(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-12-25
(45)【発行日】2024-01-09
(54)【発明の名称】高固形分、無界面活性剤フルオロポリマー
(51)【国際特許分類】
C08F 14/22 20060101AFI20231226BHJP
C08F 2/22 20060101ALI20231226BHJP
C08J 9/00 20060101ALI20231226BHJP
【FI】
C08F14/22
C08F2/22
C08J9/00 Z CEW
(21)【出願番号】P 2020549609
(86)(22)【出願日】2019-03-15
(86)【国際出願番号】 US2019022385
(87)【国際公開番号】W WO2019178430
(87)【国際公開日】2019-09-19
【審査請求日】2022-03-02
(32)【優先日】2018-03-16
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】500307340
【氏名又は名称】アーケマ・インコーポレイテッド
【住所又は居所原語表記】900 First Avenue,King of Prussia,Pennsylvania 19406 U.S.A.
(74)【代理人】
【識別番号】110000523
【氏名又は名称】アクシス国際弁理士法人
(72)【発明者】
【氏名】ジェームズ・ティー・ゴールドバッハ
(72)【発明者】
【氏名】ジョン・ストリゴス
(72)【発明者】
【氏名】パトリック・カプラー
【審査官】谷合 正光
(56)【参考文献】
【文献】特公昭48-018957(JP,B1)
【文献】特公昭33-007394(JP,B1)
【文献】特開昭51-045193(JP,A)
【文献】特表2004-525239(JP,A)
【文献】特公昭54-002224(JP,B1)
(58)【調査した分野】(Int.Cl.,DB名)
C08F 14/22
C08F 2/22
C08J 9/00
(57)【特許請求の範囲】
【請求項1】
エマルジョン中に少なくとも26重量%のフルオロポリマー固形分、フルオロモノマーの重量に基づいて0.01重量%未満の界面活性剤、及び11重量%未満の凝固物を含み、前記フルオロモノマーの総重量に基づいてフッ化ビニリデンが75重量%を超えて構成する、低凝固フルオロポリマーエマルジョン組成物。
【請求項2】
前記フルオロポリマー固形分のレベルは、前記組成物の30重量%を超える、請求項1に記載の低凝固フルオロポリマーエマルジョン組成物。
【請求項3】
前記フルオロポリマー固形分のレベルは、26~40重量%である、請求項1に記載の低凝固フルオロポリマーエマルジョン組成物。
【請求項4】
さらに、1種以上のイオン性又はイオン化可能な開始剤を100ppm~10,000ppm含む、請求項1に記載の低凝固フルオロポリマーエマルジョン組成物。
【請求項5】
前記開始剤は、少なくとも1種の過硫酸塩開始剤を含む、請求項
4に記載の低凝固フルオロポリマーエマルジョン組成物。
【請求項6】
ASTM E313-15に従って230℃で10分後に測定する黄変指数が11未満である、請求項1に記載の低凝固フルオロポリマーエマルジョン組成物。
【請求項7】
界面活性剤のレベルがゼロである、請求項1に記載の低凝固フルオロポリマーエマルジョン組成物。
【請求項8】
低凝固フルオロポリマーエマルジョンを形成するためのプロセスであって、
a)反応混合物を撹拌しながら反応器に装入する工程であって、前記反応混合物は、1種以上のフルオロモノマー、及びフルオロモノマーの重量に基づいて、0から0.01重量%未満の界面活性剤を含む、工程、
b)前記反応混合物を少なくとも89℃の温度に加熱して、1種以上のイオン開始剤を添加する工程、
c)重合が完了するまで、追加のモノマーと開始剤、及び全モノマーのレベルに基づいて0.01重量%未満の界面活性剤を連続的に供給する工程
を含
み、
フルオロモノマー単位の総重量に基づいてフッ化ビニリデンが75重量%を超えて構成する、プロセス。
【請求項9】
重合中に界面活性剤を添加しない、請求項
8に記載のプロセス。
【請求項10】
さらに、1種以上のイオン性又はイオン化可能な開始剤を含み、プロセス中に100ppm~10,000ppmの開始剤が添加される、請求項
8に記載のプロセス。
【請求項11】
前記開始剤は、少なくとも1種の過硫酸塩開始剤を含む、請求項
8に記載のプロセス。
【請求項12】
反応温度が90℃~125℃である、請求項
8に記載のプロセス。
【請求項13】
反応温度が90℃~115℃である、請求項
8に記載のプロセス。
【請求項14】
請求項1に記載のフルオロポリマー組成物から製造された発泡体。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、界面活性剤をほとんど又は全く含まず、高いフルオロポリマー固形分を有する低凝固フルオロポリマーラテックスに関する。重合は、通常使用される温度よりもやや高い温度で行われる。ラテックスは、イオン交換、洗浄、又はその他の追加の単位操作を使用せずに、界面活性剤がほとんど又はまったく存在しない固体樹脂に乾燥できる。本発明はまた、界面活性剤をほとんど又は全く使用せずに、高固形分、ラテックスを形成するプロセスに関する。
【背景技術】
【0002】
乳化重合は、フルオロポリマーを形成し、20nm~1000nmの範囲の平均粒子サイズを有するフルオロポリマー粒子、及び一般に10cP未満の低粘度を有し、剪断及び貯蔵安定性があり、ポンプ又はその他の典型的な液体プロセス技術によって簡単に運ぶことができるラテックスを製造するための好ましい方法である。
【0003】
市販のフルオロポリマーの技術では、液相(水相)中のポリマー粒子の安定した分散液を得るために安定化添加剤を使用しなければならないことが一般に理解されている。界面活性剤又は乳化剤として知られている一般的な添加剤には、ラウリル硫酸ナトリウム(sodium lauryl sulfate、SLS)、臭化ヘキサデシルトリメチルアンモニウム(hexadecyl trimethylammonium bromide、CTAB)などのイオン性両親媒性物質、及びオクタエチレングリコールモノドデシルエーテルなどの非イオン性両親媒性物質、及びポリエチレングリコールオクチルフェニルエーテル(TRITON X-100など)が含まれる。これらの化合物は、(フルオロ)ポリマー粒子と水相の界面を安定化するように作用し、それによって粒子と粒子の相互作用の強さ、及び液相からの固体の全体的な早期凝固を低減する。これらのタイプの界面活性剤で作られたエマルジョンは、機械的剪断による凝固に対する安定性の増加を示すことが多く、非常に低い粘度を維持しながらそれらの固形分濃度を増加させることがしばしば可能である。どちらも、フルオロポリマー樹脂の効率的で費用効果の高い商業生産と、高性能建築用コーティングのベース材料など、低粘度の固体水性分散が必要な用途での直接使用を可能にする。
【0004】
逆に、これらの界面活性剤はフルオロポリマーラテックスの望ましい特性を改善するが、それらは、連鎖移動によるフリーラジカル重合反応を妨害するという望ましくない効果を有する。この干渉は、重合反応速度の低下、生産スループットの低下、及び界面活性剤構造の一部をフルオロ(コ)ポリマー自体に組み込む可能性があることを示している。これは、黄色や茶色を与えるなど、望ましくない形で最終材料の物理的特性を変化させる可能性がある。
【0005】
これらの問題に対処するために、当業者は、フルオロモノマー重合のために、フルオロモノマー重合反応を妨害又は関与しない(ペル)フッ素化界面活性剤を広く利用してきた。このアプローチは非常に効果的であるが、これらのフルオロ界面活性剤の生物学的及び環境的難分解性、ならびにそれらの毒性に関して重大な懸念が生じている。したがって、それらの使用を中止することが強く望まれる。
【0006】
例えば、米国特許第8,080,621号、第8,124,699号、第8,697,822号、及び第9,068,071号には、安定で、フルオロ界面活性剤を含まないフルオロポリマーが製造されたことが開示されている。毒性の問題を解決しているが、非フッ素化界面活性剤で製造されたフルオロポリマーは、熱老化により酸化し、フルオロポリマーの望ましくない黄変を引き起こす可能性がある。
【0007】
残留界面活性剤は、優先的に放射線を吸収し、形成されたポリマー主鎖ラジカルと反応して非架橋部位を生成することができるため、残留界面活性剤はまた、照射によってフルオロポリマーを架橋する能力を低減及び妨害する。架橋は完成した発泡体により大きな構造的一体性を与えることが知られているので、これは発泡製品が望まれるときに特に重要である。さらに、界面活性剤はフルオロポリマーの製造コストを増加させるので、界面活性剤を削減又は排除することにより、より費用効果の高い製品が提供される。
【発明の概要】
【発明が解決しようとする課題】
【0008】
フルオロポリマー乳化重合から界面活性剤を低減又は排除するための努力がなされてきたが、すべて欠点がある。
【0009】
米国特許第5453477号は、レドックス(redox)タイプの開始システムを必要とし、最終的な材料の全ラテックス固形分又は溶融色安定性を開示していない。
【0010】
米国特許第3714137号は、酸の添加(pH4~6)を必要とし、ラテックス中の達成可能な固形分については言及していない。実際、それは、ラテックスが反応器から連続的に取り出され、水で置換される例を提供している。これは、高固形分ラテックスの商業生産には最適なプロセスではない。
【0011】
WO02/088207は、無機イオン性開始剤が使用される、フルオロポリマーを製造するための乳化剤を含まない乳化プロセスを開示している。その粒子サイズが大きく、保存期間が短く、エマルジョンがかなり不安定であるうえ、固形分レベルは低い。低固形分及び低安定性は望ましい特性ではない。
【0012】
フルオロポリマーは、米国特許第7,091,288号に記載されているように、超臨界CO2中でモノマーを重合させることにより、界面活性剤なしで作製されてきた。これはエマルジョンをもたらさず、かつ極めて高い圧力で操作できる非常に高価な特別な装置を必要とする。
【0013】
界面活性剤の多くを除去するために、凝固後に界面活性剤を強く洗浄する従来技術も存在する。これは、追加の単位操作により複雑になり、またどれだけの洗浄が行われても、界面活性剤のレベルがゼロになることはない。
【課題を解決するための手段】
【0014】
驚くべきことに、イオン開始剤の存在下で、反応の重合温度を約80℃~約89℃以上に、又は約89~115℃に、好ましくは90~125℃に、より好ましくは90~100℃に適度に上昇させると、低凝集、低粘度、高固形分、乳化剤を含まない水性フルオロポリマーエマルジョンを製造できることが見出された。この温度上昇により、固形分が26wt%を超え、さらには30wt%を超え、凝固物がほとんど又はまったくない(11wt%以下)ラテックスを製造できるが、同じ乳化プロセスを89℃未満で実行すると、固形分レベルが26%未満で、比較的高レベルの凝固物が得られる。本発明の水性フルオロポリマーエマルジョンは、貯蔵安定性であり得る。
【0015】
さらなる利点は、製造されたフルオロポリマーの溶融生成されたプラーク(plaque)が、関連するコントロール(対照)に対して改善された熱色安定性を示すことであり、これは、最終的な部品と製品を生成するために押出及び射出成形などの溶融加工技術が多く使用される、フルオロ(コ)ポリマー用途にとって重要な要素である。
【0016】
本発明の第1側面において、本発明は、少なくとも24重量%のフルオロポリマーと、0.01重量%未満の界面活性剤とを含む低凝固フルオロポリマーエマルジョン組成物に関する。他の側面では、フルオロポリマー固形分のレベルは、フルオロポリマーの26重量%を超え、組成物の30重量%を超える。フルオロポリマー固形分のレベルは、好ましくは26~40重量%、より好ましくは28~35重量%である。
【0017】
第1の側面の低凝固フルオロポリマーエマルジョン組成物は、少なくとも70重量%のフッ化ビニリデンモノマー単位を有するホモポリマー又はコポリマーである。
【0018】
第1及び第2の側面の低凝固フルオロポリマーエマルジョン組成物は、さらに、1種以上のイオン性又はイオン化可能な開始剤を100ppm~10,000ppm含み得、開始剤組成物については少なくとも1種の過硫酸塩開始剤が好ましい。
【0019】
前述の側面のいずれかの低凝固フルオロポリマーエマルジョン組成物は、染料、着色剤、耐衝撃性改良剤、酸化防止剤、難燃剤、紫外線安定剤、流動助剤、及び金属、カーボンブラック、カーボンナノチューブなどの導電性添加剤、並びに消泡剤、架橋剤、ワックス、溶剤、可塑剤、帯電防止剤を任意に含むこともできる。
【0020】
別の側面では、前述の側面のいずれかの低凝固フルオロポリマーエマルジョン組成物は、ゼロの界面活性剤のレベルを有する。
【0021】
さらなる側面は、以下の工程を含む、低凝固フルオロポリマーエマルジョンを形成するためのプロセスである:
a)反応混合物を撹拌しながら反応器に装入する工程であって、前記反応混合物は、1種以上のフルオロモノマー、及びフルオロモノマーの重量に基づいて、0.01重量%未満の界面活性剤を含む、工程、
b)前記反応混合物を少なくとも89℃の温度に加熱して、1種以上のイオン開始剤を添加する工程、
c)重合が完了するまで、追加のモノマーと開始剤、及び全モノマーのレベルに基づいて0.01重量%未満の界面活性剤を連続的に供給する工程。
【0022】
好ましいプロセスでは、重合中に界面活性剤は添加されない。
【0023】
本発明の別の側面は、前述の側面のいずれかのフルオロポリマー組成物から製造された発泡体に関する。
【図面の簡単な説明】
【0024】
【
図1】市販のコントロールPVDF(Kynar 740FSF)及び3つの発明実施例の代表的なプラーク色の結果である。
【発明を実施するための形態】
【0025】
この出願に列挙されたすべての参考文献は、参照により本明細書に組み込まれる。特に明記しない限り、組成物中のすべてのパーセンテージは重量パーセントであり、すべての分子量は、特に明記しない限り、標準としてPMMAを使用するGPCによって決定される重量平均分子量として与えられる。
【0026】
用語「ポリマー」は、特に明記しない限り、ホモポリマー、コポリマー、及びターポリマー(3つ以上のモノマー単位)のどちらも意味するために使用される。いずれのコポリマー又はターポリマーは、ランダム、ブロック、又はグラジエントであり得、ポリマーは、線状、分岐状、星形、くし形、又は任意の他の形態であり得る。
【0027】
本発明のフルオロポリマーラテックス組成物に関する用語「貯蔵安定性」は、凝固物の形成がほとんど又はまったくない(5重量%未満のポリマー固形分、好ましくは3重量%未満のポリマー固形分、さらに好ましくは1.5重量%未満のポリマー固形分)状態で(又は形成された場合、穏やかな攪拌で再分散させることができる状態で)注入及びポンピングできるラテックスを意味する。凝固物は、100メッシュのスクリーンを通過しない材料として定義される。そのような凝固物は、硬い粒子及び湿った物質の塊(「ブロブ」と呼ばれることもある)を含む。本発明の低凝固フルオロポリマーラテックスは、好ましくは3ヶ月の貯蔵後に視覚的に沈殿しないものであるか、又はわずかな沈殿が起こっても、穏やかに攪拌して再分散させることができる。この場合、穏やかな攪拌には、密閉されたラテックスコンテナーを1秒間に1回の頻度で相互に反転させること、又は直接機械的に攪拌することが含まれる。機械的攪拌の観点から、45度のピッチのブレード、可変速モーターに結合されたラジアルフローインペラー、容器の壁と攪拌翼の先端の間に少なくとも1cmのギャップを有する低せん断タイプの攪拌機セットアップ(ローター/ステーターではなく、高せん断タイプ)を200rpm以下の回転速度で使用して、沈殿したラテックスを再び均質化する必要がある。水相とラテックス相の再混合を視覚的に示す最小回転速度を使用する必要がある。沈殿時又は前述の再分散操作後に凝固物が形成される場合、材料は不安定であると見なされる。
【0028】
本発明の目的のために、低粘度とは、Brookfield DV3T可変速度レオメーター及びCPA-40Zスピンドルを使用して25℃で測定したとき、ラテックスが10cP以下の粘度を有することを意味する。
【0029】
フルオロポリマー
本発明のフルオロポリマーは、少なくとも50重量%の1種以上のフルオロモノマーを含有するポリマーを含むが、これに限定されない。本発明において使用される「フルオロモノマー」という用語は、フリーラジカル重合反応を受けることができるフッ素化されたオレフィン性不飽和モノマーを意味する。本発明において使用するのに適した例示的なフルオロモノマーには、以下が含まれるがこれらに限定されない。フッ化ビニリデン(VDF)、テトラフルオロエチレン(TFE)、トリフルオロエチレン(TrFE)、クロロトリフルオロエチレン(CTFE)、ヘキサフルオロプロペン(HFP)、フッ化ビニル(VF)、ヘキサフルオロイソブチレン(HFIB)、ペルフルオロブチルエチレン(PFBE)、ペンタフルオロプロペン、3,3,3-トリフルオロ-1-プロペン、2-トリフルオロメチル-3,3,3-トリフルオロプロペン、1,1-ジクロロ-1,1-ジフルオロエチレン、1,2-ジクロロ-1,2-ジフルオロエチレン、1,1,1,-トリフルオロプロペン、1,3,3,3-テトラフルオロプロペン、2,3,3,3-テトラフルオロプロペン、1-クロロ-3,3,3-トリフルオロプロペン;ペルフルオロメチルエーテル(PMVE)、ペルフルオロエチルビニルエーテル(PEVE)、ペルフルオロプロピルビニルエーテル(PPVE)、ペルフルオロブチルビニルエーテル(PBVE)、長鎖ペルフルオロ化ビニルエーテルを含むフッ素化又はペルフルオロ化ビニルエーテル;フッ素化ジオキソール、C4以上の部分的又はペルフルオロ化アルファオレフィン、C3以上の部分的又はペルフルオロ化環状アルケン、及びこれらの組み合わせ。本発明の実施において生成されるフルオロポリマーは、上に列挙されたフルオロモノマーの重合の生成物、例えば、フッ化ビニリデン(VDF)を単独で重合することにより製造されるホモポリマーを含む。
【0030】
テトラフルオロエチレン、ヘキサフルオロプロペン及びフッ化ビニリデンモノマー単位を有するものなどのターポリマーを含むフルオロターポリマーも想定される。最も好ましくは、フルオロポリマーはポリフッ化ビニリデン(PVDF)である。本発明は、PVDFに関して例示されるが、当業者は、PVDFという用語が例示される場合、他のフルオロポリマーが表され得ることを認識するであろう。
【0031】
本発明のポリフッ化ビニリデン(PVDF)は、PVDFホモポリマー、コポリマー又はポリマーアロイを含む。本発明のポリフッ化ビニリデンポリマーは、フッ化ビニリデン(VDF)を重合することにより製造されたホモポリマー、並びにフッ化ビニリデンのコポリマー、ターポリマー及びより高次のポリマーを含み、フッ化ビニリデン単位は、ポリマー中のすべてのモノマー単位の総重量の51重量%を超え、好ましくは70重量%を構成し、より好ましくは、モノマー単位の総重量の75%を超えて構成する。フッ化ビニリデンのコポリマー、ターポリマー及びより高次のポリマー(本明細書では一般に「コポリマー」と呼ばれる)は、フッ化ビニリデンを、以下からなる群から選択される1種以上のモノマーと反応させることにより得られる:フッ化ビニル、トリフルオロエテン、テトラフルオロエテン;3,3,3-トリフルオロ-1-プロペン、1,2,3,3,3-ペンタフルオロプロペン、3,3,3,4,4-ペンタフルオロ-1-ブテンなどの部分的又は完全にフッ素化されたアルファオレフィンの1種以上;及びヘキサフルオロプロペン、部分的にフッ素化されたオレフィンヘキサフルオロイソブチレン;ペルフルオロメチルビニルエーテル、ペルフルオロエチルビニルエーテル、ペルフルオロ-n-プロピルビニルエーテル、ペルフルオロ-2-プロポキシプロピルビニルエーテルなどのペルフルオロ化ビニルエーテル;ペルフルオロ(1,3-ジオキソール)及びペルフルオロ(2,2-ジメチル-1,3-ジオキソール)などのフッ素化ジオキソール;アリル系、一部フッ素化アリル系、又は2-ヒドロキシエチルアリルエーテル若しくは3-アリルオキシプロパンジオールなどのフッ素化アリルモノマー;及びエテン又はプロペン。好ましいコポリマー又はターポリマーは、フッ化ビニル、トリフルオロエテン、テトラフルオロエテン(TFE)、及びヘキサフルオロプロペン(HFP)で形成される。
【0032】
好ましいコポリマーには、約55~約99重量%のVDF、及び対応して約1~約45重量%のHFP、好ましくは2~30重量%のHFPのレベルを含むもの;VDFとCTFEのコポリマー;VDF/HFP/TFEのターポリマー;VDFとTFEのコポリマー;並びにVDF/TFE/ペルフルオロビニルエーテルのターポリマーが含まれる。
【0033】
本発明の一実施形態では、すべてのモノマー単位がフルオロモノマーであることが好ましいが、フルオロモノマーと非フルオロモノマーとのコポリマーも本発明によって想定される。非フルオロモノマーを含有するコポリマーの場合、モノマー単位の少なくとも60重量%がフルオロモノマーであり、好ましくは少なくとも70重量%、より好ましくは少なくとも80重量%、最も好ましくは少なくとも90重量%がフルオロモノマーである。有用なコモノマーには、エチレン、プロピレン、スチレン系化合物、アクリレート、メタクリレート、ビニルエステル、ビニルエーテル、非フッ素含有ハロゲン化エチレン、ビニルピリジン、並びにN-ビニル直鎖及び環状アミドが含まれるが、これらに限定されない。
【0034】
界面活性剤
本発明の好ましい実施形態は、重合プロセスのどこでも界面活性剤を使用しないことであるが、全モノマーに基づいて、0.01重量%未満、好ましくは0.004重量%未満の非常に低いレベルの界面活性剤を使用することが可能である。非常に低レベルの界面活性剤が使用される場合、それは、当技術分野で知られているように、フルオロ界面活性剤又は非フルオロ界面活性剤のいずれかであり得る。好ましくは、非フルオロ界面活性剤が使用される。
【0035】
開始剤
過酸化物などのイオン化可能な開始剤は、本発明の重合を開始させるために使用されることが好ましい。これらの化合物は、十分な重合速度を維持するのに十分なレベルで、典型的には全モノマーに対して100ppm~10,000ppm、好ましくは250ppm~2,000ppm、最も好ましくは500ppm~1,500ppmで添加される。開始剤は、最初の供給に完全に供給することもできるが、一般に、反応過程の間、繰り延べて供給される。有用なイオン開始剤には、以下の無機過酸化物が含まれるが、これらに限定されない:過硫酸アンモニウムなどの過硫酸塩、過硫酸カリウム、過硫酸ナトリウム;過リン酸塩、及び過マンガン酸塩。コハク酸ペルオキシドなど酸末端基を有する有機開始剤を含む、当技術分野で既知の他のイオン開始剤も、本発明での使用が想定される。イオン化可能な無機過酸化物と他の無機又は有機過酸化物とのブレンドも考えられる。過硫酸カリウムが特に好ましい開始剤である。
【0036】
コハク酸ペルオキシドなどのイオン性基含有有機過酸化物又は過酸化水素などのヒドロキシルラジカル発生開始剤が同様に機能することが想定される。当該技術分野で一般的に実施されているように、これらのタイプの開始剤は、還元剤が導入され、第3の触媒成分も添加され得る「レドックス」タイプの開始システムにおいて還元剤と組み合わせて使用できる。
【0037】
反応条件
本発明の界面活性剤を含まないフルオロポリマーエマルジョンの重合は、典型的なフルオロポリマーエマルジョン重合と比較して、やや高い温度で行われる。フッ化ビニリデンポリマー及びコポリマーの重合では、反応温度は少なくとも89℃、好ましくは89℃~140℃、又は89℃~125℃、好ましくは89℃~115℃、好ましくは90℃~125℃、より好ましくは90℃~100℃である。好ましい実施形態において、この反応温度は、重合の過程の間、一定(±1℃)に維持される。
【0038】
重合は、バッチモードで行うことができ、又は好ましくは、モノマー及び/又は開始剤の少なくとも一部が初期投入であり、モノマー及び/又は開始剤の一部が、重合の過程にわたって供給される。
【0039】
他の添加剤
本発明のフルオロポリマー組成物はまた、以下の典型的な添加剤を含み得るが、これらに限定されない:染料;着色剤;耐衝撃性改良剤;酸化防止剤;難燃剤;紫外線安定剤;流動助剤;金属、カーボンブラック、カーボンナノチューブなどの導電性添加剤;消泡剤;架橋剤;ワックス;溶剤;可塑剤;及び帯電防止剤。白色化を提供する他の添加剤もフルオロポリマー組成物に加えることができるが、これらに限定されない:酸化亜鉛などの金属酸化物フィラー、リン酸若しくは亜リン酸安定剤;及びフェノール系安定剤。
【0040】
性質
生成されたエマルジョンの粒子サイズは、界面活性剤含有システムよりも幾分大きいが、観察される粒子サイズの一般的な範囲は、<400nmであり、さらには<300nmであり、界面活性剤含有フルオロポリマーエマルジョンの粒子サイズは、しばしば<250nmである。
【0041】
本発明で製造される安定なエマルジョンの固形分レベルは、24重量%を超え、好ましくは26重量%を超え、より好ましくは28重量%を超え、より好ましくは30重量%を超え、さらにより好ましくは35重量%を超える。40重量%を超え、さらには50重量%を超える固形分重量%が考えられる。好ましい固形分の範囲は、固形分26~40重量%、より好ましくは28~35重量%である。
【0042】
本発明の乳化剤を含まないラテックスの貯蔵寿命は非常に良好であり、流動性及び元の粘度(Brookfield粘度の10%以下の変化、好ましくは5%未満の変化)を3ヶ月以上経過した後も保持し、沈殿がほとんどなく、凝固物の形成が観察されない。これは、ラテックスが少なくとも3か月以上貯蔵安定であることを意味する。さらに、ラテックスは、貯蔵容器への排出、注入、前述のわずかに沈殿したラテックスの再分散のための攪拌、及びダイヤフラム型の往復ポンプ(Warren-Rupp,Inc.「Sandpiper」モデルS1F非金属)容量の50%で稼働を介した機械的ポンピングを含む、一般的な流体移動技術に対して安定している。
【0043】
本発明によって形成されるフルオロポリマーの分子量は、主にフルオロモノマー乳化重合プロセス中に添加される連鎖移動剤のレベルに依存する。フルオロポリマーの分子量は、70~80℃の範囲のより一般的な低温重合温度で生成されるフルオロポリマーの分子量と同等である。分子量は一般に50,000~600,000g/molの範囲である。分子量は、当業者によって理解されるように、材料の溶融粘度に関連している。本発明の材料の溶融粘度は、業界で知られているものの典型として、キャピラリーレオメトリー(232℃)で測定され、100秒-1剪断での粘度値(キロポアズ(kilopoise)、kPの単位)を取る。本発明の場合、測定される溶融粘度は、0.1kP~60kPの範囲である。必要な特定の溶融粘度は、材料の用途の性質に依存する。例えば、標準の溶融押出操作では、5.0~25kPの溶融粘度の材料を使用すると最適に機能するが、他の加工方法や製品の用途では、より高い又はより低い溶融粘度の材料の使用が必要になる場合がある。それらの場合、溶融粘度は、フルオロモノマー重合における連鎖移動剤の量を増減することにより調整される。さらに、Pianca, M., et.al., POLYMER, 1987, Vol 28, p224-230の手順に従い、19F核磁気共鳴分光法(NMR)で測定した場合、VDFを使用した場合の「リバースユニット」の数は、より低温で重合したPVDFよりもわずかに0.1~0.2%高くなる(例えば、83℃で製造された材料の場合、全体において、5.0%対4.8%)。
【0044】
本発明のフルオロポリマーから形成されたプラークは、「黄変指数」(YI)を使用して測定されるように、熱老化試験においてほとんど又は全く変色を示さない。YIは、ASTM E313-15の標準試験方法に記載されている方法で測定される。本発明のフルオロポリマーについて、黄変指数は、230℃で10分後、好ましくは15未満、好ましくは12未満、より好ましくは11未満である。
【0045】
本発明の場合、ラテックス粘度は、Brookfield DV3T可変速度レオメーター及びCPA-40Zスピンドルを使用して25℃で測定したとき、典型的には1.0cP~10cP、好ましくは1.0~7.0Pである。
【0046】
用途
本発明の界面活性剤を含まないフルオロポリマーエマルジョンは、界面活性剤含有フルオロポリマーエマルジョンが有用である任意の用途において有用である。界面活性剤がないため、本発明のフルオロポリマーは、酸化して着色を生じる界面活性剤がないので熱老化を伴う用途、放射線を材料に適用して架橋を促進する用途で特に有用であり、発泡プロセスに適用される材料に特に有用である。
【実施例】
【0047】
一般的な手順1:7.5L反応器でのラテックス合成:
以下の手順は、モデルポリマー系としてポリフッ化ビニリデンを使用して書かれている。当業者は、以下の例及び本出願の教示を使用して、本発明を他のフルオロポリマー系に拡張することができる。表1は、例1~16の反応パラメーターを示す。
【0048】
循環ジャケット及び機械的攪拌を備えた7.5L容量のオートクレーブに脱イオン水を入れた。この給水は、超純窒素で反応器を60psigに加圧し、攪拌しながらその圧力で5分間保持し、次に0psigに排気することで脱酸素化された。このサイクルがさらに2回繰り返された。その時点で、連鎖移動剤(CTA)を反応器に入れた。次に、反応混合物の温度を、89℃より高く、好ましくは90℃~125℃、最も好ましくは95℃以上110℃未満の望ましい値に上げた。目的の温度が安定したら、フッ化ビニリデン(VDF)を650psiまでに入れ、目標速度で攪拌を開始した。反応は、開始剤溶液の初期投入により開始し、開始剤溶液を1800g/hr以下のモノマー消費の反応速度までゆっくりと供給して、合計反応時間を120分~240分に設定し、25重量%を超えるラテックス固形分を目標にして、反応圧力と温度を維持した。VDFガス(及び/又はコモノマー)は、650psiの反応圧力を維持するために、任意に高圧シリンジ又は往復ポンプを介して導入された。所望の計算されたラテックス固形分に達したら、モノマーの添加を停止し、同時に圧力を低下させながら、残りのモノマーを10分間反応させ続けた。その後、攪拌を停止し、反応器を室温まで冷却して排気した。生成物のラテックスは、反応器からボトムドレンを通って排出され、100メッシュスクリーンを通って流れ、非流体成分(凝固物)を収集した。ラテックス固形分は、Mettler-ToledoモデルHX204などの水分分析装置を使用して2回測定され、平均値が報告された。凝固物のパーセンテージは、凝固物の収集前後のメッシュスクリーンの重量測定で、質量の差によって決定された。
【0049】
一般的な手順2:302.8L反応器でのラテックス合成
循環ジャケット及び機械的攪拌を備えた302.8L容量のオートクレーブに脱イオン水を入れた。この給水は、反応器のベントを大気に開放して30分間100℃に加熱することで脱酸素化された。次に、反応器の内容物を、89℃より高く、好ましくは90℃~125℃、最も好ましくは95℃以上110℃未満の所望の反応温度に冷却した。次に、連鎖移動剤(CTA)を反応器に入れた。所望の温度が安定したら、フッ化ビニリデン(VDF)を650psiまでに入れ、攪拌を開始した。反応は、開始剤溶液の初期投入により開始し、開始剤溶液を54.5kg/hr以下のモノマー消費の反応速度までゆっくりと供給して、合計反応時間を150分~240分に設定し、30wt%以上の合計ラテックス固形分を目標にして、反応圧力と温度を維持した。VDFガス(及び/又はコモノマー)は、650psiの反応圧力を維持するために、任意に高圧シリンジ又は往復ポンプを介して導入された。所望のラテックス固形分に達したら、モノマーの添加を停止し、同時に圧力を低下させながら、残りのモノマーを20分間反応させ続けた。その後、攪拌を停止し、反応器の内容物を室温に冷却し、残留モノマーガスを排出した。生成物のラテックスは、反応器からボトムドレンを通って排出された。排出中、ラテックスは100メッシュのスクリーンを通過した。スクリーンに残っている物質はすべて秤量され、ウェット凝固物として報告された。
【0050】
表1は、界面活性剤を含まないフルオロポリマーラテックス反応成分、量及び条件を示す。各実行は、一般的な手順1又は2で説明される単一のバッチを構成し、レシピとプロセスパラメーターは注記されている。
(※Plu31R1=PLURONIC 31R1)
(※※KPS=過硫酸カリウム)
(1Coagulは回収凝固物=モノマー全体に対し100メッシュのスクリーンを通過しなかった生成物。「回収凝固物」は、バッチに添加された全モノマーに対する%として表される。)
【0051】
【0052】
例3及び4(コントロールサンプル)は、ペーストであることが観察された(すなわち、1000を超える高粘度)。
【0053】
表1のデータは、界面活性剤なしに83℃で反応を実行すると(例3及び4)、モノマーの50重量%を超える許容できない過度の凝固物が生じたことを示している。コントロール例3及び4では、固形分は27%未満であり、凝固物は50%を超えていた。驚くべきことに、温度を89℃に上げると(例5)、予期せぬことに、高固形分(27wt%以上)を維持しながら、コントロール例3及び4より生成された凝固物が少なくとも6倍以上少なかった。同様に、例6~16は、89℃以上の温度を使用することにより、高固形分及び低凝固物を示す。界面活性剤を使用せず、低レベルの凝固物でありながら、ラテックスの少なくとも26%以上の高い固形分含有量を達成した。従来の知識では、安定したラテックスを維持するためには、乳濁液中のポリマー粒子が凝固しないように界面活性剤が必要であると知られているため、この発見は驚くべきものである。界面活性剤の存在がラテックスを安定化する例1及び2と、界面活性剤なしでラテックスが過剰な凝固物を有する例3及び4とが対照的である。例6~16では、89℃以上の温度を使用することにより、高固形分及び低凝固物が達成された。
【0054】
色の安定性
本発明のフルオロポリマーから形成されたプラークは、熱老化試験において変色をほとんど又は全く示さない。熱老化は、本発明の固体生成物を230℃で同時に加熱しながら、2.0インチ×0.125インチの円形ディスクに圧縮成形することにより行われた。ディスクは定期的に熱から外され、室温まで冷却され、視覚的に検査され、「黄変指数」(YI)の測定によって色が評価された。YIは、ASTM E313-15の標準試験方法に記載されている方法で測定された。その後、ディスクを230℃の圧縮金型に戻して、追加的な時間の間(周期的な外しとYI測定を含む120分間まで)、加熱による変色の進行速度を決定した。
【0055】
YIは、230℃で10分後に例7、10及び11で測定された。結果を表2及び
図1に示す。本発明のサンプルでは、10分後の黄変指数は12未満、好ましくは11未満である。
【0056】