IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ コーニンクレッカ フィリップス エヌ ヴェの特許一覧

<>
  • 特許-ポータブル酸素濃縮 図1A
  • 特許-ポータブル酸素濃縮 図1B
  • 特許-ポータブル酸素濃縮 図1C
  • 特許-ポータブル酸素濃縮 図1D
  • 特許-ポータブル酸素濃縮 図2
  • 特許-ポータブル酸素濃縮 図3
  • 特許-ポータブル酸素濃縮 図4
  • 特許-ポータブル酸素濃縮 図5
  • 特許-ポータブル酸素濃縮 図6
  • 特許-ポータブル酸素濃縮 図7
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-12-26
(45)【発行日】2024-01-10
(54)【発明の名称】ポータブル酸素濃縮
(51)【国際特許分類】
   A61M 16/10 20060101AFI20231227BHJP
   C01B 13/02 20060101ALI20231227BHJP
   B01D 53/047 20060101ALI20231227BHJP
【FI】
A61M16/10 B
C01B13/02 A
B01D53/047
【請求項の数】 15
(21)【出願番号】P 2021526664
(86)(22)【出願日】2019-11-14
(65)【公表番号】
(43)【公表日】2022-01-25
(86)【国際出願番号】 EP2019081404
(87)【国際公開番号】W WO2020099600
(87)【国際公開日】2020-05-22
【審査請求日】2022-11-10
(31)【優先権主張番号】62/768,171
(32)【優先日】2018-11-16
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】590000248
【氏名又は名称】コーニンクレッカ フィリップス エヌ ヴェ
【氏名又は名称原語表記】Koninklijke Philips N.V.
【住所又は居所原語表記】High Tech Campus 52, 5656 AG Eindhoven,Netherlands
(74)【代理人】
【識別番号】100107766
【弁理士】
【氏名又は名称】伊東 忠重
(74)【代理人】
【識別番号】100070150
【弁理士】
【氏名又は名称】伊東 忠彦
(74)【代理人】
【識別番号】100135079
【弁理士】
【氏名又は名称】宮崎 修
(72)【発明者】
【氏名】ケルバー,アヒム ゲルハルト ロルフ
(72)【発明者】
【氏名】ヒルビヒ,ライナー
(72)【発明者】
【氏名】ディッカーソン,ブライアン エドワード
(72)【発明者】
【氏名】マードック,ロバート ウィリアム
(72)【発明者】
【氏名】ホイッチャー,ダグラス アダム
【審査官】佐々木 典子
(56)【参考文献】
【文献】特開2013-052021(JP,A)
【文献】特開平08-257341(JP,A)
【文献】国際公開第2011/052803(WO,A1)
【文献】国際公開第2008/136540(WO,A1)
【文献】米国特許出願公開第2010/0071698(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
B01D 53/047
A61M 16/10
C01B 13/02
(57)【特許請求の範囲】
【請求項1】
ポータブル酸素濃縮システムであって、
一対のシーブベッドと、
前記シーブベッドを通して導かれる加圧ガスを発生させるように構成された圧力発生器であり、前記シーブベッドは、圧力スイング吸着(PSA)プロセスにおいて対象者に送達するための濃縮ガスを出力し、前記PSAプロセスは、前記シーブベッドのうち一方が濃縮ガス生成サイクルを介して交替する場合に、他方のシーブベッドがパージサイクルを介して交替するように、前記シーブベッドの各々について濃縮ガス生成及びパージサイクルを交互に行うことを含む、圧力発生器と、
前記対象者の呼吸に関する情報を伝達する出力信号を生成するように構成された1つ以上のセンサと、
前記PSAプロセスの前記濃縮ガス生成及びパージサイクルの間に、前記一対のシーブベッドに出入りするガスの流れを制御するように構成された弁と、
1つ以上のプロセッサであり、
前記出力信号に基づき、前記PSAプロセスの前記濃縮ガス生成及びパージサイクルの間に、前記弁に前記一対のシーブベッドに出入りするガスの流れを制御させ、
前記出力信号に基づき、前記弁に前記一対のシーブベッドに出入りするガスの流れを制御させることが、前記一対のシーブベッドにおける一方のシーブベッドによって生成される濃縮ガスの体積を、前記一対のシーブベッドにおける他方のシーブベッドによって生成される濃縮ガスの体積とは異なるようにしたかどうかを決定し、
前記一対のシーブベッドにおける一方のシーブベッドによって生成される濃縮ガスの体積は、前記一対のシーブベッドにおける他方のシーブベッドによって生成される濃縮ガスの体積とは異なるという決定に応答して、
前記シーブベッドによって生成される濃縮ガスの異なる体積に基づき、前記シーブベッドに対してガスの異なるパージ体積を決定し、さらに、
前記シーブベッドに対して決定された前記ガスの異なるパージ体積に基づき、前記弁に前記PSAプロセスのパージサイクルを制御させる、
ように機械可読命令によって構成された1つ以上のプロセッサと、
を含むシステム。
【請求項2】
前記1つ以上のプロセッサは、前記シーブベッドに対して決定された前記ガスの異なるパージ体積に基づき、前記弁に前記PSAプロセスのパージサイクルを制御させて、前記対象者への送達のための前記濃縮ガスの目標純度を維持するようにさらに構成されている、請求項1に記載のシステム。
【請求項3】
前記1つ以上のプロセッサは、前記シーブベッドに対して決定された前記ガスの異なるパージ体積に基づき、前記弁に前記PSAプロセスのパージサイクルを制御させることが、前記PSAプロセスのパージサイクルの間に、前記弁にパージ時間又はパージガスの流量を調整させることを含むように構成されている、請求項1に記載のシステム。
【請求項4】
前記1つ以上のプロセッサは、
前記出力信号に基づき、前記弁に前記一対のシーブベッドに出入りするガスの流れを制御させることが、前記一対のシーブベッドにおける一方のシーブベッドによって生成される濃縮ガスの体積を、前記一対のシーブベッドにおける他方のシーブベッドによって生成される濃縮ガスの体積とは異なるようにしたかどうかを決定することが、
各シーブベッドから前記対象者に送達される濃縮ガスのボーラスの数をカウントし、各シーブベッドからのカウントを互いに比較すること、又は、
各シーブベッドから前記対象者に送達されるボーラスに対して、経時的に濃縮ガスのボーラスの流量を積分して、各シーブベッドから送達される総ボーラス体積を決定し、各シーブベッドからの前記総ボーラス体積を互いに比較すること、
を含むように構成されている、請求項1に記載のシステム。
【請求項5】
前記シーブベッドに対して決定された前記ガスの異なるパージ体積に基づき、前記弁に前記PSAプロセスのパージサイクルを制御させることが、他方のシーブベッドに対して増加した体積の濃縮ガスを出力する前記一対のシーブベッドのうちの一方が、パージサイクルの間に前記他方のシーブベッドに対して増加した体積の濃縮ガスを受けるように、前記PSAプロセスのパージサイクルの間に、前記弁に、一方又は両方のシーブベッドに対するパージ時間又はパージガスの流量を増加又は減少させることを含むように前記1つ以上のプロセッサは構成されている、請求項1に記載のシステム。
【請求項6】
前記シーブベッドからの前記濃縮ガスを貯蔵するように構成された生成物タンクを含まない、請求項1に記載のシステム。
【請求項7】
前記弁は、2つ以上の供給弁及び2つ以上のパージ弁を含み、前記2つ以上のパージ弁は、前記PSAプロセスのパージサイクルの間に、前記一対のシーブベッドに出入りするガスの流れを制御する、請求項1に記載のシステム。
【請求項8】
前記1つ以上のプロセッサは、
前記一対のシーブベッドにおける一方のシーブベッドによって生成される濃縮ガスの体積が、前記一対のシーブベッドにおける他方のシーブベッドによって生成される濃縮ガスの体積と異なる量が、体積差閾値を超過するかどうかを決定し、
前記一対のシーブベッドにおける一方のシーブベッドによって生成される濃縮ガスの体積が、前記一対のシーブベッドにおける他方のシーブベッドによって生成される濃縮ガスの体積と異なる量が体積差閾値を超過すると決定することに応答して、
前記シーブベッドによって生成される濃縮ガスの異なる体積に基づき、前記シーブベッドに対してガスの異なるパージ体積を決定し、さらに、
前記シーブベッドに対して決定された前記ガスの異なるパージ体積に基づき、前記弁に前記PSAプロセスのパージサイクルを制御させる、
ようにさらに構成されている、請求項1に記載のシステム。
【請求項9】
ポータブル酸素濃縮システムが酸素を濃縮する方法であって、前記システムは、一対のシーブベッド、圧力発生器、1つ以上のセンサ、1つ以上の弁、及び1つ以上のプロセッサを含み、当該方法は、
前記圧力発生器が、前記シーブベッドを通して導かれる加圧ガスを発生させるステップと、
前記シーブベッドが、圧力スイング吸着(PSA)プロセスから、対象者への送達のための濃縮ガスを出力するステップであり、前記PSAプロセスは、前記シーブベッドのうち一方が濃縮ガス生成サイクルを介して交替する場合に、他方のシーブベッドがパージサイクルを介して交替するように、前記シーブベッドの各々について濃縮ガス生成及びパージサイクルを交互に行うことを含む、ステップと、
前記1つ以上のセンサが、前記対象者の呼吸に関する情報を伝達する出力信号を生成するステップと、
前記弁が、前記PSAプロセスの前記濃縮ガス生成及びパージサイクルの間に、前記一対のシーブベッドに出入りするガスの流れを制御するステップと、
前記1つ以上のプロセッサが、前記出力信号に基づき、前記PSAプロセスの前記濃縮ガス生成及びパージサイクルの間に、前記弁に前記一対のシーブベッドに出入りするガスの流れを制御させるステップと、
前記1つ以上のプロセッサが、前記出力信号に基づき、前記弁に前記一対のシーブベッドに出入りするガスの流れを制御させるステップが、前記一対のシーブベッドにおける一方のシーブベッドによって生成される濃縮ガスの体積を、前記一対のシーブベッドにおける他方のシーブベッドによって生成される濃縮ガスの体積とは異なるようにしたかどうかを決定するステップと、
前記一対のシーブベッドにおける一方のシーブベッドによって生成される濃縮ガスの体積は、前記一対のシーブベッドにおける他方のシーブベッドによって生成される濃縮ガスの体積とは異なるという決定に応答して、
前記1つ以上のプロセッサが、前記シーブベッドによって生成される濃縮ガスの異なる体積に基づき、前記シーブベッドに対してガスの異なるパージ体積を決定するステップと、
前記1つ以上のプロセッサが、前記シーブベッドに対して決定された前記ガスの異なるパージ体積に基づき、前記弁に前記PSAプロセスのパージサイクルを制御させるステップと、
を含む方法。
【請求項10】
前記1つ以上のプロセッサが、前記シーブベッドに対して決定された前記ガスの異なるパージ体積に基づき、前記弁に前記PSAプロセスのパージサイクルを制御させて、前記対象者への送達のための前記濃縮ガスの目標純度を維持するステップをさらに含む、請求項9に記載の方法。
【請求項11】
前記シーブベッドに対して決定された前記ガスの異なるパージ体積に基づき、前記弁に前記PSAプロセスのパージサイクルを制御させるステップは、前記PSAプロセスのパージサイクルの間に、前記弁にパージ時間又はパージガスの流量を調整させることを含む、請求項9に記載の方法。
【請求項12】
前記出力信号に基づき、前記弁に前記一対のシーブベッドに出入りするガスの流れを制御させるステップが、前記一対のシーブベッドにおける一方のシーブベッドによって生成される濃縮ガスの体積を、前記一対のシーブベッドにおける他方のシーブベッドによって生成される濃縮ガスの体積とは異なるようにしたかどうかを決定するステップは、
各シーブベッドから前記対象者に送達される濃縮ガスのボーラスの数をカウントし、各シーブベッドからのカウントを互いに比較すること、又は、
各シーブベッドから前記対象者に送達されるボーラスに対して、経時的に濃縮ガスのボーラスの流量を積分して、各シーブベッドから送達される総ボーラス体積を決定し、各シーブベッドからの前記総ボーラス体積を互いに比較すること、
を含む、請求項9に記載の方法。
【請求項13】
前記シーブベッドに対して決定された前記ガスの異なるパージ体積に基づき、前記弁に前記PSAプロセスのパージサイクルを制御させるステップは、他方のシーブベッドに対して増加した体積の濃縮ガスを出力する前記一対のシーブベッドのうちの一方が、パージサイクルの間に前記他方のシーブベッドに対して増加した体積の濃縮ガスを受けるように、前記PSAプロセスのパージサイクルの間に、前記弁に、一方又は両方のシーブベッドに対するパージ時間又はパージガスの流量を増加又は減少させることを含む、請求項9に記載の方法。
【請求項14】
前記弁は、2つ以上の供給弁及び2つ以上のパージ弁を含み、当該方法は、前記2つ以上のパージ弁が、前記PSAプロセスのパージサイクルの間に、前記一対のシーブベッドに出入りするガスの流れを制御するステップをさらに含む、請求項9に記載の方法。
【請求項15】
前記1つ以上のプロセッサが、前記一対のシーブベッドにおける一方のシーブベッドによって生成される濃縮ガスの体積が、前記一対のシーブベッドにおける他方のシーブベッドによって生成される濃縮ガスの体積と異なる量が、体積差閾値を超過するかどうかを決定するステップと、
前記一対のシーブベッドにおける一方のシーブベッドによって生成される濃縮ガスの体積が、前記一対のシーブベッドにおける他方のシーブベッドによって生成される濃縮ガスの体積と異なる量が体積差閾値を超過すると決定することに応答して、
前記1つ以上のプロセッサが、前記シーブベッドによって生成される濃縮ガスの異なる体積に基づき、前記シーブベッドに対してガスの異なるパージ体積を決定するステップと、
前記1つ以上のプロセッサが、前記シーブベッドに対して決定された前記ガスの異なるパージ体積に基づき、前記弁に前記PSAプロセスのパージサイクルを制御させるステップと、
をさらに含む、請求項9に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願の相互参照
本願は、2018年11月16日に出願した米国仮特許出願第62/768,171号に基づく優先権を主張するものであり、その内容を参照により本願に援用する。
【0002】
本開示は、酸素を濃縮するための方法及びポータブルシステムに関係する。
【背景技術】
【0003】
酸素療法が知られている。酸素療法は、患者の肺への酸素の供給を増加させ、それによって、患者の体組織への酸素の利用可能性を増加させることによって、患者に利益をもたらす。酸素療法システムは、ポータブル「オンデマンド」酸素療法システムを含む。オンデマンドの酸素発生のために、酸素濃縮器等の市販の解決策が開発されている。これらの酸素濃縮器は、例えば、特許文献1において記載されている圧力スイング吸着(PSA)技術を使用する。オンデマンドのポータブル酸素濃縮器によって実行されるPSAプロセスは、シーブベッド間で非対称のガス発生を引き起こす(例えば、一方のシーブベッドが、他方のシーブベッドよりも濃縮された酸素を生成する)ことが多く、これは、システムによって発生する酸素ガスの純度を低下させる恐れがある。
【先行技術文献】
【特許文献】
【0004】
【文献】米国特許第6,551,384号
【発明の概要】
【0005】
一対のシーブベッドにおける一方のシーブベッドによって生成される濃縮ガスの体積が、一対のシーブベッドにおける他方のシーブベッドによって生成される濃縮ガスの体積とは異なっていたかどうかを決定し、さらに、シーブベッドによって生成される濃縮ガスの異なる体積に基づき、シーブベッドに対してガスの異なるパージ体積を決定するように構成されたポータブル酸素濃縮システムを達成することが有利である。
【0006】
従って、本開示の1つ以上の態様は、ポータブル酸素濃縮システムに関する。当該システムは、一対のシーブベッド、圧力発生器、1つ以上のセンサ、弁、1つ以上のプロセッサ、及び/又は他の構成要素を含む。圧力発生器は、シーブベッドを通して導かれる加圧ガスを発生させるように構成される。シーブベッドは、圧力スイング吸着(PSA)プロセスにおいて対象者への送達のための濃縮ガスを出力する。PSAプロセスは、シーブベッドのうち一方が濃縮ガス生成サイクルを介して交替する場合に、他方のシーブベッドがパージサイクルを介して交替するように、シーブベッドの各々について濃縮ガス生成及びパージサイクルを交互に行うことを含む。1つ以上のセンサは、対象者の呼吸に関する情報を伝達する出力信号を生成するように構成される。弁は、PSAプロセスの濃縮ガス生成及びパージサイクルの間に、一対のシーブベッドに出入りするガスの流れを制御するように構成される。
【0007】
1つ以上のプロセッサは、出力信号に基づき、PSAプロセスの濃縮ガス生成及びパージサイクルの間に、弁に一対のシーブベッドに出入りするガスの流れを制御させるように機械可読命令によって構成される。1つ以上のプロセッサは、出力信号に基づき、弁に一対のシーブベッドに出入りするガスの流れを制御させることが、一対のシーブベッドにおける一方のシーブベッドによって生成される濃縮ガスの体積を、一対のシーブベッドにおける他方のシーブベッドによって生成される濃縮ガスの体積とは異なるようにしたかどうかを決定するように構成される。一対のシーブベッドにおける一方のシーブベッドによって生成される濃縮ガスの体積は、一対のシーブベッドにおける他方のシーブベッドによって生成される濃縮ガスの体積とは異なるという決定に応答して、1つ以上のプロセッサは、シーブベッドによって生成される濃縮ガスの異なる体積に基づき、シーブベッドに対してガスの異なるパージ体積を決定し、さらに、シーブベッドに対して決定されたガスの異なるパージ体積に基づき、弁にPSAプロセスのパージサイクルを制御させるように構成される。
【0008】
一部の実施形態において、1つ以上のプロセッサは、シーブベッドに対して決定されたガスの異なるパージ体積に基づき、弁にPSAプロセスのパージサイクルを制御させて、対象者への送達のための濃縮ガスの目標純度を維持するように構成される。一部の実施形態において、1つ以上のプロセッサは、シーブベッドに対して決定されたガスの異なるパージ体積に基づき、弁にPSAプロセスのパージサイクルを制御させることが、PSAプロセスのパージサイクルの間に、弁にパージ時間又はパージガスの流量を調整させることを含むように構成される。
【0009】
一部の実施形態において、1つ以上のプロセッサは、出力信号に基づき、弁に一対のシーブベッドに出入りするガスの流れを制御させることが、一対のシーブベッドにおける一方のシーブベッドによって生成される濃縮ガスの体積を、一対のシーブベッドにおける他方のシーブベッドによって生成される濃縮ガスの体積とは異なるようにしたかどうかを決定することが、各シーブベッドから対象者に送達される濃縮ガスのボーラスの数をカウントし、各シーブベッドからのカウントを互いに比較すること、又は、各シーブベッドから対象者に送達されるボーラスに対して、経時的に濃縮ガスのボーラスの流量を積分して、各シーブベッドから送達される総ボーラス体積を決定し、各シーブベッドからの総ボーラス体積を互いに比較することを含むように構成される。
【0010】
一部の実施形態において、シーブベッドに対して決定されたガスの異なるパージ体積に基づき、弁にPSAプロセスのパージサイクルを制御させることが、他方のシーブベッドに対して増加した体積の濃縮ガスを出力する一対のシーブベッドのうちの一方が、パージサイクルの間に他方のシーブベッドに対して増加した体積の濃縮ガスを受けるように、PSAプロセスのパージサイクルの間に、弁に、一方又は両方のシーブベッドに対するパージ時間又はパージガスの流量を増加又は減少させることを含むように1つ以上のプロセッサは構成される。
【0011】
一部の実施形態において、1つ以上のプロセッサは、一対のシーブベッドにおける一方のシーブベッドによって生成される濃縮ガスの体積が、一対のシーブベッドにおける他方のシーブベッドによって生成される濃縮ガスの体積と異なる量が、体積差閾値を超過するかどうかを決定するようにさらに構成される。一対のシーブベッドにおける一方のシーブベッドによって生成される濃縮ガスの体積が、一対のシーブベッドにおける他方のシーブベッドによって生成される濃縮ガスの体積と異なる量が体積差閾値を超過すると決定することに応答して、1つ以上のプロセッサは、シーブベッドによって生成される濃縮ガスの異なる体積に基づき、シーブベッドに対してガスの異なるパージ体積を決定し、シーブベッドに対して決定されたガスの異なるパージ体積に基づき、弁にPSAプロセスのパージサイクルを制御させるように構成される。
【0012】
一部の実施形態において、当該システムは、シーブベッドからの濃縮ガスを貯蔵するように構成された生成物タンクを含まない。
【0013】
一対のシーブベッドにおける一方のシーブベッドによって生成される濃縮ガスの体積が、一対のシーブベッドにおける他方のシーブベッドによって生成される濃縮ガスの体積とは異なっていたかどうかを決定し、さらに、シーブベッドによって生成される濃縮ガスの異なる体積に基づき、シーブベッドに対してガスの異なるパージ体積を決定する方法を達成することが有利である。
【0014】
従って、本開示の別の態様は、ポータブル酸素濃縮システムが酸素を濃縮する方法に関する。このシステムは、一対のシーブベッド、圧力発生器、1つ以上のセンサ、1つ以上の弁、1つ以上のプロセッサ、及び/又は他の構成要素を含む。当該方法は、圧力発生器が、シーブベッドを通して導かれる加圧ガスを発生させるステップを含む。当該方法は、圧力スイング吸着プロセス(PSA)において、対象者への送達のための濃縮ガスを出力するステップを含む。PSAプロセスは、シーブベッドのうち一方が濃縮ガス生成サイクルを介して交替する場合に、他方のシーブベッドがパージサイクルを介して交替するように、シーブベッドの各々について濃縮ガス生成及びパージサイクルを交互に行うことを含む。当該方法は、1つ以上のセンサが、対象者の呼吸に関する情報を伝達する出力信号を生成するステップを含む。当該方法は、弁が、PSAプロセスの濃縮ガス生成及びパージサイクルの間に、一対のシーブベッドに出入りするガスの流れを制御するステップを含む。当該方法は、1つ以上のプロセッサが、出力信号に基づき、PSAプロセスの濃縮ガス生成及びパージサイクルの間に、弁に一対のシーブベッドに出入りするガスの流れを制御させるステップを含む。当該方法は、1つ以上のプロセッサが、出力信号に基づき、弁に一対のシーブベッドに出入りするガスの流れを制御させることが、一対のシーブベッドにおける一方のシーブベッドによって生成される濃縮ガスの体積を、一対のシーブベッドにおける他方のシーブベッドによって生成される濃縮ガスの体積とは異なるようにしたかどうかを決定するステップを含む。当該方法は、一対のシーブベッドにおける一方のシーブベッドによって生成される濃縮ガスの体積が、一対のシーブベッドにおける他方のシーブベッドによって生成される濃縮ガスの体積とは異なるという決定に応答して、1つ以上のプロセッサが、シーブベッドによって生成される濃縮ガスの異なる体積に基づき、前記シーブベッドに対してガスの異なるパージ体積を決定するステップ、及び、1つ以上のプロセッサが、シーブベッドに対して決定されたガスの異なるパージ体積に基づき、弁にPSAプロセスのパージサイクルを制御させるステップを含む。
【0015】
一部の実施形態において、当該方法は、1つ以上のプロセッサが、シーブベッドに対して決定されたガスの異なるパージ体積に基づき、弁にPSAプロセスのパージサイクルを制御させて、対象者への送達のための濃縮ガスの目標純度を維持するステップをさらに含む。一部の実施形態において、シーブベッドに対して決定されたガスの異なるパージ体積に基づき、弁にPSAプロセスのパージサイクルを制御させるステップは、PSAプロセスのパージサイクルの間に、弁にパージ時間又はパージガスの流量を調整させることを含む。
【0016】
一部の実施形態において、出力信号に基づき、弁に一対のシーブベッドに出入りするガスの流れを制御させることが、一対のシーブベッドにおける一方のシーブベッドによって生成される濃縮ガスの体積を、一対のシーブベッドにおける他方のシーブベッドによって生成される濃縮ガスの体積とは異なるようにしたかどうかを決定するステップは、各シーブベッドから対象者に送達される濃縮ガスのボーラスの数をカウントし、各シーブベッドからのカウントを互いに比較すること、又は、各シーブベッドから対象者に送達されるボーラスに対して、経時的に濃縮ガスのボーラスの流量を積分して、各シーブベッドから送達される総ボーラス体積を決定し、各シーブベッドからの総ボーラス体積を互いに比較することを含む。
【0017】
一部の実施形態において、シーブベッドに対して決定されたガスの異なるパージ体積に基づき、弁にPSAプロセスのパージサイクルを制御させるステップは、他方のシーブベッドに対して増加した体積の濃縮ガスを出力する一対のシーブベッドのうちの一方が、パージサイクルの間に他方のシーブベッドに対して増加した体積の濃縮ガスを受けるように、PSAプロセスのパージサイクルの間に、弁に、一方又は両方のシーブベッドに対するパージ時間又はパージガスの流量を増加又は減少させることを含む。
【0018】
一部の実施形態において、当該方法は、1つ以上のプロセッサが、一対のシーブベッドにおける一方のシーブベッドによって生成される濃縮ガスの体積が、一対のシーブベッドにおける他方のシーブベッドによって生成される濃縮ガスの体積と異なる量が、体積差閾値を超過するかどうかを決定するステップ、並びに、一対のシーブベッドにおける一方のシーブベッドによって生成される濃縮ガスの体積が、一対のシーブベッドにおける他方のシーブベッドによって生成される濃縮ガスの体積と異なる量が体積差閾値を超過すると決定することに応答して、1つ以上のプロセッサが、シーブベッドによって生成される濃縮ガスの異なる体積に基づき、シーブベッドに対してガスの異なるパージ体積を決定するステップ、及び、1つ以上のプロセッサが、シーブベッドに対して決定されたガスの異なるパージ体積に基づき、弁にPSAプロセスのパージサイクルを制御させるステップをさらに含む
本開示の上記及び他の目的、特徴、並びに特性だけでなく、作動方法及び関連する構造要素及び部品の組み合わせの機能も製造のむだを省くことも、付随の図面を参考にして以下の説明及び添付の特許請求の範囲を考慮することによってより明らかになり、付随の図面の全てが本明細書の一部を形成し、類似の参照番号は様々な図において対応する部分を示している。しかし、図面は例示及び説明目的のためだけにあり、本開示の範囲を定めるとして意図されないことを明確に理解されたい。
【図面の簡単な説明】
【0019】
図1A】1つ以上の実施形態による、酸素を濃縮するためのポータブルシステムの第1の概略図である。
図1B】1つ以上の実施形態による、酸素を濃縮するためのポータブルシステムの第2の概略図である。
図1C】1つ以上の実施形態による、酸素を濃縮するためのポータブルシステムの第3の概略図である。
図1D】1つ以上の実施形態による、酸素を濃縮するためのポータブルシステムの第4の概略図である。
図2】1つ以上の実施形態による、典型的なボーラス送達速度での典型的なシステムについての経時的な記録された純度測定値を例示した図である。
図3】1つ以上の実施形態による、非対称の負荷条件下での、1サイクル当たりの1つのシーブベッド当たりに送達されるボーラス数のシミュレーションを例示した図である。
図4】1つ以上の実施形態による、2つのシーブベッドの非対称の負荷を例示した図である。
図5】1つ以上の実施形態による、2つのシーブベッドからのボーラスに対する圧力トレースを例示した図である。
図6】1つ以上の実施形態による、例えば本システムの動作等、シーブベッドパージ時間及び平均O生成物純度を例示した図である
図7】1つ以上の実装形態による、ポータブル酸素濃縮システムが酸素を濃縮する方法を例示した図である
【発明を実施するための形態】
【0020】
本明細書において使用される場合、単数形の不定冠詞又は定冠詞は、その内容が何か他に明確に指示していない限り、その複数形を含む。本明細書において使用される場合、2つ以上の部品又は構成要素が「連結される」という記載は、連接が生じる限り、その部品が結合されるか、又は、直接的若しくは間接的に、すなわち、1つ以上の中間の部品又は構成要素を介して共に作動することを意味する。本明細書において使用される場合、「直接連結される」は、2つの要素が互いに直接接触していることを意味する。本明細書において使用される場合、「固定して連結される」又は「固定される」は、2つの構成要素が、互いに対して一定の向きを維持しながら1つのものとして移動するように連結されることを意味する。
【0021】
本明細書において使用される場合、「単体構造(unitary)」という単語は、構成要素がシングルピース又はユニットとして作製されることを意味する。すなわち、別々に作製され、次に、ユニットとして共に連結される部分品を含む構成要素は、「単体構造」構成要素又は「単体構造」体ではない。本明細書において利用される場合、2つ以上の部品又は構成要素が互いに「かみ合う/係合する」という記載は、その部品が、直接又は1つ以上の中間の部品又は構成要素を介して互いに対して力を及ぼすことを意味する。本明細書において利用される場合、「数」という用語は、1又は1以上の整数(すなわち、複数)を意味する。
【0022】
例えば限定することなく、上、下、左、右、上方、下方、前、後ろ、及びその派生語等、方向を示す句は、本明細書において使用される場合、図面において示されている要素の向きに関し、明確に記載されていない限り、特許請求の範囲を限定しない。
【0023】
図1A~1Dは、1つ以上の実施形態による、酸素を濃縮するためのポータブルシステム10の概略図である。システム10は、一対のシーブベッド12及び14、圧力発生器16、1つ以上のセンサ20、1つ以上の弁22、1つ以上の物理コンピュータプロセッサ24、及び/又は他の構成要素を含む。一般的に、酸素は、圧力スイング吸着(PSA)と呼ばれるプロセスによって、酸素濃縮器において空気から精製されてもよい。シーブベッド12及び14は、モレキュラーシーブ材料(例えば、ゼオライト及び/又は他の材料等)で満たされた2つのチューブ(及び/又は他の構造)を含む。この材料は、酸素又はアルゴンよりも窒素を優先的に吸着するように構成される。この特質を使用して、窒素分子の大部分をガス流から除去することによって、加圧空気がモレキュラーシーブベッドの1つを通って流れる場合に酸素及び/又はアルゴン濃縮生成物ガス流を生成することができる。単一のモレキュラーシーブチューブ(例えば、シーブベッド12又は14等)は、窒素吸着平衡に達する前に、任意の固定された圧力及び温度において有限の窒素吸着容量を有し、その吸着容量に達すると、窒素はシーブベッド(例えば、シーブベッド12等)の酸素出口を突破し始めることがある。システム10は、このポイントに到達する直前に、酸素生成が第2のシーブベッド(例えば、シーブベッド14)に切り替わり、第1のシーブベッド12がその圧力を排出し、パージガスでパージされ、周囲条件において平衡まで再生するように構成される。このプロセスは、2つのシーブベッド12と14との間で行ったり来たりし続けて、対象者18によって酸素が要求されるときに、対象者18に濃縮酸素ガスの流れを供給する。
【0024】
一般的に、PSAサイクルは、5つのステップを含む。これらのステップには、加圧、酸素生成、バランス、ブローダウン(排気)、及びパージが含まれる。以下は、シーブベッド12の加圧から始まるこれらのステップの説明である。
【0025】
加圧:圧力発生器16は、加圧ガス(例えば、空気等)を、図1A及び1Cにおいて示されている開放供給弁28Aを介して(又は、図1B及び1Dにおいて示されている3方組合せ供給/排気弁28/29Aを介して)シーブベッド12に供給して、シーブベッド12の圧力を上昇させ、その結果、(例えば)窒素がガス流から吸着され、シーブベッド12から精製された酸素流を出力する。
【0026】
圧力発生器16は、シーブベッド12及び14まで送達するための加圧ガスを発生させるように構成されている。圧力発生器16は、周囲雰囲気等のガス源からガスの流れを受け、シーブベッド12及び14まで送達するために、そのガスの圧力を上昇させる。圧力発生器16は、例えば、圧縮機、ポンプ、送風機、ピストン、又はベローズ等、受けたガスの圧力を上昇させる能力を有する任意の装置である。圧力発生器16は、例えば、ガスの圧力及び/又は流れを制御するための1つ以上の弁を含んでもよい。本開示は、シーブベッド12及び14に提供されるガスの圧力及び/又は流量を制御するために、送風機の作動速度を単独で又はそのような弁と組み合わせて制御することも熟考している。
【0027】
図1A~1Dにおいて示されているように、弁22は、逆止め弁23A及び23B、供給弁28A及び28B、並びに、排気弁29A及び29B(例えば、図1A及び1Cにおいて例示されている)、3方組み合わせ供給/排気弁28/29A及び28/29B(例えば、図1B及び1Dにおいて示されている)、パージ弁30A及び30B(例えば、図1A~1Dにおいて示されている)、及び/又は、他の弁を含む。弁22は、システム10を通る流れを選択的に制御するように構成される。弁22は、実質的にガスが通されないように閉じられても若しくは特定の方向において閉じられてもよく、又は、ガスの流れを可能にするように開けられても(若しくは、部分的に開けられても)よい。一部の実施形態において、弁22は、プラグ弁、ボール弁、逆止め弁、バタフライ弁、ソレノイド、空気圧式パイロット操作弁、及び/又は他の弁のうち1つ以上を含んでもよい。弁22は、電気モータ、上記の制御機構の任意の組合せ、及び/又は、弁を開く及び/又は閉じるように構成された別の制御モードを介して、(例えば、プロセッサ24によって)電子的に、液圧的に、空気圧的に制御することができる。
【0028】
シーブベッド12内の増加した圧力が、(例えば、図1A及び1Bにおいて示されているが、図1C又は1Dにおいては示されていない)(任意の)生成物タンク15及び/又はシーブベッド12から下流の他のシステム構成要素内に貯蔵された酸素ガスの圧力を超えると、逆止め弁23Aが開く。シーブベッド12からガス圧力を吐き出すために使用される排気弁29A(又は、図1B及び1Dにおいて示されている供給/排気弁28/29Aの排気方向)は閉じられ、図1A及び1Cにおいて示されている供給弁28B(又は、図1B及び1Dにおいて示されている3方組み合わせ供給/排気弁28/29B)は閉じられ、(例えば、低い圧力を有するシーブベッド14により)逆止め弁23Bは閉じられ、さらに、シーブベッド14から空気圧を吐き出すために使用される排気弁29B(又は、図1B及び1Dにおいて示されている供給/排気弁28/29Bの排気方向)は開けられる。
【0029】
酸素生成:圧力発生器16は、シーブベッド12にガス(例えば、空気等)を供給し続け、シーブベッド12は、開放逆止め弁23Aを介して濃縮(例えば酸素)ガスを(任意の)生成物タンク15に押し込む。一部の実施形態において、生成物タンク15は、対象者18に送達するための比較的安定した濃縮酸素ガス源を提供するのに寄与するために圧力バッファとして使用されるガス貯蔵タンクである。しかし、以下に記載されるように、生成物タンク15は、システム10の任意の部分にすぎず、以下に記載される制御機構が、生成物タンク15の必要性を低減又は排除する。酸素生成ステップは、窒素ガスが突破し、生成物タンク15に流入して、患者に供給されることになる貯蔵された酸素の純度を下げる前に終了する。
【0030】
バランス:酸素生成ステップの終了時に、シーブベッド12はその最大サイクル圧力の近くまで加圧され、シーブベッド14は、大気圧に近い。シーブベッド12内の加圧ガスを大気に放出することは、システム10が次のステップで必要以上に周囲空気を加圧する必要があり得るため、エネルギーを浪費する可能性がある。このエネルギーの一部を取り戻すために、排気弁29B(図1A及び1C)は閉じられ(又は、3方組み合わせ弁28/29(図1B及び1D)は適切に配置され)、パージ弁30A及び/又は30B(図1B及び1D)は、シーブベッド12及び14の酸素出口において短時間開けられて、2つのベッド間の圧力を等しくする。このようにして、より少ないエネルギーが、シーブベッド14内の新しい空気を加圧するのに必要とされる。バランスステップの間に、圧力発生器16からのガス(例えば、空気等)の供給は、供給弁28A(又は3方弁28/29A)を通って流れることから、供給弁28B(又は3方弁28/29B)を通って流れることに切り替えられる。一部の実施形態において、2つのパージ弁30A及び30Bの列に平行に位置するさらなるバランス弁が存在してもよい。この弁は、バランスステップの間にのみ開かれ、2つのパージ弁30A及び30Bの列が可能にするよりも多いガス流を提供するのに役立つ。
【0031】
ブローダウン:残りの加圧ガスをシーブベッド12から大気に放出し、シーブベッド12のシーブ材料がシーブベッド12内の過剰な窒素を脱着するのを可能にするために、排気弁29A(図1A及び1C)が開けられる(又は、3方弁28/29A(図1B及び1D)が、ガスを大気に排気するために配置される)。
【0032】
パージ:一方のシーブベッド(12又は14)内の圧力が他方のシーブベッド(12又は14)内の圧力よりも低い場合、酸素濃縮ガスの流れは、より高い圧力のベッドの酸素出口から、パージオリフィス17及びパージ弁30A又は30Bを通って、より低い圧力のベッドの酸素出口内へ流れ、そのベッドから大気へ過剰な窒素ガスをパージするために吐き出される。この例を用いて続けると、シーブベッド12は、シーブベッド14から流れる濃縮酸素を使用してパージされる。パージステップは、再吸着して、次のサイクルの空気分離能力を低下させるであろう過剰な窒素をシーブベッド12から洗浄するために使用される。また、さらなる酸素生成物ガスが、パージされることになるシーブベッド12内に貯蔵される局面としてパージステップを考慮することもできる。
【0033】
2つのシーブベッドはタンデムに機能し、一方のベッドがサイクルの加圧及び/又は酸素生成側にあり、他方のベッドがサイクルのブローダウン及び/又はパージ側にある。次の半サイクルの間、2つのベッドは、ステップを切り替えて濃縮(例えば、酸素)ガスを生成し続ける。一部の実施形態では、逆止め弁23Aを使用して、シーブベッド12の圧力が、生成物タンク15内の圧力又はシーブベッド12の下流のシステム10内の圧力を超えるときはいつでも、シーブベッド12から発生した濃縮ガスが、生成物タンク15(図1A及び1B)内に又はシンプルにシーブベッド12(図1C及び1D)の下流に流れるのを可能にし得る。一部の実施形態では、逆止め弁23Bを使用して、シーブベッド14の圧力が、生成物タンク15内の圧力又はシーブベッド14の下流のシステム10内の圧力を超えるときはいつでも、シーブベッド14から発生した濃縮ガスが、生成物タンク15(図1A及び1B)内又はシンプルにシーブベッド14(図1C及び1D)の下流に流れるのを可能にし得る。
【0034】
一部の実施形態において、システム10は、患者送達弁31を含んでもよい。ポータブル酸素濃縮器(POC)では、患者送達弁31は、対象者18の各呼吸の開始時に特定のパルス化されたボーラス体積の濃縮ガスを送達するために、直接作用のソレノイド弁及び/又は患者呼吸検出回路(例えば、以下に記載されるセンサ20及びプロセッサ24等)によって制御される他の弁であってもよい。
【0035】
要約すると、アクティブパージ弁30A及び30Bを有する酸素濃縮システム10が図1A~1Dにおいて示されている。システム10は、2つのシーブベッド12及び14の供給側に、別々の供給及び排気弁(図1A及び1C)又は組み合わせ3方弁(図1B及び1D)を含んでもよい。酸素は、シーブベッド12及び14の生成物側から逆止め弁23A及び23Bを介して任意の酸素タンク15内に供給される。酸素タンク15は(存在する場合に)、パージオリフィス17及びパージ弁30A又は30Bを介して、それぞれシーブベッド12又は14に酸素を戻すことができる。個々の半サイクルの終了時に、シーブベッド12と14との圧力差は、本明細書において記載されているように、両方のパージ弁30A及び30Bを同時に開けること及び/又は任意のバランス弁を開けること、及び/又は、両方の3方空気側プロセス弁(図1B&1Dにおける28/29A及び28/29B)を同時に空気供給位置に切り替えることによって等しくされてもよい。
【0036】
一部の実施形態において、システム10は、切り替え可能(「アクティブ」)パージ弁30A及び30Bを、シーブベッド12及び14を接続する定常のパージオリフィス17と直列に含む。これは、この配置が、パージ体積を生成物出力流量及び/又は他の動作の範囲に適応させるのを容易にするためである。
【0037】
例えば、エネルギー、サイズ、及び質量を節約するために、システム10等のポータブル酸素濃縮器(POC)システムは、対象者18の呼息相の間に送達された酸素が吸息されず、従って浪費されるため、対象者18に連続的な酸素の流れを送達しなくてもよい。代わりに、システム10等のPOCは、センサ(例えば、以下に記載されるセンサ20等)を使用して、対象者18の吸息相の開始を検出し、次に、定められたガス(例えば、酸素)のパルス体積(「ボーラス」)を対象者18に送達する。ボーラスは、システム10によって予め決定された特定の時間ではなく、患者が吸息したときに送達される。
【0038】
上記のオンデマンドのボーラス送達は、非対称の負荷状態をもたらすことが多くある。非対称の負荷状態は、単位時間当たりのシーブベッド12及び14によって送達される酸素体積VA及びVBが等しくない場合に発生する。非対称の負荷状態が続き、対策(例えば、本明細書において記載される対策等)が取られない場合、通常、対象者18に送達されるボーラス内のガス(例えば、酸素)純度が(有意に)低下する。ガス純度の低下は、一方がより大きな体積のガスを対象者18に送達したシーブベッド12又は14における窒素の突破によって引き起こされる。
【0039】
一例として、システム10のサイクル時間がtcyc=9s(4.5sのハーフサイクル時間を有する)であり、対象者18がBR=20呼吸/分の一定の呼吸速度で呼吸していると仮定する。この例において、システム10は、BR*tcyc=1サイクル当たり3ボーラスを送達しなければならない。これは、2つのボーラスが、1つのハーフサイクルにおいて(例えば)シーブベッド12によって送達され、1つのボーラスが、もう一方のハーフサイクルにおいてシーブベッド14によって送達されることを意味する。是正処置がなければ、これらの例となる状態は、シーブベッド12において窒素の突破をもたらし、その結果、ほんの数分のうちに対象者18に送達されるガスの(例えば)酸素純度の低下(例えば、90%→<83%)をもたらす可能性が高い。
【0040】
図2は、(BR*tcyc=)3.03ボーラス/サイクルのボーラス送達速度(例えば、上記の仮説上の例における3ボーラス/サイクルの速度よりもわずかに速い)での典型的なシステムについての時間203にわたる記録された純度201の測定値204を例示している。図2において示されている情報を生成するために使用されたシステムは、(例えば、20呼吸/分の呼吸速度、2325RPMのモータ速度、4.55秒の供給時間、0.4秒のバランス時間、2.75秒のパージ時間、及び0.02インチの直径を有するパージオリフィスを用いた)上記のように配置されたポータブル酸素濃縮器であった。図2において示されているように、そのようなシステムによって送達される酸素の純度201は、(本明細書において記載される是正操作なしで)わずか数分の半周期206にわたって振動する(204)。
【0041】
この純度振動は、両方のシーブベッド(図1A~1Dにおいて示されている12及び14)が、上記の例となる条件下で、特定の数のサイクル(例えば、ベッド12について16.5サイクル、ベッド14について16.5サイクル等)の間により多くの酸素を送達するシーブベッドとして交替するため、経時的に発生する。これは、図3において例示されている。図3は、非対称の負荷条件下で、1サイクル当たりの1つのシーブベッド当たりに送達されるボーラスの数のシミュレーションを例示している。図3における非対称の負荷状態に使用される条件は、図2に関してすでに論じたものである:BR*tcyc=3.03パルス/サイクル。図3において示されているように、シーブベッド12及びシーブベッド14は、時間の経過302に伴いより多くのボーラス300を生成するシーブベッドとして交替する。これは、相反する時間302において、1サイクルあたり2ボーラス/ベッドと1サイクルあたり1ボーラス/ベッドとの間で交替するシーブベッド12及び14を表す線によって示されている。この例における理論上の繰り返し周期304は、4.95分である。
【0042】
一部の(例えば、図1A及び1Bにおいて示されている)実施形態において、システム10は、この効果を弱めるために、生成物タンク15を含んでもよい。しかし、生成物タンク15を含めることによって、システム10のサイズ及び質量を増大させる可能性がある。一部の実施形態において、システム10が、一方のシーブベッドに他方のシーブベッドよりも多くのボーラスを送達させる既知の臨界サイクル時間値(例えば、BR*tcyc=1,3,5,....)から少なくとも数パーセント離れるように、サイクル時間tcycを適応させることによってこの効果を弱めるようにシステム10は構成されてもよい。これらの臨界サイクル時間値に対して、1サイクル当たりの1ベッド当たりのボーラスの数は、1/0、2/1、3/2...である。しかし、奇数によって特徴づけられる少ない数よりも、非対称のポイントの方が多いかもしれない。これは、図4において示されている。
【0043】
図4は、シーブベッド12及びシーブベッド14の非対称の負荷を例示している。図4は、ボーラスの数(BR*tcyc)402が増加するに従い、1サイクル400当たりの酸素の相対的な過剰又は欠乏を(割合として)例示している。図4において示されているように、非対称のポイント404は、単に奇数のボーラスにおけるもの406よりも多い。一例として、示されている非対称のポイント404は、BR*tcyc=1.5、2.5、3.5、及び4.5に対応している。これらは、1サイクル当たりの1ベッド当たりのボーラスの数が、それぞれ1/0.5(すなわち、第2のベッドは2つ目のサイクルごとのみボーラスを提供する)、1.5/1、2/1.5、及び2.5/2である状況である。
【0044】
図1A~1Dに戻ると、生成物タンク15を含める、又は、サイクル時間を既知の臨界値から少なくとも数パーセント離れるように適応させる代わりに(及び/又はそれに加えて)、システム10は、アクティブパージ弁30A及び30Bを制御して、非対称のパージ体積を有する非対称の負荷状態を補償するように構成されてもよい。例えば、システム10は、その生成半サイクルの間に過剰なガス(例えば酸素)体積を送達したシーブベッド(例えば、シーブベッド12又は14)が、そのパージ相の間に対応する過剰な体積の酸素を受け取るように構成される。このようにして、その特定のシーブベッドにおける物質移動ゾーンの位置は安定化され、1つのシーブベッドが全ての(酸素)ボーラスを送達する極端な例としてさえ、非対称の負荷条件下(例えば、BR*tcyc=1)でさえ、物質移動ゾーンの位置は両方のシーブベッドに対して対称のままである。
【0045】
システム10は、分スケールで純度のばらつきを通常引き起こす状況において(例えば、酸素)純度を制御するよう構成される。上記のように、システム10は、一方のシーブベッドから他方のシーブベッドへの連続的な非対称のパージ体積の送達によって、シーブベッド12及び14からの非対称の生成物体積の補償を容易にするように構成されたアクティブ(切り替え可能)パージ弁30A及び30B(例えば、上記の電気作動ソレノイド弁及び/又は他の弁等)を含む。有利に、これは、さらなる動力又は生成物タンクを必要とせずに、システム10によって送達される安定した酸素純度をもたらす。非対称のパージガス体積制御は、多くの及び/又は全ての負荷状態において(例えば、対象者18が完全に不規則に呼吸する場合であっても)適用可能であってもよい。非対称のパージガス体積制御は、従来のセンサ信号(例えば、シーブベッド圧力曲線、生成物O含有量)を含む他の制御アルゴリズム及びシステムパラメータ(例えば、ハーフサイクル時間、同等化時間、圧縮機RPM等)とは無関係に適用されてもよい。実際、システム10は、従来の制御アルゴリズムが適用される前の最初のステップとして、本明細書において記載される動作を行うことができる。このようにして、従来の制御アルゴリズムは、圧縮機RPMを増加させる(例えば、対応する装置入力電力の増加を必要とする)ことによって、分スケールの酸素生成物純度の低下を補償することが多いため、POC動作の効率が高められる。
【0046】
図1A~1Dにおいて示されているシステム10の構成要素に戻ると、センサ20は、対象者18の呼吸に関する情報を伝達する1つ以上の出力信号を生成するように構成される。一部の実施形態において、対象者18の呼吸に関する情報は、システム10内のガスの1つ以上のガスパラメータ、対象者18の呼吸パラメータ、及び/又は他の情報であってもよく及び/又はそれらを含んでもよい。一部の実施形態において、システム10は、対象者18にガスを提供するカニューレライン内の圧力低下に基づき吸息の開始を感知するように構成される。
【0047】
センサ20は、直接及び/又は間接的に対象者18の呼吸に関する情報を伝達する出力信号を生成する1つ以上のセンサを含んでもよい。例えば、1つ以上のセンサ20は、対象者18の呼吸によって引き起こされるガスの流れに基づき直接的に、対象者18の心拍数(例えば、センサ20は、対象者18の胸部に位置する及び/又は対象者18の手首のブレスレットとして構成された及び/又は対象者18の別の肢に位置する心拍数センサであってもよく及び/又はそれを含んでもよい)、対象者18の動き(例えば、センサ20は、呼吸がアクチグラフィ信号を使用して分析され得るように、加速度計を有する対象者18の手首及び/又は足首の周囲のブレスレットを含んでもよい)、及び/又は、対象者18の他の特徴に基づき間接的に出力信号を生成することができる。センサ20は、対象者18に近接したシステム10の流路における単一の位置において例示されているけれども、これは、限定的であることを意図していない。センサ20は、例えば、対象者12にガスを送達するカニューレ、対象者18によって装着されるマスク若しくは他のインターフェース装置内(又はそれと通信して)等、複数の位置に配置された、対象者18の衣服に(取り外し可能な方法で)結合された、ヘッドバンド、リストバンド等として対象者18によって装着された、(例えば、対象者18の胸の動きに関する出力信号を伝達するカメラ等)対象者18を指すように及び/又は他の位置に置かれたセンサを含んでもよい。
【0048】
プロセッサ24は、システム10において情報処理能力を提供するように構成される。そのようなものとして、プロセッサ24は、デジタルプロセッサ、アナログプロセッサ、情報を処理するように設計されたデジタル回路、情報を処理するように設計されたアナログ回路、ステートマシン、及び/又は、情報を電子的に処理するための他の機構のうち1つ以上を含んでもよい。プロセッサ24は、単一の実体として図1A~1Dにおいて示されているけれども、これは、単に例示を目的としているだけである。一部の実施形態において、プロセッサ24は、複数の処理ユニットを含んでもよい。これらの処理ユニットは、同じ装置(例えば、ポータブル酸素濃縮システム等)内に物理的に配置されてもよく、又は、プロセッサ24は、協調して動作する複数の装置の処理機能を表してもよい。一部の実施形態において、プロセッサ24は、デスクトップコンピュータ、ラップトップコンピュータ、スマートフォン、タブレットコンピュータ、サーバ、及び/又はシステム10に関連する他の計算装置等の計算装置であってもよく及び/又はそれらに含まれてもよい。そのような計算装置は、システム10とのユーザ対話を容易にするように構成されたグラフィカルユーザインタフェースを有する1つ以上の電子アプリケーションを実行することができる。
【0049】
図1A~1Dにおいて示されているように、プロセッサ24は、1つ以上のコンピュータプログラムコンポーネントを実行するように構成される。コンピュータプログラムコンポーネントは、例えば、プロセッサ24に組み込まれた及び/又さもなければコードされたソフトウェアプログラム及び/又はアルゴリズムを含んでもよい。1つ以上のコンピュータプログラムコンポーネントは、制御コンポーネント40、非対称コンポーネント42、調整コンポーネント44、及び/又は他のコンポーネントのうち1つ以上を含んでもよい。プロセッサ24は、ソフトウェア、ハードウェア、ファームウェア、ソフトウェア、ハードウェア、及び/又はファームウェアのある組み合わせ、及び/又は、プロセッサ24上の処理能力を構成するための他の機構によって、コンポーネント40、42、及び/又は44を実行するように構成されてもよい。
【0050】
コンポーネント40、42、及び44は、単一の処理ユニット内に同一場所に配置されているとして図1A~1Dにおいて例示されているけれども、プロセッサ24が複数の処理ユニットを含む実施形態では、コンポーネント40、42、及び/又は44のうち1つ以上が、他のコンポーネントから離れた場所に位置してもよいことを正しく理解するべきである。コンポーネント40、42、及び/又は44のいずれも、記載されるよりも多い又は少ない機能を提供することができるため、以下に記載される異なるコンポーネント40、42、及び/又は44によって提供される機能の説明は、例示目的のためであり、限定的であると意図されない。例えば、コンポーネント40、42、及び/又は44のうち1つ以上を排除することができ、その機能の一部又は全部を他のコンポーネント40、42、及び/又は44によって提供することができる。別の例として、プロセッサ24は、コンポーネント40、42、及び/又は44のうち1つに帰属される機能の一部又は全部を行うことができる1つ以上のさらなるコンポーネントを実行するように構成されてもよい。
【0051】
制御コンポーネント40は、PSAプロセスの濃縮ガス生成及びパージサイクルの間に、シーブベッド12及び14に出入りするガスの流れを制御するように構成される。制御コンポーネント40は、1つ又は複数のセンサ20からの出力信号及び/又は他の情報に基づき、PSAプロセスの濃縮ガス生成及びパージサイクルの間に、弁22に、シーブベッド12及び14に出入りするガスの流れを制御させるように構成される。一部の実施形態において、制御コンポーネント40は、対象者18における吸息の開始又は他の呼吸努力を示す上記の1つ以上の呼吸パラメータに基づきガスの流れを制御するように構成される。例えば、制御コンポーネント40は、オンデマンドで濃縮酸素が対象者18に供給されることを確実にするために、1つ以上の弁22を制御することができる。この例を用いて続けると、制御コンポーネント40は、パージ弁30A及び30Bに、対応するPSAプロセスのパージサイクルの間に、シーブベッド12及び14に出入りするガスの流れを制御させるように構成されてもよい。
【0052】
非対称コンポーネント42は、一対のシーブベッドにおける一方のシーブベッド(例えば、シーブベッド12等)によって生成される濃縮ガスの体積が、一対のシーブベッドにおける他方のシーブベッド(例えば、シーブベッド14等)によって生成される濃縮ガスの体積とは異なるかどうかを決定するように構成される。非対称コンポーネント42は、出力信号に基づき、弁22にシーブベッド12及び14に出入りするガスの流れを制御させることが、一対のシーブベッドにおける一方のシーブベッド(例えば、シーブベッド12等)によって生成される濃縮ガスの体積を、一対のシーブベッドにおける他方のシーブベッド(例えば、シーブベッド14等)によって生成される濃縮ガスの体積とは異なるようにしたかどうかを決定するように構成される。
【0053】
一部の実施形態では、出力信号に基づき、弁22に一対のシーブベッド12及び14に出入りするガスの流れを制御させることが、一対のシーブベッドにおける一方のシーブベッドによって生成される濃縮ガスの体積を、一対のシーブベッドにおける他方のシーブベッドによって生成される濃縮ガスの体積とは異なるようにしたかどうかを決定することが、(1)各シーブベッドから対象者に送達される濃縮ガスのボーラスの数をカウントし、各シーブベッドからのカウントを互いに比較すること、又は、(2)各シーブベッドから対象者に送達されるボーラスに対して、経時的に濃縮ガスのボーラスの流量を積分して、各シーブベッドから送達される総ボーラス体積を決定し、さらに(3)各シーブベッドからの総ボーラス体積を互いに比較することを含む。一部の実施態様において、非対称コンポーネント42は、1つのPSAサイクルにおいて、各シーブベッド(12及び14)によって供給されるガス(例えば、酸素)生成物体積VA及びVBを決定し、さらに、差ΔV=VA-VBを決定するように構成される。
【0054】
上記の段落をさらに詳しく説明すると、ボーラス体積(VP)を一定に保つために、制御コンポーネント40がシステム10の他のコンポーネントを制御している場合、非対称コンポーネント42は、1つのPSAサイクル(NA、NB)において、各シーブベッド12及び14によって送達されるボーラスの数をカウントし、各側からのボーラスの数と、対応するボーラス体積とを掛けるように構成され(上記の段落におけるオプション(1)):VA=NA*VP、VB=NB*VP、これによって、ΔV=VA-VB=(NA-NB)*VPが得られる。送達されるボーラス体積が一定でない(上記の段落におけるオプション(2)の)場合、非対称コンポーネント42は、ボーラス送達時間にわたって、1つのボーラス内のガス(例えば、O)生成物流量を積分して(ΦP(t))、個々のボーラス体積(VP)を得るように構成され、これらは、それぞれVA及びVBを得るために、1つのPSAサイクルにわたって合計される。ΦP(t)という用語は、例えば、既知の(例えば、O)経路抵抗にわたる圧力差の測定値(Δp(t))に基づき決定される。これは、Δp(t)へのΦP(t)の依存性の実験的なフィットによって、ΦP(t)はΔp(t)^0.537に比例するということが得られたため、例えば、生成物送達弁31であってもよい。
【0055】
一部の実施態様において、非対称コンポーネント42は、一対のシーブベッド12及び14における一方のシーブベッドによって生成される濃縮ガスの体積が、一対のシーブベッド12及び14における他方のシーブベッドによって生成される濃縮ガスの体積と異なる量が、体積差閾値を超過するかどうかを決定するように構成される。体積差閾値は、対象者18又は対象者18と人口統計学的に類似したユーザに対する以前の療法セッションからの情報に基づき、非対称コンポーネント42によって決定されてもよく、システム10の製造時に決定されてもよく、対象者18及び/又は他のユーザによってシステム10のユーザインターフェースを介して入力及び/又は選択されてもよく、及び/又は、他の方法で決定されてもよい。
【0056】
調整コンポーネント44は、非対称コンポーネント42による、シーブベッド12及び14によって生成される濃縮ガスの体積が異なる(例えば、一対のシーブベッドにおける一方のシーブベッド(例えば、シーブベッド12等)によって生成される濃縮ガスの体積が、一対のシーブベッドにおける他方のシーブベッド(例えば、シーブベッド14等)によって生成される濃縮ガスの体積とは異なる)、又は、閾値量を超えて異なるという決定に応答して、異なるシーブベッド12及び14に対してガスの異なるパージ体積を決定するように構成される。これは、シーブベッド12及び14によって生成される濃縮ガスの異なる体積に基づき、シーブベッド12及び14に対してガスの異なるパージ体積を決定することを含む。
【0057】
例えば、調整コンポーネント44は、VpA-VpB=(VA-VB)/2となるように、次のPSAサイクルのために、ベッド12によって受けられるOパージ体積(VpA)及びベッド14によって受けられるOパージ体積(VpB)に対する調整を決定するように構成されてもよい。このようにして、Oの正味送達量(nVA=VA-VpA+VpB及びnVB=VB-VpB+VpA)は、同一(又はほぼ同一)であり(例えば、両方とも1/2*(VA+VB)に等しく)、シーブベッド12及び14内の状態は、可能な限り対称的なままであり得る。Oの正味送達量(例えば、nVA等)は、送達される生成物VA、B-VpAからの受けるパージ、及びB+VpBに対する送達されるパージの3つの項から構成されることを認識することが重要である。例えば、第3の項を省略すると、高過ぎる2倍のパージ補償が生じることになる。
【0058】
制御コンポーネント40は、PSAプロセスのパージサイクルが、シーブベッド12及び14に対して調整コンポーネント44によって決定される異なるパージ体積に基づき制御されるように構成される。一部の実施形態において、制御コンポーネント40は、PSAプロセスのパージサイクルの間に、弁22(例えば、パージ弁30A及び30B等)にパージ時間又はパージガスの流量を調整させることによって、シーブベッド12及び14に対して決定されたガスの異なるパージ体積に基づき、弁22にPSAプロセスのパージサイクルを制御させるように構成される。
【0059】
一部の実施形態では、シーブベッドに対して決定されたガスの異なるパージ体積に基づき、弁にPSAプロセスのパージサイクルを制御させることは、他方のシーブベッドに対して増加した体積の濃縮ガスを出力する一対のシーブベッドのうちの一方が、パージサイクルの間に他方のシーブベッドに対して増加した体積の濃縮ガスを受けるように、PSAプロセスのパージサイクルの間に、弁に、一方又は両方のシーブベッドに対するパージ時間又はパージガスの流量を増加又は減少させることを含む。
【0060】
例えば、一部の実施態様において、制御コンポーネント40は、VpAを+(VA-VB)/2だけ増加させることによって、又は、VpBを-(VA-VB)/2だけ減少させることによって、一方のシーブベッドのみのパージ体積を調整するように構成される。有利に、このシングルパージ調整補償は、1つのパラメータ(例えば、一方のシーブベッドのパージ体積)のみの調整を含む。一部の実施態様において、制御コンポーネント40は、デュアルパージ調整補償のために構成される。これらの実施形態において、制御コンポーネント40は、+(VA-VB)/4だけVpAを増加させ、同時に-(VA-VB)/4だけVpBを減少させてもよい。デュアルパージ調整補償は、少なくとも2つのパラメータ(例えば、両方のシーブベッド12及び14のパージ体積等)の調整を含むが、必要とされる変更の大きさ((VA-VB)/4)は、シングルパージ調整補償に必要とされる変更の大きさ((VA-VB)/2)の半分であるという利点を有する。有利に、デュアルパージ調整補償で、より広い範囲の非対称性を、他の制御パラメータ値の所与の範囲内で補正することができる。
【0061】
パージ体積(Vp)は、Vp=Φp*tpとなるように、パージ流量(Φp)とパージ時間(Δtp)の積である。上記のように、制御コンポーネント40は、PSAプロセスのパージサイクルの間に、一方又は両方のシーブベッド12及び14に対してパージ流量(Φp)又はパージ時間(tp)(又は両方)を調整する(例えば、増加又は減少させる)ことによって、パージ体積(VpA及び/又はVpB)を調整することができる。非限定的な例として、制御コンポーネント40は、ガス(例えば、O)パージ流のための並列経路のオン/オフを切り替えることによって、比例弁を使用してパージ流を変えることによって、及び/又は他の操作によって、パージ流量(Φp)を調整することができる。別の非限定的な例として、制御コンポーネント40は、アクティブ(切り替え可能)パージ弁30A及び30B(例えば、電気作動ソレノイド弁等)を制御して、パージ時間(例えば、弁が開いている時間等)、tpA、及びtpBを調整して、VpA及びVpBの所望の調整を実現することができる。
【0062】
一部の実施形態において、制御コンポーネント40は、シーブベッド12及び14に対して決定されたガスの異なるパージ体積に基づき、弁22にPSAプロセスのパージサイクルを制御させて、対象者18への送達のための濃縮ガスの目標純度を維持するように構成される。目標純度は、対象者18又は対象者18と人口統計学的に類似したユーザに対する以前の療法セッションからの情報に基づき制御コンポーネント40によって決定されてもよく、システム10の製造時に決定されてもよく、対象者18及び/又は他のユーザによってシステム10のユーザインターフェースを介して入力及び/又は選択されてもよく、及び/又は、他の方法で決定されてもよい。
【0063】
実施例
システム10は、Φp=0.5slpmのO生成物出力設定で動作すると仮定する。POCのサイクル時間はtcyc=9s(ハーフサイクル時間thcyc=4.5s)であり、対象者18は、BR=20呼吸/分の一定の呼吸速度で呼吸している。これは、(上記のように)負荷状態がシーブベッドに関して非対称であることを意味する。1サイクル当たり及び1ベッド当たりのボーラス数をカウントすることによって、1サイクル当たり、ベッド12は2ボーラスを生成し、ベッド14は1ボーラスのみを生成していることが明らかになる。図5は、シーブベッド12からのボーラス及びシーブベッド14からのボーラスに対する圧力507対時間509のトレース501及び503をそれぞれ例示している。図5において示されているように、各ボーラスは、各ベッドからのボーラスに対する圧力トレースにおける沈み500(2つのボーラスに対応する2つの沈み)又は502(1つのボーラスに対応する1つの沈み)によって反映されている。
【0064】
この例において、1ベッド当たりの1サイクル当たりの目標O出力は、Vt=Φp*thcyc=37.5smL(smL=標準mL)である。ボーラス体積は、VP=Φp/BR=25smLである。従って、1サイクル当たりの実際の(酸素)生成物体積は、VA=2*VP=50smL及びVB=1*VP=25smLである。次に、O生成物の非対称性はΔV=VA-VB=+25smLである。この非対称の負荷状態(及び対称のパージ時間tpA=tpB=2.75s)において、シーブベッド12は、各サイクルの間にVt-VA=-12.5smLのOを失うことになり、これは、シーブベッド12におけるNの突破及び不十分なO生成物純度(この例では、≒83%)をもたらす可能性がある。
【0065】
この負荷の非対称性を補償するために、この例において、システム10(図1A~1Dにおいて示されている制御コンポーネント40)は、デュアルパージ調整補償を使用し、(上記の)パージオリフィスを通るパージ流Φpの決定に基づき、パージ時間tpA及びtpBを調整する。この例において、パージ流は、効果的なオリフィスを通る流れとして記載されてもよく、これは、経験的に、式Φp=Φ0*0.0641*((phigh-plow)/psig)^0.537*(plow/psig+14.5)^0.49に従う。ここで、plow=オリフィスの「下端」における圧力であり、phigh=オリフィスの「上端」における圧力であり、Φ0=オリフィス定数[slpm]である。オリフィス定数Φ0は、Φ0[slpm]=10397*(d[in])となるように、オリフィス直径dの二乗に比例する。オリフィス直径d=0.020インチに対して、Φ0orifice=4.16slpmである。このオリフィスと直列のパージ弁及び他のチューブがパージ流をわずかに減少させることを考慮すると、「効果的な」パージオリフィスに対する良好な推定値はΦ0≒4.0slpmであってもよい。圧力トレース(図5)から、制御コンポーネント40は、パージ時間の間の「高い」シーブ圧力の平均としてのphighを、phigh≒10.83psigとして決定し、パージ時間の間の「低い」シーブ圧力の平均としてのplowを、plow≒1.25psigとして決定することができる。最後に、パージ流Φpは、Φp=Φ0*0.0641*((phigh-plow)/psig)^0.537*(plow/psig+14.5)^0.49=3.33slpmになる。従って、パージ時間の理論上の非対称性は、Δtp=(ΔV/2)/Φp=12.5smL/3.33slpm=0.225sとなるはずである。
【0066】
図6は、上記の(例えば、システム10が、シーブベッド12から2つのボーラス及びシーブベッド14から1つのボーラスを非対称に送達する場合の)例に対する、平均O生成物純度600及びシーブベッドパージ時間tpA602及びtpB604を例示している。図6において示されているように、最初の15分間ガスが対象者18(図1A~1D)に送達された間、パージ時間は対称的であり(tpA=tpB=2.75s)、生成物純度は低い(83.3%)。次に、パージ体積(この例では時間)が、異なるシーブベッドからの非対称のボーラス送達を補償するために、本明細書において記載されるように調整される(tpA=2.9s、tpB=2.6s、これによって、Δtp=tpA-tpB=0.30sが与えられる)。これは、次の3分以内に(酸素)生成物純度の(90.2%までの)増加をもたらす。しかし、次に、生成物純度は約1%だけ再び減少し、これは、パージ体積の調整(例えば、この例ではパージ時間の調整等)が大きすぎて、負荷の非対称性を過補償し、シーブベッド14を正味O損失の状態にしたことを示している。最後に、図6は、tpA=2.87s及びtpA=2.63sを設定し、これによって、Δtp=tpA-tpB=0.24sが与えられることによって、以前のパージ補償を低減するために行われる第2の是正調整を例示している。この値は0.225sの理論上の値(上記参照)に非常に近く、その結果、生成物純度は再び上昇し、約89.6%で安定化する。
【0067】
第2の調整の後で、生成物純度は、以前のパージ時間の変化の間に観察された90.2%の最大値に達しなかったことに留意されたい。これは、パージ時間の最適な設定が、同じ方向において(小さな)あと一歩のところであることを示している。このようにして、システム10(図1A~1D)は、理論上の値が単なる推定値であって、正確な値ではないため、パージ時間に対する最適な設定を見出すために(例えば)パージ時間の小さな調整を行うことができる。
【0068】
図7は、ポータブル酸素濃縮システムが酸素を濃縮する方法700を例示している。このシステムは、一対のシーブベッド、圧力発生器、1つ以上のセンサ、1つ以上の弁、1つ以上の物理コンピュータプロセッサ、及び/又は他の構成要素を含む。1つ以上の物理コンピュータプロセッサは、コンピュータプログラムコンポーネントを実行するように構成される。コンピュータプログラムコンポーネントは、制御コンポーネント、非対称コンポーネント、調整コンポーネント、及び/又は他のコンポーネントを含む。以下において示されている方法700の動作は、例示的であることを意図している。一部の実施形態において、方法700は、記載されていない1つ以上のさらなる動作を伴って、及び/又は、論じられている動作のうち1つ以上を伴わずに成し遂げられてもよい。加えて、方法700の動作が図7において例示され、以下に記載される順序は、限定的であることを意図しない。
【0069】
一部の実施形態において、方法700は、1つ以上の処理装置(例えば、デジタルプロセッサ、アナログプロセッサ、情報を処理するように設計されたデジタル回路、情報を処理するように設計されたアナログ回路、ステートマシン、及び/又は情報を電子的に処理するための他の機構等)において実施されてもよい。1つ以上の処理装置は、電子記憶媒体上に電子的に格納された命令に応答して、方法700の動作の一部又は全部を実行する1つ以上の装置を含んでもよい。1つ以上の処理装置は、方法700の動作のうち1つ以上の実行のために特に設計されることになるハードウェア、ファームウェア、及び/又はソフトウェアを介して構成される1つ以上の装置を含んでもよい。
【0070】
動作702において、加圧ガスが発生され、シーブベッドを通して導かれる。一部の実施形態において、動作702は、(図1A~1Dにおいて示され、本明細書において記載される)圧力発生器16と同じ又は類似の圧力発生器によって行われる。
【0071】
動作704において、濃縮ガスが、圧力スイング吸着プロセス(PSA)で、対象者への送達のためにシーブベッドから出力される。PSAプロセスは、シーブベッドのうち一方が濃縮ガス生成サイクルを介して交替する場合に、他方のシーブベッドがパージサイクルを介して交替するように、シーブベッドの各々について濃縮ガス生成及びパージサイクルを交互に行うことを含む。一部の実施態様において、動作704は、(図1A~1Dにおいて示され、本明細書において記載される)シーブベッド12及び14と同じ又は類似のシーブベッドによって行われる。
【0072】
動作706において、対象者の呼吸に関する情報を伝達する出力信号が生成される。一部の実施形態において、動作706は、(図1A~1Dにおいて示され、本明細書において記載される)センサ20と同じ又は類似する1つ以上のセンサによって行われる。
【0073】
動作708において、PSAプロセスの濃縮ガス生成及びパージサイクルの間に、シーブベッドに出入りするガスの流れが制御される。動作708は、出力信号に基づき、PSAプロセスの濃縮ガス生成及びパージサイクルの間に、弁に一対のシーブベッドに出入りするガスの流れを制御させることを含む。一部の実施形態において、動作708は、(図1A~1Dにおいて示され、本明細書において記載される)弁22及び制御コンポーネント40と同じ又は類似の弁及びプロセッサコンポーネントによって行われる。一部の実施形態において、弁は、2つ以上の供給弁及び2つ以上のパージ弁を含み、動作708は、2つ以上のパージ弁が、PSAプロセスのパージサイクルの間に、一対のシーブベッドに出入りするガスの流れを制御することを含む。
【0074】
動作710において、一対のシーブベッドにおける一方のシーブベッドによって生成される濃縮ガスの体積が、一対のシーブベッドにおける他方のシーブベッドによって生成される濃縮ガスの体積とは異なるかどうかの決定が行われる。動作710は、出力信号に基づき、弁に一対のシーブベッドに出入りするガスの流れを制御させることが、一対のシーブベッドにおける一方のシーブベッドによって生成される濃縮ガスの体積を、一対のシーブベッドにおける他方のシーブベッドによって生成される濃縮ガスの体積とは異なるようにしたかどうかを決定することを含む。一部の実施形態において、出力信号に基づき、弁に一対のシーブベッドに出入りするガスの流れを制御させることが、一対のシーブベッドにおける一方のシーブベッドによって生成される濃縮ガスの体積を、一対のシーブベッドにおける他方のシーブベッドによって生成される濃縮ガスの体積とは異なるようにしたかどうかを決定することが、(1)各シーブベッドから対象者に送達される濃縮ガスのボーラスの数をカウントし、各シーブベッドからのカウントを互いに比較すること、又は、(2)各シーブベッドから対象者に送達されるボーラスに対して、経時的に濃縮ガスのボーラスの流量を積分して、各シーブベッドから送達される総ボーラス体積を決定し、さらに(3)各シーブベッドからの総ボーラス体積を互いに比較することを含む。一部の実施形態において、動作710は、(図1A~1Dにおいて示され、本明細書において記載される)非対称コンポーネント42と同じ又は類似のプロセッサコンポーネントによって行われる。
【0075】
動作712において、シーブベッドによって生成される濃縮ガスの体積が異なる(例えば、一対のシーブベッドにおける一方のシーブベッドによって生成される濃縮ガスの体積が、一対のシーブベッドにおける他方のシーブベッドによって生成される濃縮ガスの体積とは異なる)という決定に応答して、ガスの異なるパージ体積が、シーブベッドに対して決定され、さらに、PSAプロセスのパージサイクルが、シーブベッドに対して決定された異なるパージ体積に基づき制御される。これには、シーブベッドによって生成される濃縮ガスの異なる体積に基づき、シーブベッドに対してガスの異なるパージ体積を決定すること、及び、シーブベッドに対して決定されたガスの異なるパージ体積に基づき、弁にPSAプロセスのパージサイクルを制御させることが含まれる。一部の実施形態において、動作712は、シーブベッドに対して決定されたガスの異なるパージ体積に基づき、弁にPSAプロセスのパージサイクルを制御させて、対象者への送達のための濃縮ガスの目標純度を維持することを含む。一部の実施形態において、シーブベッドに対して決定されたガスの異なるパージ体積に基づき、弁にPSAプロセスのパージサイクルを制御させることは、PSAプロセスのパージサイクルの間に、弁にパージ時間又はパージガスの流量を調整させることを含む。一部の実施形態において、シーブベッドに対して決定されたガスの異なるパージ体積に基づき、弁にPSAプロセスのパージサイクルを制御させることは、他方のシーブベッドに対して増加した体積の濃縮ガスを出力する一対のシーブベッドのうちの一方が、パージサイクルの間に他方のシーブベッドに対して増加した体積の濃縮ガスを受けるように、PSAプロセスのパージサイクルの間に、弁に、一方又は両方のシーブベッドに対するパージ時間又はパージガスの流量を増加又は減少させることを含む。一部の実施形態において、動作712は、(図1A~1Dにおいて示され、本明細書において記載される)非対称コンポーネント42及び制御コンポーネント40と同じ又は類似のプロセッサコンポーネントによって行われる。
【0076】
一部の実施態様において、動作710及び712は、(1)一対のシーブベッドにおける一方のシーブベッドによって生成される濃縮ガスの体積が、一対のシーブベッドにおける他方のシーブベッドによって生成される濃縮ガスの体積と異なる量が、体積差閾値を超過するかどうかを決定すること、さらに、一対のシーブベッドにおける一方のシーブベッドによって生成される濃縮ガスの体積が、一対のシーブベッドにおける他方のシーブベッドによって生成される濃縮ガスの体積と異なる量が体積差閾値を超過すると決定することに応答して、(2)シーブベッドによって生成される濃縮ガスの異なる体積に基づき、シーブベッドに対してガスの異なるパージ体積を決定すること、及び(3)シーブベッドに対して決定されたガスの異なるパージ体積に基づき、弁にPSAプロセスのパージサイクルを制御させることを含む。
【0077】
特許請求の範囲において、括弧内に置かれたいかなる参照番号も特許請求の範囲を限定するとして解釈するべきではない。「含む(“comprising”又は“including”)」という単語は、請求項に述べられたもの以外の要素又はステップの存在を除外しない。いくつかの手段を列挙する装置の請求項において、これらの手段のうちいくつかは、1つの且つ同じハードウェアのアイテムによって実現することができる。単数名詞を言及する際に不定冠詞又は定冠詞が使用されている場合は、その名詞の複数形の存在を除外しない。いくつかの手段を列挙するいかなる装置の請求項においても、これらの手段のうちいくつかは、1つの且つ同じハードウェアのアイテムによって実現することができる。特定の要素が互いに異なる従属項において記載されるという単なる事実は、これらの要素を組み合わせて使用することができないと示しているのではない。
【0078】
先に提供した記載は、最も実用的で好ましい実施形態であると現在考慮されるものに基づき例示を目的として詳細を提供しているけれども、そのような詳細は単にその目的のためだけであり、本開示は、明示的に開示された実施形態に限定されないが、それどころか、付随の特許請求の範囲の真意及び範囲内にある修正及び同等の構成をカバーするよう意図されることを理解されたい。例えば、本開示は、可能な限り、いかなる実施形態の1つ以上の特徴もいかなる他の実施形態の1つ以上の特徴とも組み合わせることができると熟考していることを理解されたい。
図1A
図1B
図1C
図1D
図2
図3
図4
図5
図6
図7