IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 南京中硼▲聯▼康医▲療▼科技有限公司の特許一覧

特許7409869医用画像に基づく放射シールド装置および方法
<>
  • 特許-医用画像に基づく放射シールド装置および方法 図1
  • 特許-医用画像に基づく放射シールド装置および方法 図2
  • 特許-医用画像に基づく放射シールド装置および方法 図3
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-12-25
(45)【発行日】2024-01-09
(54)【発明の名称】医用画像に基づく放射シールド装置および方法
(51)【国際特許分類】
   A61N 5/10 20060101AFI20231226BHJP
【FI】
A61N5/10 H
【請求項の数】 9
(21)【出願番号】P 2019510411
(86)(22)【出願日】2017-07-11
(65)【公表番号】
(43)【公表日】2019-09-05
(86)【国際出願番号】 CN2017092499
(87)【国際公開番号】W WO2018086367
(87)【国際公開日】2018-05-17
【審査請求日】2019-02-20
【審判番号】
【審判請求日】2022-06-28
(31)【優先権主張番号】201611029477.8
(32)【優先日】2016-11-14
(33)【優先権主張国・地域又は機関】CN
(31)【優先権主張番号】201621222853.0
(32)【優先日】2016-11-14
(33)【優先権主張国・地域又は機関】CN
(73)【特許権者】
【識別番号】515153495
【氏名又は名称】南京中硼▲聯▼康医▲療▼科技有限公司
【氏名又は名称原語表記】Neuboron Medtech Ltd.
【住所又は居所原語表記】3rd Floor, Block 6, NO. 568, Longmian Ave, Jiangning District, Nanjing, Jiangsu 211112 China
(74)【代理人】
【識別番号】100169904
【弁理士】
【氏名又は名称】村井 康司
(74)【代理人】
【識別番号】100175617
【弁理士】
【氏名又は名称】三崎 正輝
(72)【発明者】
【氏名】▲劉▼渊豪
【合議体】
【審判長】佐々木 正章
【審判官】佐々木 一浩
【審判官】村上 哲
(56)【参考文献】
【文献】米国特許出願公開第2015/0094838(US,A1)
【文献】特開2004-233168(JP,A)
【文献】特開2013-61295(JP,A)
【文献】特開2008-22920(JP,A)
【文献】米国特許出願公開第2013/0043408(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
A61N 5/10
(57)【特許請求の範囲】
【請求項1】
被照射体の正常組織に対する放射線照射装置の放射をシールドするために用いられる、医用画像に基づく放射シールド装置であって、
前記被照射体の照射部分を走査し、かつ、医用画像ボクセルデータを出力する医用画像走査装置と、
前記医用画像ボクセルデータに基づいて三次元プロステーシス組織モデルを確立し、かつ、前記三次元プロステーシス組織モデルに基づいてシールド体三次元モデルを確立する、データ処理および三次元モデリング装置と、
前記シールド体三次元モデルのプリントデータを3Dプリンターに入力して形成され、前記放射線照射装置と前記照射部分との間に位置し、前記被照射体の前記照射部分に固定される板状のシールド体と、
を備え、
前記医用画像に基づく放射シールド装置は、硼素中性子捕捉療法システムに用いられ、前記被照射体はガン患者であって、前記放射線照射装置は、中性子生成装置であり、前記中性子生成装置は、アクセラレーターとターゲットとを含み、前記アクセラレーターは、帯電粒子を加速し、中性子は、前記加速した帯電粒子とターゲットとが作用して生成され、前記医用画像に基づく放射シールド装置は、前記ガン患者の正常組織に対する前記中性子生成装置の放射をシールドし、
前記シールド体は、中心スルーホールを有し、前記中心スルーホールの最大径の、前記被照射体内の病変組織のビームに垂直な方向における最大のサイズに対する比の値は1-2であり、
前記中心スルーホールの最大径とは、前記ビームの照射方向に平行な前記中心スルーホールの投影の外輪郭形状の最大径である、
医用画像に基づく放射シールド装置。
【請求項2】
前記シールド体三次元モデルは、前記三次元プロステーシス組織モデルに基づき、前記放射線照射装置のデータ情報、および、放射線照射装置と照射部分との間の位置関係を結びつけて確立される、ことを特徴とする、
請求項1に記載の医用画像に基づく放射シールド装置。
【請求項3】
前記シールド体の材料は、中性子シールド材料および光子シールド材料の少なくとも1種を含み、前記シールド体は、前記被照射体の表面に固定され、前記被照射体の表面外形と相互に整合する、ことを特徴とする、
請求項1に記載の医用画像に基づく放射シールド装置。
【請求項4】
前記シールド体の最大の厚みの数値範囲は3-20mmであり、前記シールド体の外面の面積範囲は10-200cm2である、ことを特徴とする、
請求項3に記載の医用画像に基づく放射シールド装置。
【請求項5】
前記放射線照射装置の生成した放射線がシールド体を通過した後に減衰される比率は≧50%であり、シールド体を通過した後の放射線の正常組織に対する放射深度の、シールド体を通過しない放射線の正常組織に対する放射深度に対する比率は≦50%である、ことを特徴とする、
請求項1に記載の医用画像に基づく放射シールド装置。
【請求項6】
放射線照射装置と、請求項1から5のいずれか1項に記載の医用画像に基づく放射シールド装置と、を含み、
前記放射線照射装置は、前記被照射体を照射し、前記照射部分を形成し、
前記医用画像に基づく放射シールド装置は、前記被照射体の正常組織に対する前記放射線照射装置の放射をシールドする、
放射線治療装置。
【請求項7】
前記放射線照射装置は、ビーム整形体、およびコリメータを更に含み、
前記ビーム整形体は、放射線生成装置が生成した放射線のビーム品質を調整することができ、前記ビーム整形体は、ビーム出口を含み、
前記コリメータは、前記ビーム整形体を経過した放射線を集めることができ、
前記シールド体は、前記コリメータまたは前記ビーム出口と、前記照射部分との間に位置する、ことを特徴とする、
請求項6に記載の放射線治療装置。
【請求項8】
前記ガン患者の正常組織が硼素中性子捕捉療法中に受け取る放射用量は、18Gyより小さい、ことを特徴とする、
請求項6に記載の放射線治療装置。
【請求項9】
前記放射線治療装置は、さらに治療台を含み、放射線は、前記シールド体を通過した後に前記治療台上の前記ガン患者の病変組織に作用し、前記シールド体は、前記被照射体の表面に固定される、ことを特徴とする、
請求項7に記載の放射線治療装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、放射線治療の放射シールド装置に関し、特に医用画像に基づく放射シールド装置である。また、本発明は、放射線治療の放射シールド方法に関し、特に医用画像に基づく放射シールド方法である。
【背景技術】
【0002】
原子科学の発展に従って、例えばコバルト60、線形加速器、電子ビームなどの放射線療法は、すでにがん治療の主な手段の一つとなった。しかし、従来の光子または電子療法は、放射線そのものの物理的条件の制限で腫瘍細胞を殺すとともに、ビーム経路上の大量の正常組織に損傷を与える。また、腫瘍細胞により放射線に対する感受性の度合いが異なっており、従来の放射線療法では、放射線耐性の高い悪性腫瘍(例、多形神経膠芽腫(glioblastoma multiforme)、黒色腫(melanoma))に対する治療効果が良くない。
【0003】
腫瘍の周囲の正常組織への放射線損傷を軽減するすために、化学療法(chemotherapy)における標的療法が、放射線療法に用いられている。また、放射線耐性の高い腫瘍細胞に対し、現在では生物学的効果比(relative biological effectiveness、RBE)の高い放射線源が積極的に開発されている(例えば、陽子線治療、重粒子治療、中性子捕捉療法など)。このうち、中性子捕捉療法は、上記の2つの構想を結びつけたものである。例えば、ホウ素中性子捕捉療法では、ホウ素含有薬物が腫瘍細胞に特異的に集まり、高精度な中性子ビームの制御と合わせることで、従来の放射線と比べて、より良いがん治療オプションを提供する。
【0004】
放射線治療過程中に各種の放射線を生成することがあり、例えば硼素中性子捕獲治療過程には低エネルギーから高エネルギーまでの中性子、光子を生成し、これらの放射線は人体の正常組織に異なる程度の傷害を引き起こす可能性がある。そのため放射線治療領域において、如何に効果的な治療に達すると共に、外部環境、医員または患者の正常組織に対する放射汚染を減らすことは非常に重要なテーマとなっている。既存の放射線治療設備では、放射に対するシールドはまだ主に設備を放置する部屋、設備自身に集中し、設備の出口から出た放射線の患者の正常組織に対する放射に対するものがない。さらに患者の個体差異に基づき、例えば腫瘍位置、大きさ、形状などによって、指向性があり、正確度が高い放射シールドを形成することができない。
【0005】
核磁気共鳴イメージング(Magnetic Resonance Imaging、MRI)またはコンピュータ断層撮影(Computed Tomography、CT)などの医用画像データは人体体内の特徴に対して詳細な組織幾何構造情報を提供可能で、人体内部構造の実体モデリングにデータ基礎を提供することができる。
【発明の概要】
【発明が解決しようとする課題】
【0006】
そのため、指向性があり、正確度が高い放射シールドを形成し、患者の正常組織に対する放射を減らしまたは避けることができる、医用画像に基づく放射シールド方法と装置を提供する必要がある。
【課題を解決するための手段】
【0007】
被照射体の正常組織に対する放射線照射装置の放射をシールドするために、本発明の一観点では、医用画像に基づく放射シールド装置を提供し、放射シールド装置は、被照射体の照射部分を走査し、かつ医用画像ボクセルデータを出力する医用画像走査装置と、医用画像ボクセルデータに基づいて三次元プロステーシス組織モデルを確立し、かつ、三次元プロステーシス組織モデルに基づいてシールド体三次元モデルを確立するデータ処理および三次元モデリング装置と、シールド体三次元モデルデータを3Dプリンターに入力してプリントして形成され、放射線照射装置と照射部分との間に位置するシールド体と、を含む。
【0008】
好ましく、シールド体三次元モデルは、三次元プロステーシス組織モデルに基づき、放射線照射装置のデータ情報、および、放射線照射装置と照射部分との間の位置関係を結びつけて確立される。
【0009】
好ましく、シールド体の材料は、中性子シールド材料および光子シールド材料の少なくとも1種を含み、シールド体は、被照射体の表面に固定され、被照射体の表面外形と相互に整合する。シールド体は、中心スルーホールを有し、中心スルーホールの直径と、被照射体体内の病変組織のビームに垂直な方向における最大サイズとの比率区間は1-2であり、シールド体の最大の厚みの数値範囲は3-20mmであり、シールド体の外面の面積範囲は10-200cmである。
【0010】
好ましく、放射線照射装置の生成した放射線がシールド体を通過した後に減衰される比率は≧50%であり、シールド体を通過した後の放射線の正常組織に対する放射深度の、シールド体を通過しない放射線の正常組織に対する放射深度に対する比率は≦50%である。
【0011】
本発明の他の観点では、放射線治療装置を提供し、放射線治療装置は、放射線照射装置とシールド体とを含む。放射線照射装置は、被照射体を照射し、照射部分を形成する。シールド体は、放射線照射装置と照射部分との間に位置し、かつ、3Dプリンターでプリントして形成される。
【0012】
好ましく、放射線治療装置は、さらに三次元映像走査装置と、データ処理および三次元モデリング装置と、を含む。三次元映像走査装置は、照射部分を走査し、かつ、三次元データを出力する。データ処理および三次元モデリング装置は、三次元データに基づいて照射部分三次元モデルを確立し、かつ、照射部分三次元モデルに基づいてシールド体三次元モデルを確立する。シールド体は、シールド体三次元モデルデータを3Dプリンターに入力してプリントして形成される。
【0013】
好ましく、放射線治療装置は、さらに医用画像走査装置と、データ処理および三次元モデリング装置と、を含む。医用画像走査装置は、照射部分を走査し、かつ、医用画像ボクセルデータを出力する。データ処理および三次元モデリング装置は、医用画像ボクセルデータに基づいて三次元プロステーシス組織モデルを確立し、かつ、三次元プロステーシス組織モデルに基づいてシールド体三次元モデルを確立する。シールド体は、シールド体三次元モデルデータを3Dプリンターに入力してプリントして形成される。
【0014】
好ましく、放射線照射装置は、放射線生成装置、ビーム整形体、およびコリメータを含み、放射線生成装置は、放射線を生成することができ、ビーム整形体は、放射線のビーム品質を調整することができ、コリメータは、ビーム整形体を経過した放射線を集めることができ、シールド体は、コリメータまたはビーム出口と、照射部分との間に位置する。
【0015】
好ましく、放射線治療装置は、硼素中性子捕獲治療装置であり、被照射体は、がん患者であり、放射線生成装置は、中性子生成装置であり、中性子生成装置は、アクセラレーターとターゲットとを含み、アクセラレーターは、帯電粒子を加速し、中性子は、加速した帯電粒子とターゲットとが作用して生成される。
【0016】
さらに、患者の正常組織が硼素中性子捕獲治療過程中に受け取る放射用量は、18Gyより小さい。
好ましく、放射線治療装置は、さらに治療台を含み、放射線は、シールド体を通過した後に治療台上の患者の病変組織に作用し、シールド体は、被照射体の表面または治療台またはコリメータに固定される。
【0017】
本発明の第三の観点では、医用画像に基づく放射シールド方法を提供し、放射シールド方法は、医用画像走査装置によって被照射体の照射部分を走査し、かつ、照射部分の医用画像ボクセルデータを出力するステップと、医用画像ボクセルデータに基づいて三次元プロステーシス組織モデルを確立するステップと、三次元プロステーシス組織モデルに基づいてシールド体三次元モデルを確立するステップと、シールド体三次元モデルデータを3Dプリンターに入力してシールド体をプリントするステップと、シールドを取り付けて位置決めするステップと、を含む。
【0018】
好ましく、三次元プロステーシス組織モデルデータに基づいてシールド体三次元モデルを確立するステップには、さらに、放射線照射装置のデータ情報および放射線照射装置と照射部分との位置関係を収集または入力して、三次元プロステーシス組織モデルデータを結びつけてシールド体三次元モデルを確立し、かつ、シールド体の取り付け位置を決定することを含む。
【0019】
本発明に記載の医用画像に基づく放射シールド方法と装置は、シールド体が3Dプリントで形成され、異なる被照射体の個体差によって分けて成形することができ、かつ複雑な形状に対して迅速に成形することができ、指向性がより高く、正確度がより高く、より高い放射シールド効果を取得することができる。
【図面の簡単な説明】
【0020】
図1】本発明の実施例中の硼素中性子捕獲治療装置の概略図である。
図2】本発明の実施例中の医用画像に基づく放射シールド方法のロジック枠図である。
図3】本発明の実施例中のシールド体と被照射体との位置関係の概略図である。
【発明を実施するための形態】
【0021】
以下は、図面を参照して本発明をさらに詳しく説明し、当業者は明細書の文字を参照して実施することができるようにする。
図1に示すとおり、本実施例中の放射線治療装置は好ましく硼素中性子捕獲治療装置100であり、中性子生成装置10、ビーム整形体20、コリメータ30、治療台40を含む。中性子生成装置10はアクセラレーター11とターゲットTを含み、アクセラレーター11は帯電粒子(例えば陽子、デューテリウム核など)に対して加速し、陽子線のような帯電粒子線Pを生成し、帯電粒子線PはターゲットTに照射しかつターゲットTと作用して中性子線(中性子ビーム)Nを生成し、ターゲットTは好ましく金属ターゲットである。必要な中性子生成率とエネルギー、提供可能な加速した帯電粒子エネルギーと電流の大きさ、金属ターゲットの物理化学的性質などの特性に従って適切な核反応を選択し、常に討論される核反応はLi(p,n)Be及Be(p,n)Bがあり、この2種類の反応はいずれも吸熱反応である。2種類の核反応のエネルギー閾値はそれぞれ1.881MeVと2.055MeVであり、硼素中性子捕獲治療の理想的な中性子源はkeVエネルギーランクの熱外中性子であるため、理論上にエネルギーが閾値よりただ少し高い陽子を使用してリチウム金属ターゲットを砲撃すれば、相対的な低エネルギーの中性子を生成することができ、余計な減速処理を必要とせずに臨床に使うことができるが、リチウム金属(Li)とベリリウム金属(Be)の2種類のターゲットと閾値エネルギーの陽子作用断面が高くなく、十分に大きな中性子束を生成するために、一般的には高エネルギーの陽子を選択して核反応を誘発する。理想的なターゲットは高い中性子生成率、生成した中性子エネルギーの分布が熱外中性子エネルギー領域に近接し(以下に詳細に描述される)、余計な強い透過性のある放射を生成せず、安全で安くて操作しやすくかつ耐高温などの特性を備えるべきであるが、実際にはすべての要求に合致する核反応を見つけることができず、本発明の実施例にはリチウム金属で作製されたターゲットを採用する。しかし当業者が熟知するように、ターゲットTの材料はリチウム、ベリリウム以外の金属材料で作製されてもよく、例えばタンタル(Ta)またはタングステン(W)などから形成される;ターゲットTは円板状であってもよく、また他の固体形状であってもよく、また液体材料(液体金属)を使用してもよい。アクセラレーター11は直線アクセラレーター、旋回アクセラレーター、同期アクセラレーター、同期旋回アクセラレーターであってもよく、中性子生成装置10は原子炉であってもよくアクセラレーターとターゲットを採用しない。硼素中性子捕獲治療の中性子源の由来は原子炉またはアクセラレーター帯電粒子とターゲットの核反応にもかかわらず、生成したのは実際にいずれも混合放射場であり、即ちビームは低エネルギーから高エネルギーまでの中性子、光子を含む。深部腫瘍に対する硼素中性子捕獲治療は、熱外中性子を除き、他の放射線含有量は多ければ多いほど、正常組織の非選択的な用量沈殿を引き起こす比率が大きくなって、そのためこれらの不必要な用量を引き起こす放射を可能な限り下げるべきである。また、被照射体の正常組織にとって、各種の放射線が多すぎ、同様に不必要な用量沈殿を引き起こすことを避けるべきである。
【0022】
中性子生成装置10が生成した中性子ビームNは、ビーム整形体20とコリメータ30とを順次通過して治療台40上の患者200に照射される。ビーム整形体20は、中性子生成装置10が生成した中性子ビームNのビーム品質を調整することができる。コリメータ30は、中性子ビームNを集め、中性子ビームNに治療過程中に高い標的性を与えるために用いられる。コリメータ30を調整することで、ビームの方向およびビームと治療台40上の患者200との位置関係を調整することができ、治療台40および患者200の位置も調整し、ビームを患者200の体内の腫瘍細胞Mに狙いをつけさせることができる。これらの調整は、手動で操作されてもよく、また一連の制御機構によって自動で実現されてもよい。理解できるように、本発明はコリメータがなくてもよく、ビームがビーム整形体20から出た後に直接治療台40上の患者200に照射されてもよい。
【0023】
ビーム整形体20はさらに反射体21、減速体22、熱中性子吸収体23、放射シールド体24およびビーム出口25を含む。中性子生成装置10が生成する中性子はエネルギースペクトルが広いため、熱外中性子に治療ニーズを満たさせる以外に、他の種類の中性子および光子含有量を可能な限り減らすことで操作者または患者に傷害を引き起こすことを避ける。そのため中性子生成装置から出た中性子に減速体22を経させて、その中の速い中性子エネルギーを熱外中性子エネルギー領域に調整する必要がある。減速体22は速い中性子との作用断面が大きく、熱外中性子との作用断面が小さい材料で作製される。好ましい実施例として、減速体13はDO、AlF、Fluental、CaF、LiCO、MgFおよびAlの少なくとも1種で作製される。反射体21は、減速体22を囲み、かつ減速体22を通過して周辺へ拡散した中性子を中性子ビームNに反射して中性子の利用率を向上させる。反射体21は、中性子反射能力が高い材料で作製され、好ましい実施例として、反射体21は、PbまたはNi中の少なくとも1種で作製される。減速体22の後部には熱中性子吸収体23を有する。熱中性子吸収体23は、熱中性子との作用断面が大きい材料で作製され、好ましい実施例として、熱中性子吸収体23はLi-6で作製される。熱中性子吸収体23は、減速体22を通過する熱中性子を吸収するためのものであって、中性子ビームN中の熱中性子の含有量を減少し、治療時に浅層正常組織と余計な用量を引き起こすことを避ける。放射シールド体24は、ビーム出口を囲んで反射体の後部に設けられ、ビーム出口25以外の部分からしみ出る中性子と光子をシールドするために用いられる。放射シールド体24の材料は、光子シールド材料と中性子シールド材料との少なくとも1種を含み、好ましい実施例として、放射シールド体24の材料は光子シールド材料の鉛(Pb)と中性子シールド材料のポリエチレン(PE)とを含む。コリメータ30がビーム出口25の後部に設けられ、コリメータ30から出た熱外中性子ビームは患者200に照射され、浅層正常組織を経過した後に熱中性子に減速されて腫瘍細胞Mに到着する。理解できるように、ビーム整形体20はさらにその他の構造があってもよく、治療に必要な熱中性子ビームを取得すればよい。
【0024】
患者200が硼素(B-10)薬物を服用または注射した後、硼素薬物は、選択的に腫瘍細胞M中に集中し、続いて硼素(B-10)薬物が熱中性子に対して高い捕獲断面を有するという特性を利用し、10B(n、α)Li中性子捕獲および核分裂反応によりHeとLiの2個の重荷電粒子を生成する。2個の荷電粒子の平均エネルギーは、約2.33MeVであり、高い線形転移(Linear Energy Transfer、LET)、短い射程の特徴を有し、α短粒子の線形エネルギー転移と射程はそれぞれ150keV/μm、8μmであり、Li重荷粒子は175keV/μm、5μmであり、2個の粒子の総射程は約1個の細胞の大きさに相当する。そのため生物体に与える放射傷害は細胞階層に限定することができ、正常組織に大きい傷害を引き起こすことなく、腫瘍細胞を局所的に殺すという目的を達成する。
【0025】
硼素中性子捕獲治療装置100はさらに放射シールド装置50を含む。中性子生成装置10の生成した中性子ビームNをビーム整形体20とコリメータ30とを経過させた後に患者200に照射するのは主に治療用の熱外中性子ビームであるが、実際には依然として他の中性子および光子がその中に混入することを完全防止できず、これらの放射線は患者200の正常組織に照射される時に傷害を引き起こす可能性がある。また、治療用の熱外中性子ビームは、人体の正常組織に対する影響が極めて小さいが、用量累積を引き起こす可能性を依然として下げる必要がある。そのため放射シールド装置50を設けて患者のビームに照射される必要がない部分をシールドして保護する。
【0026】
放射シールド装置50は、さらに医用画像走査装置51、データ処理および三次元モデリング装置52、およびシールド体53を含む。医用画像走査装置51は、患者200の照射部分を走査し、かつ医用画像ボクセルデータを出力する。照射部分は、放射線照射装置(中性子生成装置10、ビーム整形体20、コリメータ30で構成される)の治療台40に近接する端面からの照射方向に沿って一定の照射深度を取り、照射方向に垂直に一定の照射平面を取り、形成される立体空間が患者身体と重なり合う部分と定義される。医用画像データは核磁気共鳴イメージング(Magnetic Resonance Imaging、MRI)、コンピュータ断層撮影(Computed Tomography、CT)、陽電子放出断層撮影(Positron Emission Tomography、PET)、PET-CTまたはX射線イメージング(X-Ray imaging)であってもよい。下文の実施例中では、コンピュータ断層撮影(CT)のデータに基づいて詳述し、CTのファイルフォーマットは一般的にはDICOMである。しかし当業者が熟知するように、さらに他の医用画像データを使用することができ、該医用画像データが三次元プロステーシス組織モデルに変換することができれば、本発明の掲示した医用画像に基づく放射シールド装置および方法に応用することができる。
【0027】
患者200が治療台40に位置決めされた後、CTによって患者200の照射部分が走査され、CTのデータファイル、即ち医用画像ボクセルデータが形成される。データ処理および三次元モデリング装置52は、医用画像ボクセルデータに基づいて三次元プロステーシス組織モデルを確立し、例えばMI-3DVSソフトウェアまたはCADソフトウェアなどの三次元モデリングソフトウェアを利用して三次元可視化を行う。三次元プロステーシス組織モデルは、病変組織と正常組織とを含む。三次元プロステーシス組織モデルに基づき、さらに正常組織シールド体の三次元モデルが確立され、かつシールド体の取り付け位置が決定される。シールド体三次元モデルの確立では、例えばビーム強度、ビーム磁束、ビーム直径、照射経路などの放射線照射装置のデータ情報と、放射線照射装置と照射部分との位置関係と、を結び付けることができ、この過程中にさらに実際の状況に基づいて人為的な修正を行うことができる。理解できるように、患者200が治療室に入る前にCT走査を行うことができ、したがって医用画像走査装置51を治療室内に集積する必要がなく、病院の従来のCTスキャナーを利用し、走査によって照射部分を決定し、照射部分のCTデータファイルを形成する。この時、例えばビーム強度、ビーム磁束、ビーム直径、照射経路などの放射線照射装置のデータ情報、および、放射線照射装置と照射部分との位置関係も、走査して決定された照射部分に従い決定され、続いて上記データ情報に基づいてシールド体三次元モデルを確立する。
【0028】
シールド体53は、シールド体三次元モデルデータを3Dプリンターに入力してプリントして形成される。三次元モデルデータを記録するSTLフォーマットファイルは、コンピュータシステムに入力され、二次元スライスデータに層化され、コンピュータに制御された3Dプリントシステムは、階層的にプリントを行い、重ねられた後、最終的に三次元製品が取得される。シールド体53は、放射線照射装置の生成するビームの患者200の正常組織に対する照射をシールドすることができ、ビームはシールド体53を経過した後に治療台40上の患者200の腫瘍細胞Mに作用する。シールド体53は、放射線照射装置と照射部分との間に位置し、好ましくは、シールド体はコリメータまたはビーム出口と照射部分との間に位置する。シールド体53の材料は、中性子シールド材料および光子シールド材料中の少なくとも1種を含む。好ましくは、シールド体53は板状であり、患者の照射部分の体表に直接固定され、患者の被取り付け位置の体表外形に整合され、正確に取り付けやすく、固定方式は粘着、ベルトまたはバックルなどであってもよい。シールド体53は、中心スルーホール531を有し、中心スルーホール531の直径と患者200の体内の腫瘍細胞Mのビームに垂直な方向の最大サイズの比率区間は1-2であり、腫瘍細胞を殺すと同時に、正常組織の傷害が最大限避けられる。中心スルーホール531の形状は、好ましくは、腫瘍細胞Mのビーム方向に平行な投影の外輪郭形状であり、中心スルーホールの限定された直径は即ち該外輪郭形状の直径と理解してもよい。理解できるように、シールド体53には中心スルーホールがなくてもよく、中心部分に他の部分と異なる厚みを有してもよく、または、シールド体全体はいずれも位置が異なると異なる厚みを有してもよい。シールド体53の最大の厚みの数値範囲は3-20mmであり、外面の面積範囲は10-200cmである。3Dプリントを採用するので、シールド体53は異なる被照射体の個体差によって分けて成形することができ、かつ複雑な形状に対して迅速に成形することができ、より高い放射シールド効果を取得することができる。形状が特別な部分では、シールド体53は、取り付けやすいよう複数であってもよい。シールド体53はさらに治療台またはコリメータまたはビーム出口に固定されてもよい。また、3Dプリンターと、治療台またはコリメータまたはビーム出口とを結び付けてもよく、互いの位置関係を決定した後に直接対応する位置にシールド体がプリントされてもよい。医用画像によって患者腫瘍部分を走査し、指向性を有する3Dプリントシールド体を取得することで、放射線がシールド体を通過した後に減衰される比率を≧50%に達せさせることができ、好ましく≧80%とできる。患者の正常組織が硼素中性子捕獲治療過程中に受け取る放射用量は18Gyより小さい。シールド体を通過した後の放射線の正常組織に対する放射深度の、シールド体を通過しない放射線の正常組織に対する放射深度に対する比率は≦50%である。シールド体53の材料、形状、構造はより複雑に設計することができ、腫瘍細胞の立体形状に整合するように、コリメータまたはビーム出口から来た中性子ビームの経路を変更することができる。例えば中心スルーホール531は、ビーム方向に沿って異なる線分で構成され、シールド体53の異なる部分は異なる材料で構成される。
【0029】
本実際例の医用画像に基づく放射シールド方法は、以下のステップを含む:
S1:医用画像走査装置51によって患者200の照射部分を走査し、かつ、前記照射部分の医用画像ボクセルデータを出力する;
S2:データ処理および三次元モデリング装置52は、S1で得られた医用画像ボクセルに基づいて三次元プロステーシス組織モデルを確立する;
S3:データ処理および三次元モデリング装置52は、S2で得られた三次元プロステーシス組織モデルデータに基づいてシールド体三次元モデルを確立する;
S4:シールド体三次元モデルデータを3Dプリンターに入力してシールド体53をプリントする;
S5:シールド体を取り付けて位置決めする。
【0030】
ステップS3は、例えばビーム強度、ビーム磁束、ビーム直径、照射経路などの放射線照射装置のデータ情報、および、放射線照射装置と照射部分との位置関係を収集または入力して、続いて三次元プロステーシス組織モデルデータを結びつけてシールド体三次元モデルを確立し、かつ、シールド体の取り付け位置を決定することをさらに含む。この過程中にさらに実際状況に基づいて人為的な修正を行ってもよい。
【0031】
本発明の実際例では、医用画像走査装置を採用して患者照射部分の組織構成を取得できるので、的確に腫瘍細胞の形状、位置、大きさなどに基づいてシールド体を取得することができる。理解できるように、本発明では、非医用画像走査装置も採用でき、例えば患者体表形状のみを走査する三次元映像走査装置で、それにより患者照射部分外形の三次元データを取得して三次元モデリングを行い、さらに照射部分の外形に整合された3Dプリントシールド体を取得してもよい。
【0032】
理解できるように、本発明は、さらに、当業者が熟知する他の病変組織に対して放射線照射を行い、正常組織を保護して放射線の放射/照射を無くすまたは減らす必要がある放射線治療領域に応用することができ、中性子生成装置は、相応的に他の放射線生成装置、例えば陽子生成装置、重イオン生成装置、X射線生成装置またはガンマ射線生成装置などに取り替えられてもよい。さらに放射線照射で治療できる他の疾病、例えばアルツハイマー病、関節リウマチに応用することができ、この場合、腫瘍細胞はその他の病変組織である。本実施例中の被照射体は、がん患者であり、理解できるように、被照射体は他の生物体、例えば哺乳動物であってもよい。
【0033】
本発明の実施例中の位置関係は、ビーム伝送経路の方向に沿う位置関係であり、“後部”とはビーム方向に沿う下流である。
以上では、当業者が本発明を理解しやすいよう、本発明の説明的な発明を実施するための形態を描述している。当業者であれば、本発明は発明を実施するための形態の範囲に限らず、変更が添付の特許請求の範囲により限定され決定される本発明の精神の範囲内にあれば、これらの変更は明らかに、いずれも本発明の要求した保護範囲内にあることは明らかであろう。
図1
図2
図3