(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-12-22
(45)【発行日】2024-01-05
(54)【発明の名称】X線撮像システム
(51)【国際特許分類】
A61B 6/00 20240101AFI20231225BHJP
【FI】
A61B6/00 350M
(21)【出願番号】P 2021536421
(86)(22)【出願日】2019-08-30
(86)【国際出願番号】 GB2019052439
(87)【国際公開番号】W WO2020044060
(87)【国際公開日】2020-03-05
【審査請求日】2022-08-15
(32)【優先日】2018-08-31
(33)【優先権主張国・地域又は機関】GB
(73)【特許権者】
【識別番号】521085917
【氏名又は名称】イベックス イノベーションズ エルティーディー
(74)【代理人】
【識別番号】100091683
【氏名又は名称】▲吉▼川 俊雄
(74)【代理人】
【識別番号】100179316
【氏名又は名称】市川 寛奈
(72)【発明者】
【氏名】スコット,ポール
(72)【発明者】
【氏名】ロックスレイ,ネイル
(72)【発明者】
【氏名】ラトクリフ,アダム
【審査官】遠藤 直恵
(56)【参考文献】
【文献】特開2015-043959(JP,A)
【文献】特開平06-014911(JP,A)
【文献】特開2003-175026(JP,A)
【文献】特開2015-181649(JP,A)
【文献】米国特許出願公開第2003/0072417(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
A61B 6/00-6/14
(57)【特許請求の範囲】
【請求項1】
X線画像の散乱補正を行うための方法であって、
X線検出器を使用して獲得されたサンプルのソースX線画像に基づいて処理するための入力画像を取得することと、
前記入力画像に基づいて、前記サンプルのモデルを決定すること
であって、前記モデルは、複数の位置のそれぞれで、前記入力画像の少なくとも1つの画素に対応するそれぞれの位置において、前記位置における前記サンプルの厚さを示す厚さ値、及び前記位置における前記サンプルの物質組成を示す物質値を含む、モデルを決定することと、
プロセスによって前記モデルを評価することであって、
前記モデルに基づいて、シミュレート済X線画像データを算出することと、
前記入力画像に対してシミュレート済画像データを評価し、収束基準を満足しているかどうかを決定することと、
前記収束基準を満足していない場合、前記サンプルの
更新された厚さ及び物質値を有する更新モデルを発生させること
であって、前記シミュレート済X線画像データに基づいて、前記入力画像の散乱補正を行うことと、散乱補正した前記入力画像に基づいて更新モデルを発生させることと、
を含む、評価することと、を含み、
前記方法は
、1つ以上の連続的更新モデルに基づいて、モデル評価プロセスを繰り返
し、前記収束基準が最後の反復で満足されるまで、前記モデルの厚さと物質値を反復的に改良することと、
散乱補正した画像を出力することであって、出力する画像は、モデルの反復改良中に得られた最終的に散乱補正された入力画像に基づくか、または前記最後の反復中に算出されたシミュレート済画像データを使用して、前記ソースX線画像の散乱補正を行うこと
によって得られる、画像を出力することと、
を含む、方法。
【請求項2】
前記サンプルは第1の物質タイプ及び第2の物質タイプから成るようにモデル化され、前記物質値は
、前記位置における前記第1の物質タイプ及び前記第2の物質タイプの1つの割合を示すことによって、前記第1の物質タイプ及び前記第2の物質タイプに関する物質組成を示す、請求項1に記載の方法。
【請求項3】
前記シミュレート済画像データは、
散乱することがなく、前記サンプルを通過するX線光子から、前記入力画像への寄与の推定を示す直接ビーム画像と、
前記サンプルによって散乱されたX線光子から前記入力画像への寄与の推定を示す、散乱画像と、
を含む、請求項1または2に記載の方法。
【請求項4】
前記シミュレート済画像データを算出することは、前記モデルの前記位置に関して規定された物質組成値及び厚さ値に基づいて、前記入力画像の各画像位置におけるシミュレート済直接ビーム画像データを算出することと、他の複数の画像位置に関する前記モデルに規定された物質組成値及び厚さ値に基づいて、各画像位置におけるシミュレート済散乱画像データを算出することとを含む、請求項1~3のいずれかに記載の方法。
【請求項5】
前記シミュレート済画像データを算出することは、複数の散乱カーネルを決定することであって
、複数の前記散乱カーネルのそれぞれは、1つ以上の追加位置における画像画素への第1の位置におけるサンプル物質による散乱寄与を規定している、決定することと、複数の前記散乱カーネルを組み合わせることに基づいて、散乱画像を発生させることとを含み、前記散乱カーネルは
、事前算出した1つ以上の散乱カーネルを読み出すことによって及び/または事前算出した散乱カーネルを補間することによって、前記モデルに基づいて散乱カーネルデータベースから導出され、前記方法は
、散乱光線経路に沿ってボリュームエレメントに関する前記モデルによって規定された前記物質組成に従って、前記散乱カーネルを修正することを含む、請求項1~4のいずれかに記載の方法。
【請求項6】
前記シミュレート済画像データは、散乱画像を含み、前記ソースX線画像か
ら前記散乱画像に基づいて決定された画像補正を減算することによって、
前記散乱画像に基づいて、散乱補正を行い
、前記ソースX線画像を縮小することによって、前記入力画像を取得し、前記散乱画像を前記ソースX線画像の解像度に拡大することによって前記画像補正を決定する、請求項1~5のいずれかに記載の方法。
【請求項7】
前記入力画像に対して前記シミュレート済画像データを評価することは、伝達関数を前記シミュレート済画像データ及び前記入力画像の1つに適用することと、前記伝達関数の適用後、前記評価を行うこととを含み
、前記伝達関数は、シミュレート済X線データと、検出器を使用して取得されたX線データとの間の
強度値を変換するための変換を定義し、前記シミュレート済X線データを、前記検出器を使用して取得されたX線データと比較可能にする、請求項1~6のいずれかに記載の方法。
【請求項8】
前記伝達関数は、シミュレート済画像ドメインと実画像ドメインとの間で強度値を
変換するために、前記入力画像及び前記シミュレート済X線データの各画素
の位置における各々の
変換を定義し、前記
変換は
、少なくとも二次
の多項式関数、または他の数学関数の形式である、請求項7に記載の方法。
【請求項9】
既知の物質サンプルのために獲得されたX線画像のセットと、シミュレータによって既知のサンプルのために発生した対応するシミュレート済画像のセットとを分析することに基づいて、前記伝達関数を経験的に決定する、請求項7または8に記載の方法。
【請求項10】
前記入力画像に対して前記シミュレート済画像データを評価することは
、前記シミュレート済画像データ及び前記入力画像に基づいてエラー画像を算出することを
含む、請求項1~9のいずれかに記載の方法。
【請求項11】
前記シミュレート済画像データを評価することは、さらに、前記エラー画像に基づいてエラー測定値を算出することを含み、前記エラー測定値は
、ゼロ画像に対する前記エラー画像の相違の程度を示
す、請求項10に記載の方法。
【請求項12】
前記シミュレート済画像データを評価することは、さらに、前記エラー測定値を閾値と比較することを含み、前記収束基準は
、前記閾値に基づき、前記方法は
、前記エラー測定値が前記閾値を下回る場合、前記収束基準が満たされていることを決定することを含む、請求項11に記載の方法。
【請求項13】
前記入力画像に基づいて前記サンプルのモデルを決定することは
、画素強度及び/または特性検出に基づいて、前記入力画像を分析して、1つ以上の画素を既知の物質組成に対応するものとして分類することと、前記分類された画素を使用して、前記モデルを決定することとを含
む、請求項1~12のいずれかに記載の方法。
【請求項14】
前記既知の物質組成は、前記画素の位置における単一物質からなるサンプルに対応する、請求項13に記載の方法。
【請求項15】
画像のモデル発生プロセスを行うことを含む方法であって、前記モデル発生プロセスは、
前記画像の1つ以上の画素を所与の物質組成に対応するものとしての分類を取得することであって、前記分類
は前記画素の強度値(複数可)と閾値との比較に基づく、取得することと、
前記所与の物質組成を有する画素の厚さの予想値を定義するデータに基づいて、前記1つ以上の分類された画素のそれぞれごとに物質厚の推定値を決定することと、
前記分類された画素の厚さの推定値に基づいて、厚さ関数を前記画像に適合させることであって、前記厚さ関数は前記画像の画素ごとに物質厚の推定値を示す、適合させることと、
前記厚さ関数によって規定された前記物質厚の推定値に基づいて、画素ごとに物質組成値を推定することであって
、前記画素の前記物質厚
の推定値に基づいて、画素ごとに、高信頼性の物質組成値のセットを決定し、前記画素の前記物質組成値を高信頼性の前記物質
組成値のセットから導出させることによって
、物質組成値を推定することと、
画素ごとに、前記物質組成の推定値及び前記物質厚の推定値に基づいて、物質組成値及び厚さ値を含むモデルを決定することと、
を含む、請求項1~14のいずれかに記載の方法。
【請求項16】
前記モデル発生プロセスを前記入力画像に適用することによって、前記入力画像に基づいて、前記サンプルのモデルを決定するステップを行うことを含む、請求項15に記載の方法。
【請求項17】
前記シミュレート済画像データを使用して前記入力画像の散乱補正バージョンを算出することによっ
て前記サンプルの更新モデルを発生させるステップを行うことと、前記モデル発生プロセスを散乱補正した前記入力画像に適用することとを含む、請求項15または16に記載の方法。
【請求項18】
前記サンプルの前記更新モデルを発生させた後、前記更新モデルに基づいて、新しいシミュレート済画像データを算出することと、前記モデルに基づいて算出された前記シミュレート済画像データに対して新しい前記シミュレート済画像データを評価することと、新しい前記シミュレート済画像データが前記シミュレート済画像データよりも前記入力画像に近いシミュレート済X線画像を表す場合、モデル評価プロセスの後続の反復で使用される前記更新モデルを選択することと、を含む、請求項1~17のいずれかに記載の方法。
【請求項19】
前記シミュレート済画像データが新しい前記シミュレート済画像データよりも前記入力画像に近いシミュレート済X線画像を表す場合、前記更新モデル及び過去の反復で決定した選択モデルに基づいて、更新モデルの改正版を算出することと、前記後続の反復で使用される前記更新モデルの改正版を選択することと、を含み
、前記選択された過去のモデルは、前記入力画像に対するシミュレート済画像データを評価するとき、
より低
い又は最低
の大きさの
反対符号のエラー測定
値を生成するモデルである、請求項18に記載の方法。
【請求項20】
前記入力画像は前記ソースX線画像である、もしくは前記ソースX線画像の事前処理された
またはダウンサンプリングされたバージョンである、及び/または前記シミュレート済画像データは前記入力画像の解像度で発生する、請求項1~19のいずれかに記載の方法。
【請求項21】
前記最後の反復中に前記収束基準を満たすために決定された前記シミュレート済画像データを発生させるために使用される前記サンプルの前記モデルに基づ
いて、前記サンプルの
厚さデータ及び/または物質組成データを含むモデルデータを
更に出力することを含む、請求項1~20のいずれかに記載の方法。
【請求項22】
前記サンプルは生物組織を含み及び/または前記モデルは組織モデルを含み
、前記組織モデルは、前記サンプルを、組織サンプルの各々のボリュームエレメントに関する複数の厚さ値及び複数の組成値として定義し
、前記組成値は、ボリュームエレメントの物質組成を、前記ボリュームエレメントの2つの既定の物質タイプの1つの相対量または小数量として規定し、前記既定の物質タイプは
、軟組織及び骨である、請求項1~21のいずれかに記載の方法。
【請求項23】
X線撮像システムと、シミュレート済X線画像データを発生させるためのシミュレータとを含む、X線画像処理システムを構成する方法であって、
少なくとも2つの物質タイプのサンプルを含む複数のサンプルのシミュレート済X線画像を発生させることであって、サンプルごとに、シミュレート済X線画像データは、前記X線撮像システムの複数の個々の構成のそれぞれに発生する、発生させることと、
前記X線撮像システムを使用して獲得された複数の前記サンプルのそれぞれごとに、実X線画像にアクセスすることと、
前記構成のそれぞれごとに、前記実X線画像とシミュレート済X線画像との間で伝達関数を適合させることであって、前記伝達関数は実画像データとシミュレート済画像データとの間の
強度値を変換するための変換を定義している、適合させることと、
構成ごとに、前記伝達関数に基づいて、シミュレート済画像と実画像との類似性測定を決定することと、
前記類似性測定に基づいて、所与の構成及び関連の前記伝達関数を選択することと、
前記選択された構成及び伝達関数に基づいて、前記X線画像処理システムを構成することと、
を含む、方法。
【請求項24】
複数の前記構成は、
複数の個々のX線出力設定
またはエミッタ電圧と、
前記撮像システムに使用されるろ過材の厚さとして規定された複数の個々のろ過設定と、
出力設定及びろ過設定の複数の個々の組み合わせと、
のうちの1つを含む、請求項23に記載の方法。
【請求項25】
前記サンプルは、前記少なくとも2つの物質タイプのそれぞれごとに、複数の個々の厚さの物質サンプルを含む、請求項23または24に記載の方法。
【請求項26】
前記伝達関数は
、2次多項式または高次多項式に基づく数学関数を含む、請求項23~25のいずれかに記載の方法。
【請求項27】
前記伝達関数は前記画像にわたって変わる
変換関数を定義する、請求項23~26のいずれかに記載の方法。
【請求項28】
前記伝達関数は、前記画像の画素ごとの各々の
変換を定義する、請求項27に記載の方法。
【請求項29】
前記実X線画像及び前記シミュレート済X線画像は、複数の画素
の位置のそれぞれに規定された強度値を含み、前記伝達関数を適合させることは、前記強度値の対数に基づく前記伝達関数を適合させることを含む、請求項23~28のいずれかに記載の方法。
【請求項30】
前記画像処理システムを構成することは、前記選択された構成に基づいて、前記シミュレート済画像データを発生させる前記シミュレータを構成することを
含む、請求項23~29のいずれかに記載の方法。
【請求項31】
前記画像処理システムを構成することは
、前記伝達関数をシミュレート済画像データまたは実画像データに適用し、実画像ドメインとシミュレート済画像ドメインとの間で画像データを
変換することによって及び/または実画像データとシミュレート済画像データとの比較を可能にすることによって、前記伝達関数を使用して、前記実X線画像に対する前記シミュレート済画像を評価する前記画像処理システムを構成することを含む、請求項23~30のいずれかに記載の方法。
【請求項32】
X線画像に基づいてサンプルに関する組成情報を発生させる方法であって、
X線検出器を使用して獲得されたサンプルのソースX線画像に基づいて処理するための入力画像を取得することと、
前記入力画像に基づいて、前記サンプルのモデルを決定すること
であって、前記モデルは、複数の位置のそれぞれで、前記入力画像の少なくとも1つの画素に対応するそれぞれの位置において、前記位置における前記サンプルの厚さを示す厚さ値、及び前記位置における前記サンプルの物質組成を示す物質値を含む、モデルを決定することと、
プロセスによって前記モデルを評価することであって、
前記モデルに基づいて、シミュレート済X線画像データを算出することと、
前記入力画像に対してシミュレート済画像データを評価し、収束基準を満足しているかどうかを決定することと、
前記収束基準を満足していない場合、前記サンプルの
更新された厚さ及び物質値を有する更新モデルを発生させることであって、
前記シミュレート済X線画像データに基づいて、前記入力画像の散乱補正を行うことと、散乱補正した前記入力画像に基づいて更新モデルを発生させることと、
を含む、評価することと、を含み、
前記方法は
、1つ以上の連続的更新モデルに基づいて、モデル評価プロセスを繰り返
し、前記収束基準が最後の反復で満足されるまで、前記モデルの厚さと物質値を反復的に改良することと、
前記最後の反復中に前記収束基準を満たすために決定された前記シミュレート済画像データを発生させるために使用される前記サンプルの前記モデルに基づいて、
前記サンプルに関する組成情
報を出力することと、
を含む、方法。
【請求項33】
前記サンプルは第1の物質タイプ及び第2の物質タイプから成るようにモデル化され、前記物質値は
、前記位置における前記第1の物質タイプ及び前記第2の物質タイプの1つの割合を示すことによって、前記第1の物質タイプ及び前記第2の物質タイプに関する物質組成を示す、請求項32に記載の方法。
【請求項34】
前記シミュレート済画像データを算出することは、前記モデルの前記位置に関して規定された物質組成値及び厚さ値に基づいて、前記入力画像の各画像位置におけるシミュレート済直接ビーム画像データを算出することと、他の複数の画像位置に関する前記モデルに規定された物質組成値及び厚さ値に基づいて、各画像位置におけるシミュレート済散乱画像データを算出することとを含む、請求項32または33に記載の方法。
【請求項35】
前記入力画像に対して前記シミュレート済画像データを評価することは、伝達関数を前記シミュレート済画像データ及び前記入力画像の1つに適用することと、前記伝達関数の適用後、前記評価を行うこととを含み
、前記伝達関数は、シミュレート済X線データと、検出器を使用して取得されたX線データとの間の
強度値を変換するための変換を定義し、前記シミュレート済X線データを、前記検出器を使用して取得されたX線データと比較可能にする、請求項32~34のいずれかに記載の方法。
【請求項36】
画像のモデル発生プロセスを行うことを含む方法であって、前記モデル発生プロセスは、
前記画像の1つ以上の画素を所与の物質組成に対応するものとしての分類を取得することであって、前記分類
は前記画素の強度値(複数可)と閾値との比較に基づく、取得することと、
前記所与の物質組成を有する画素の厚さの予想値を定義するデータに基づいて、前記1つ以上の分類された画素のそれぞれごとに物質厚の推定値を決定することと、
前記分類された画素の厚さの推定値に基づいて、厚さ関数を前記画像に適合させることであって、前記厚さ関数は前記画像の画素ごとに物質厚の推定値を示す、適合させることと、
前記厚さ関数によって規定された前記物質厚の推定値に基づいて、画素ごとに物質組成値を推定することであって
、前記画素の前記物質厚
の推定値に基づいて、画素ごとに、高信頼性の物質組成値のセットを決定し、前記画素の前記物質組成値を高信頼性の前記物質
組成値のセットから導出することによって
、物質組成値を推定することと、
画素ごとに、前記物質組成の推定値及び前記物質厚の推定値に基づいて、物質組成値及び厚さ値を含むモデルを決定することと、
を含む、請求項32~35のいずれかに記載の方法。
【請求項37】
前記サンプルは生物組織を含み及び/または前記モデルは組織モデルを含み
、前記組織モデルは、前記サンプルを、組織サンプルの各々のボリュームエレメントに関する複数の厚さ値及び複数の組成値として定義し
、前記組成値は、ボリュームエレメントの物質組成を、前記ボリュームエレメントの2つの既定の物質タイプの1つの相対量または小数量として規定し、前記既定の物質タイプは
、軟組織及び骨である、請求項32~36のいずれかに記載の方法。
【請求項38】
前記方法は、さらに、請求項1~31のいずれかに定義される追加のステップまたは関数のいずれかを含む、請求項32~37のいずれかに記載の方法。
【請求項39】
請求項1~38のいずれかに記載される方法を行うた
めの手段を有するシステム。
【請求項40】
実行時、請求項1~38のいずれかに記載される方法を行うように配置される、ソフトウェアコードを含むコンピュータ可読媒体。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、散乱補正を行うためにX線画像を処理するためのシステム及び方法に関する。説明されるシステムは、また、骨密度分布を推測することを可能にする撮像される組織の組織モデルを生成し得る。
【背景技術】
【0002】
いくつかの既知のX線撮像システム(例えば、DXA(二重エネルギーX線吸収測定法)を利用する二重エネルギー走査システム)は、2つの個々のX線エネルギーレベルを使用して、異なるエネルギーレベルにおける質量減衰係数を決定することによって、骨ミネラル密度を推察できる。しかしながら、二重エネルギーの要件は、撮像機器のコスト及び複雑性を著しく増加させる。別のアプローチは、英国特許出願公開第2498615号明細書(この文献の全内容が参照によって本明細書に組み込まれる)に説明されるようなビームの経路に設置される複数の吸収板(MAP)を使用している。MAPは、物質特性を識別できるように、可変摂動を、画像にわたってX線ビームのエネルギースペクトルに適用する。しかしながら、MAPの使用では、撮像システムへの物理成分の追加が要求される。
【0003】
X線撮像システムによって獲得された画像の品質は、通常、散乱によって悪影響を受ける。理想的には、X線画像は、直線(「直接ビーム」)にある被験物を通過するX線の部分吸収に基づき、ビームの経路にある物質(例えば、骨密度)に関する推察を可能にする。しかしながら、部分吸収に加えて、いくつかのX線光子は物質によって散乱され、これらの散乱光子は、最後の画像へのノイズに寄与し得る。この問題に対処する1つのアプローチは、X線検出器と被験物との間に設置される散乱線除去グリッドを使用することである。散乱線除去グリッドは、ほとんどの直接放射線がX線検出器を通過することを可能にしながら、散乱放射線の大部分を吸収する。しかしながら、直接放射線の一部は、さらに、散乱線除去グリッドによって吸収され得、この吸収の増加は、一般的に、撮像される被験物が露出されるX線量を増加させることが必要になる。多くの場合、これは望ましくなく、特に、画像診断用途で望まれない。また、散乱線除去グリッドは、頻繁に、望ましくない画像アーチファクトを最後の画像に導入し、多くの場合、具体的には、ポータブルシステムにおける幾何学的制約により使用することが困難になる。
【0004】
MAPの使用に基づく散乱補正に対する前述のアプローチは、国際公開第2016/051212号(この文献の全内容が参照によって本明細書に組み込まれる)に説明されている。
【先行技術文献】
【特許文献】
【0005】
【文献】英国特許出願公開第2498615号明細書
【文献】国際公開第2016/051212号
【発明の概要】
【発明が解決しようとする課題】
【0006】
本発明は、MAPまたは散乱線除去グリッドの使用に内在する問題の一部を改善しようとしている。
【課題を解決するための手段】
【0007】
したがって、本発明の第1の態様では、X線画像の散乱補正を行う方法が提供され、本方法は、X線検出器を使用して獲得されたサンプルのソースX線画像に基づいて処理するための入力画像を取得することと、入力画像に基づいて、サンプルのモデルを決定することと、を含む。本方法は、プロセスによってモデルを評価することを含み、評価することは、モデルに基づいて、シミュレート済X線画像データを算出することと、入力画像に対するシミュレート済画像データを評価し、収束基準を満足しているかどうかを決定することと、収束基準を満足していない場合、サンプルの更新モデルを発生させることと、を含む。本方法は、さらに、収束基準が最後の反復で満足されるまで、1つ以上の連続的更新モデルに基づいて、モデル評価ステップを繰り返すことと、最後の反復中に算出されたシミュレート済画像データを使用して、ソースX線画像の散乱補正を行うことと、を含む。
【0008】
原画像に基づいてサンプルのモデルを生成し、次に、説明される方式でモデルを反復的に改良することによって、MAPまたは散乱線除去グリッドを必要とすることなく、散乱補正に使用される十分に近い実X線画像と一致するシミュレート済画像データを取得することが可能である。
【0009】
モデルは、好ましくは、複数の位置のそれぞれで、好ましくは、入力画像の少なくとも1つの画素及び/またはサンプルの少なくとも1つのボリュームエレメントに対応するそれぞれの位置において、その位置におけるサンプルの厚さを示す厚さ値、その位置におけるサンプルの物質組成を示す物質値の一方または両方を含み、好ましくは、サンプルは、(少なくとも)第1の物質タイプ及び第2の物質タイプから成るようにモデル化され(場合により、2つ以上の物質タイプを使用し得る)、物質値は、(少なくとも)第1の物質タイプ及び第2の物質タイプに関する物質組成を示し、好ましくは、その位置おける第1の物質タイプ及び第2の物質タイプの1つの割合(または他の相対量)を示すことによって(例えば、物質比のようなボリュームエレメント全体に対する割合、または物質割合のような他の物質タイプに対する割合を示すことによって)、またはそうでなければ、その位置における1つ以上の物質タイプの量もしくは割合を示すことによって、物質組成を示す。
【0010】
シミュレート済画像データは、好ましくは、散乱することがなく、サンプルを通過するX線光子から、入力画像への寄与の推定を示す直接ビーム画像(また、本明細書では、直接ビーム推定値と称される)と、サンプルによって散乱されたX線光子から入力画像への寄与の推定を示す、散乱画像(また、本明細書では、散乱推定値と称される)と、を含む。
【0011】
好ましくは、シミュレート済画像データを算出することは、モデルの位置に関して規定された物質組成値及び厚さ値に基づいて、入力画像の各画像位置におけるシミュレート済直接ビーム画像データを算出することと、他の複数の画像位置に関するモデルに規定された物質組成値及び厚さ値に基づいて、各画像位置におけるシミュレート済散乱画像データを算出することとを含む。
【0012】
好ましくは、シミュレート済画像データを算出することは、複数の散乱カーネルを決定することであって、好ましくは、複数の散乱カーネルのそれぞれは、1つ以上の追加位置における画像画素への第1の位置におけるサンプル物質による散乱寄与を規定している、決定することと、複数の散乱カーネルを組み合わせること(例えば、合計またはコンボリューションすることによって)に基づいて、散乱画像を発生させることとを含み、散乱カーネルは、随意に、モデルに基づいて、散乱カーネルデータベースから導出され、好ましくは、事前算出した1つ以上の散乱カーネルを読み出すことによって及び/または事前算出した散乱カーネルを補間することによって導出される。本方法は、散乱光線経路(例えば、第1の位置から1つ以上の追加位置までの経路)に沿って、ボリュームエレメントのモデルによって規定された物質組成に従って散乱カーネル(の形状)を修正することを含み得る。言い換えれば、所与のボリュームエレメントによる標的画素への寄与は、標的画素までの経路に沿って、ボリュームエレメントのモデル化された物質組成に基づいて修正されるように、(例えば、厚さ値及び組成値から識別される)ボリュームエレメントの散乱カーネルから決定され得る。
【0013】
好ましくはソースX線画像からの散乱画像に基づいて決定された画像補正を減算することによって、散乱画像(好ましくは、最後の反復中に決定されたもの)に基づいて、散乱補正を行うのが好ましく、随意に、ソースX線画像を縮小することによって、入力画像を取得し、散乱画像をソースX線画像の解像度に拡大することによって画像補正を決定する。
【0014】
入力画像に対してシミュレート済画像データを評価することは、好ましくは、伝達関数をシミュレート済画像データ及び入力画像の1つに適用することと、伝達関数の適用後、評価を行うこととを含み、好ましくは、伝達関数は、シミュレート済X線データと、検出器を使用して取得されたX線データとの間の並進を定義し、シミュレート済X線データを、検出器を使用して取得されたX線データと比較可能にする。伝達関数は、シミュレート済画像ドメインと実画像ドメインとの間で強度値を並進するために、入力画像及びシミュレート済X線データの各画素位置における各々の並進を定義し得、並進は、随意に、多項式関数、好ましくは、少なくとも二次関数、または他の数学関数の形式である。好ましくは、既知の物質サンプルのために獲得されたX線画像のセットと、シミュレータによって既知のサンプルのために発生した対応するシミュレート済画像のセットとを分析することに基づいて、伝達関数を経験的に決定し得る。
【0015】
好ましくは、入力画像に対してシミュレート済画像データを評価することは、随意に、散乱画像及び直接ビーム画像を入力画像から減算することによって(それらの画像を個々に減算すること、またはそれらの画像の合計を減算することを含む)、シミュレート済画像データ及び入力画像に基づいてエラー画像を算出することを含み、随意に、エラー画像は、減算に基づいて、各々の画素に関する複数のエラー値を含む。好ましくは、シミュレート済画像データを評価することは、さらに、エラー画像に基づいてエラー測定値を算出することを含み、エラー測定値は、好ましくは、ゼロ画像に対するエラー画像の相違または差分の程度を示す。エラー画像の個々の画素によって規定されたエラー値の合計に基づいて、エラー測定値を算出し得る。
【0016】
シミュレート済画像データを評価することは、さらに、エラー測定値を閾値と比較することを含み、収束基準は、好ましくは閾値に基づき、本方法は、好ましくは、エラー測定値が閾値を下回る場合、収束基準が満たされていることを決定することを含む。
【0017】
好ましくは、入力画像に基づいてサンプルのモデルを決定することは、好ましくは画素強度及び/または特性検出に基づいて、入力画像を分析して、1つ以上の画素を既知の物質組成に対応するものとして分類することと、分類された画素を使用して、モデルを決定することとを含み、随意に、既知の物質組成は、画素位置における単一物質(例えば、1の物質比)から成るサンプルに対応する。
【0018】
サンプルの更新モデルを発生させることは、(好ましくはシミュレート済画像データの散乱画像を入力画像から減算することによって)シミュレート済画像データに基づいて、入力画像の散乱補正を行うことと、散乱補正入力画像に基づいて更新モデルを発生させることとを含む。このように、シミュレート済画像データ(具体的には、プロセスの所与の反復中に決定された散乱推定値)は、予備の散乱補正画像のための基準として使用でき、さらに、予備の散乱補正画像を使用して、改善モデルを生成でき、次に、改善モデルは、後続の反復中にシミュレート済の改善された画像データを生成できる。このアプローチは、モデル及び散乱推定値の反復改良を可能にし、それによって、最後の散乱補正の精度を改善し得る。
【0019】
本方法は画像のモデル発生プロセスを行うことを含み得、モデル発生プロセスは、画像の1つ以上の画素を所与の物質組成に対応するものとしての分類を取得することであって、分類は随意に画素の強度値(複数可)と閾値との比較に基づく、取得することと、随意に、所与の物質組成を有する、または所与の強度値に関する厚さ値及び物質組成値の高信頼性セットを定義する、画素の厚さの予想値を定義するデータに基づいて、1つ以上の分類された画素のそれぞれごとに物質厚の推定値を決定することと、分類された画素の厚さの推定値に基づいて、厚さ関数を画像に適合させることであって、厚さ関数は画像の画素ごとに物質厚の推定値を示す、適合させることと、厚さ関数によって規定された物質厚の推定値に基づいて、画素ごとに物質組成値を推定することであって、随意に、画素の物質厚値に基づいて、画素ごとに、高信頼性の物質組成値のセットを決定し、画素の物質組成値を高信頼性の物質値のセットから導出することによって、随意に、高信頼性の物質値のセットを平均化することによって、物質組成値を推定することと、画素ごとに、物質組成の推定値及び物質厚の推定値に基づいて、物質組成値及び厚さ値を含むモデルを決定することと、を含む。
【0020】
上記のプロセスは、最初のモデル発生のために及び/または改良ループの反復中に更新モデルを発生させるために使用され得る。したがって、本方法は、上記のモデル発生プロセスを入力画像に適用することによって、入力画像に基づいて、サンプルのモデルを決定するステップを行うことを含み得る、及び/または、本方法は、シミュレート済画像データを使用して入力画像の散乱補正バージョンを算出することによって(好ましくは、シミュレート済散乱画像を入力画像から除去することによって)、サンプルの更新モデルを発生させるステップを行うことと、モデル発生プロセスを散乱補正した入力画像に適用することとを含み得る。
【0021】
本方法は、サンプルの更新モデルを発生させた後、更新モデルに基づいて、新しいシミュレート済画像データを算出することと、(過去の)モデルに基づいて算出されたシミュレート済画像データに対して新しいシミュレート済画像データを評価することと、新しいシミュレート済画像データが(例えば、低いエラー測定値を有することに関して)(過去の)シミュレート済画像データよりも入力画像に近いシミュレート済X線画像を表す場合、モデル評価プロセスの後続の反復で使用される更新モデルを選択することとを含み得る。他方では、(過去の)シミュレート済画像データが(例えば、低いエラー測定値を有する)新しいシミュレート済画像データよりも入力画像に近いシミュレート済X線画像を表す場合、更新モデル及び過去の反復で決定した選択モデルに基づいて(随意に、それらのモデルを平均化することによって)、更新モデルの改正版を算出することと、後続の反復で使用される更新モデルの改正版を選択することを含む。選択された過去のモデルは、良好なまたは最良の過去のモデルであり得、例えば、入力画像に対してシミュレート済画像データを評価するとき、低い大きさ(好ましくは、最低)のエラー測定値(好ましくは、反対符号の値)を生成するモデルである。
【0022】
入力画像はソースX線画像であり得る、またはソースX線画像の事前処理された好ましくはダウンサンプリングされたバージョンであり得る。シミュレート済画像データは、好ましくは、入力画像の解像度で発生される。モデルは、好ましくは、その同じ解像度で、好ましくは、入力画像/シミュレート済画像データの画素位置ごとの各々の物質値及び/または厚さ値を規定している。
【0023】
本方法は、散乱補正ソースX線画像と、好ましくは最後の反復中に収束基準を満たすために決定されたシミュレート済画像データを発生させるために使用されるサンプルのモデルに基づく、サンプルのモデルデータ、好ましくは、厚さデータ及び/または物質組成データと、の1つ以上を出力することを含み得る。モデルデータは、最後の反復モデルの拡大バージョン/高解像度バージョンであり得る。本方法は、モデルに基づいて、密度情報(例えば、骨密度情報)を導出及び出力することを含み得る。
【0024】
サンプルは生物組織を含み得及び/またはモデルは組織モデルを含み得、随意に、組織モデルは、サンプルを、組織サンプルの各々のボリュームエレメントに関する複数の厚さ値及び複数の組成値として定義し、好ましくは、組成値は、ボリュームエレメントの物質組成を、ボリュームエレメントの2つの既定の物質タイプの1つの相対量または小数量として規定し、既定の物質タイプは、随意に、軟組織及び骨である。
【0025】
上記の態様と組み合わされ得る本発明のさらなる態様では、本発明は、X線撮像システムと、シミュレート済X線画像データを発生させるためのシミュレータとを含む、X線画像処理システムを構成する方法を提供し、本方法は、好ましくは少なくとも2つの物質タイプのサンプルを含む複数のサンプルのシミュレート済X線画像を発生させることであって、サンプルごとに、シミュレート済X線画像データは、X線撮像システムの複数の個々の構成のそれぞれに発生する、発生させることと、X線撮像システムを使用して獲得された複数のサンプルのそれぞれごとに、実X線画像にアクセスすることと、構成のそれぞれごとに、実X線画像とシミュレート済X線画像との間で伝達関数を適合させることであって、伝達関数は実画像データとシミュレート済画像データとの間の並進を定義している、適合させることと、構成ごとに、伝達関数に基づいて、シミュレート済画像と実画像との類似性測定を決定することと、類似性測定に基づいて、所与の構成及び関連の伝達関数を選択することと、選択された構成及び伝達関数に基づいて、X線画像処理システムを構成することと、を含む。
【0026】
複数の構成は、随意にエミッタ電圧(例えば、kV/kVp設定)として規定された複数の個々のX線出力設定と、随意に、撮像システムに使用されるろ過材の厚さとして規定された複数の個々のろ過設定と、出力設定及びろ過設定の複数の個々の組み合わせと、のうちの1つを含み得る。サンプルは、少なくとも2つの物質タイプのそれぞれごとに、複数の個々の厚さの物質サンプルを含み得る。
【0027】
伝達関数は、好ましくは2次多項式または高次多項式に基づく数学関数を含み得る。伝達関数は好ましくは画像にわたって変わる並進関数を定義し、好ましくは、伝達関数は画像の画素ごとの各々の並進を定義する(例えば、各画素位置における個々の多項式または他の関数として定義する)。
【0028】
好ましくは、実X線画像及びシミュレート済X線画像は、複数の画素位置のそれぞれに規定された強度値を含み、伝達関数を適合させることは、強度値の対数に基づく伝達関数を適合させることを含む(例えば、実画像またはシミュレート済画像の強度値Iに関するログ(I)の関数として適合させる)。
【0029】
好ましくは、画像処理システムを構成することは、選択された構成に基づいて、シミュレート済画像データを発生させるシミュレータを構成することを含み、随意に、所与の出力設定及びろ過設定を含み、及び/または、好ましくは、伝達関数をシミュレート済画像データまたは実画像データに適用し、実画像ドメインとシミュレート済画像ドメインとの間で画像データを並進することによってならびに/もしくは実画像データとシミュレート済画像データとの比較を可能にすることによって、伝達関数を使用して、実X線画像に対するシミュレート済画像を評価する画像処理システムを構成することを含む。
【0030】
したがって、本発明の第1の態様(上記の態様のいずれかと組み合わされ得る態様)では、X線画像に基づいてサンプルの組成情報を発生させる方法が提供され、本方法は、X線検出器を使用して獲得されたサンプルのソースX線画像に基づいて処理するための入力画像を取得することと、入力画像に基づいて、サンプルのモデルを決定することと、を含む。本方法は、プロセスによってモデルを評価することを含み、評価することは、モデルに基づいて、シミュレート済X線画像データを算出することと、入力画像に対するシミュレート済画像データを評価し、収束基準を満足しているかどうかを決定することと、収束基準を満足していない場合、サンプルの更新モデルを発生させることであって、シミュレート済画像データを使用して、好ましくは、シミュレート済画像データを使用して発生した入力画像の散乱補正バージョンを使用して、更新モデルを発生させることとを、を含む。本方法は、さらに、収束基準が最後の反復で満足されるまで、1つ以上の連続的更新モデルに基づいて、モデル評価プロセスを繰り返すことと、好ましくは、最後の反復中に収束基準を満たすために決定されたシミュレート済画像データを発生させるために使用されるサンプルのモデルに基づいて、入力画像の各々の領域または画素に関するサンプルの組成情報(好ましくは、厚さデータ及び/または物質組成データ)を出力することと、を含み得る。本方法は、さらに、上記に定義したいずれかの方法のいずれかの追加のステップまたは関数を含み得る。そうでなければ、具体的には、本態様の方法は、随意に最後の散乱補正画像の発生が省略され得ることを除いて、第1の態様の方法に一致し得る。
【0031】
さらに、本発明は、随意に、本明細書に記載されるいずれかの方法を行うための関連のメモリを有するプロセッサの形態の手段を有する、システム、コンピューティングデバイス、または装置を提供する。また、本発明は、実行時、本明細書に記載されるいずれかの方法を行うように配置される、ソフトウェアコードを含む有形コンピュータ可読媒体を提供する。
【0032】
ここで、添付図を参照して、純粋に例として、本発明の好ましい特性を説明する。
【図面の簡単な説明】
【0033】
【
図5A】組織モデルを使用したX線撮像のシミュレーションを示す。
【
図8A】散乱補正のために使用される組織モデルの作成及び反復改良をより詳細に示す。
【
図8B】散乱補正のために使用される組織モデルの作成及び反復改良をより詳細に示す。
【
図9】説明される方法を実行するのに適切なコンピューティングデバイスを示す。
【発明を実施するための形態】
【0034】
概要
本発明の実施形態は、X線ビームが被験物によって散乱されることによる影像効果をなくすために、被験物(例えば、画像診断シナリオの状況にある患者)のX線画像を処理するためのシステムを提供する。提案される実施形態は、散乱線除去グリッド及び/またはMAPの必要性をなくすことができ、それによって、患者線量を減らし、画像品質を改善する。また、説明されるアプローチは、被験物に関する正確な組成情報を決定し、この組成情報を使用して、散乱を予測しその散乱を除去でき、より効果的な散乱除去方法をもたらし、散乱線除去グリッドに関連付けられるアーチファクトを生じることなく、画像を返す。また、説明される技術は、アライメント制約または幾何学的制約がないため、散乱線除去グリッドを使用するよりも順応性があり得る。
【0035】
説明される技術を実施するための撮像システムは、
図1の概要に示され、X線ソース(エミッタ)102と、サンプル104(例えば、ヒトまたは動物の被験物の形態の生物組織サンプル、一般的に、撮像される特定の体内領域)のX線画像を獲得するための検出器106とを含む。本発明の例では、検出器は、吸収されたX線エネルギーをX線ビームから可視光として再放射するシンチレータ108と、再放射された光に基づいてデジタル画像情報を生成するための画像センサ110(例えば、従来のCCD、電荷結合素子、センサ)とを備える。結果として、X線の露出時間にわたって検出器に入射するX線の全エネルギーの視覚画像表現をもたらす。検出器は、一般的に、画素ごとの単一の強度値を記録し、ひいては、最後の画像は、本質的に、グレースケール画像であり、各画素には、その画素に入射するX線の全放射エネルギーを表す強度値が規定されている。
【0036】
デジタル画像は、ユーザインターフェースデバイス114(例えば、クライアントワークステーション)を利用するオペレータに制御された状態で、画像処理デバイス112(例えば、PCまたはサーバクラスタ)によって処理される。獲得及び処理された画像は、ストレージ116(例えば、画像処理デバイスまたは別個のストレージサーバの一部)に記憶される。
【0037】
X線ソース102は、例えば、X線エミッタに加えられる電圧を設定することによって、出力設定(例えば、エネルギーレベル)の範囲において動作するように構成可能であり得る。また、この入力電圧は、通常、キロボルトの単位で規定されているため、「kV」(または、「kVp」ピークkV)の設定と称される(代替として、X線ソースは、固定のkV設定で動作し得る)。実際には、放射されるX線は、加えて、ソース102の近くで、ろ過材(一般的に、アルミニウムのシート/ブロック)を加えることによってろ過され得、X線は、放射された後で広がる前にすぐにろ過材を通過し、サンプル104を通過する。このろ過は、通常、アルミニウム(Al)のミリメートルの厚さまたは使用される物質が実際はAIではない場合はAlの等価厚の値が付けられる。ろ過層の目的は、低エネルギーのX線を除去することによって、kVpを変化させることなく、X線の平均エネルギーを増加することである。
【0038】
散乱補正プロセスは
図2の概要に示され、ステップ200において、画像検出器を使用して、サンプル(「実画像」Iで示される)のX線画像(X線写真)の獲得を開始する。例えば、ダウンサンプリングすることによって、画像を事前処理し得る。
【0039】
ステップ202において、撮像される組織の最初の組織モデルを作成する。組織モデルは、画像の異なる位置における組織の形状、組成、及び/または密度の簡略表現を提供する。特定の実施形態では、各画素位置における厚さ及び物質組成の最初の推定は下記により詳細に説明される。分かり易くするために、本開示の全体にわたって組織モデルを参照しているが、画像サンプルは生物組織である必要ではないが、いずれかのサンプルまたは物体であり得、ひいては、モデルは、サンプルのいずれかの関連物質(複数可)の形状及び/または組成情報を表し得ることに留意されたい。最初のモデルはX線画像から導出され、ひいては、アルゴリズムは、サンプルの形態に関するいずれかの先験的情報を要求しない。
【0040】
ステップ206において、最初の組織モデル(例えば、最初の厚さ及び物質組成の推定)に基づいて、撮像プロセスをシミュレートし、シミュレート済画像データを生成する。シミュレート済画像データは、最後の画像への直接ビームの寄与を表す第1の画像成分(D)と、ビームの散乱部の寄与を表す第2の画像成分(S)とを含む。具体的には、直接ビーム成分は、(ビームの非散乱X線光子に対応する)組織を通る直接ビームの通路(のシミュレーション)から生じる推定した画素データを含み、散乱成分は、組織(すなわち、ビームの散乱光子)によって散乱されるビームの一部から生じる推定した画素データを含み、散乱の範囲及び空間分布は組織モデルに基づいて決定される。また、これらの成分は、本明細書では、直接ビーム推定値及び散乱推定値と称され、直接ビーム成分及び散乱成分を記録している別個の画像として表される(それにより、組み合わされるとき、完全なシミュレーション済画像は散乱結果を含む)。
【0041】
次に、ステップ208において、散乱推定値を使用して、散乱推定値を獲得された実画像から減算することによって(IC=I-S)、散乱補正画像(IC)を算出する。これは、実画像の補正バージョンの状態にして、シミュレート済の散乱を実画像から除去している。
【0042】
ステップ210において、シミュレーションの出力は実際の画像に対して評価され、シミュレーション出力が実画像にどれくらい同様かを決定する。組織モデルがサンプルの実際の組織分布が増加して表されるにつれて、撮像プロセスのシミュレーションは直接ビーム成分及び散乱成分の推定の精度が向上し、散乱補正画像の改善をもたらすという仮定に基づいて比較が行われる。
【0043】
ある実施形態では、シミュレート済の直接ビーム画像及び散乱画像の合計D+Sを算出し、完全なシミュレート済画像を生成し、完全なシミュレート済画像を実際の画像から減算して、エラー画像(IE=I-(D+S))を生成することによって評価を行う。エラー画像(IE=I-(D+S))は、シミュレーション出力と実画像との差または誤差を示す(当然ながら、これは、個々に、D及びSを原画像から減算することに等しい、すなわち、IE=I-S-D)。本質的に、したがって、このステップは、ソース画像を全部のシミュレート済画像と比較すること(または、散乱補正ソース画像を直接ビーム推定値と比較することに等しいこと)を含む。
【0044】
その計算から生じるエラー画像はシミュレーションの精度の数値を提供し、例えば、エラー画像画素の合計(実画像とシミュレート済画像との画素の差の合計に一致する)を算出することによって、いずれかの適切な方法で単一の値のエラー測定値に変換できる。「完全」なシミュレーションは、ゼロのエラー画像、ひいては、エラー測定値がゼロの結果を生じさせ、ひいては、エラー測定値のゼロからの距離(すなわち、エラー測定値は負であり得るようなエラー測定値の大きさ)を使用して、シミュレート済出力が実画像でいかに良好に収束しているかの測定値を提供する。しかしながら、X線画像及びシミュレーションの両方は、そのため、アルゴリズムによるサンプルの最適な表現による、ランダムプロセスであり、現実世界及びシミュレータのランダム性に関連する最小誤差は常に存在することを留意されたい。したがって、この制限は、一般的に、最良の達成可能な結果を定義している。
【0045】
収束基準を使用して、ステップ212において、撮像プロセスのシミュレーションが、獲得された実画像に対して十分に収束するかどうかを決定する。上記に説明したように、エラー測定値を使用する場合、収束基準は閾値であり得る。計算されたエラー測定値(例えば、画素差の合計)の大きさが閾値を下回る場合、シミュレータは、十分に収束していると見なすことができる。シミュレーション出力を実画像と比較する他のアプローチと、他の対応するエラー測定値及び/または収束基準とを使用し得ることに留意されたい。
【0046】
収束基準を満たさない場合、ステップ214において、組織モデルを改良する。次に、ステップ206において、画像プロセスのシミュレーションを繰り返し、改良された組織モデルに基づいて、改善された散乱画像及び直接ビーム画像を生成し、ステップ208~212で既に説明したように、対応する散乱補正画像を算出し、シミュレーションの出力は、実画像に対してテストされる。ステップ212において収束基準が満たされるまで、この反復改良ループ(まとめて、204として示される)を繰り返す(当然ながら、他の終了基準(例えば、最大数の反復、最大算出時間等)は、加えてまたは代替として、使用され得る)。
【0047】
いったん満足できる収束が達成されると、反復改良が終了し、最後の散乱補正画像(ステップ208において算出された画像)は、(例えば、オペレータに表示するためのユーザインターフェースデバイス114に)出力できる、及び/または後続の使用もしくはさらなる処理のためにストレージ116に記憶できる。しかしながら、いくつかの実施形態では、下記により詳細に説明されるように、反復改良ループ204は画像の解像度が減少したバージョンで動作し、その場合、最後の組織モデルに基づいて、最大解像度でステップ216において、最後の散乱補正画像を再発生し得る。
【0048】
上記の概要では、シミュレータの出力が、実際の画像と直接比較可能であることが仮定されているが、これは、シミュレータの特徴が概して実際の撮像システムの特徴に正確に一致しないため、一般的に当てはまらない場合がある。これに対処するために、以下により詳細に説明されるように、経験的に取得された伝達関数は、シミュレータ出力に適用され、その出力を比較可能にする。
【0049】
サンプル組成のモデリング
撮像プロセスのシミュレーションは、サンプリングされる組織の組織モデルによって決まる。様々なモデルアプローチは、3次元サンプルの全体にわたって異なる組織タイプ、密度等の分布をモデル化するために使用され得るが、高度な単純化モデルは、シミュレーション結果の効率的な算出を可能にし、改良ループ204のステップ214において発生する組織モデルを改良するための探索空間を減らすことが好まれる。
【0050】
したがって、ある実施形態では、撮像サンプルを含むサンプル容量は、ボクセルのセット(ボリュームエレメント)に分割される。しかしながら、実際の3次元配列のボクセルの代わりに、本質的なモデルは、2次元のボクセル配列を含み、X線ビームに垂直な平面内で、m×nのボクセルのグリッド(ボクセル1個分の深度)を形成する。これは
図3の断面に示される。したがって、各ボクセル(例えば、
図3のボクセル304)は、ビームに平行な方向にサンプルの全範囲にわたって前方から後方に延在する(ひいては、単一のボクセルだけが、垂直平面のm×nの位置のそれぞれでその方向に定義される)。(簡略化された形式で)示されるように、モデルに従って、X線ソース102からのビームは直線路で所与のボクセル304を通過し、検出器によって獲得された画像の画素グリッド306への直接ビームの寄与308を生じさせる。加えて、ボクセルの物質は入射ビームの一部を散乱し得、画素グリッドへの散乱ビームの寄与310をもたらす。シミュレーション中に、各ボクセルからの直接ビームの寄与及び散乱の寄与は、各々、完全な直接ビーム画像及び散乱画像を生成するために、必要に応じて算出及び合計される。
【0051】
サンプル内の各ボクセルは、固有の合計厚さを有する物質の固有の混合物を含む。所与のボクセルの物質組成及び厚さにより、サンプルが入射X線を伝達及び散乱させる方法が決定される。検出器の所与の画素において測定された強度は、全ての隣接するボクセルからの散乱による寄与に加えて、物質の対応するボクセルの物質組成及び厚さの関数である。
【0052】
したがって、各画素で測定された強度は、サンプル内の全ての位置における物質の固有の組み合わせの関数である。これは、かなり高度な自由度があり、コンボリューションに関連するかなり大きい問題が生じる。
【0053】
問題を簡略化するために、使用されるモデルに関して、物質の各ボクセルが(本発明の例示的な骨及び軟組織の)2つの物質の組み合わせから成ることが仮定される。そのモデルでは、各物質の割合は制限なく変わり得、各ボクセルの合計厚さも制限なく変わり得る。
【0054】
より具体的には、好ましい実施形態では、各ボクセルが2つの値によって特徴が示されるように、モデルを実装する。
-「厚さ」の値(tで示される);これは、そのボクセルにおけるサンプルの厚さ(すなわち、ビーム方向におけるその空間広がり)を示す。
-「合金」の値(μで示される);これは、0~1の値のように、合計厚さに対する2つの物質AまたはBの1つの比または割合として、そのボクセルの物質組成を示す。本明細書の例では、合金は、軟組織であるボクセルの物質比を示す。
【0055】
さらに、モデルでは、「z」方向(ビーム方向、すなわち、厚さが測定される軸)の物質の対称配置が仮定される。具体的には、厚さ値及び合金値は、一緒に、物質の対称なサンドイッチ(A-B-A、例えば、軟組織-骨-軟組織)のようなボクセルを表す。例えば、10cmの厚さ及び0.8の合金値は、4cmの軟組織、次に2cmの骨、次に4cmの軟組織が続く単純化モデルを示唆する。しかしながら、これは、(生物組織サンプルの典型的な分布に部分的に基づく)モデル近似であり、通常、実際の組織分布を正確に表していないことを理解されたい。
【0056】
このモデルでは、ボクセルのz位置(ビームの方向の位置)は表されず(その方向の厚さだけを表す)、さらに問題空間を減らすことに留意されたい。
【0057】
モデルがボクセル1個分の深度であるため、ボクセルのグリッドとして説明されるが、これは、各要素がそのグリッド位置の組織モデルを(厚さ値/合金値として)提供する、2次元要素グリッドとして同様に理解され得る。
【0058】
したがって、本実施形態の組織モデルは、2次元配列の厚さ値(また、厚さ画像と称される)と、2次元配列の合金値(また、合金画像と称される)とから成る。厚さ及び合金画像の寸法は、獲得された画像の画素平面に一致する。しかしながら、算出の複雑性を減らすために、X線検出器によって獲得された原画像の解像度と比較して、組織モデルの解像度を減らし得る(ひいては、
図2に示されるプロセスは、組織モデルと同じ解像度で、元の獲得画像のダウンサンプリングされたバージョンで動作し得る)。合金画像及び厚さ画像は、本質的に、X線検出器と同じ空間を占める2つの追加の低解像度の検出器の出力と考えられ得、X線検出器は、各々、強度よりもむしろ合金比(単位なし)及び厚さ(例えば、cm)の値を与える。
【0059】
したがって、以下の「組織モデル」の言及は、ソース画像(しかし、一般的に、低解像度)の画像平面にわたる物質形状/組成を表す厚さ値及び合金値の配列を含む、上記に説明したようなモデルを指すことを理解されたい。しかしながら、モデル組織への他のアプローチを使用し得、例えば、明確に定義される物質厚を有する、A-B-Aの組織サンドイッチのように、またはボクセルが個々の合金値を有する3次元ボクセル配列等のように、各ボクセルを表す。さらに、単一物質タイプのモデル(例えば、各ボクセルの厚さだけをモデル化し、各ボクセルは全体的に単一物質から成ることが仮定される)、または3つ以上の物質タイプのモデルを使用し得、これらのモデルのタイプは、例えば、(算出の複雑性の増加を犠牲にして)ボクセルごとの複数の物質比または他の構造情報によって定義される。他の例では、一定の厚さは、サンプル全体に対して仮定され得(または把握/測定され得)、物質組成だけがモデルの各ボクセルに定義される。したがって、用語「組織モデル」は、サンプルの物質の配置、サンプルの形状、組織タイプ(または他の物質タイプ)の分布、及び/またはサンプルの組織/物質密度のいずれかの適切な表現を含む。
【0060】
シミュレーション
図4は、物質402,404,406,408の4つのボクセルと、4つの対応するシミュレート済出力画素410とを使用する、簡略化された場合の組織モデルを示す。
【0061】
モデルでは、サンプルの各ボクセルが、2つの物質、すなわち、「A」(例えば、軟組織)及び「B」(例えば、骨)から成ることが仮定される。各ボクセルの全厚及び各物質の厚さ、tA及びtBは、ボクセルごとに異なり得る。ここでは、各ボクセルの物質A及び物質Bを把握し、個々の厚さ、すなわち、tA及びtBを把握していると仮定されたい。上記に説明した単純化モデルでは、各ボクセルは合計厚さ及び合金値によって特徴が示され、合金値は、ボクセル内の物質Aの割合を規定したものであり、対称なサンドイッチ構造を仮定した等価情報を提供する。
【0062】
モデルの幾何学的情報及び物質情報に基づいて、モンテカルロモデルを使用して、このサンプル及び検出器とのX線の相互作用をシミュレートする。シミュレータの出力は、(以下により詳細に説明されるような)伝達関数を適用することによって、実際の撮像システムからの出力に較正され、これにより、シミュレータの出力を実際の画像に直接適用することを可能にする。言い換えれば、シミュレータ及び実際の情報は交換可能になる。
【0063】
サンプルのシミュレート済X線画像を作成するために、シミュレータは、一連のペンシルビームP1、P2、P3、及びP4を合計する。ここでは、ペンシルビームは、ゼロ度の相違のX線の平行ビームとして定義される。
【0064】
図5Aは、画素1がペンシルビームP
1によって照射される場合を示す。
【0065】
これは、散乱カーネルK
1、K
2、K
3、及びK
4を生成するために、画素ごとに繰り返すことができる。次に、全ての散乱カーネルのコンボリューションによって、各画素のシミュレーションされた強度が与えられる。
図5Aに示されるように、散乱カーネルは点広がり関数であり、直射X線及び散乱X線を含む。ペンシルビームP
1の場合、画素1に入射する直接成分D
1と、画素1から画素x=2、3、及び4に発散する散乱成分S
1→xとが存在する。
図5Bは、より現実的な高解像度の散乱カーネルの例証を提供する。
【0066】
したがって、各画素に記録された強度は、全ての隣接する画素からの散乱寄与に加えて、所与の画素における直接ビームである。
【0067】
【0068】
シミュレータを現実世界に合わせて較正することを考慮すると、カーネル(K1、K2、K3、及びK4)のコンボリューションは、誤差εの許容範囲内で、実際のX線画像Iと類似する画像ISimを生成する。
【0069】
ISim+ε=I[2]
【0070】
本システムは、Monte Carlo truthを使用して、方程式[1]に示されるような、散乱による各画素への寄与と、直接ビームによる各画素への寄与とを分別する。これから、シミュレート済直接ビーム画像D及びシミュレート済散乱画像Sを発生する。
【0071】
次に、散乱補正された実際の画像ICを下式によって計算する。
【0072】
IC=I-S[3]
【0073】
これらの例では、各ボクセルを通過する直線ビームが仮定されるが、非直線ビーム(例えば、異なるボクセルを通って異なる角度のビーム経路をもたらす中央ソースから広がるビーム)に対して補正がされ得ることを留意されたい。
【0074】
当然ながら、正確なシミュレーションは、概して実際のサンプルで利用可能ではない各ボクセルの厚さ及び物質組成の全部の情報が必要である。代わりに、複数の実施形態は、各ボクセルの2つの物質A(例えば、軟組織)及びB(例えば、骨)の全ての可能性のある組み合わせを考慮している単純化モデリングアプローチを使用し得る。次に、十分な算出能力により、これらの組み合わせのそれぞれから生じるX線画像をシミュレートできる。次に、方程式4を使用して、全ての画素にわたる物質及び厚さの最良の組み合わせを評価できる。IEの最小値は、実際のX線画像にかなり近似して一致するシミュレート済画像に関し、IEはシミュレーション誤差を示す。
【0075】
IE=I-Isim[4]
【0076】
画像(すなわち、ゼロ画像に最も近い画像)にわたる大きさIEを最小にするモデルサンプルの組成は、現実世界に合わせたシミュレータの較正と、シミュレータの測定値及び実際の測定値の両方の確率的性質とに関連付けられる誤差を考慮して、現実世界に最も近い、生成できる推定である。
【0077】
このアプローチを使用して、モンテカルロモデル及び現実世界に合わせたシミュレータの較正だけを使用して、サンプル組成及びX線の相互作用を理論的に理解することが可能であることを確認できる。
【0078】
次に、いったん(例えば、上記に説明した収束閾値に基づいて)許容できる最小値IEが見つけられると、本システムは、サンプルの組織モデルと、X線がサンプルと相互作用する方法とに関するかなり正確な情報に収束している。
【0079】
このアプローチの1つの難しさとして、高次元に関する問題があり、すなわち、方程式4を使用して評価する必要がある可能性のある解の数がかなり多くなる。したがって、探索空間を減らすために、本発明の実施形態は以下の手順を採用している。
1.元の獲得画像の画像特性に基づいて、反復改良プロセスの開始点として最初の組織モデルを導出する。具体的には、これは、合金及び厚さのモデルパラメータの最初の推定値を導出することを含む(例では、これは、1の合金値(すなわち、100%の軟組織組成)を有する過去の画素の分類に基づいて行われる)。
2.シミュレート済X線画像の改善の観察に基づいて導かれる組織モデル(具体的には、合金及び厚さの推定値)の反復改良(
図2のステップ214参照)。
【0080】
これらの2つの成分は、以下により詳細に説明される。
【0081】
シミュレータによる直接ビーム及び散乱の寄与のシミュレーションの発生
1つのアプローチでは、被験物(例えば、組織モデルから導出される)の所与の3Dモデルに基づいて、物質を通るX線の経路を算出することによって、レイトレーシングに基づくアプローチを使用して、直接ビーム及び散乱の推定値を発生し得る。これは、モンテカルロシミュレータのサンプルの所与の3Dモデルを構築することと、次に、画素位置ごとの直接成分及び散乱成分をシミュレートすることとを含み得る。しかしながら、このアプローチは、一般的に、かなり算出に手が掛かる(シミュレートされるイベントの数を減らすペンシルビームよりもむしろ、特に、組織モデルの反復改良中に何回もシミュレーションを繰り返し得ることを考慮すると、また、このアプローチが発散ビームを使用して、所与のサンプルから生じるX線画像をシミュレートすることが必要であり得ることを考慮すると、手が掛かることが分かる)。
【0082】
したがって、本発明の実施形態は、シミュレート済X線画像を作成するための別のより効率的なアプローチを提供する。アプローチは、特定の物質の組み合わせの事前算出した対称カーネルを組み合わせることによって、非定常で非対称カーネルの効率的な作成に基づいて行われる。
【0083】
ある実施形態では、GEANT4と呼ばれるモンテカルロシミュレーションパッケージを使用して、X線の相互作用をシミュレートする。上記に説明したように、これは、サンプル散乱を観察できるように、ペンシルビームをシミュレートすることを含む。X線は、検出器の画素(「中心画素」を意味する)に向かう狭ビームとして、ソースで作成される。散乱されないX線は中心画素に衝突する。
【0084】
原則として、反復改良ループ204の実行中、「オンライン」でシミュレーションを行い得るが、これは、かなり算出の手が掛かり得る。シミュレーションの算出の負担を減らすために、別のアプローチは、「オフライン」で、すなわち、反復改良を実行する前にシミュレーションを行う。このアプローチでは、合金及び厚さの組み合わせの所定のセット(μ,t)に対して、シミュレーションを事前に行い、(例えば、値μ,tの定義された範囲及びステップサイズにわたって)(μ,t)の組み合わせごとに散乱カーネルのセットを取得する。結果として生じる散乱カーネルをデータベースに記憶する。ある好ましい実施形態では、データベースに記憶される散乱カーネルの所定のセットのパラメータは、いずれかの所望のμ,tの組み合わせに対して後で補間できるスパースメッシュになるように選ばれる。
【0085】
ある実施形態では、空気だけの効果をシミュレートしない場合、シミュレーションでは、X線ビームの経路にサンプルが設置される。サンプルは、別の物質の別の半径(例えば、50cm)のアニュラスによって囲まれる1つの物質の所与の半径(例えば、1μm)を有する円筒形コアから成る。これは、システムが、1つの物質の何を散乱させたいかをシミュレートし、次に、すぐに、別の物質の検出器までの経路の残りの部分を継続することを可能にする。複数の実施形態は、コア及びアニュラス組成(合金)の異なる組み合わせ及び/またはコア及びアニュラスの厚さの異なる組み合わせの散乱カーネルを発生し得る(代替の実施形態では、一般的な厚さは、コア及びアニュラスに関して規定され得る)。例えば、全厚に関して1cmのステップで1cm~20cm、コア合金値に関して10%のステップで0%~100%、及びアニュラス合金値に関して10%のステップで0%~100%のように、シミュレーションを行い得る。この例は、直接ビーム及び散乱カーネルに必要な20×11×11=2420パターンのシミュレーションが行われることを意味する。シミュレーションの中心画素は直接ビームの値であり、他の全ては散乱カーネルである(しかし、便宜上、直接ビーム値は、散乱カーネルの中心画素として記録され得る)。
【0086】
次に、事前算出した散乱カーネルを使用して、続けて、シミュレート済画像データを取得する。これは、2D光線経路に従ったカーネルの形状を修正することを含む。具体的には、下記により詳細に説明されるように、カーネルのテールの強度は、組織モデルの2Dボクセルに従って修正される。
【0087】
具体的には、反復改良プロセス204(具体的には、シミュレーションステップ206)の実行中、本システムは、前述に説明したように、散乱カーネルをコンボリューション(例えば、合計)し、直接ビーム成分及び散乱成分を分別することによって、組織モデルの画素ごとに関連の直接ビーム値及び散乱カーネルを調べ、シミュレーション結果を発生する。シミュレーションによって発生しない追加の散乱カーネルは、隣接する散乱カーネルの補間によって発生され得る(これは、また、散乱カーネルのシミュレーションよりもむしろエミュレーションと称される)。係る補間された散乱カーネルは、プロセス204の事前に、プロセス204の動作中にオンラインで、またはそれらの両方で発生できる(データベースに記憶できる)。したがって、本明細書におけるシミュレーションの言及は、シミュレーション出力を生成するとき、事前計算したシミュレーション結果を利用することを含む。
【0088】
より詳細には、反復改良ループの実行中、μ,tの所与の推定値に関して、データベースに記憶された直接ビーム値を使用して、いずれかの所与のμ,tの組み合わせに関して、画素における直接ビームの対応する推定値を得ることができる。μ,tの合金及び厚さの推定値の全ての画素に対して、このプロセスを繰り返し、対応する画素に強度を書き込むことで、直接ビーム推定値Dを生成する。散乱ビーム及び直接ビームの両方に関して、本システムは発散ビームを補正せず、代わりに、ビーム自体の独立ソースがあるかのように、各画素を処理することを選ぶことにより、異なる画素への入射光線が相互に平行になることに留意されたい。ソースが物体からさらに離れるにつれて、これに関する問題はより少なくなるが、必要に応じて、他の実施形態はこのために補正を適用し得る。
【0089】
以下のように、散乱推定値を取得し得る。その目的は、いずれかの所与の画素(x,y)におけるサンプルによって生じる散乱カーネルを取得することである。画素(x,y)から散乱するとき、画素(x’,y’)においてカーネルが有する強度の度合いを知らせるために、散乱検索データベースを使用する。最初に、カーネルは、(a)合金μと(b)厚さtで、画素(x,y)から散乱する。次に、カーネルが、距離rに対する(c)平均合金μr(d)を通って進む(平均は、組織モデルで規定されるx,yからx’,y’までの経路のボクセルの合金値から決定された)。本システムは、これらの4つの値に対応する強度を識別し、対応する強度が存在しない場合、データベースの散乱ルックアップテーブルから補間する。これは、X線が(x’,y’)まで散乱し得る全ての画素と、X線が(x,y)から散乱し得る全ての画素とに対して行われる。これらの値の全てを合計すると、散乱推定値が生じる。(e)光線が進む平均厚さtrの効果を含む等の散乱の強度を計算するさらなる改善がされ得るが、係る改善は、算出コストが高くなり得る異次元を追加し、さらなる処理時間を追加する。
【0090】
図1に関して説明される実験的設定に一致させると、シミュレータは、入力エネルギーレベル(ピークkV)及び適用されるろ過(mmのAlの厚さで規定される)に関して構成可能である。したがって、散乱カーネルを事前計算する場合、これは、エネルギーレベル値及びろ過値の範囲にわたって行われ得、散乱カーネルデータベースは異なるシミュレータ設定の散乱カーネルを記憶している。
【0091】
較正
上記に説明した改良ループは、撮像組織の組織モデルに基づくシミュレーションが、実獲得画像の散乱補正のためにシミュレート済散乱推定値を使用できることが十分に正確であると見なされるタイミングを決定するとき、シミュレート済画像データと実際の獲得画像との比較によって決まる。
【0092】
検出器の実際の撮像出力と、シミュレータのシミュレート済撮像出力との比較可能性を確実にするために、較正プロセスを行う。較正は伝達関数を決定することを含み、伝達関数は、実際の画像と比較可能にするために、シミュレータの出力に適用できる(同様に、その伝達関数の逆数は、当然ながら、シミュレータの画像と比較するために実際の画像に適用され得る)。
【0093】
好ましい実施形態では、シミュレータはモンテカルロモデルに基づき、較正の目的は、モンテカルロモデルの挙動を観察された実際の挙動に一致させることである。より正確に言えば、その目的は、モデルと現実世界との間に内在するエネルギースペクトルを一致させることである。これは、一般的に、現実世界のエネルギースペクトルを観察することが困難であるため(また、マルチスペクトル検出器等の費用がかかる追加機器が必要であるため)、間接法を使用して実行される。
【0094】
較正プロセスは、シミュレータの出力と実際の出力との間に物質不変の伝達関数を提供するモデルに適切なパラメータを識別することによって、次に、実際の撮像システムの内在するエネルギースペクトルを確率的誤差の範囲内で一致させているという仮定に基づくものである。これは合理的な仮定と見なされる。その理由として、異なる物質は、異なるエネルギー依存するX線の減衰をもたらし、ひいては、シミュレータの出力が2つ以上の物質に対して現実世界と一致できる方法だけが、エネルギースペクトルが一致する場合に行えるためである。
【0095】
【0096】
較正が開始し(ステップ602)、それぞれがいくつかの異なる厚さを有する少なくとも2つの異なる物質の実際の画像のセットをキャプチャする。ある実施形態では、ビームにサンプルがない画像に加えて、PMMA(ポリメチルメタクリレートまたはパースペクス)及び5つの異なる厚さにおけるアルミニウムの平坦なブロックの画像をキャプチャする。例示的な厚さは、以下のとおりである。
-PMMA:5,10,15,20,25cm
-Al:1,2,3,4,5cm
【0097】
撮像される予定のサンプルに遭遇することが予想できる減衰の範囲に収まるように、厚さを選択する。また、2つの物質の減衰範囲は、好ましくは、大体一致させるべきである。
【0098】
ステップ604において、獲得画像を事前処理し、後続処理のためにその獲得画像をより適切にし得る。例えば、原画像はゲイン及びオフセット補正され得る。
【0099】
ステップ606において、サンプルの視野を識別する。これは、X線によって照らされた検出器の領域である。その視野は散乱の起源と見なされる唯一の領域であるため、これは、データ処理を行う場所の境界を示す。この視野の外側の全ての領域を無視する。いくつかの実施形態では、実際のテストサンプルを処理するとき、視準は、視野によって定義されるものよりも小さいが大きくない可能性がある。しかし、他の実施形態では、この制限はなくなり得る。
【0100】
ある実施形態では、較正において、X線画像は、検出器全体が直接X線に衝突する場合の「平坦」画像として、またはコリメータを使用する場合に影によって囲まれる照らされた長方形として、のいずれかで現れることが仮定される。したがって、平行領域にあり、直接X線に衝突しない画素に0を用いて、直接X線に衝突した画素に1を用いて、論理的画像を使用して、視野(FoV)を定義する。この画像の対応する減少した解像度の(サブサンプリングされた)バージョンは、シミュレーションで使用するために作成される。FoV画像は、所与の強度を上回る全ての画素が1である、所与の強度を下回る全ての画素が0であるのいずれかである画像の単純な閾値によって見つけることができる。代替として、エッジ検出法を使用できる。較正において、概して、情報が(FoVに従って)暗い画素で利用可能ではないため、照らされた画素だけで伝達関数を見つけることができる。
【0101】
ステップ608において、本システムは、関数をソース画像データf(厚さ)=log(I)に適合させ、Iは、サンプル画像の繰り返されたフレームにわたる平均強度である。その関数は、視野内の全ての画素に適合する。log(I)空間に入ると、エミュレーションをより容易にし、値を大体同じ位に維持し、コンピュータの計算をより数値的に安定させる。
【0102】
ステップ610において、事前に構築した較正トレーニングデータベースをロードする。これは、kV値及びろ過の既定のセットにわたって、現実世界で測定された物質のそれぞれごとに、散乱カーネルから成る。これらの値は、既定のステップサイズのkV値及びろ過値の既定範囲を含む。検出器の設定の実際のシステム設定によって、範囲を選び得る。純粋に例として、ユーザが80kV、約2mmのろ過で実際のシステムを起動しようとする場合、シミュレーションは、1kVのステップで70kV~90kVの範囲のkV値と、0.25mmのステップで0mm~5mmのろ過とを使用し得る。他方では、システムが60kVで起動する場合、シミュレータで45kV~75kVの範囲を使用し得る。システムの熟知度に応じて、範囲を狭くまたは広くできる。
【0103】
ステップ612において、散乱カーネルを一緒にコンボリューションすることによって、実際の画像と同じサイズの合成画像を作成する。所与のkVならびにろ過に対して及び関連物質に対して散乱カーネルを使用して、kV値及びろ過値ごとに、このステップを行う。したがって、厚さのそれぞれで、ろ過のそれぞれで、及びkVごとに、これらを組み合わせて、物質ごとに合成画像を作成する。各合成画像は、ステップ602で取得された実際の画像のセットと同様に、単一物質の一定の厚さのブロックを表す。目的は、シミュレータの実際のサンプル画像を再生成することである。
【0104】
ステップ613において、厚さ関数/強度関数は、ステップ608のソース画像に対してステップ608で行われたことと同様に、合成画像に適合される。
【0105】
ステップ614において、次に、本システムは、kV及びろ過の範囲におけるkV値及びろ過値のそれぞれに、実際の画像と合成画像との間で伝達関数を適合させる。
【0106】
伝達関数の目的は、シミュレータと現実世界とのいずれかの残りの相違に対処することである。モデルのエネルギー分布が現実世界に一致している場合、モデルと現実世界とのスカラーの相違がある、または、最悪の場合、相違はサンプル物質に一定しているという根本的な仮定がある。
【0107】
一実施態様では、各画素は、二次関数であるそれ自体の伝達関数を有する。全ての伝達関数は、サイズがnr*nc*3の3D配列として記憶され、nr及びncは、
図2のプロセスの組織モデルを導出するために使用される画素/ボクセルの解像度に従った行列であり、3次元は3であり、二次関数の3つのパラメータを保持する。適合プロセスはシミュレータを使用して、シミュレータ空間の実際の較正サンプルを再生成することを含む。シミュレータのlog(I)の関数として、現実世界のlog(I)に適合させることによって、関数を構築する。しかしながら、伝達関数の他の形式を使用し得る(例えば、二次関数以外の関数(例えば、高次多項式または低次多項式、好ましくは、2次以上の多項式を使用する)に基づいて、伝達関数を使用する)。
【0108】
ステップ616において、本システムは、非現実的な測定に関して、現実世界とほとんど同様の合成画像のセットを識別する。これは、高信頼性セットを提供し、実際の測定値及びシミュレータの測定値に関連付けられる誤差の範囲内の実際の出力に一致させるために、シミュレータで使用できる全てのkV及びろ過を定義する。非現実的な測定は、実際の観察とシミュレータ出力との類似性の測定(通常、マハラノビス距離と同様のもの)である。このステップでは、2つのランダムプロセス(シミュレータ及び現実世界)がある事実により、単一の解よりもむしろ高信頼性の解のセットを生成する。したがって、全ての解は、誤差を考慮して、信頼性があると見なすことできる。
【0109】
ある実施形態では、kV、ろ過、及び伝達関数を選択するための非現実的な測定は、シミュレータから得られた、実際のlog(I)のカーブと伝達log(I)のカーブとの間の最大距離は、不確実性だけスケーリングされた距離が2よりも大きくならない可能性があることである。一般的に、これは、(異なるkV値及びろ過値においてそれぞれ)シミュレータからの多くの伝達log(I)のカーブは、ある時点で最大の所与の不確実性になるまで十分なものであり、高信頼性セットを提供することを意味する。
【0110】
ステップ618において、本システムは、非現実性が最低の伝達関数、kV、及びろ過を識別する。次に、これらのkV値及びろ過値は、伝達関数と一緒に、シミュレータ出力設定として定義される。
【0111】
散乱補正アルゴリズムの詳細な説明
図7Aは、一実施形態による、組織モデルを発生させる及び反復的に改良するためのプロセスの概要を提供する。本プロセスは、前述に説明した較正プロセスの出力(具体的には、散乱カーネル及び伝達関数のデータベース)と一緒に、入力X線画像702に基づくものである。
【0112】
サブプロセス706は、組織モデル(具体的には、各ボクセルの物質組成(合金)及び厚さ)の最初の推定(または推測)を設定する。最初の組織モデルの推定は、以下により詳細に説明される。これは、各ボクセルの値のペアμ0及びt0を生成する。μ0は、ボクセルの物質組成の特徴を示す合金値であり、好ましい実施形態では、ボクセル内の軟組織の割合(例えば、小数値またはパーセンテージ)を示す(または、逆の場合も同様に、1つの組織タイプの小数値の代わりに、2つの組織タイプの比も規定され得る)。より一般的には、これは、撮像される被験物の特質に応じて、いずれかの2つの組織または物質タイプの割合または比を示し得る。t0は、そのボクセルにおける物質の厚さの特徴を示す。下付きの0は、組織モデルの反復改良よりも前の関連値の最初の推定値であることを示す。
【0113】
モデルでは、骨物質が中央に位置し、軟組織によって囲まれることを仮定しているため、厚さt及び合金μは、一緒に、(
図4に示されるような)所与のボクセルの3つの層組織モデルの特徴を完全に示す。この説明全体にわたって、用語t及びμは、いくつかの係る値の省略表現として使用されることを留意されたい。ボクセル/画素のそれぞれの1セットのt及びμの値が存在することが理解される。下記により詳細に説明されるように、最初の組織モデルの推定は、画素強度に基づいて画像領域を分類する演繹的な軟組織の分類子に基づくものである。
【0114】
反復改良ループ204は、入力画像702を分析するための開始点として、最初の厚さ及び合金の推定値を使用する。前述に説明したように、最初に推定した組織モデルを使用してX線の相互作用をシミュレートすることによって、直接ビーム成分及び散乱成分を推定する。直接ビーム及び散乱の推定値の発生は、較正プロセスによって導出された伝達関数を使用して、シミュレータ出力を変換すること(本質的に、シミュレート済画像データを実X線画像データのドメインに並進させること)を含み、シミュレーション済データが入力画像702の実X線データに対して評価できることを確実にする(代替として、対応する逆変換は実X線データ702に適用され得る)。伝達関数を使用して、実画像データ及びシミュレート済画像データの比較/評価を可能にすることが理解され、したがって、伝達関数の使用は、明示的に言及されない場合でも、暗黙的であると理解されたい。
【0115】
散乱推定値を使用して、入力画像の散乱補正を行い、補正画像ICを生成する。この例では、散乱補正画像を直接ビーム画像と比較することによって、収束を確認する(その比較は、IC-D=0のように省略して示される。しかしながら、実際には、完全収束は達成不可能であり得、代わりに、プロセスは、好ましくは、散乱補正画像とシミュレーション済直接ビーム画像との差が閾値を下回るかどうかをテストする。閾値は推定誤差によって決定される)。前述に説明したように、収束判定は、同様に、直接ビーム成分及び散乱成分から完全なシミュレーション済画像を算出し、このミュレーション済画像を入力画像と(減算によって)比較し得る。
【0116】
収束基準を満たさない場合、更新された組織モデルを使用してシミュレート済の直接ビーム成分及び散乱成分を再発生することによって、組織モデル(すなわち、各ボクセルのμ及びtの値)は更新され、ループは繰り返される。いったん収束基準が満たされると、プロセスは終了し、最後の組織モデルμ,t及び散乱推定値Sは、出力710として提供される。
【0117】
算出効率に関して、組織モデルは、好ましくは、検出器によって獲得されたソース画像700よりも低解像度であり、ひいては、組織モデルの解像度と一致し、元の高解像度のソース画像700をダウンサンプリング(701)することによって、入力画像702を発生させることに留意されたい。減少した解像度で動作することで、組織モデルを改良するとき、探索空間を著しく減らし、散乱カーネルコンボリューションで必要な要素の数を減らすことができる。
【0118】
図7Bは、反復改良ループの出力に適用される処理を示す。出力710は、原画像の解像度に合わせてスケーリングし、最大解像度の厚さ画像(またはマップ)712及び合金画像(またはマップ)714と、最大解像度の散乱推定値716とを生成し得る。これは、散乱推定値及び厚さ画像及び合金画像をアップサンプリングすることによって達成され得る。次に、拡大散乱推定値716を使用して、(散乱推定値をソース画像から減算することによって)最大解像度のソースX線画像700の散乱補正を行い、最後の散乱補正されるX線画像718を形成する。
【0119】
ある実施形態では、合金及び厚さの推定値は、散乱推定値を取得するために行われるように、元の最大解像度に簡単にアップサンプリングされない。散乱推定値は低頻度関数であり、ひいては、単純なアップサンプリングは効果的であり得る。しかしながら、組織モデルによって表される物質情報は、概して、散乱推定値と同じくらい低頻度ではない。したがって、好ましくは、さらなる後処理を行い、高解像度の合金画像及び厚さ画像を取得する(これらの画像は、必ずしも、ソース画像の最大解像度である必要はない)。
1.散乱推定値をアップサンプリングした後、合金画像及び厚さ画像の要求される最終解像度にダウンサンプリングされる(低解像度にする場合)。
2.Ic(補正画像)はこの中間解像度で作成される。
3.Icをこの解像度の直接ビームデータベースと比較することによって、合金値及び厚さ値の高信頼性セットを識別する(メイン改良ループの実行中の更新モデルの発生に関して以下に説明される)。
4.空間モデルを使用して、これらのセットを各画素で単一の推定値に改良する。
5.次に、この解像度で、合金及び厚さの推定値を出力する。
【0120】
厚さ画像712、合金画像714、及び散乱補正画像718は、アルゴリズムのメイン出力720を一緒に形成する。これらは、さらに、必要に応じて処理され得る、及び/またはオペレータに出力され得る(例えば、厚さ/合金の画像を使用して、組織密度分布またはオペレータに有用な他の視覚表現を示す色があるコード化された散乱補正画像を発生し得る)。
【0121】
組織モデルの最初の推定
最初の組織モデルの推定(すなわち、厚さ値及び合金値の最初のセット)は、過去の画像画素の分類に基づいて、100%の軟組織(すなわち、1の合金値)に対応する可能性が高くなるように決定される。その理由として、これらの値は、概して、中間合金値よりも検出し易いためである。複数の実施形態は、記録画像の画素強度値の閾値を使用して、(かなり明るい領域は100%の軟組織である可能性が高いという仮定の下で)100%の軟組織に対応すると仮定される画像の領域を識別し得る。加えて、エッジ検出またはニューラルネットワーク等の機械視覚技術を使用し得る。
【0122】
その検出は、また、各画素の記録された強度を生じさせ得る合金値及び厚さ値の既定範囲を定義する記憶データ(「高信頼性セット」)を使用し得る。
【0123】
1つのアプローチでは、本システムは、特定点(すなわち、画像平面のx,y座標)で厚さを検出して、厚さの制約のある最初のモデルを生じさせることができる。次に、本システムは、厚さ値を使用して、合金値を推察する。
【0124】
具体的には、過去の100%の軟組織の分類された領域をトレーニングデータとして使用して、(下記に説明されるように)画像を直接ビームデータベースと比較することから取得された高信頼性セットと組み合わせる。高信頼性セットは、適用可能な不確実性を考慮した観察した内容を生じさせ得る可能性のある全ての入力のセットである。例えば、いくつかの特定の値の直接ビーム画素強度は、信頼性が高くなるように、特定の組織分布の範囲に起因し得る。例えば、直接ビームだけが考慮され、不確実性がゼロである場合、強度50は、仮定で、10cm、100%の軟組織、9cm、95%の軟組織及び5%の骨、8cm、90%の軟組織及び10%の骨、または1cm、55%の軟組織及び45%の骨によって生じされ得る(これらの数は純粋に例証目的のために選ばれ、実際の値は異なり得ることを留意されたい)。観察された強度値(例えば、測定誤差)についてわずかな不確実性及び/またはシミュレータの補間またはランダム性の誤差によるいくつかの不確実性がある場合、これらのセットは、例えば、所与の合金組成に対して約+/-1cmだけ、わずかに増え得る。
【0125】
過去に分類した100%の軟組織領域に関して、高信頼性セットは、100%の軟組織に近くない全ての厚さ値-合金値のペアを除去することによって小さくなり、次に、アルゴリズムが何度も平均化する可能性のある厚さのより小さい集合を生成する。これらの厚さ値をトレーニング点として使用して、(x,y)座標から厚さを予測する表面(空間モデルと称される)を適合させる。次に、これは、100%の軟組織でなかった画素の厚さ推定値を提供する。この画素に関して、高信頼性セットは、再度、導出された表面によって考慮された厚さ推定値に近くない全ての厚さ値-合金値のペアを除去することによって小さくなり、最後の合金推定値を生じさせるために平均値が算出される可能性のある合金値のためのより小さい集合を生成する。
【0126】
したがって、上記のプロセスは、厚さ値-合金値の高信頼性セットを、反復改良ループ204の最初の反復のための組織モデルとして使用される各座標における単一のペアの厚さ値/合金値に改良する。
【0127】
プロセスの後続の反復において、原画像の代わりに(現在の反復で決定された散乱推定値を使用して補正された)散乱補正画像に基づいて、同じプロセスを繰り返し、下記に説明されるような新しい組織モデルを生成できる。
【0128】
プロセスは、一般形式で、
図8Aに示される。具体的には、
図8Aは、反復改良プロセスの現在の反復nのための組織モデルの作成を示す。上記に説明したように、最初に発行したモデル推定の作成に関して、100%の軟組織領域の演繹的分類に基づいて、合金値及び厚さ値の高信頼性セットを制約することによって、100%の軟組織画素に関する残りの妥当な厚さ値を平均化し、厚さ関数を各画素の厚さの推定値を示す画像に適合させることによって、空間モデル802を取得する。これから、前述に説明したように、合金画像μ804及び厚さ画像t806を含む組織モデルを導出する。
【0129】
組織モデルの反復改良
図8Bは、一実施形態による、より詳細に
図2の改良ループ204を示す。ステップ840において、プロセスは開始し、組織モデルの最初の推定(すなわち、合金値及び厚さ値の最初のセット、μ
0,t
0)を使用する。実際の応答が最初の推定値に近くなるにつれて、アルゴリズムの収束がより速くなるはずである。上記に説明したように、組織モデルの最初の推定値を導出し、ひいては、μ
0は、過去に分類した100%の軟組織画素(μ=1)に基づいた情報を含み、非100%の軟組織画素は最良の推測の厚さ値及び合金値を有する。
【0130】
次に、最初の推定値μ0,t0を第1の反復の現在の値μ,tとして使用して、メインループを開始する。
【0131】
ステップ842において、現在の値μ,tは、μ,tの推定値のスタックに追加される。したがって、第1の反復において、μ0,t0は、スタックの第1のエントリになる。
【0132】
ステップ844において、散乱画像(S)及び直接ビーム画像(D)のシミュレーションは、現在の推定値μ,tに対してシミュレータによって算出される(これは、伝達関数を適用し、シミュレーション出力を実X線画像ドメインに並進させることを含む)。次に、実ソース画像Iと散乱推定値Sとの差として、散乱補正実画像(IC)を算出する。加えて、エラー画像(IE)は、全部のシミュレート済画像を直接ビームの推定値D及び散乱推定値Sの合計として発生させ、この合計を実ソース画像Iから減算することによって算出される。したがって、このエラー画像は、シミュレーション出力と実画像との差を示す。このステップの処理結果(散乱推定値S、直接ビーム推定値D、及び対応する補正画像IC、及びエラー画像IE)は、下記に詳述する別の算出と区別するためにまとめて分類される(A)。
【0133】
ステップ846において、収束判定を行い、IEがゼロ画像(すなわち、各画素でゼロ強度を有する画像)にどれくらい近いかを決定する。例えば、IE(実画像とシミュレート済画像との画素差を表す)の個々の画素強度値を合計することによって、近似度を画像にわたるシミュレーション誤差を集約している単一の値のエラー測定値として算出し、エラー画像が主に負である場合に負である(または、画像が主に正である場合に正である)符号検定統計量を取得し得る。別のアプローチを使用して、エラー測定値を決定し得ることに留意されたい。次に、検定統計量(エラー測定値)の大きさを、十分な収束が達成されているときを示す閾値と比較することによって、収束を決定し得る(しかし、他の適切な収束基準を使用し得る)。次に、収束基準が満たされる場合、アルゴリズムが収束されて、反復改良プロセスが終了し、前述に説明したように、本システムは、続けて、後処理を行い、要求された出力を生成する。
【0134】
収束が達成されていない場合、改良ループは継続する。ステップ848において、本システムは、Icを直接ビーム(D)の画像の事前計算したデータベースと比較し、各画素のμ,tの高信頼性セットを取得する。直接ビーム画像のデータベースはサンプルの画像のスタックであり、画像ごとに、サンプル物質は全体的に単一の厚さ及び合金のペアに一致し、ひいては、各画像は、関連の直接ビームの強度が検出器にわたってどのように変わるかを示す。これは、各画素でそれ自体の伝達関数を有するため、全ての画素で同じ値ではないことを思い出されたい。異なる厚さ及び合金の組み合わせについて直接ビームの出力のシミュレーションを算出し、次に、伝達関数を結果として生じる画像の各画素に適用させることによって、このデータベースを発生させる。
【0135】
ステップ850において、過去に分類した100%の軟組織領域852を使用して、その画素の厚さの推定値tをμ=100%に一致するその厚さまで小さくする。過去に分類した軟組織領域852は、入力画像の画素分類に基づいて、最初に識別したものである(しかし、他の実施形態では、アルゴリズムの各反復において、分類は更新され得る)。これは可能性のある厚さ値の小さなセットを生成し、本システムは、可能性のある厚さ値の平均値を算出し、この100%の軟組織画素における厚さ推定値を取得する。次に、本システムは、100%の軟組織画素をトレーニング点として使用して、厚さ表面を適合させる。これは、全ての画素における厚さの推定値を提供し、空間モデルと称される。次に、本システムは、空間モデルの導出された厚さ表面から取得された新しい厚さを制約することによって、非100%の軟組織画素の合金値μを小さくする。これは、全ての画素のμ,t値のセットを単一のμ,tのペアまで制約することをもたらし、したがって、画像全体の更新された組織モデルμ,tを生じさせる。したがって、ステップ848~850のプロセスは最初の組織モデルの作成をミラーリングするが、現在の散乱補正画像ICに適用される。
【0136】
ステップ854において、プロセスは、ステップ844に関して既に説明したものと同じ方式で、この更新されたμ,t推定値のセットのS,D,IC,及びIEを算出する。この別の結果のセットは、そのセットステップ844によって生成された結果セット(A)と区別するために分類される(B)。
【0137】
したがって、この段階において、この反復によって生成された2つのエラー画像IEがあり、その1つの画像は、844のラベル(A)において算出されるように、スタックからμ,tだけを使用して生成され、もう1つの画像は、850のラベル(B)において算出されるように、空間モデルの出力として使用される。
【0138】
ステップ856において、(導出されたエラー測定値に関して)IE(A)及びIE(B)のどちらが収束閾値により近いかを決定することによって、別の算出の結果を比較する。新しい結果IE(B)が良好である場合(低い大きさのエラー測定値は、エラー測定値がゼロにより近いことまたは閾値により近いことを意味する)、ステップ858において、プロセスは、ステップ850(B)において決定されたμ,tを、次の反復のための新しい現在のμ,t値として選択し、プロセスは、ステップ842から継続する。ステップ854において、S,D,IC,及びIEが既に算出されており、再度、算出する必要がないため、ループの後続の反復において、ステップ844の計算時間を節約できることを留意されたい。
【0139】
他方では、ステップ856において、IE(A)(元のエラー画像)が良好であること(低い大きさのエラー測定値を有する)ことを決定した場合、ステップ850(B)における空間モデル計算からμ,tの値は、悪い結果が与えられた。それにもかかわらず、いくつかの方法で組織モデルによって表される物質情報を改善するために、本システムは、次に、(過去の反復からの)最良の過去の推定値を用いて、(B)から合金及び厚さの推定値μ,tを平均化し、これにより、収束判定統計量(エラー測定値)が低くなることが予想されるはずである。具体的には、ステップ860において、アルゴリズムは、次に、((B)の対応するエラー測定値の符号と比較して)反対符号の最低エラー測定値を有するスタックからのμ,tのエントリを用いて、空間モデル算出850の出力からの値μ,tを平均化する。これは、次の反復のための改良された組織モデルμ,tを生成し、プロセスは、新たに発生した平均値μ,tをスタックへの新しいエントリとして追加することによって、前述と同様に、ステップ842において継続する。しかしながら、この場合、これらの新たに導出された値μ,tの結果がまだ利用可能ではないため、ステップ844における算出はスキップできない。
【0140】
したがって、スタックは過去の推定値μ,tを追跡し、最良の過去の推定値を使用して、これらの値がシミュレーション結果を改善できないとき、空間モデルに基づく推定値を補正する(B)。ステップ846において収束に到達するまで(例えば、エラー測定値の絶対値が収束閾値を下回るまで)、プロセスは上記の方式で反復する。
【0141】
上記の説明では、μ,tは、概して、画像全体の合金値及び厚さ値の配列を指定している(言い換えれば、μ,tは、合金画像及び厚さ画像に対応する)。しかし、文脈によって、これらの用語は、個々の画素値μ,tも指し得ることを留意されたい。
【0142】
コンピュータシステム
図9は、例えば、説明されるアルゴリズムを実施するために使用され得る画像処理サーバ900の形態の例示的なコンピュータシステムを示す。サーバ900は、1つ以上のプロセッサ(複数可)902、ソフトウェア実行中にソフトウェアならびにデータを記憶するための揮発性メモリ(RAM)904、及び他のデバイス(例えば、
図1に示される、検出器106、ユーザインターフェースデバイス114、及び外部ストレージ116)と通信するためのネットワークインターフェース906を含む。
【0143】
サーバは、さらに、ソフトウェア及びデータを永続的に記憶するための永続的ストレージ908(例えば、ハードディスクドライブ、フラッシュメモリ等の磁気記憶媒体の形態)を含み、永続的ストレージ908は、とりわけ、上記に説明した較正プロセスを行うための較正ソフトウェアプロセス910、上記に説明した散乱補正プロセスを行うための散乱補正プロセス912、及び物質サンプルとのX線の相互作用をシミュレートするためのシミュレータ916を含み得る。永続的ストレージは、さらに、直接ビーム及び散乱カーネルのデータベース914を含み得、データベース914は、シミュレータによって算出され、所与の組織モデルのシミュレート済画像データを発生させる散乱補正プロセス912の実行中に使用される、事前計算した直接ビーム及び散乱カーネルのデータを含む。
【0144】
サーバは、一般的に、当業者によって理解される他の従来のハードウェアコンポーネント及び/またはソフトウェアコンポーネント(例えば、サーバオペレーティングシステム、I/Oインターフェース等)を含む。
【0145】
説明されるシステムは、散乱を予測及び補正するために、物質情報の判定に依存する。したがって、最後に収束した解は、(組織モデルが合金画像μ及び厚さ画像tを含むように)物質組成及び厚さの散乱補正X線の画像及びマップの両方を生成し、組織モデルは、一般的に、ソースX線画像よりも低解像度である。経験的評価は、数パーセントの真値の範囲内にあるようにアルゴリズムによって返される組成及び厚さを示している。物質組成(合金)/厚さのデータを使用して、骨ミネラル密度(BMD)等の関連の診断上の指標を算出及び出力できる。例えば、BMDは、(1-μ)×tのように計算できる(例えば、これは、画素に基づいて算出され得、次に、随意に、着目する画像領域にわたってまたは画像全体にわたって平均化される)。また、組織モデルを使用して、例えば、密度分布を示すために散乱補正画像をカラーコーディングすることによって、可視化を提供できる。
【0146】
説明されるシステムは、いずれかのデジタルX線写真検出器と一緒に使用でき、散乱線除去グリッドと比較するとき、以下の利点の一部または全てを提供できる。
-散乱線除去グリッドに関連付けられるアーチファクトがない画像品質の改善。
-同じ患者線量の画像全体にわたるノイズ比までの信号の増加。
-随意に、同じ画像品質に患者線量を減少する。用量は、同じ画像品質を保持しながら、半分以上の量だけ減少でき得ることを推定している。
-本システムは身体組成情報を提供でき、身体組成情報を使用して、良好に組織タイプを区別できる、または骨量密度等の定量的測度を計算できる。
【0147】
本発明は純粋に例として上記に説明したことと、本発明の範囲内で詳細を修正できることとが理解される。