屑画分の可溶性タンパク質のみが回収される場合、回収されたタンパク質を得て、動物またはヒトが摂取するための栄養素富化サプリメントとして直接混入させることができる。しかしながら、ヒトへの摂取用の高品質の栄養素富化サプリメントに混入する第1のタンパク質含有細胞残屑画分には、栄養素およびタンパク質分を精製および回収するためのさらなる下流加工が必要となる場合がある。別の態様において、この方法で回収される不溶性タンパク質にさらなる下流加工を施し、次いで第1のタンパク質含有画分と合わせて、タンパク質富化栄養素サプリメントとして製造することができる。
【0048】
図1Bは、細菌発酵システムからタンパク質富化栄養素サプリメントを製造するための方法100の別の例のフローチャートである。ガス状基質の細菌発酵の方法100は、アルコール製造レベルなどの所望の発酵製品レベルを維持しながら、炭化水素質化合物、炭水化物、特異タンパク質、特異アミノ酸、および/または他の所望の成分の形成に有利な条件下で操作してよい。
方法100の工程130は、発酵液由来の嫌気性細菌の細胞を、細胞非含有浸透液と、第2の細胞濃度の嫌気性細菌細胞を含有する細胞含有懸濁液とに分離することを含む。方法100の工程135は、第1の保持タンク中に細胞含有懸濁液を保持することを含んでもよい。一態様において、高いタンパク質含有量および適切な摂取のタンパク質富化サプリメントの生成に備えて、細菌細胞に前処理を施してもよい。さらに別の態様において、工程130の前処理プロセスで添加される1種または複数の添加剤は、細菌細胞を破壊するための条件を最適化し、高品質のホモジネートを生成するのを助けることもできる。
【0049】
工程130で使用される好適な添加剤としては、これらに限定されないが、洗剤、pH調整剤、酵素、ヌクレアーゼ、プロテアーゼ、加水分解酵素、アルカリ性緩衝液、産生緩衝液、またはこれらの組合せが挙げられる。一実施形態において、方法100の工程130は、発酵由来細菌細胞の細胞含有懸濁液の核酸含有量を減少させることを含む。このような前処理プロセスは、細菌細胞をヌクレアーゼで処理することによって達成される。使用するヌクレアーゼの例としては、これらに限定されないが、デオキシリボヌクレアーゼ、リボヌクレアーゼ、ベンゾナーゼ、およびヌクレアーゼが挙げられる。細胞含有懸濁液のヌクレアーゼ処理は、アルカリ加水分解および化学的抽出、例えば硫安沈殿法、エタノール沈殿法、ポリエチレンイミン沈殿法などによってさらに助長され得る。
【0050】
方法100の工程140は、破壊装置によって細胞含有懸濁液中の嫌気性細菌細胞の細胞膜を破壊して、ホモジネートを生成することを含む。方法100の工程145は、第1の保持タンク中に、破壊された後の細胞含有懸濁液を保持することを含んでもよい。一態様において、細菌細胞に、高いタンパク質含有量および適切な摂取のタンパク質富化サプリメントの生成に備えたプロセスを施してもよい。さらに別の態様において、工程145のプロセスで添加される1種または複数の添加剤は、細菌細胞を破壊した後の条件の最適化も助けることができる。
【0051】
工程145で使用される好適な添加剤としては、これらに限定されないが、洗剤、pH調整剤、酵素、ヌクレアーゼ、プロテアーゼ、加水分解酵素、アルカリ性緩衝液、酸性緩衝液、またはこれらの組合せが挙げられる。一実施形態において、方法100の工程145は、発酵由来細菌細胞のホモジネートの核酸含有量を減少させることを含む。このような前処理プロセスは、細菌細胞をヌクレアーゼで処理することによって達成される。使用するヌクレアーゼの例としては、これらに限定されないが、デオキシリボヌクレアーゼ、リボヌクレアーゼ、ベンゾナーゼ、およびヌクレアーゼが挙げられる。細胞含有懸濁液のヌクレアーゼ処理は、アルカリ加水分解および化学的抽出、例えば硫安沈殿法、エタノール沈殿法、ポリエチレンイミン沈殿法などによってさらに助長され得る。
方法100の工程150は、第1の分画装置を使用して、ホモジネートを第1のタンパク質含有画分とタンパク質含有細胞残屑画分とに分画することを含む。方法100の工程160は、タンパク質富化栄養素サプリメントとして第1のタンパク質含有画分を得ることを含む。方法100の工程165は、タンパク質富化栄養素サプリメントとしてタンパク質含有細胞残屑画分を得ることを含む。
【0052】
図2Aは、発酵プロセス由来の嫌気性細菌細胞を含有する細胞含有懸濁液(例えば、方法100の工程130由来の第2の濃度の細胞含有懸濁液)を加工して、タンパク質富化栄養素サプリメントとして第2のタンパク質含有画分を得る方法200Aの一例である。この方法には、細胞含有懸濁液中の好気性細胞の細胞膜を破壊する前に、工程202で、細胞含有懸濁液を1種または複数の添加剤で処理し、ホモジネートを生成する任意の加工工程がある。
工程202の細胞の前処理プロセスにおいて、細胞含有懸濁液を前処理チャンバー内または前処理用の保持タンク中で加工し、工程204で、1種または複数の添加剤で処理して、嫌気性細菌細胞の細胞壁および細胞膜を破壊するために細胞破壊効率を助長および向上することができる。一態様において、濃縮細菌細胞は保持タンクに入り、そこで、破壊装置が大容量の細胞をまとめて加工するための準備ができるまで収容される。別の態様において、保持タンクに収容されている間、細菌細胞に、タンパク質含有量が高く、摂取に適切なタンパク質富化サプリメントを生成するのに備えて前処理を施すことができる。さらに別の態様において、工程202における前処理プロセスで添加した1種または複数の添加剤は、工程204で細菌細胞を破壊し、高品質のホモジネートを生成する条件を最適化するのを助けることもできる。
【0053】
工程202で使用する好適な添加剤としては、これらに限定されないが、洗剤、pH調整剤、酵素、ヌクレアーゼ、プロテアーゼ、加水分解酵素、アルカリ性緩衝液、酸性緩衝液、またはこれらの組合せが挙げられる。一実施形態において、方法200Aの工程202は、発酵由来細菌細胞の細胞含有懸濁液の核酸含有量を減少させることを含む。このような前処理プロセスは、細菌細胞をヌクレアーゼで処理することによって達成される。使用するヌクレアーゼの例としては、これらに限定されないが、デオキシリボヌクレアーゼ、リボヌクレアーゼ、ベンゾナーゼ、およびヌクレアーゼが挙げられる。細胞含有懸濁液のヌクレアーゼ処理は、アルカリ加水分解および化学的抽出、例えば硫安沈殿法、エタノール沈殿法、ポリエチレンイミン沈殿法によってさらに助長させることができる。一態様において、細胞含有懸濁液の核酸含有量を、約1.5%~5%、または約2%~18%に減少させる。
【0054】
細胞破壊の後、工程206で、ホモジネートは追加の抽出および精製プロセスを経ることができ、例えば、第1の分画装置を使用して第1のタンパク質含有画分とタンパク質含有細胞残屑画分とに分画することができる。ホモジネートを分画するための第1の分画装置の例としては、これらに限定されないが、様々なタイプの固液分画装置、遠心分離装置、連続遠心分離装置、デカンター遠心分離装置、ディスクスタック遠心分離装置、濾過装置、中空糸濾過装置、螺旋巻き濾過装置、セラミックフィルター装置、クロスフロー濾過装置、サイズ排除装置、1本または一連のサイズ排除カラム、1本または一連のイオン交換カラム、1本または一連の炭素重合体カラム、流入式磁気分別装置、限外濾過装置、1本または一連のアフィニティクロマトグラフィーカラム、1本または一連のゲル濾過カラム、およびこれらの組合せが特に挙げられる。
あるいは、工程204で、濃縮細菌細胞の細胞含有懸濁液は、破壊装置に直接移行してもよく、次いで工程202に関して記述したように前処理プロセスを経て、工程206においてホモジネートを分離および分画する条件の最適化を助ける。別の態様において、方法200Aから回収されたタンパク質は、さらなる下流加工を経て、次いで第1のタンパク質含有画分と合わせ、タンパク質富化栄養素サプリメントとして製造することができる。
【0055】
工程208で、第1のタンパク質含有画分を第2の分画装置へ送達し、工程210で第2の分画装置を使用して第2のタンパク質含有画分に分画する。タンパク質含有画分を分画するための第2の分画装置の例としては、これらに限定されないが、様々なタイプの固液分画装置、遠心分離装置、連続遠心分離装置、デカンター遠心分離装置、ディスクスタック遠心分離装置、濾過装置、中空糸濾過装置、螺旋巻き濾過装置、セラミックフィルター装置、クロスフロー濾過装置、サイズ排除装置、1本または一連のサイズ排除カラム、1本または一連のイオン交換カラム、1本または一連の炭素重合体カラム、流入式磁気分別装置、限外濾過装置、1本または一連のアフィニティクロマトグラフィーカラム、1本または一連のゲル濾過カラム、およびこれらの組合せが特に挙げられる。
【0056】
工程212で、得られた第2のタンパク質含有画分を、タンパク質富化栄養素サプリメント、医薬組成物、細胞増殖培地/組成物、および/または動物用飼料(例えば、魚飼料、エビ飼料、鶏用飼料など)に製剤化することができる。このような混入には、第2のタンパク質含有画分を乾燥して低水分(例えば、ペーストまたは粉末形態)にし、第2のタンパク質含有画分を他の成分(例えば、追加の動物用飼料栄養素、医薬用充填剤、混合剤、可塑剤など)と直接ブレンドして1つまたは複数のタイプの栄養素サプリメントを作製することを要し得る。
【0057】
例として、工程204で得たホモジネートを濾過装置に入れて、第1のタンパク質含有画分(例えば、濾過装置による濾過後のタンパク質含有画分の濾過液)を得ることができる。濾過されたタンパク質含有画分は、部分的に精製されたタンパク質産物である。次いで、一実施形態において、濾過されたタンパク質含有画分を遠心分離(例えば、第2の分画装置/遠心分離装置によって)し、追加の可溶性タンパク質画分および細胞固体画分を得る。このような第2のタンパク質含有画分は、タンパク質富化栄養素サプリメントとして、個別に使用しても、組み合わせて使用してもよい。
【0058】
別の例として、工程204で得たホモジネートを遠心分離にかけてもよく、その後、上清タンパク質含有画分を収集する。上清タンパク質含有画分は分画装置に入り、第2の濾過液のタンパク質含有画分が収集される。さらに別の例として、第1のタンパク質含有画分のみが濾過装置に入り、その後、濾過液のタンパク質含有画分が収集され、タンパク質富化サプリメントとして使用される。さらに別の例として、第1のタンパク質含有画分のみを遠心分離にかけ、その後、分画されたタンパク質または上清タンパク質含有画分を収集する。1つまたは複数のタンパク質含有画分と細胞残屑タンパク質の分離は、1つまたは複数の分画装置によって達成される。
一態様において、2つの分画装置を有する発酵システムが使用される。別の実施形態において、3つの分画装置を有する発酵システムが使用される。
図2Bは、3つの分画装置を使用して、本発明の1つまたは複数の実施形態によるタンパク質富化栄養素サプリメントとして第3のタンパク質含有画分を得る発酵プロセスの細胞含有懸濁液を加工する方法200Bの一例である。
【0059】
図2Bに示すように、方法200Bは、工程214で、第2のタンパク質含有画分を第3の分画装置に送達し、工程216で、第3のタンパク質含有画分を第2のタンパク質含有画分から分画して抽出することを含む。第3のタンパク質含有画分を工程218で収集し、工程220で、第3のタンパク質含有画分をタンパク質富化栄養素サプリメントとして得る。
例として、工程210から第2のタンパク質含有画分を送達して第3の分画装置(例えば、濾過装置)に入れ、濾過液として収集されたタンパク質含有画分を得、タンパク質富化サプリメントとして使用することができる。別の例としては、第2のタンパク質含有画分を遠心分離にかけ、その後、上清タンパク質含有画分およびペレット状細胞残屑画分を収集する。濾過液のタンパク質含有画分を濾過装置から収集し、タンパク質含有量が約1%~3%、3%~7%、7%~10%、約10%~14%、約11%~20%、約21%~35%、および約35%以上のタンパク質富化栄養素サプリメントとして製造する。
【0060】
一実施形態において、工程160、165、212、220から得られた1つまたは複数のタンパク質含有画分を脱水チャンバーへ送達し、その後、脱水したタンパク質含有画分を収集し、タンパク質富化栄養素サプリメントとして製造する。あるいは、2つまたは複数の脱水チャンバーを設け、各工程から得られた各タンパク質含有画分を、個別の脱水チャンバーへ送達する。脱水チャンバーは、タンパク質含有画分を受け取り、乾燥して低水分のペースト形態または乾燥粉末形態にし、ヒトへの摂取および/または動物供給原料用のタンパク質富化栄養素サプリメントに混入させる準備が整う。脱水チャンバーの好適な例としては、これらに限定されないが、オーブン乾燥機、噴霧乾燥室、ドラム乾燥機、およびフリーズドライヤー、凍結乾燥装置、およびこれらの組合せが挙げられる。
一実施形態において、本発明は、嫌気性細菌を使用する発酵プロセスからタンパク質富化栄養素サプリメントを製造する方法である。方法は、発酵容器中で嫌気性細菌によってガス状基質を発酵させることと、発酵容器から、第1の濃度の嫌気性細菌の細胞を含有する発酵液のある程度の量を得、発酵液からの嫌気性細菌の細胞を、細胞非含有浸透液と第2の濃度の嫌気性細菌細胞を含有する細胞含有懸濁液とに分離することと、細胞含有懸濁液中の嫌気性細菌細胞の細胞膜を破壊してホモジネートを得ることと、ホモジネート中の細胞残屑画分から第1のタンパク質含有画分を分離することと、を含む。
【0061】
一態様において、方法は、発酵容器中で嫌気性細菌によってガス状基質を発酵させることを含む。ガス状基質は、発酵容器中へ流れる1種または複数のガスのCO含有ガス状基質である。使用する1種または複数のガスは、炭素源基質、一酸化炭素(CO)、二酸化炭素(CO2)、水素(H2)ガス、合成ガス、およびこれらの組合せからなる群から選択される。嫌気性細菌としては、これらに限定されないが、1種または複数の酢酸生成細菌株(クロストリジウム・アセトバクテリウム属など)およびこれらの類似の変異株が挙げられる。発酵容器は、クロストリジウム細菌を培養するのに快適な環境を提供するものであり、この発酵容器中へ発酵培地が流入して、栄養素、ビタミン、および他の必須ミネラルを細菌に供給する発酵培地がある。
方法は、発酵容器から、第1の細胞濃度の嫌気性細菌の細胞を含有する発酵液のある程度の量を得ることをさらに含む。発酵液の集合体を、細菌発酵システム中の1つまたは複数の装置へ送達することができる。一態様において、後続して操作された量の発酵液は、第2、第3、および第4の細胞濃度である。大部分の態様において、第2の細胞濃度の操作発酵液は、第1の細胞濃度の第1の発酵液より高濃度である。
【0062】
方法は、嫌気性細菌細胞を含有する発酵液のある程度の量を受け取る第1の細胞セパレータを含む。第1の細胞セパレータは、発酵液を、嫌気性細菌細胞を含有する第1の細胞含有懸濁液と第1の細胞非含有浸透液とに分離する。第1の細胞セパレータへ送達された発酵液は、第1の細胞濃度を有する。第1の細胞セパレータによって生成された第1の細胞含有懸濁液は、第2の細胞濃度を有する。第2の細胞濃度の第1の細胞含有懸濁液は、第1の細胞濃度の発酵液より高濃度である。第1の細胞非含有浸透液を、第1の細胞セパレータに接続された加工チャンバーへ送達する。いくつかの態様において、一部の第1の細胞含有懸濁液を発酵容器へ送り戻す。
【0063】
別の態様において、エタノール製造のためのさらなる加工のために、第1の発酵液の第1の流れを第1の細胞セパレータへ送達する。タンパク質富化栄養素サプリメントとして使用可能なタンパク質含有生成物を製造するためのさらなる加工のために、第2の発酵液の第2の流れを第2の細胞セパレータへ送達する。
本発明の方法は、発酵プロセスで使用する細菌細胞中の有用な部分に再度目的を持たすと同時に、高い生産力のエタノール製造を実現する同時手法を提供する。収集した発酵液は、第1の濃度の嫌気性細胞細菌である。細胞セパレータは、第2の濃度の嫌気性細胞を含む細胞含有懸濁液を生成する。一実施形態において、細胞セパレータは、第2の濃度の細胞含有懸濁液を破壊装置へ送達する。別の実施形態では、細胞セパレータは、細胞含有懸濁液を保持タンクへ送達する。
収集したら、集合体をさらに加工して、発酵液の嫌気性細菌の細胞を、細胞非含有浸透液と、第2の濃度の嫌気性細菌細胞を含有する細胞含有懸濁液とに分離することができる。第2の濃度の細胞含有懸濁液は、第1の濃度の嫌気性細菌細胞を含有する発酵液より高濃度である。細胞非含有浸透液を加工チャンバーへ送り戻し、そこでエタノール製造のためにエタノールを蒸留する。これは、依然として有用なエタノール含有の細胞非含有浸透液を廃棄しない効率的なシステムを提供する。
【0064】
方法は、細胞含有懸濁液中の嫌気性細菌細胞の細胞膜を破壊してホモジネートを得ることをさらに含む。一態様において、これは、破壊装置で行われる。嫌気性細菌の細胞を含有する細胞含有懸濁液が破壊装置に入り、そこで、細胞含有懸濁液は、強力な力(例えば、機械的、音、または圧力)を受ける。高剪断力が細胞含有懸濁液に入ると、細胞の細胞膜を破壊し、細胞を切り開かせ、細胞の中身を浮遊させる。破壊装置は、ホモジネートを生成し、このホモジネートをさらに加工して第1のタンパク質含有画分を得る。ホモジネートは、タンパク質、金属(例えば、Ca、Cl、Co、K、Mg、Ni、P、S、Se、W、Zn、Na、Fe)、脂質、核酸、および糖を含めた発酵由来細菌細胞中に一般に存在するいくつかの部分を含有する。
【0065】
第1のタンパク質含有画分を得るために、方法は、ホモジネート中の細胞残屑画分から第1のタンパク質含有画分を分離することをさらに含む。一態様において、ホモジネートを遠心分離し、次いで濾過して、第1のタンパク質含有画分を得る。第1のタンパク質含有画分を第1の分画装置へ送達し、第1のタンパク質含有画分から第2のタンパク質含有画分を分離し、第2のタンパク質含有画分を第1の分画装置から収集させる。
一態様において、方法は、ホモジネートの細胞残屑画分から分離した第1のタンパク質含有画分を脱水することを含む。この態様において、システムは、第1の分画装置に接続された脱水チャンバーを有する。第1の分画装置は、第1のタンパク質含有画分を脱水チャンバーへ送達し、脱水チャンバーが、タンパク質富化栄養素サプリメントとして製造される乾燥タンパク質含有画分を生成する。
【0066】
別の態様において、方法は、ホモジネートの細胞残屑画分を脱水することを含む。この態様において、破壊装置は、細胞残屑画分を脱水チャンバーへ送達して、さらなる下流加工の準備を整える。細胞残屑画分は、高レベルのタンパク質含有量を含む不溶性画分である。典型的には、これには、不溶性の細胞壁または細胞膜成分が含まれる。また、低濃度の核酸またはタンパク質凝集体も含有し得る。大部分の態様において、大部分の核酸は、第1のタンパク質含有画分中に放出される。場合によっては、これらのタンパク質凝集体は、可溶化するのが困難であり、細胞残屑画分中に残留する。第1のタンパク質含有画分および細胞残屑画分中のタンパク質含有量の決定は、全細胞集団およびタンパク質の量、可溶性および不溶性を中心とした質量平衡の仮定に基づく。例として、不溶性タンパク質回収の計算は、全細胞集団から可溶性タンパク質の集団を引いて、不溶性集団の近似値を求めることを含む。
【0067】
II.酢酸生成バイオマスを加工して発酵由来タンパク質を生成するための細菌発酵システム
細菌発酵システムは、これらに限定されないが、細菌発酵容器、1つまたは複数の破壊装置、1つまたは複数の細胞セパレータ、および1つまたは複数の分画装置を含む。加えて、得られたタンパク質含有画分のタンパク質濃度を増加し、その水分を減少させるために、1つまたは複数の脱水チャンバーが1つまたは複数の破壊装置および/または1つまたは複数の分画装置に接続されている。細菌発酵システムは、細菌細胞または細胞含有懸濁液を保持するための1つまたは複数の保持タンク、貯蔵室、および/または前処理チャンバーをさらに含んでもよい。
図3A~3B、4A~4H、5A~5E、および6は、嫌気性細菌の培養物を使用した発酵プロセスから細胞含有懸濁液および1種または複数の含酸素炭化水素質化合物を製造するための例示的な細菌発酵システムを示している。
図3Aは、2つの細胞セパレータおよび1つの脱水チャンバーを使用した、細胞含有懸濁液および1種または複数の含酸素炭化水素質化合物を製造するための細菌発酵システム300Aの概略図である。
図3A中、細菌発酵システム300Aは、発酵容器310、細胞セパレータ320、細胞セパレータ330、加工チャンバー350、および任意の脱水チャンバー375を含む。一実施形態において、細菌発酵システム300Aは、連続細菌発酵システムであってもよい。あるいは、細菌発酵システム300Aは、回分細菌発酵システムであってもよい。
【0068】
2つ以上の入口ライン、例えば入口ライン302および入口ライン304が、発酵容器310に接続されている。入口ライン302は、ガス状基質、追加のサプリメント、および/または他の固体もしくは液体基質を発酵容器310に送達するために使用することができる。入口ライン304は、発酵培地または他の培地を発酵容器310に送達するために使用することができる。ガス状基質および発酵培地の変換は、発酵容器310中で生じる。本明細書で使用する発酵培地は、選択された嫌気性細菌を増殖させるために十分なビタミン、塩、およびミネラルを含有する従来の細菌増殖培地を含む。ビタミンカクテルの形態のビタミンが、発酵培地内に添加される。ビタミンは、チアミン(B1)、パントテン酸(B5)、ビオチン(B7)、他のアミノ酸およびこれらの組合せを含むが、これらに限定されない、ビタミンB群のいくつかを含む。
【0069】
発酵容器310内で、ガス状基質および発酵培地を、発酵容器310中に含まれる嫌気性細菌によって、第1の濃度の嫌気性細菌の細胞を含有する発酵液体ブロスに発酵させる。次いで、出口ライン314によって細菌発酵システム300Aから反応器のガスを排出させる。発酵容器310は、嫌気性細菌によってガス状基質を発酵させる環境を提供する。一態様において、ガス状基質は、炭素源基質、一酸化炭素(CO)、二酸化炭素(CO2)、水素ガス(H2)、および合成ガスからなる1種または複数のガスであるが、嫌気性細菌は、クロストリジウム属、アセトバクテリウム属、およびそれらの変異体から選択される1種または複数の嫌気性細菌である。
【0070】
発酵容器310は、3つ以上の出口ライン、例えば出口ライン314、出口ライン316、および出口ライン312を含んでもよい。出口ライン314は、発酵容器310から抜かれるガス、排出ガス、余分なガスの送達に使用することができる。出口ライン312は、細菌発酵システム300Aから出た発酵液体ブロスの一部を細胞セパレータ320に送達するために使用することができる。出口ライン316は、細菌発酵システム300Aから出た発酵液体ブロスの一部を細胞セパレータ330に送達するために使用することができる。発酵容器310からの発酵液体ブロスの一部を、出口ライン312および出口ライン316によってそれぞれ細胞セパレータ320および細胞セパレータ330に送達し供給する。細胞セパレータ320および細胞セパレータ330のそれぞれの内部で、発酵液体ブロス(第1の濃度の細菌細胞を含有する)に含まれる嫌気性細菌の細胞を、細胞非含有浸透液と、保持液(例えば、第2の濃度の嫌気性細菌細胞を含有する細胞含有懸濁液)とに分離する。
【0071】
出口ライン322および出口332は、細胞セパレータ320および細胞セパレータ330それぞれから細胞非含有浸透液を排出させ、加工チャンバー350へ送達するために使用される。加工チャンバー350内で、細胞非含有浸透液を加工して、含酸素炭化水素質化合物を生成する。加工チャンバー350は、水を含めた蒸留水分を、出口ライン354に通して発酵容器310へ戻して再利用することもできる。一例では、蒸留液は、主に水を含んでよく、他の内容物も含有してもよい。例えば、一般的な蒸留水流は、95%の水、約5%の酢酸、および幾分かの他の内容物を含有する。次いで、加工チャンバー350は、さらなる下流加工のために、出口ライン352を通じて含酸素炭化水素質化合物の最終生成物を送り出す。一実施形態において、加工チャンバー350は、細胞非含有浸透液を加工し、蒸留して高品質の含酸素炭化水素質化合物(例えば、高濃度および/または無水形態のエタノール、ブタノール、例えば95%w/wまたはさらに高濃度のエタノールなど)を得る蒸留室である。
【0072】
細胞セパレータ320を通過した後に得られる細胞含有懸濁液は、細胞再利用のために、出口ライン324を介して送達して発酵容器310に戻すことができ、それによって細胞含有懸濁液中の細胞は、さらなる発酵プロセスを経ることができる。一方、細胞セパレータ330を通過した後に得られる細胞含有懸濁液は、細胞セパレータ330によって濃縮し、出口ライン336を介して脱水チャンバー375に送達して混合物へと破断させ、乾燥することができる。脱水チャンバー375は、オーブン乾燥機、パドル乾燥機、噴霧乾燥装置、ドラム乾燥機、凍結乾燥装置、およびこれらの組合せであってもよい。次いで、細胞セパレータ330中の嫌気性細菌細胞を含有する細胞含有懸濁液の一部を、さらなる発酵プロセスのために、出口ライン334を介して送達して発酵容器310に戻す。
タンパク質富化サプリメントを得るための細胞含有懸濁液の加工の一例としては、高温加工チャンバー内、例えば噴霧乾燥脱水チャンバー内で摂氏約100℃以上(例えば、摂氏250℃以上)の高温に細胞懸濁液をさらし、細胞を破壊して、細胞含有懸濁液の水分を減少させてペーストまたは粉末の形態にするものがある。細胞含有懸濁液の加工の別の例としては、低温加工チャンバー内で摂氏約0℃以下の温度に細胞懸濁液をさらすものがある。
出口ライン376が脱水チャンバー375に接続され、脱水チャンバー375から排出された破壊および脱水形態の細胞含有懸濁液を送達し、タンパク質富化サプリメントの組成物にブレンドされる状態にする。脱水チャンバー375中で脱水プロセスを経た後、タンパク質富化栄養素サプリメントが得られ、出口ライン376を介して細菌発酵システム300Aから収集される。
【0073】
図3Bは、2つの細胞セパレータ、1つの保持タンクおよび1つの脱水チャンバーを使用した、細胞含有懸濁液および1種または複数の含酸素炭化水素質化合物を製造するための細菌発酵システム300Bの概略図である。
図3B中、上で考察されるように、細菌発酵システム300Bは、入口ライン302に接続された発酵容器310、入口ライン304およびいくつかの出口ライン、出口ライン312、出口ライン322、および出口ライン324に接続された細胞セパレータ320、出口ライン316および出口ライン336に接続された細胞セパレータ330、ならびに出口ライン336および出口ライン376に接続された脱水チャンバー375を含む。
【0074】
加えて、細菌発酵システム300Bは、一部の細胞非含有浸透液を保持および貯蔵するための保持タンクまたは貯蔵タンクをさらに含む。例えば、保持タンク340(例えば、細胞非含有浸透液保持タンク)は、それぞれ出口ライン322および出口ライン332を介して細胞セパレータ320および細胞セパレータ330に接続されている。細胞セパレータ320および細胞セパレータ330による細胞の分離後に得られた細胞非含有浸透液を、保持タンク340中に保持された細胞非含有浸透液を加工して高品質の形態の含酸素炭化水素質化合物の最終生成物を得る準備として、前処理または大量貯蔵することができる。一実施形態において、保持タンク340から出口ライン342を介して送達された細胞非含有浸透液を、加工チャンバー350内でさらに加工してエタノールを製造する。その後、加工された含酸素炭化水素質化合物の最終生成物を加工チャンバー350から出口ライン352を介して送達して出し、加工チャンバー350で製造された水、酢酸、栄養素、および他の材料は、出口ライン354を介して発酵容器310に戻して再利用することができる。
【0075】
図4Aは、本発明の1つまたは複数の実施形態による嫌気性細菌の培養物を使用し、細菌発酵からタンパク質富化栄養素サプリメントを得る発酵プロセスのための、1つの発酵容器、1つの細胞セパレータ、1つの加工チャンバー、1つの破壊装置、1つの分画装置、および2つの脱水チャンバーを有する、細菌発酵システム400Aの概略図を示す。細菌発酵システム400Aは、入口ライン402、入口ライン404、発酵容器410、出口ライン412、出口ライン414、細胞セパレータ420、出口ライン422、出口ライン424、加工チャンバー450、出口ライン452、出口ライン454、破壊装置460、出口ライン462、分画装置470、出口ライン472、出口ライン474、脱水チャンバー475A、脱水チャンバー475B、出口ライン476A、および出口ライン476Bを含む。
【0076】
細菌発酵システム400Aは、一実施形態において、連続細菌発酵システムであってもよい。まず、発酵培地の流れを、入口ライン402によって細菌発酵システム400Aに供給する。次に、ガス状基質の流れを、入口ライン404によって細菌発酵システム400Aに供給する。次いでガス状基質および発酵培地の流れが、嫌気性細菌を培養する発酵容器410に入る。発酵容器410は、嫌気性細菌によってガス状基質を発酵させる環境を提供する。ガス状基質および発酵培地の変換は、発酵容器410内で生じる。発酵容器410内で、ガス状基質および発酵培地の発酵が、発酵容器中に含まれる嫌気性細菌によって促進されて、第1の濃度の嫌気性細菌の細胞を含有する発酵液体ブロスが生成される。次いで未反応の反応性ガスが放出され、細菌容器410から出口ライン414によって排出される。
【0077】
さらに、出口ライン412によって発酵液体ブロスを細胞セパレータ420に送達して供給する。細胞セパレータ420内で、発酵液体ブロス中に含まれる嫌気性細菌の細胞を、細胞非含有浸透液と、第2の濃度の細胞含有嫌気性細菌細胞とに分離する。次いで、細胞セパレータ420中の細胞非含有浸透液を、出口ライン422を介して加工チャンバー450へ送達する。次いで細胞セパレータ420中のある程度の量の嫌気性細菌細胞を含有する細胞含有懸濁液は、出口ライン424を介して発酵容器410に送達して戻され、さらなる発酵プロセスを経る。細胞セパレータ420中の別の量の嫌気性細菌細胞を含有する細胞含有懸濁液は、出口ライン426を介して破壊装置460へ送達する。
加工チャンバー450内で、細胞非含有浸透液を加工して含酸素炭化水素質化合物を得る。加工チャンバー450はまた、出口ライン454を介して発酵容器410に水を戻して再利用する。加工チャンバー450は、出口ライン452を通じて合計で95%のエタノールをさらなる下流加工のために送り出す。
【0078】
破壊装置460内で、細胞含有懸濁液中に含まれる嫌気性細菌細胞の細胞膜を破壊してホモジネートを生成する。ホモジネートを出口ライン462に通して分画装置470へ送達する。一態様において、出口ライン474は、分画装置470に接続され、タンパク質富化栄養素サプリメントとして製造される第1のタンパク質含有画分を送達する。出口ライン472は、分画装置470に接続され、細胞残屑画分を、さらなる下流加工のための別の装置に流入させる。別の態様において、1つまたは複数のタンパク質含有画分は、1つまたは複数の分画装置を経て不要な不純物および残屑を除去した後、再度合わせ、タンパク質富化栄養素サプリメントとして製造する。
【0079】
本明細書で使用できる例示的な破壊装置としては、これらに限定されないが、マイクロ流体装置、超音波処理装置、超音波装置、機械的破砕装置、フレンチプレス、冷凍器、加熱器、熱交換器、蒸留塔、プロセスの流れおよび保持タンクの温度を上昇させる装置、低温殺菌装置、紫外線殺菌装置、ガンマ線殺菌装置、反応器、ホモジナイザー、およびこれらの組合せが挙げられる。
破壊装置460の一例としては、細菌性微生物の細胞膜および細胞壁の構造に不可逆変化をもたらし、細菌細胞の内容物のさらなる操作を可能にする装置がある。細菌細胞の内容物は、核酸、タンパク質、グリコーゲン、顔料、脂肪滴、結晶、および他の栄養素(種々の形態の炭素、窒素、硫黄、カルシウムなど)を含む。
【0080】
一態様において、破壊装置460は、強力な力を用いて嫌気性細菌細胞の細胞膜を破壊することによって細胞を壊して開ける。細胞含有懸濁液中の嫌気性細菌細胞に、音、圧力、または機械的手段などによって高い剪断力を加える。本発明では、方法は、第2の濃度の嫌気性細菌細胞を含有する細胞含有懸濁液を破壊装置460へ送ることを含む。破壊装置460は、強力な力(例えば、機械的、音、圧力)で細胞の細胞膜を破壊し、細菌細胞が破壊された状態下、細菌細胞中の有用な部分(例えば、タンパク質)に対してより容易にアクセスすることができる中で、ホモジネートを生成することによって細胞を壊して開ける。あるいは、方法は、ホモジネートを第1の分画装置に送達する前に、ホモジネートを第2の破壊装置に送達することを含む。第2の破壊装置は、ホモジネートの細胞をさらに破壊し、その後、タンパク質富化栄養素サプリメントが製造される。
例として、破壊装置460は、マイクロ流体装置である。マイクロ流体装置は、これらに限定されないが、反応室、管、ポンプ、フランジ管、リング、ガスケット、高圧逆止め弁を含む。マイクロ流体装置の反応室は、セラミック反応室、耐摩耗室、スプール反応室であってもよく、シングルスロット付き、マルチスロット付きであり、マイクロチャネリングを有する。
【0081】
別の例として、破壊装置460は、酵素処理装置である。さらに別の例として、破壊装置は、超音波装置である。超音波装置は、超音波プローブまたは超音波浴である。超音波装置は、高周波音波を使用して細胞を撹拌および破壊することによって、細胞を剪断する。さらに別の例として、破壊装置は、凍結装置である。凍結装置は、凍結および解凍サイクルを有し、細菌細胞は、複数回の凍結-解凍サイクルに入り、細胞は、バッファー中で凍結し、次いで解凍する。さらに別の例として、破壊装置は、機械的破壊装置である。機械的破壊装置は、細菌細胞の細胞壁および/または細胞膜を分解するための機械的ブレードまたはビーズを含む。
【0082】
次いで分画装置470内で、ホモジネートを、第1のタンパク質含有画分と、タンパク質含有細胞残屑画分とに分画する。次に、第1のタンパク質含有細胞残屑画分を、出口ライン472を介して脱水チャンバー475Aへ送達する。次いで、第1のタンパク質含有画分を、出口ライン474を介して脱水チャンバー475Bへ送達する。例示的な分画装置には、これらに限定されないが、様々なタイプの固液分画装置、遠心分離装置、連続遠心分離装置、デカンター遠心分離装置、ディスクスタック遠心分離装置、濾過装置、中空糸濾過装置、螺旋巻き濾過装置、セラミックフィルター装置、クロスフロー濾過装置、サイズ排除装置、1本または一連のサイズ排除カラム、1本または一連のイオン交換カラム、1本または一連の炭素重合体カラム、流入式磁気分別装置、限外濾過装置、1本または一連のアフィニティクロマトグラフィーカラム、1本または一連のゲル濾過カラム、およびこれらの組合せが挙げられる。
脱水チャンバー475Aおよび脱水チャンバー475B中で行われる脱水プロセスの後、タンパク質富化栄養素サプリメントを得ることができ、脱水チャンバー475Aおよび脱水チャンバー475Bそれぞれから、出口ライン476Aおよび476Bの両方を介して収集することができる。
【0083】
図4Bは、細菌発酵プロセスからタンパク質富化栄養素サプリメントを得るための、1つの発酵容器、2つの細胞セパレータ、1つの加工チャンバー、1つの破壊装置、2つの分画装置、および3つの脱水チャンバーを有する細菌発酵システム400Bの概略図を示す。細菌発酵システム400Bは、入口ライン402、入口ライン404、発酵容器410、出口ライン412、出口ライン414、出口ライン416、細胞セパレータ420、出口ライン422、出口ライン424、出口ライン426、細胞セパレータ430、出口ライン432、出口ライン434、出口ライン436、加工チャンバー450、出口ライン452、出口ライン454、破壊装置460、出口ライン462、分画装置470、出口ライン472、出口ライン474、脱水チャンバー475、出口ライン476、分画装置480、出口ライン482、出口ライン484、脱水チャンバー485A、出口ライン486A、脱水チャンバー485B、および出口ライン486Bを含む。
【0084】
一態様において、細胞セパレータ430は、細胞濃縮機である。本発明では、方法は、発酵容器から、第1の濃度の嫌気性細菌の細胞を含有する発酵液体ブロスをある程度の量を収集することを含む。この収集物は、発酵容器410を接続する出口ライン416を通して細胞セパレータ430へ送達される。細胞セパレータ430中で、発酵液体ブロスを、細胞非含有浸透液と、第1の濃度の嫌気性細菌細胞を含有する細胞含有懸濁液とに分離し、第2の濃度(例えば、発酵液体ブロスの第1の濃度より高い高濃度の細胞)に濃縮する。細胞非含有浸透液を、加工チャンバー450と細胞セパレータ430を接続する出口ライン432に通して加工チャンバー450へ送達する。第2の濃度の細胞を含有する細胞含有懸濁液を、破壊装置460と細胞セパレータ430を接続する出口ライン436に通して破壊装置460へ送達する。
一態様において、破壊装置460によって加工した後、ホモジネートを分画装置470へ送達して、タンパク質含有画分と細胞残屑画分とに分離する。分画装置470は、出口ライン462を介して破壊装置460に接続されている。分画装置470は、少なくとも2つの出口ラインを有し、出口ライン472は、細胞残屑画分を送達するために使用され、第2の出口ライン474は、タンパク質含有画分を送達するために使用される。
【0085】
一態様において、第1のタンパク質含有画分を分画装置480へ送達し、第1のタンパク質含有画分から第2のタンパク質含有画分をさらに分離する。分画装置480は、出口474を介して分画装置470に接続されている。分画装置480は、少なくとも2つの出口を有し、第1の出口482から細胞残屑が流れ、第2の出口484から第2のタンパク質含有画分が流れる。方法は、第2の分画装置から第2のタンパク質含有画分を収集することをさらに含む。さらに別の態様において、2つ以上の分画装置が設けられる。さらに別の態様において、本発明に使用される細菌発酵システムの中に1つの分画装置のみが存在し、その分画装置から第1のタンパク質含有画分が収集される。例示的な分画装置としては、これらに限定されないが、様々なタイプの固液分画装置、遠心分離装置、連続遠心分離装置、デカンター遠心分離装置、ディスクスタック遠心分離装置、濾過装置、中空糸濾過装置、螺旋巻き濾過装置、セラミックフィルター装置、クロスフロー濾過装置、サイズ排除装置、1本または一連のサイズ排除カラム、1本または一連のイオン交換カラム、1本または一連の炭素重合体カラム、流入式磁気分別装置、限外濾過装置、1本または一連のアフィニティクロマトグラフィーカラム、1本または一連のゲル濾過カラム、およびこれらの組合せが挙げられる。
【0086】
図4Cは、細菌発酵プロセスからタンパク質富化栄養素サプリメントを得るための、1つの発酵容器、1つの細胞セパレータ、1つの細胞非含有保持タンク、1つの加工チャンバー、1つの破壊装置、1つの分画装置、および2つの脱水チャンバーを有する細菌発酵システム400Cの概略図を示す。細菌発酵システム400Cは、入口ライン402、入口ライン404、発酵容器410、出口ライン412、出口ライン414、細胞セパレータ420、出口ライン422、出口ライン424、出口ライン426、細胞非含有保持タンク440、出口ライン442、出口ライン444、加工チャンバー450、出口ライン452、出口ライン454、破壊装置460、出口ライン462、分画装置470、出口ライン472、出口ライン474、脱水チャンバー475A、出口ライン476A、脱水チャンバー475B、および出口ライン476Bを含む。
【0087】
図4Dは、細菌発酵プロセスからタンパク質富化栄養素サプリメントを得るための、1つの発酵容器、1つの細胞セパレータ、1つの細胞非含有保持タンク、1つの加工チャンバー、1つの破壊装置、2つの分画装置、および3つの脱水チャンバーを有する細菌発酵システム400Dの概略図を示す。細菌発酵システム400Dは、入口ライン402、入口ライン404、発酵容器410、出口ライン412、出口ライン414、細胞セパレータ420、出口ライン422、出口ライン424、出口ライン426、細胞非含有保持タンク440、出口ライン442、出口ライン444、加工チャンバー450、出口ライン452、出口ライン454、破壊装置460、出口ライン462、分画装置470、出口ライン472、出口ライン474、脱水チャンバー475、出口ライン476、分画装置480、出口ライン482、出口ライン484、脱水チャンバー485A、出口ライン486A、脱水チャンバー485B、および出口ライン486Bを含む。
【0088】
図4Eは、細菌発酵プロセスからタンパク質富化栄養素サプリメントを得るための、1つの発酵容器、2つの細胞セパレータ、1つの細胞非含有保持タンク、1つの加工チャンバー、1つの破壊装置、2つの分画装置、および3つの脱水チャンバーを有する細菌発酵システム400Eの概略図を示す。細菌発酵システム400Eは、入口ライン402、入口ライン404、発酵容器410、出口ライン412、出口ライン414、出口ライン416、細胞セパレータ420、出口ライン422、出口ライン424、細胞セパレータ430、出口ライン432、出口ライン436、細胞非含有保持タンク440、出口ライン442、出口ライン444、加工チャンバー450、出口ライン452、出口ライン454、破壊装置460、出口ライン462、分画装置470、出口ライン472、出口ライン474、脱水チャンバー475、出口ライン476、分画装置480、出口ライン482、出口ライン484、脱水チャンバー485A、出口ライン486A、脱水チャンバー485B、および出口ライン486Bを含む。
【0089】
図4Fは、細菌発酵プロセスからタンパク質富化栄養素サプリメントを得るための、1つの発酵容器、1つの細胞セパレータ、1つの細胞非含有保持タンク、1つの加工チャンバー、1つの細胞含有保持タンク、1つの破壊装置、2つの分画装置、および3つの脱水チャンバーを有する細菌発酵システム400Fの概略図を示す。細菌発酵システム400Fは、入口ライン402、入口ライン404、入口ライン406、発酵容器410、出口ライン412、出口ライン414、細胞セパレータ420、出口ライン422、出口ライン424、出口ライン426、細胞非含有保持タンク440、出口ライン442、出口ライン444、細胞含有保持タンク445、出口ライン446、加工チャンバー450、出口ライン452、出口ライン454、破壊装置460、出口ライン462、分画装置470、出口ライン472、出口ライン474、脱水チャンバー475、出口ライン476、分画装置480、出口ライン482、出口ライン484、脱水チャンバー485A、出口ライン486A、脱水チャンバー485B、および出口ライン486Bを含む。
【0090】
一態様において、細菌発酵システム400Fは、細菌発酵容器から送達される細菌細胞を収容するための保持タンク(例えば、細胞含有保持タンク445)を含む。一実施形態において、保持タンクは、発酵容器から収集される微生物バイオマスの嫌気性細菌細胞を貯蔵する貯蔵容器である。これは、破壊装置460に過負担をかけずに、細菌細胞を連続的に細菌発酵容器410から収集し、破壊装置460へ送達することによって、細菌細胞が発酵容器410から破壊装置460へ移動するときの隘路問題に関する懸念を軽減する。濃縮細菌細胞の破壊装置460への送達速度は、細胞セパレータ/濃縮機から出される発酵液体ブロスの送達速度より遅い速度であってもよい。
【0091】
別の実施形態では、保持タンク(例えば、細胞含有保持タンク445)は、細菌細胞が1種または複数の添加剤を受けて破壊効率を増加させる前処理装置として機能する。細胞を添加剤で処理すると、細胞膜は、細菌細胞の機械的破砕の影響をより受けやすくなる。この前処理は、細胞含有懸濁液が破壊装置460に入る前に行うことができる。あるいは、前処理は、細胞含有懸濁液が破壊装置460によって破壊され、嫌気性細菌細胞を含有するホモジネートを1種または複数の添加剤で処理した後に行うことができる。細胞含有保持タンク445の例としては、これらに限定されないが、加工チャンバー、タンク、ステンレス製タンク、プラスチック製タンクなどが挙げられる。
細菌発酵システム400Fにおいて、細胞を含有する細胞含有懸濁液を、細胞含有保持タンク445内で、1種または複数の添加剤で前処理することができる。1種または複数の添加剤、例えば、界面活性剤、洗剤、EDTA、Triton X-100、Tween-20、ドデシル硫酸ナトリウム、CHAPS、酵素、プロテアーゼ、リゾチーム、ベンゾナーゼ、ヌクレアーゼ、リボヌクレアーゼ(RNase)、デオキシリボヌクレアーゼ(DNase)、加水分解誘発剤、pH調整剤、およびこれらの組合せは、入口ライン406を介して細胞含有保持タンク445に添加することができる。pH調整剤としての添加剤の別の例には、塩化水素がある。
【0092】
一態様において、前処理装置は、発酵容器410に接続されている細胞セパレータ/濃縮機(例えば、細胞セパレータ420および/または細胞セパレータ430)に接続されている。別の態様において、前処理装置は、発酵容器410に直接接続され、前処理装置の構成要素は、細胞セパレータおよび濃縮機である。前処理装置は、特定の添加剤を導入して、細菌細胞の細胞膜を、他の破砕技術に対してより影響を受けやすくする、前処理チャンバーおよび入口(例えば、入口ライン406)を含む。使用する添加剤のタイプおよび使用する破壊装置のタイプには、細胞の破壊効率を上げるために、いくつもの組合せが可能である。
【0093】
図4Gは、細菌発酵プロセスからタンパク質富化栄養素サプリメントを得るための、1つの発酵容器、2つの細胞セパレータ、1つの細胞非含有保持タンク、1つの加工チャンバー、1つの細胞含有保持タンク、1つの破壊装置、2つの分画装置、および3つの脱水チャンバーを有する細菌発酵システム400Gの概略図を示す。細菌発酵システム400Gは、入口ライン402、入口ライン404、入口ライン406、発酵容器410、出口ライン412、出口ライン414、出口ライン416、細胞セパレータ420、出口ライン422、細胞セパレータ430、出口ライン432、出口ライン436、細胞非含有保持タンク440、出口ライン442、出口ライン444、細胞含有保持タンク445、出口ライン446、加工チャンバー450、出口ライン452、出口ライン454、破壊装置460、出口ライン462、分画装置470、出口ライン472、出口ライン474、脱水チャンバー475、出口ライン476、分画装置480、出口ライン482、出口ライン484、脱水チャンバー485A、出口ライン486A、脱水チャンバー485B、および出口ライン486Bを含む。
【0094】
図4Hは、細菌発酵プロセスからタンパク質富化栄養素サプリメントを得るための、1つの発酵容器、2つの細胞セパレータ、1つの細胞非含有保持タンク、1つの加工チャンバー、1つの細胞含有保持タンク、1つの破壊装置、2つの分画装置、および3つの脱水チャンバーを有する細菌発酵システム400Hの概略図を示す。細菌発酵システム400Hは、入口ライン402、入口ライン404、発酵容器410、出口ライン412、出口ライン414、細胞セパレータ420、出口ライン422、細胞セパレータ430、出口ライン432、出口ライン436、細胞非含有保持タンク440、出口ライン442、出口ライン444、加工チャンバー450、出口ライン452、出口ライン454、破壊装置460、出口ライン462、出口ライン464、分画装置470、出口ライン472、出口ライン474、脱水チャンバー475、出口ライン476、分画装置480、出口ライン482、出口ライン484、脱水チャンバー485A、出口ライン486A、脱水チャンバー485B、および出口ライン486Bを含む。
特定の実施形態において、細菌発酵システム400Hは、1つまたは複数の再循環ラインをさらに含む。一実施形態において、再循環ラインは、破壊装置460に接続された戻りライン464である。戻りライン464は、破壊装置から一部の生成物混合物を取り、破壊装置460に再度入る。これによって、複数回の破壊装置460を経る通過が可能になり、その結果、破壊量および嫌気性細菌細胞のタンパク質含有ホモジネートのタンパク質濃度が増加し、さらなる加工のために細菌細胞中のタンパク質化合物への十分な到達が確保される。
【0095】
図5Aは、細菌発酵プロセスからタンパク質富化栄養素サプリメントを得るための、1つの発酵容器、1つの細胞セパレータ、1つの加工チャンバー、1つの細胞含有保持タンク、1つの破壊装置、1つの分画装置、および2つの脱水チャンバーを有する細菌発酵システム500Aの概略図を示す。細菌発酵システム500Aは、入口ライン502、入口ライン504、発酵容器510、出口ライン512、出口ライン514、細胞セパレータ520、出口ライン522、出口ライン524、出口ライン526、加工チャンバー550、出口ライン552、出口ライン554、細胞含有保持タンク545、入口ライン506、出口ライン542、ミキサー548、破壊装置560、出口ライン562、出口ライン564、分画装置570、出口ライン572、出口ライン574、脱水チャンバー575A、出口ライン576A、脱水チャンバー575B、および出口ライン576Bを含む。
【0096】
細胞セパレータ520中で、発酵容器510からの発酵液体ブロスを、細胞非含有浸透液と、第2の濃度の嫌気性細菌細胞を含有する細胞含有懸濁液とに分離する。細胞非含有浸透液を、加工チャンバー550と細胞セパレータ520とを接続する出口ライン522に通して加工チャンバー550へ送達する。第2の濃度の嫌気性細菌細胞を含有する細胞含有懸濁液を、細胞含有保持タンク545と細胞セパレータ520とを接続する出口ライン526に通して細胞含有保持タンク545へ送達する。
【0097】
ホモジネートを送達する破壊装置560は、分画装置570に接続される。分画装置570中で、方法500Aは、細胞含有懸濁液を第1のタンパク質含有画分と細胞残屑画分とに分離することを含む。分画装置570は、出口562を介して破壊装置560に接続される。分画装置570は、少なくとも2つの出口を有し、第1の出口574から細胞残屑画分を流し、第2の出口572から第1のタンパク質含有画分を流す。使用する分画装置のタイプとしては、これらに限定されないが、様々なタイプの固液分画装置、遠心分離装置、連続遠心分離装置、デカンター遠心分離装置、ディスクスタック遠心分離装置、濾過装置、中空糸濾過装置、螺旋巻き濾過装置、セラミックフィルター装置、クロスフロー濾過装置、サイズ排除装置、1本または一連のサイズ排除カラム、1本または一連のイオン交換カラム、1本または一連の炭素重合体カラム、流入式磁気分別装置、限外濾過装置、1本または一連のアフィニティクロマトグラフィーカラム、1本または一連のゲル濾過カラム、およびこれらの組合せが挙げられる。
【0098】
一例において、細菌発酵システム500Aは、前処理チャンバーとして機能する細胞含有保持タンク545をさらに含む。嫌気性細菌細胞を含有する細胞含有懸濁液は、細胞含有保持タンク545中で、1種または複数の添加剤で処理される。細胞含有保持タンク545は、1種または複数の添加剤(例えば、洗剤、酵素、緩衝剤、pH調整剤など)を供給する入口ライン506に接続されている。入口506は、通常は締められており、必要な場合に開くことができる。細胞含有保持タンク545は、細胞が高い細胞密度(高濃度)に達し、特定の量の細胞含有懸濁液の破壊装置560への時限送達を行うように機能できるようになるまで、嫌気性細菌細胞を含有する細胞含有懸濁液を保持する。
細胞含有保持タンク545内のミキサー548は、撹拌装置、例えば内部にプロペラを備えた撹拌装置である。破壊装置560は、出口ライン542を介して細胞含有保持タンク545に接続されている。破壊装置560は、嫌気性細菌細胞のホモジネートを生成する。細胞含有保持タンク545中で特定の期間を経た後、細胞含有懸濁液を破壊装置560へ送達する。
一態様において、分画装置570は、1つまたは複数のタンパク質含有画分を受け取って乾燥させる、1つまたは複数の脱水チャンバー(例えば、脱水チャンバー575Aおよび575B)に接続されている。使用される乾燥技法には、乾燥、噴霧乾燥、凍結乾燥などが挙げられる。次いで、タンパク質含有画分をさらに加工し、ブレンドして、タンパク質富化栄養素サプリメントにする。タンパク質含有画分は、タンパク質富化栄養素サプリメントの10%以上(例えば、10%~80%または50%~95%)のタンパク質含有量を占め得る。
【0099】
図5Bは、細菌発酵プロセスからタンパク質富化栄養素サプリメントを得るための、1つの発酵容器、1つの細胞セパレータ、1つの加工チャンバー、1つの破壊装置、1つの細胞含有保持タンク、1つの分画装置、および2つの脱水チャンバーを有する細菌発酵システム500Bの概略図を示す。細菌発酵システム500Bは、入口ライン502、入口ライン504、発酵容器510、出口ライン512、出口ライン514、細胞セパレータ520、出口ライン522、出口ライン524.出口ライン526、加工チャンバー550、出口ライン552、出口ライン554、細胞含有保持タンク545、入口ライン506、出口ライン542、ミキサー548、破壊装置560、出口ライン562、出口ライン564、分画装置580、出口ライン582、出口ライン584、脱水チャンバー585A、出口ライン586A、脱水チャンバー585B、および出口ライン586Bを含む。この例では、細胞含有保持タンク545は、出口ライン562を介して破壊装置560の下流に接続される。
【0100】
図5Cは、細菌発酵プロセスからタンパク質富化栄養素サプリメントを得るための、1つの発酵容器、1つの細胞セパレータ、1つの加工チャンバー、1つの細胞含有保持タンク、1つの破壊装置、2つの分画装置、および3つの脱水チャンバーを有する細菌発酵システム500Cの概略図を示す。細菌発酵システム500Cは、入口ライン502、入口ライン504、発酵容器510、出口ライン512、出口ライン514、細胞セパレータ520、出口ライン522、出口ライン524、出口ライン526、加工チャンバー550、出口ライン552、出口ライン554、細胞含有保持タンク545、入口ライン506、ミキサー548、出口ライン542、破壊装置560、出口ライン562、出口ライン564、分画装置570、出口ライン572、出口ライン574、脱水チャンバー575、出口ライン576、分画装置590、出口ライン592、出口ライン594、脱水チャンバー595A、出口ライン596A、脱水チャンバー595B、および出口ライン596Bを含む。
【0101】
図5Dは、細菌発酵プロセスからタンパク質富化栄養素サプリメントを得るための、1つの発酵容器、1つの細胞セパレータ、1つの加工チャンバー、1つの破壊装置、2つの分画装置、および4つの脱水チャンバーを有する細菌発酵システム500Dの概略図を示す。細菌発酵システム500Dは、入口ライン502、入口ライン504、発酵容器510、出口ライン512、出口ライン514、細胞セパレータ520、出口ライン522、出口ライン524、出口ライン526、加工チャンバー550、出口ライン552、出口ライン554、破壊装置560、出口ライン562、出口ライン564、分画装置570、出口ライン572、出口ライン574、分画装置570、出口ライン592A、出口ライン594A、分画装置590、出口ライン592B、出口ライン594B、脱水チャンバー595A、出口ライン596A、脱水チャンバー595B、出口ライン596B、脱水チャンバー595C、出口ライン596C、脱水チャンバー595D、および出口ライン596Dを含む。一態様において、破壊装置560は、複数回、破壊装置560を通過させる再循環流ライン(例えば、出口ライン564)を有する。
【0102】
図5Eは、細菌発酵プロセスからタンパク質富化栄養素サプリメントを得るための、1つの発酵容器、2つの細胞セパレータ、1つの加工チャンバー、1つの細胞含有保持タンク、1つの破壊装置、2つの分画装置、および3つの脱水チャンバーを有する細菌発酵システム500Eの概略図を示す。細菌発酵システム500Eは、入口ライン502、入口ライン504、発酵容器510、出口ライン512、出口ライン514、出口ライン516、細胞セパレータ520、出口ライン522、出口ライン524、加工チャンバー550、出口ライン552、出口ライン544、細胞セパレータ530、出口ライン532、出口ライン534、出口ライン536、細胞含有保持タンク545、入口ライン506、出口ライン542、ミキサー548、破壊装置560、出口ライン562、分画装置570、出口ライン572、出口ライン574、脱水チャンバー575、出口ライン576、分画装置580、出口ライン582、出口ライン584、脱水チャンバー585A、出口ライン586A、脱水チャンバー585B、および出口ライン586Bを含む。
【0103】
図6は、細菌発酵プロセスからタンパク質富化栄養素サプリメントを得るための、1つの発酵容器、2つの細胞セパレータ、1つの細胞非含有保持タンク、1つの加工チャンバー、1つの細胞含有保持タンク、1つの破壊装置、2つの分画装置、および2つの脱水チャンバーを有する細菌発酵システム600の概略図を示す。細菌発酵システム600は、入口ライン602、入口ライン604、発酵容器610、出口ライン612、出口ライン614、出口ライン616、細胞セパレータ620、出口ライン622、出口ライン624、細胞非含有保持タンク640、出口ライン642、出口ライン644、加工チャンバー650、出口ライン652、出口ライン654、細胞セパレータ630、出口ライン632、出口ライン636、細胞含有保持タンク645、入口ライン606、出口ライン646、破壊装置660、出口ライン662、分画装置670、出口ライン672、出口ライン674、脱水チャンバー675、出口ライン676、分画装置690、入口ライン692、出口ライン694、脱水チャンバー695、および出口ライン696を含む。
【0104】
一実施形態において、マイクロ流体装置である1つの破壊装置であって、その装置内で、細胞が破壊装置に入り、反応室内で高剪断力を受け、嫌気性細菌の細胞壁および細胞膜が分裂される、1つの破壊装置が存在する。次いで破壊された細菌細胞を、遠心分離、濾過、嫌気性細菌細胞を脱水するための様々な方法(例えば、乾燥、冷凍乾燥、凍結乾燥など)、ブレンド、重金属イオンの除去、栄養素サプリメントとしての摂取可能な物質中への取込み、またはこれらの組合せによってさらに加工する。
【0105】
別の実施形態において、細菌発酵システムは、2つ以上の破壊装置を有する。第1の破壊装置はまた、発酵液から分離した細胞含有懸濁液中の細菌細胞を保持する保持タンクまたは貯蔵容器にもなり得る。前処理装置である第1の破壊装置が存在し、細胞含有懸濁液が、第1の破壊装置に入り、添加剤で処理されて破壊効率が増強される。使用する添加剤としては、これらに限定されないが、1種または複数の洗剤、酵素、化学物質、またはこれらの組合せが挙げられる。マイクロ流体装置である第2の破壊装置が存在し、細胞が第2の破壊装置に入り、反応室内で高剪断力を受ける。細胞含有懸濁液は、マイクロチャネリングを通して押し出され、それによって細菌細胞の細胞壁および細胞膜が破壊して開かれ、細菌細胞の中身が、発酵液中を浮遊するようになる。これは、第1のタンパク質集合体の回収を可能にし、遠心分離、濾過、脱水などによってさらに操作することができる。
【0106】
III.発酵由来タンパク質を含む栄養素サプリメントの組成物
本明細書に記載の細菌発酵システムから回収された1つまたは複数のタンパク質含有画分に、供給原料組成物との直接のブレンド、乾燥、沈降、濾過、限外濾過、精密濾過、真空濾過、遠心分離、連続遠心分離、冷凍乾燥、凍結、加水分解、およびこれらの組合せを行い、非常に純粋な形態のタンパク質をより高いタンパク質濃度で生成して得ることができる。微生物バイオマスが加水分解される態様において、加水分解は、熱処理、酸加水分解、酵素加水分解、アルカリ加水分解、およびこれらの組合せによって実施することができる。
方法の一実施形態において、第1のタンパク質含有画分を、タンパク質富化栄養素サプリメントとして製造する。第1のタンパク質含有画分は、60%~80%のタンパク質含有量を占める。別の態様では、第1のタンパク質含有画分は、40%~60%のタンパク質含有量を占める。さらに別の態様では、第1のタンパク質含有画分は、10%~40%のタンパク質含有量を占める。
一実施形態において、本発明は、タンパク質富化栄養素サプリメントである組成物を提供する。この組成物は、酢酸生成細菌培養物を使用する発酵プロセスから生成される。この組成物は、ホモジネートの細胞残屑画分から分離されるタンパク質含有画分を含み、該ホモジネートは、酢酸生成細菌培養物の細胞を含有する細胞含有懸濁液を破壊して得られ、細胞含有懸濁液は、酢酸生成細菌培養物を使用してガス状基質を発酵させる間、発酵容器から送り出される発酵液から得られる。
【0107】
一態様において、酢酸生成細菌培養物は、クロストリジウム菌、アセトバクテリウム菌、およびこれらの組合せからなる群から選択される。発酵されたガス状基質は、炭素源基質、一酸化炭素(CO)、二酸化炭素(CO2)、水素(H2)ガス、合成ガス、およびこれらの組合せからなる群から選択される1種または複数のガスを含む。
別の態様において、組成物のタンパク質含有画分は、組成物の約10%~約80%の含有量のタンパク質、組成物の約5%~約35%の含有量の炭水化物、および組成物の約5%~約15%の含有量の核酸を含む。タンパク質含有画中のタンパク質含有量は、タンパク質含有画分中の炭水化物含有量より多い。さらに別の態様では、核酸含有量は、組成物の2%を超えない。これは、ヒトおよび動物などが摂取可能な組成物である。
【0108】
別の実施形態において、タンパク質富化栄養素サプリメントの組成物は、ホモジネートの第1の量のタンパク質含有画分と第2の量の細胞残屑画分から分離された精製タンパク質産物を含み、該ホモジネートは、酢酸生成細菌培養物の細胞を含有する細胞含有懸濁液を破壊して得られ、該細胞含有懸濁液は、酢酸生成細菌培養物を使用したガス状基質の発酵中に発酵容器から送り出された発酵液から得られる。細胞残屑画分は、細胞壁粒子、細胞膜粒子、タンパク質凝集体、封入体、核酸、および嫌気性細菌細胞の他の成分を含む。発酵容器から送り出された発酵液体ブロスを、細胞非含有浸透液と、酢酸生成細菌培養物の細胞を含有する細胞含有懸濁液とに分離する。一態様において、部分的に精製されたタンパク質産物は、2%を超えない含有量で核酸を有する。別の態様では、核酸含有量は8%~12%以下である。
【0109】
一態様において、組成物は、組成物の約10%~約80%のタンパク質含有量、組成物の約5%~約35%の炭水化物含有量、および組成物の約5%~約15%の核酸含有量を含む。タンパク質含有画分中のタンパク質含有量は、タンパク質含有画分中の炭水化物含有量より多い。
別の態様において、組成物は、組成物の約10%~約80%のタンパク質含有量、組成物の約5%~約35%の炭水化物含有量、および組成物の2%を超えない核酸含有量を含む。
【0110】
さらに別の実施形態において、細菌発酵容器から除去されたときの供給原料組成物は、乾燥質量基準で、酢酸生成バイオマス100グラム当たり約220kcal以上をもたらし、酢酸生成バイオマス100グラム当たり約15グラム以上の炭水化物を含み得る。この態様において、供給原料の炭水化物とタンパク質の質量比は、約1.0以下である。別の態様において、供給原料は、乾燥質量基準で、酢酸生成バイオマス100グラム当たり約18mg以上のカルシウム、細胞集団100グラム当たり約150mg以上の鉄、酢酸生成バイオマス100グラム当たり約25mg以上のナトリウム、バイオマス100グラム当たり約1200mg以上のカリウム、またはこれらの組合せを含む。供給原料組成物は、必須アミノ酸および可欠アミノ酸の両方を含む。供給原料組成物は、ヌクレオチドも含み得る。
【0111】
一態様において、供給原料組成物は、すべて乾燥質量基準で、酢酸生成バイオマス100グラム当たり約60グラム以上、別の態様では、酢酸生成バイオマス100グラム当たり約60~約90グラム、別の態様では、酢酸生成バイオマス100グラム当たり約65~約85グラム、別の態様では、酢酸生成バイオマス100グラム当たり約70~約80グラムのタンパク質含有量をもたらす。
別の態様において、供給原料組成物は、乾燥酢酸生成バイオマス100グラム当たり約220kcal以上、別の態様では、約220kcal~約400kcal、別の態様では、約250kcal~約350kcal、別の態様では、約300kcal~約325kcal、および別の態様では、約220kcal~約300kcalをもたらす。
別の態様において、供給原料組成物は、乾燥酢酸生成バイオマス100グラム当たり約15グラム以上、別の態様では、約15グラム~約60グラム、別の態様では、約20~約40グラム、別の態様では、約25~約35グラム、および別の態様では、約30~約35グラムの炭水化物をもたらす。この態様において、供給原料の炭水化物とタンパク質の質量比は、約1.0以下、別の態様では、約0.75以下、別の態様では、0.5以下、別の態様では、約0.25以下、および別の態様では、0.1以下である。一態様において、供給原料は、検出可能な炭水化物がなく、タンパク質のみを含む。別の態様では、炭水化物は、エタノールおよび/または水溶性糖類を含み得る。
【0112】
供給原料組成物は、繊維も含み得る。繊維は、酸性洗剤繊維、中性洗剤繊維、可消化繊維、および/または不消化繊維を含み得る。供給原料組成物は、デンプンも含み得る。さらに別の態様において、供給原料組成物は、カルシウム、鉄、ナトリウムおよびカリウムを以下の量(すべて、乾燥質量基準で、酢酸生成バイオマス100グラム当たりのmg数で表す)で、すなわち、カルシウム:約18mg以上、別の態様では、約20mg以上、別の態様では、約25mg以上、別の態様では、約30mg以上;鉄:約150mg以上、別の態様では、約175mg以上、別の態様では、約200mg以上、および別の態様では、約225mg以上;ナトリウム:約25mg以上、別の態様では、約30mg以上、別の態様では、約35mg以上、および別の態様では、約40mg以上;カリウム:約1200mg以上、別の態様では、約1300mg以上、別の態様では、約1400mg以上、および別の態様では、約1500mg以上で含む。
【0113】
一態様において、供給原料組成物は、僅少な量の金属を含み得る。代替の態様において、供給原料は、特定の所望レベルの金属を含み得る。供給原料中に存在し得るまたは存在し得ない金属の例としては、亜鉛、モリブデン、カドミウム、スカンジウム、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、タングステンおよびセレンが挙げられる。
【0114】
別の態様において、酢酸生成バイオマスは、以下のアミノ酸のうちのいずれか1種を、単独でまたは任意の組合せで含み得る(乾燥質量基準で、酢酸生成バイオマス100グラム当たりのグラム数で表す):必須アミノ酸含有量:アルギニン:一態様では、約2.5グラム以上、別の態様では、約3.0グラム以上、別の態様では、約3.5グラム以上、別の態様では、約4.0グラム以上、別の態様では、約4.5グラム以上、別の態様では、約5.0グラム以上、別の態様では、約6.0グラム以上、および別の態様では、約7.0グラム以上;ヒスチジン:一態様では、約1.5グラム以上、別の態様では、約2.0グラム以上、別の態様では、約2.5グラム以上、別の態様では、約3.0グラム以上、別の態様では、約3.5グラム以上、別の態様では、約4.0グラム以上、別の態様では、約5.0グラム以上、および別の態様では、約6.0グラム以上;イソロイシン:一態様では、約4.0グラム以上、別の態様では、約4.5グラム以上、別の態様では、約5.0グラム以上、別の態様では、約5.5グラム以上、別の態様では、約6.0グラム以上、別の態様では、約7.0グラム以上、別の態様では、約8.0グラム以上、および別の態様では、約9.0グラム以上;ロイシン:一態様では、約4.5グラム以上、別の態様では、約5.0グラム以上、別の態様では、約5.5グラム以上、別の態様では、約6.0グラム以上、別の態様では、約6.5グラム以上、別の態様では、約7.0グラム以上、別の態様では、約8.0グラム以上、および別の態様では、約9.0グラム以上;リジン:一態様では、約6.0グラム以上、別の態様では、約6.5グラム以上、別の態様では、約7.0グラム以上、別の態様では、約7.5グラム以上、別の態様では、約8.0グラム以上、別の態様では、約9.0グラム以上、別の態様では、約10.0グラム以上、別の態様では、約12.0グラム以上;メチオニン:一態様では、約1.5グラム以上、別の態様では、約2.0グラム以上、別の態様では、約2.5グラム以上、別の態様では、約3.0グラム以上、別の態様では、約3.5グラム以上、別の態様では、約4.0グラム以上、別の態様では、約5.0グラム以上、および別の態様では、約6.0グラム以上;フェニルアラニン:一態様では、約2.5グラム以上、別の態様では、約3.0グラム以上、別の態様では、約3.5グラム以上、別の態様では、約4.0グラム以上、別の態様では、約4.5グラム以上、別の態様では、約5.0グラム以上、別の態様では、約5.5グラム以上、および別の態様では、約6.0グラム以上;トレオニン:一態様では、約3.0グラム以上、別の態様では、約3.5グラム以上、別の態様では、約4.0グラム以上、別の態様では、約4.5グラム以上、別の態様では、約5.0グラム以上、別の態様では、約6.0グラム以上、別の態様では、約7.0グラム以上、および別の態様では、約8.0グラム以上;トリプトファン:一態様では、約0.4グラム以上、別の態様では、約0.5グラム以上、別の態様では、約0.6グラム以上、別の態様では、約0.7グラム以上、別の態様では、約0.8グラム以上、別の態様では、約0.9グラム以上、別の態様では、約1.0グラム以上、および別の態様では、約1.5グラム以上;バリン:一態様では、約4.0グラム以上、別の態様では、約4.5グラム以上、別の態様では、約5.0グラム以上、別の態様では、約5.5グラム以上、別の態様では、約6.0グラム以上、別の態様では、約7.0グラム以上、別の態様では、約8.0グラム以上、および別の態様では、約9.0グラム以上。
【0115】
他のアミノ酸含有量:アラニン:一態様では、約5.0グラム以上、別の態様では、約5.5グラム以上、別の態様では、約6.0グラム以上、別の態様では、約7.0グラム以上、別の態様では、約8.0グラム以上、別の態様では、約9.0グラム以上、別の態様では、約10.0グラム以上、および別の態様では、約11.0グラム以上;アスパラギン酸:一態様では、約7.0グラム以上、別の態様では、約7.5グラム以上、別の態様では、約8.0グラム以上、別の態様では、約9.0グラム以上、別の態様では、約10.0グラム以上、別の態様では、約11.0グラム以上、別の態様では、約12.0グラム以上、および別の態様では、約14.0グラム以上;システイン:一態様では、約1.0グラム以上、別の態様では、約1.5グラム以上、別の態様では、約2.0グラム以上、別の態様では、約2.5グラム以上、別の態様では、約3.0グラム以上、別の態様では、約3.5グラム以上、別の態様では、約4.0グラム以上、および別の態様では、約5.0グラム以上;グルタミン酸:一態様では、約9.0グラム以上、別の態様では、約9.5グラム以上、別の態様では、約10.0グラム以上、別の態様では、約12.0グラム以上、別の態様では、約14.0グラム以上、別の態様では、約16.0グラム以上、別の態様では、約18.0グラム以上、および別の態様では、約20.0グラム以上;グリシン:一態様では、約3.0グラム以上、別の態様では、約3.5グラム以上、別の態様では、約4.0グラム以上、別の態様では、約4.5グラム以上、別の態様では、約5.0グラム以上、別の態様では、約5.5グラム以上、別の態様では、約6.0グラム以上、および別の態様では、約7.0グラム以上;メチオニン:一態様では、約1.5グラム以上、別の態様では、約2.0グラム以上、別の態様では、約2.5グラム以上、別の態様では、約3.0グラム以上、別の態様では、約3.5グラム以上、別の態様では、約4.0グラム以上、別の態様では、約5.0グラム以上、および別の態様では、約6.0グラム以上;プロリン:一態様では、約2.0グラム以上、別の態様では、約2.5グラム以上、別の態様では、約3.0グラム以上、別の態様では、約3.5グラム以上、別の態様では、約4.0グラム以上、別の態様では、約4.5グラム以上、別の態様では、約6.0グラム以上、および別の態様では、約7.0グラム以上;セリン:一態様では、約2.5グラム以上、別の態様では、約3.0グラム以上、別の態様では、約3.5グラム以上、別の態様では、約4.0グラム以上、別の態様では、約4.5グラム以上、別の態様では、約5.0グラム以上、別の態様では、約5.5グラム以上、および別の態様では、約6.0グラム以上;チロシン:一態様では、約2.5グラム以上、別の態様では、約3.0グラム以上、別の態様では、約3.5グラム以上、別の態様では、約4.0グラム以上、別の態様では、約4.5グラム以上、別の態様では、約5.0グラム以上、別の態様では、約5.5グラム以上、および別の態様では、約6.0グラム以上。
【0116】
一実施形態において、供給原料組成物は、動物用飼料の供給原料として利用してもよい。さらに別の実施形態において、供給原料組成物は、水産養殖における供給原料として利用してもよい。さらに別の実施形態において、供給原料組成物をさらに加工して、動物およびヒトなどが摂取可能な栄養素サプリメントとして利用され得る。
【0117】
一態様において、本組成物は、細菌発酵プロセスに有効な量の栄養素をもたらす。この態様において、「有効な量」は、全アルコール約1g以上/(L・日)のSTYの全アルコールの生産のうちの少なくとも1つを含み得る健康的な発酵プロセスを促進し、約2.0グラム/リットル以上の細胞密度をもたらし、培養物を定常状態で維持する上での使用を説明する。細菌発酵プロセスは、CO含有ガス状基質の発酵であってよく、供給原料を本来誘導した細菌発酵プロセスと同じであってもよい。
【0118】
別の態様において、本組成物は、有効な量の栄養素を動物にもたらす。「有効な量」は、動物の健康的な成長を促進する使用が、以下、すなわち、動物における細菌負荷の阻害、家禽における壊死性腸炎の予防または軽減、動物における免疫応答の刺激、給餌または別法で動物に投与された抗生物質およびワクチンの効力の強化、給餌量当たりの成長率の増加、乳汁産生の増加、死亡率の低下、などのうちの少なくとも1つを促進させるのに十分な量であることを説明する。動物に適合される有効な量を決定する上で、限定されないが、動物の年齢、活動のレベル、ホルモンバランス、および総体的な健康状態を含めた、いくつかの要因が考慮され得、例えば低用量で開始し、用量を漸増して有効な量を決定する。
【0119】
本組成物を摂取して利益を得ることができる動物としては、例えば、鶏、鴨、ガチョウ、七面鳥、ウズラ、雛鳥などの家禽;肉牛および乳牛、ブタ、ヤギなど;イヌおよびネコなどの愛玩動物;鮭、サケ科魚類、マス、テラピア、エビ、ロブスターなどの水生動物;ならびにヒトが挙げられる。タンパク質富化栄養素サプリメントの使用は、ウシ、ブタ、家禽、および魚を太らせることを含む。本組成物の他の使用は、多数の消耗品(焼き菓子、スープ、包装済み食品、スマートフード、およびダイエット食品を含む)の栄養価を改善するための乳化剤として機能することを含む。さらに他の使用は、紙加工、皮革加工、および泡の安定化を含む。
【実施例】
【0120】
(実施例1)
連続細菌発酵プロセス
COおよび/またはCO2/H2を含有する合成物ならびに廃ガスを、クロストリジウム・リュングダーリイ(Clostridium ljungdahlii)の株が入っている撹拌タンクバイオリアクター内に、ビタミン、微量の金属、および塩を含有する発酵培地と共に連続して導入する。使用される適切な発酵培地を、以下の表1に報告する。
【0121】
10%以下の培養接種材料を使用した方法の始動中、反応器はバッチ式液相により操作され、発酵培地は反応器に連続して供給されない。したがって反応器内の液相は、公称濃度の1種または複数の制限栄養素、例えばパントテン酸カルシウム、コバルトを含むバッチ分の発酵培地からなる。あるいは、酵母抽出物、トリプチケース、またはその他の複合栄養素を含有する富栄養培地を用いることもできる。
理想的には、始動時の気相はCO2を含まずに過剰なH2を含有する。気体速度および撹拌速度を低レベルに保持して(New Brunswick Scientific Bioflo(登録商標)発酵バイオリアクターにおいて500rpm未満)、COおよびH2が僅かに過剰に得られるが、同時にCO基質阻害が回避される。例として、1リットルの実験室用New Brunswick Scientific Bioflo(登録商標)発酵バイオリアクターでは、供給ガス組成が63% H2、32% CO、および5% CH4であるが、始動開始のための撹拌速度は400rpmであり、気体速度は20ml/分である。始動中にエタノール製造を行うため、H2および液体栄養素が共に過剰にある。発酵培地中のある特定の栄養素に対する制限が、後に課される。したがって、過剰な液体栄養素(例えば、パントテン酸カルシウム、コバルト)が、始動中に実際に存在して、低栄養に対する望ましくない培養順化が回避される。
【0122】
【0123】
細菌発酵が、接種後数時間にわたり進行するにつれ、CO2はCOの変換から生成され、H2はCO2と共に消費されるが、これは気体物質移動の制限を回避するために撹拌速度を名目上増大させるシグナルである。New Brunswick Scientific Bioflo(登録商標)CSTRでは、出口ガスが、25% CO、67% H2、2% CO2、および6% CH4である。撹拌速度が非常に素早く増大する場合、撹拌の増大後のメタン濃度の減少によって明らかなように、CO基質阻害が生ずる。このように、撹拌速度は典型的には、24時間で200rpm増大し得る。
【0124】
撹拌速度を名目上増大させながらCO2生成(またはH2変換)をモニターする手順は、目標撹拌速度に到達するまで比較的迅速に行われる。New Brunswick Scientific Bioflo(登録商標)発酵バイオリアクターにおける典型的な目標撹拌速度は、900rpmである。バッチ式液体培養で撹拌速度が増大する期間中、細胞生成のモニタリングを、生成物発酵を促すよりも優先して行う。したがって約1.5g/Lの細胞濃度が得られ、一方、典型的な生成物濃度は、バッチ式培養から10g/Lエタノールおよび2g/Lアセテートである。
【0125】
目標撹拌速度に到達すると、システムは、最大限のH2取込みまで成長可能になる。酢酸生成を制限しながらエタノール製造を確実にするために、非常に高いH2出口濃度(典型的には>60%)を有することが望ましい。次いで液体発酵培地供給を始めて(保存培養からのバッチ式接種材料を有するシステムに関し)、連続液体供給を開始し、気体供給速度を目標の流量に向かって増大させる。実験室用New Brunswick Scientific Bioflo(登録商標)発酵バイオリアクターにおいて、液体供給速度は典型的には0.5ml/分であり、一方、気体流量は、目標速度125ml/分に向かって24時間ごとに10~15%増大させる。
【0126】
気体流量が増大するにつれ、目標の生産性で、H2変換の小さな降下によって明らかなように、反応器が最終的には液相栄養素(例えば、パントテン酸カルシウム、コバルト)に限定されるまで、細胞生成が増大する。New Brunswick Scientific Bioflo(登録商標)CSTRでは、これは20g/L・日の目標生産性でのH2変換率の10%降下によって理解される。
【0127】
次いで生成方法および細菌発酵反応器システムは、15~35g/Lのエタノールおよび0~5g/Lのアセテートを生成物として生成する定常状態で維持され、制限栄養素、液体速度、および気体速度では時折りの小さな調節しかなされない。細胞リサイクルのない、実験室用New Brunswick Scientific Bioflo(登録商標)発酵バイオリアクターでの典型的な定常状態の条件は、20分の気体保持時間(気体流量/反応器液体体積)、30時間の液体保持時間(液体流量/反応器液体体積)、および900rpmの撹拌速度であり、92%のCO変換率および60%のH2変換率をパントテネートの制限と共にもたらす。
一実施形態では、この時、気体速度の調節(増大)および第1の栄養素の濃度の調節(減少)と共に細胞リサイクルを反応器システムに加える。New Brunswick Scientific Bioflo(登録商標)CSTRでの細胞リサイクルにより、気体保持時間は典型的には8分であり、液体保持時間が12時間であり、細胞保持時間は40時間であり、撹拌速度は900rpmである。これらの条件は、典型的には92%のCO変換率および50%のH2変換率を、パントテネートの制限と共にもたらす。連続発酵のこの方法は、安定した操作条件下、低い副生成物アセテート濃度と共に、高いエタノール濃度の連続生成および維持を可能にして、エタノール製造のための工業規模での対象の細菌の使用を高める。
【0128】
(実施例2)
発酵生成物比を制御するための、発酵容器からの細菌細胞の除去
ガス状基質(30%CO、15%H2、10%CO2、45%N2)発酵は、C.リュングダーリイ株C-01を利用するCSTR(pH=5.0、温度=38℃、圧力=20psig)で、細胞リサイクル(細胞保持時間=40時間、および液体保持時間=6時間)と共に行われ、培養は、コバルト、パントテン酸カルシウム、または任意の他の栄養素による成長に限定されない。培養物が成長するにつれ、細胞密度は、特異的な取込み(分当たりの乾燥細胞のグラム当たりのCOのmmol)が0.5よりも低くなるように、かつ酢酸がエタノールよりも優先して生成されるように、実現される。この結果を防止するために、細胞除去速度を増大させて細胞密度の増大を防止し、それによって細胞の定常濃度が、分当たりの乾燥細胞のグラム当たり0.5mmol COよりも高い特異的取込みを維持するのに十分低く保持されるようにする。そのようにすることで、細胞保持時間は6~25時間に短縮される。C.リュングダーリイの株の細菌発酵プロセス中の細胞濃度のモニタリングに関する、表2を参照されたい。
【0129】
【0130】
(実施例3)
酢酸生成細菌細胞の細胞バイオマスの分析
クロストリジウム・リュングダーリイC-01を、合成ガスを用いてバイオリアクター内で成長させた。バイオリアクターからの発酵物の試料、および細胞バイオマスの濃縮乾燥質量を、以下の表3の手順に従い分析した。
【0131】
【表3】
細胞バイオマスの濃縮された乾燥質量の分析の結果を、表4に示す。
【0132】
【表4】
細胞バイオマスの濃縮乾燥質量のアミノ酸分析の結果を、表5に示す。
【0133】
【0134】
(実施例4)
酢酸生成細菌細胞のタンパク質、炭水化物、および核酸含有量の分析
クロストリジウム・リュングダーリイC-01を、合成ガスを用いてバイオリアクター内で成長させた。細胞培養物を4,000RPMで遠心分離して、培地を除去した。ペレットを収集し、100Cの炉内で一晩乾燥した。
破砕された乾燥ペレット100グラムを、実施例3で記述したものと同じ炭水化物およびタンパク質に関する試験を使用して、分析に供した。表6は、細胞質量の最大80%がタンパク質であることを示す。
【0135】
【0136】
(実施例5)
1つまたは複数のマイクロ流体化破壊装置による細菌細胞の破壊、およびマイクロ流体化破壊装置による細菌細胞の破壊のためのタンパク質の回収
マイクロ流体工学によるマイクロ流体化装置は、発酵プロセスからの嫌気性細菌細胞を破壊し、かつタンパク質含有部分を生成する、破壊装置と確認された。ある体積の発酵液体は、発酵容器から得た。試料を、遠心分離によって1.5倍にまたは例えば約20g/L以上の細胞濃度に濃縮した。例えば、発酵液体約15g/Lは発酵容器から得られ、試料は、遠心分離により濃縮して22.4g/L以上の細胞密度を得た。
得られる細胞を、溶液に再懸濁し(例えば、細胞を約44g含有し得る2L溶液に)、マイクロ流体装置に送った。マイクロ流体化プロセスでは、高圧でマイクロ流体反応室内のマイクロチャネルに細胞を強制的に通すことによって創出された高剪断力で、細胞を破壊する。
【0137】
各試料を、異なる時間の長さでかつ異なる圧力で流した。試験された圧力は、1回または多数回の通過に関して平方インチ当たり10,000~30,000ポンド(psi)の範囲に及んだ。各通過は、マイクロ流体化装置を通過させる実験操作を構成する。圧力は、破壊装置を介して一定速度で加えた。マイクロ流体化装置は、6種の均質化試料を発生させた。細胞含有懸濁液は、1種または複数の添加剤(例えば、洗剤、酵素など)で処理することができ、マイクロ流体化装置を通過させることができる(例えば、3,000psi以上の高剪断または圧力で)。
【0138】
いくつかの実験を行った。各試料を、異なる長さの時間でかつ異なる圧力で流した。それらの中で、6つの、例示的な試料の処理実験に関する条件を示す:(1)1回の通過を18,000psiで;(2)2回の通過を18,000psiで;(3)1回の通過を23,000psiで;(4)2回の通過を23,000psiで;(5)1回の通過を28,000psiで;(6)2回の通過を28,000psiで。各通過は、マイクロ流体化装置を通過する実験を構成する。圧力は、破壊装置を介して一定速度で加えた。結果的に得られるタンパク質含有画分の6種の均質化試料は、マイクロ流体化装置による処理の後に発生した。タンパク質含有画分の各試料を、Bfadfordアッセイを使用して、タンパク質含有量に関して分析した。
1つの実験では、いくつかの試料を、マイクロ流体化装置に1回だけ通過させて処理した。1回の通過後、第1のタンパク質含有部分を、ホモジネートから分離した。次いで第1のタンパク質含有部分を噴霧乾燥して、タンパク質含有粉末を得ることができる。
第2の実験では、試料を、マイクロ流体化装置を2回通過させることにより処理し、前処理された細胞含有懸濁液はリサイクル流中を流動して2回目にマイクロ流体化装置に再度進入した。2回通過後、タンパク質含有部分が得られた。次いでタンパク質含有部分の粉末形態を得ることができる。例えば、3つの異なる乾燥技法(高温での乾燥、噴霧乾燥、および凍結乾燥)を、タンパク質含有部分が得られた後に試験した。
【0139】
(実施例6)
1つまたは複数の濾過型分画装置による、破壊された細菌細胞のホモジネートの分画
実施例5の処理プロセス後のタンパク質含有部分のホモジネートを、ナイロンフィルターに通して濾過した。ホモジネートの濾過により、当初の微生物バイオマスの5~15%を、表7に示されるように可溶性タンパク質として回収することが可能になった。
【0140】
【0141】
(実施例7)
1つまたは複数の遠心分離型分画装置による破壊細菌細胞のホモジネートの分画
実施例4のホモジネートに、2,000~10,000RPMの速度で6分間、遠心分離を行い、タンパク質含有量を、Bradfordタンパク質アッセイを使用して分析した。可溶性タンパク質の回収率パーセントを、基本的に出発時のバイオマス濃度を使用して計算した。
結果は、タンパク質の最大25%がマイクロ流体化後に回収されたことを示し、このことは、表7にも示されるように、マイクロ流体化およびその後の遠心分離が、細胞を溶解しかつ可溶性タンパク質を回収するのに実現可能な方法であることを示している。
別の実施例では、細胞密度が22.4g/Lである細胞懸濁液(発酵ブロス中の細胞)を、マイクロ流体化装置に送った。1つの試料をマイクロ流体化装置に18,000psiで通過させ、別の試料を同じ型のマイクロ流体化装置に28,000psiの圧力で2回通過させた。結果を比較し、表8に示されるように得られた。
【0142】
【0143】
18,000psiで1回通過する試料では、ホモジネート中のタンパク質濃度が9.5mg/mlであった。次いで試料を濾過しまたは遠心分離し、さらに分析した。0.45μmのフィルターに通した濾過の後、タンパク質に富む画分は、タンパク質を2.4mg/mL含有していた。2,000RPMで8分間遠心分離した後、タンパク質に富む画分のタンパク質濃度は、約3.2mg/mLのタンパク質である。より高い遠心分離速度は、より少ないタンパク質をもたらした(5,000RPMで、回収された画分のタンパク質濃度は約1.0mg/mL以上、または約1.9mg/mL以上であった。10,000RPMのさらに高い遠心分離速度で、スピン後に得られた上澄み画分のタンパク質濃度は約1.4mg/mLであった)。
【0144】
別の試料群を、28,000psiでマイクロ流体化装置に2回通過させることにより処理し、先に溶解した細胞含有懸濁液をリサイクル流中に流して、2回目にマイクロ流体化装置に再度進入させた。ホモジネート中で得られたタンパク質含有部分のタンパク質濃度は、約8.5mg/mlで測定された。次いで試料を濾過および/または遠心分離した。0.45μmのフィルターに通した濾過の後、得られたタンパク質濃度は約1.8mg/mlであった。2000RPMで8分間遠心分離した後、得られたタンパク質濃度は約3.0mg/mlであった。より高い遠心分離速度は、少ないタンパク質をもたらした(5000RPMで、2.0mg/mlであった;10000RPMで、1.3mg/mlであった)。
【0145】
(実施例8)
1つまたは複数のマイクロ流体化破壊装置による細菌細胞の破壊からの細胞溶解
破壊プロセスを実行するのに選択される破壊装置は、マイクロ流体化装置およびその他の市販の装置とすることができる。
図7B~
図7Eにおいて、破壊プロセスを実行するのに選択された破壊装置は、マイクロ流体化装置である。破壊装置内の破壊プロセスは、圧力および通過回数を含む種々の変数の下で実行することができる。
図7Aは、溶解に供されなかった細胞含有懸濁液の電子顕微鏡写真を示す。電子顕微鏡写真は、顕微鏡により100×の倍率でホモジネートを標的として撮影された。
破壊装置内の破壊プロセスを受けるために選択された細胞含有懸濁液は、種々の密度のものとすることができる。
図7Aにおいて、破壊プロセスを受けなかった細胞含有懸濁液の密度は、約10g/L以上、例えば約16g/L以上である。
図7Bは、本発明の1つまたは複数の実施形態による、破壊装置460、560、または660内で得られる、かつ破壊装置460、560、または660内の細胞含有懸濁液中の嫌気性細菌細胞の破壊細胞膜からの生成物である、ホモジネートの別の電子顕微鏡写真を示す。
【0146】
電子顕微鏡写真は、顕微鏡によって、100×の倍率で、ホモジネートを標的として撮影された。この
図7Bにおいて、破壊プロセスを実行するのに選択された破壊装置は、マイクロ流体化装置である。この
図7Bにおいて、破壊プロセスは、1,000psi以上の圧力(例えば、平方インチ当たり1,000ポンド(psi)~9,000psiまたはそれ以上)で、細胞含有懸濁液に対してかつ1回の通過により実行される。また、
図7Bでは、破壊装置内でのこの破壊プロセスのために選択された細胞含有懸濁液の細胞密度は、約10g/L以上、例えば約16g/L以上である。視覚的に、マイクロ流体化プロセスの結果として、細胞膜に対してなされた著しい損傷がある。
図7Cは、本発明の1つまたは複数の実施形態による、破壊装置460、560、または660内で破壊される前の、細胞含有懸濁液中の嫌気性細菌細胞の細胞膜の電子顕微鏡写真を示す。
【0147】
電子顕微鏡写真は、顕微鏡によって、100×の倍率で、ホモジネートを標的として撮影された。
図7Cでは、破壊装置内でこの破壊プロセス用に選択された細胞含有懸濁液の細胞密度は、約10g/L以上、例えば約16g/L以上である。破壊プロセスは、約1,000psi以上(例えば、平方インチ当たり1,000ポンド(psi)~20,000psiまたはそれ以上)の圧力で、細胞含有懸濁液に対してかつ1回の通過で実行される。
図7Aの結果と比較すると、
図7Cに示される結果は、この処理圧力で生じた細胞膜の著しい破壊を示す。
図7Dは、本発明の1つまたは複数の実施形態による、破壊装置460、560、または660内で得られたかつ破壊装置460、560、または660内で細胞含有懸濁液中の嫌気性細菌細胞の破壊細胞膜からの生成物であるホモジネートの、別の電子顕微鏡写真を示す。
【0148】
電子顕微鏡写真は、顕微鏡によってかつ800×の倍率で、ホモジネートを標的として撮影された。この
図7Dにおいて、破壊プロセスを実行するのに選択された破壊装置は、マイクロ流体化装置である。この
図7Dでは、破壊プロセスは、1,000psiの圧力(例えば、平方インチ当たり1,000ポンド(psi)~22,000psiまたはそれ以上)で細胞含有懸濁液に対してかつ1回の通過で実行される。また、
図7Dでは、破壊装置内でのこの破壊プロセスのために選択された細胞含有懸濁液の密度が、約15g/L以上、例えば約20g/L以上、または約22.4g/L以上である。
図7Eは、本発明の1つまたは複数の実施形態による、破壊装置460、560、または660内で得られる、かつ破壊装置460、560、または660内の細胞含有懸濁液中の嫌気性細菌細胞の破壊細胞膜からの生成物である、ホモジネートの、別の電子顕微鏡写真を示す。
【0149】
電子顕微鏡写真は、顕微鏡によって、かつ800×の倍率でホモジネートを標的として、撮影された。この
図7Eにおいて、破壊プロセスを実行するのに選択された破壊装置は、マイクロ流体化装置である。この
図7Eでは、破壊プロセスは、圧力1,000psi(例えば、平方インチ当たり25,000ポンド(psi)~30,000psiまたはそれ以上)の圧力で、細胞含有懸濁液に対してかつ2回の通過により実行される。また、この
図7Eでは、破壊装置内でのこの破壊プロセスのために選択される細胞含有懸濁液の細胞密度が、約15g/L以上、例えば約20g/L以上、または約23g/L以上である。
【0150】
(実施例9)
細胞含有保持タンクにおける細菌細胞の前処理での1つまたは複数のマイクロ流体化破壊装置による細菌細胞の破壊
マイクロ流体化破壊装置(例えば、マイクロ流体装置)を使用して、発酵プロセスからの嫌気性細菌細胞を破壊し、タンパク質含有部分を生成した。発酵液体ブロス(例えば、細胞密度が15g/L)を、発酵容器の高細胞密度実験室反応器から得た。試料を遠心分離によって濃縮して、細胞密度45g/Lを得た。得られる細胞懸濁液(細胞90gを含有する2L)を、前処理のために細胞含有保持タンクに送った。
マイクロ流体化プロセスでは、高圧で1μm反応室に細胞を強制的に通すことにより創出された高剪断力で、細胞を破壊する。細菌細胞を含有する細胞含有懸濁液を、6つの試料に分割した。細胞含有懸濁液を、1種または複数の添加剤(例えば、洗剤、酵素など)で処理し、15,000psiでマイクロ流体化装置内に通した。マイクロ流体化破壊装置内へのたった1回の通過が実行された。1回の通過後、第1のタンパク質含有部分をホモジネートから分離し、噴霧乾燥した。
【0151】
(実施例10)
1つまたは複数の超音波処理破壊装置による細菌細胞の破壊
超音波処理装置は、発酵プロセスからの嫌気性細菌細胞を破壊しかつタンパク室含有部分を生成する破壊装置として特定された。15g/Lの発酵液体が、発酵容器の高細胞密度実験室反応器から得られた。試料を遠心分離によって濃縮して、細胞密度22.4g/Lを得た。得られた細胞再懸濁液(細胞44gを含有する2L)を、超音波処理に供した。超音波処理プロセスでは、細胞を撹拌し細胞膜を破る超音波周波数での音響エネルギーを介した、高い力で細胞を破壊する。細菌細胞を含有する細胞含有懸濁液を、6つの試料に分割した。各試料を超音波処理に供した。
【0152】
(実施例11)
細胞含有保持タンクにおける細菌細胞の前処理での1つまたは複数の超音波処理破壊装置による細菌細胞の破壊
超音波処理装置は、発酵プロセスからの嫌気性細菌細胞を破壊しかつタンパク質含有部分を生成する、破壊装置として特定された。発酵液体ブロスを、3つの高細胞密度発酵容器から得た。試料を、遠心分離を介して濃縮して、4~10mg/mlの細胞密度を得た。
例えば、細菌細胞を約4.2mg/ml含有する発酵容器(この実施例では、例示的な容器A)から得られた発酵液体ブロスを、様々な緩衝剤中での超音波処理に供した。嫌気性細菌細胞約9.2mg/mlを含有する別の発酵容器(例示的な容器B)からの細胞含有懸濁液を、様々な緩衝剤中での超音波処理に供した。細胞約7.1mg/mlを含有する別の発酵容器(例示的な容器C)からの細胞含有懸濁液も、様々な緩衝剤中での超音波処理に供した。
発酵容器から発酵ブロスを収集した後、発酵ブロスからの細菌細胞を、遠心分離を介してスピンダウンし(例えば、4,000RPM以上の遠心分離速度で細菌細胞をスピンダウンする)、そのそれぞれの緩衝剤中に再懸濁した。
【0153】
細胞を、洗剤含有緩衝剤(TrisSCl pH8であり、ドデシル硫酸ナトリウム(SDS)、CHAPS、Triton X-100、またはTween 20を含有する)または酵素含有緩衝剤(TrisHCl pH8であり、リゾチームを含有する)中に再懸濁した。TrisHCl pH8を、対照緩衝剤として使用した。得られた細胞懸濁液を、超音波処理に供した。
細胞を、5秒のパルスで超音波処理し、その後、それらの間で氷上に載置した。サイクルを3回繰り返した。超音波処理後、細胞を10分間、20K RPMでスピンダウンし、上澄みを除去した。可溶性タンパク質画分を、Lowryベースのタンパク質アッセイを使用してタンパク質含有量に関して分析した。可溶性タンパク質回収率のパーセンテージを、超音波処理に供される細胞の濃度に基づいて計算した。
【0154】
いくつかの試料を凍結/解凍サイクルにも供し、細胞を、TrisHCl緩衝剤中で完全に凍結させた。摂氏-80度で凍結させた後、細胞を完全に解凍し、その後、再度凍結させた。このサイクルを5回で終了させた。終了後、細胞含有懸濁液を20,000RPMで10分間スピンダウンし、上澄みを除去した。表9は、細胞含有懸濁液試料が供される緩衝剤のタイプによるタンパク質回収量を示す。可溶性タンパク質回収率のパーセンテージを、初期出発材料に基づいて計算した。出発材料は、液体栄養培地、その他の必須ミネラル、および酢酸生成バイオマスの蓄積物を含む、発酵液体を含む。
発酵液体を、3つの高細胞密度発酵容器から得た。試料を、4,000RPMでの遠心分離を介して濃縮して、4~10mg/mlの細胞密度を得た。細胞を、洗剤含有緩衝剤(TrisHCl pH8であり、ドデシル硫酸ナトリウム(SDS)、CHAPS、Triton X-100、またはTween 20を含有する)または酵素含有緩衝剤(TrisHCl pH8であり、リゾチームを含有する)中に再懸濁した。TrisHCl pH8を、対照緩衝剤として使用した。得られた細胞懸濁液を、超音波処理に供した。超音波処理プロセスでは、細胞を撹拌し細胞膜を破る超音波周波数での音響エネルギーを介した、高い力で細胞を破壊する。
【0155】
細胞を、5秒のパルスで超音波処理し、その後、間に氷上に載置した。サイクルを3回繰り返した。超音波処理後、細胞を10分間、20,000RPMでスピンダウンし、上澄みを除去した。可溶性タンパク質画分を、Lowryベースのタンパク質アッセイを使用して、タンパク質含有量に関して分析した。可溶性タンパク質回収率のパーセンテージを、超音波処理に供される細胞の濃度に基づいて計算した。
表9に示される結果は、細胞が超音波処理に供されたとき、洗浄添加剤がタンパク質の溶解度を増大させることができることを示す。特に、SDSまたはリゾチームの添加は、膜タンパク質の溶解度を大幅に高める。
【表9】
【0156】
(実施例12)
1つまたは複数の濾過型分画装置による破壊細菌細胞のホモジネートの分画
実施例4のホモジネートを、ナイロンフィルターに通して濾過する。ホモジネートの濾過は、当初の微生物バイオマスの10.7%を可溶性タンパク質として回収可能にした。
【0157】
(実施例13)
1つまたは複数の遠心分離型分画装置による破壊細菌細胞のホモジネートの分画
実施例4のホモジネートが2000rpmでの遠心分離を受け、タンパク質3.3mgを上澄み中に分画した。ホモジネートの遠心分離は、発酵容器から収集された初期微生物バイオマスの全細胞集団から分離された可溶性タンパク質の、14.3%の回収率を可能にした。
【0158】
(実施例14)
1つまたは複数の破壊装置を通した破壊の後に回収されたタンパク質に対する、細胞含有懸濁液中のpHの影響の決定
試料を、高細胞密度発酵容器から収集した。収集時の細胞濃度は約22g/Lであった。ある体積の細胞培養物を、4,000RPMで10分間、スピンダウンした。細胞ペレットを、遠心分離後に除去された培地の体積と同じ体積のTrisHCl中に再懸濁した(したがって試料は、濃縮されずまたは希釈されなかった)。多数の体積の細胞培養物を、0.5M NaOHの添加によってpH調整に供し、培養ブロスの最終pHが3.5~10になるようにした。試料を、10,000~20,000psiで、1回または多数回の通過に関して処理した。各試料を、13,300RPMで6分間、スピンダウンした。上澄みを収集し、Lowryベースのタンパク質アッセイを使用して可溶性画分中のタンパク質濃度を決定した。
表10に示されるデータは、マイクロ流体化前の細胞ホモジネートのpHの上昇が、タンパク質の溶解度を高めることを示す。特に、pHが高いとき(7.6よりも上)可溶性タンパク質の回収は高められる。
【0159】
【0160】
(実施例15)
可溶性タンパク質回収率に対するリゾチームの影響の決定
試料を、高細胞密度発酵容器から収集した。ある体積の細胞培養物を、これまで述べてきたものと同じ手法で、スピンダウンしかつTrisHCl緩衝剤中に再懸濁した。培養ブロスのpHを、0.5Mの水酸化ナトリウムを使用してpH8に上昇させた。酵素前処理の影響を決定するために、0.5mg/mlのリゾチームを使用した。培養ブロス試料では、リゾチームとのインキュベーションを約30分、室温で継続した。TrisHCl試料では、リゾチームとのインキュベーションを室温で約45分継続した(相違は、ボトルネックとしてマイクロ流体化装置による処理の遅延に起因する)。試料を、10,000~20,000psiで、1回または多数回の通過のために処理した。対照も同様に実験操作に供したが、試料はマイクロ流体化装置に通して処理しなかった。各試料を、13,300RPMで6分間、スピンダウンした。上澄みを収集し、LowryベースのおよびBradfordベースのタンパク質アッセイを使用して、可溶性画分中のタンパク質濃度を決定し、その結果を表11に示す。
【0161】
(実施例16)
リゾチーム濃度の減少およびインキュベーション時間の延長の影響の決定
試料を高細胞密度発酵容器から収集し、4,000RPMでの10分間の遠心分離を介して濃縮した。培養ブロスのpHを、7~10に調節した。いくつかの試料を、100ng/mlのリゾチームと共に1時間、37Cでインキュベートした。試料を10分ごとに採取して、リゾチーム活性をモニターした。
【0162】
【表11】
大量の試料を30分および1時間で採取し、10,000~20,000psiでマイクロ流体化装置に通して1回または複数回の通過のために処理した。各試料を13,300RPMで6分間、スピンダウンした。上澄みを収集し、Lowryベースのタンパク質アッセイを使用して、可溶性画分中のタンパク質濃度を決定し、その結果を表12に示す。
【0163】
【0164】
(実施例17)
タンパク質の抽出に対するpHおよび細胞濃度の影響
高細胞密度発酵容器からの試料を、遠心分離を介して1~10g/Lの濃度に希釈し、培地に再懸濁した。培養ブロスpHを、0.5Mの水酸化ナトリウムを使用して6~10に調節した。試料(発酵pHでの非修飾培養ブロスを含む)を、マイクロ流体化装置に通して10,000~20,000psiで、1回または複数回の通過で処理した。同様に、高細胞密度発酵容器から除去した非希釈培養物を、1つの酸性pHおよび1つのアルカリ性pHで処理した。各試料を、13,300RPMで6分間、スピンダウンした。
上澄みを収集し、Lowryベースのタンパク質アッセイを使用して、可溶性画分中のタンパク質濃度を決定した。表13は、培養ブロスのpHがマイクロ流体化前に上昇するにつれ、可溶性画分中に回収されたタンパク質の量が増大することを示す。
図8Aは、本発明の1つまたは複数の実施形態による、破壊装置460、560、または660からおよび細胞含有懸濁液中の嫌気性細菌細胞の細胞膜から得られた可溶性タンパク質のグラフを示す。
【0165】
【表13】
破壊プロセスを実行するよう選択された破壊装置は、マイクロ流体化装置およびその他の市販の装置とすることができる。この
図8Aにおいて、破壊プロセスを実行するよう選択された破壊装置は、マイクロ流体化装置である。
破壊装置460、560、または660内での破壊プロセスは、圧力および通過回数を含む種々の変数の下で実行することができる。この
図8Aにおいて、破壊プロセスは、細胞含有懸濁液に対しておよびただ1回の通過の下で、平方インチ当たり15,000ポンド(psi)の圧力まで実行される。
【0166】
破壊装置460、560、または660内で破壊プロセスを受けるために選択された細胞含有懸濁液は、種々の密度のものにすることができる。この
図8Aにおいて、細胞含有懸濁液の4本の流れを、破壊装置460、560、または660内での破壊プロセス用に選択する。細胞含有懸濁液の密度のそれぞれは、1g/L、5g/L、10g/L、および18.5g/Lである。
線802のy軸は、本発明の1つまたは複数の実施形態による、密度が18.5g/Lの、細胞含有懸濁液中の嫌気性細菌細胞から種々のpH条件下(X軸)で調製された、破壊装置460、560、または660から破壊されかつ得られた細胞ホモジネートからのタンパク質の収率を表す。
【0167】
線804のy軸は、本発明の1つまたは複数の実施形態による、密度が10g/Lの、細胞含有懸濁液中の嫌気性細菌細胞から種々のpH条件下(X軸)で調製された、破壊装置460、560、または660から破壊されかつ得られた細胞ホモジネートからのタンパク質の収率を表す。
線806のy軸は、本発明の1つまたは複数の実施形態による、種々のpH条件に対してプロットされた5g/Lの密度を有する、細胞含有懸濁液中の嫌気性細菌細胞から種々のpH条件下(X軸)で調製された、破壊装置460、560、または660から破壊されかつ得られた細胞ホモジネートからのタンパク質の収率を表す。
線808のy軸は、本発明の1つまたは複数の実施形態による、密度が1g/Lの細胞含有懸濁液中の嫌気性細菌細胞から種々のpH条件下(X軸)で調製された、破壊装置460、560、または660から破壊されかつ得られた細胞ホモジネートからのタンパク質の収率を表す。
【0168】
破壊装置460、560、または660内での破壊処理を受けるために選択された細胞含有懸濁液は、1~14の範囲内にある異なるpH値のものとすることができる。細胞含有懸濁液のpH値は、酸、塩基、もしくは塩の添加、またはこれらの組合せを含む様々な方法によって、調節することができる。ここで
図8Aにおいて、細胞含有懸濁液のpH値は、0.5Mの水酸化ナトリウムを使用して、約6または8に調節される。細胞含有懸濁液のpH値は、細胞含有懸濁液が破壊装置460、560、または660内で破壊される前に、調節することができる。例えば、細胞含有懸濁液のpH値は、細胞含有保持タンク445、545、または645内で調節することができる。
【0169】
(実施例18)
高濃度のタンパク質含有懸濁液に対するpHの影響
試料を、高細胞密度発酵容器から収集し、4,000RPMで10分間、細胞を遠心分離することによって、3倍に濃縮した。細胞ペレットを、培地に再懸濁した。培地を、濃縮水酸化ナトリウムを使用して5~10のpHに調節した。例えば、試料は、細胞を4,000RPMで10分間、遠心分離することによって、45g/Lに濃縮した。細胞ペレットを、培地に再懸濁した。得られた細胞混合物のpHを、0.5Mの水酸化ナトリウムを使用して、5、6、7、または8に修正した。試料を、1回の通過のためにマイクロ流体化装置に通して15,000PSIで処理した。各試料を、13,300RPMで6分間スピンダウンした。上澄みを収集し、Lowryベースのタンパク質アッセイを使用して、可溶性画分中のタンパク質濃度を決定した。
【0170】
図8Bは、本発明の1つまたは複数の実施形態により、破壊装置460、560、または660から、および細胞含有懸濁液中の嫌気性細菌細胞の細胞膜から得られた、可溶性タンパク質の収率のチャートを示す。
【0171】
図8Bにおいて、破壊プロセスを実行するように選択された破壊デバイスは、マイクロ流体化装置である。
図8Bにおいて、破壊プロセスは、1回または多数回の通過のために、細胞含有懸濁液に対して10,000~20,000psiの圧力まで実行される。上澄みを、13,300RPMでの遠心分離を介して収集し、タンパク質を、Lowryベースのタンパク質アッセイを使用して分析した。表14は、4~5から6~10への培養ブロスのpHの上昇が、可溶性画分中に回収されたタンパク質のパーセントを著しく上昇させることを示す。
【0172】
【0173】
線812のy軸は、本発明の1つまたは複数の実施形態による、細胞含有懸濁液のpH値の変化からの、密度が45g/Lの細胞含有懸濁液中の嫌気性細菌細胞から種々のpH条件下(X軸)で調製された、破壊装置460、560、または660から破壊されかつ得られた細胞ホモジネートからのタンパク質の収率に対する、pHの影響を表す。
前述の内容は本発明の実施形態を対象とするが、本発明のその他およびさらなる実施形態が、その基本的な範囲から逸脱することなく考えられ、その範囲は、以下の特許請求の範囲によって決定される。