IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

<>
  • -レーザ装置 図1
  • -レーザ装置 図2
  • -レーザ装置 図3
  • -レーザ装置 図4A
  • -レーザ装置 図4B
  • -レーザ装置 図4C
  • -レーザ装置 図5
  • -レーザ装置 図6
  • -レーザ装置 図7
  • -レーザ装置 図8
  • -レーザ装置 図9
  • -レーザ装置 図10
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-12-28
(45)【発行日】2024-01-12
(54)【発明の名称】レーザ装置
(51)【国際特許分類】
   B23K 26/00 20140101AFI20240104BHJP
   B23K 26/064 20140101ALI20240104BHJP
【FI】
B23K26/00 M
B23K26/064 K
【請求項の数】 6
(21)【出願番号】P 2019540988
(86)(22)【出願日】2018-09-06
(86)【国際出願番号】 JP2018032950
(87)【国際公開番号】W WO2019049914
(87)【国際公開日】2019-03-14
【審査請求日】2021-08-25
(31)【優先権主張番号】P 2017174074
(32)【優先日】2017-09-11
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】314012076
【氏名又は名称】パナソニックIPマネジメント株式会社
(74)【代理人】
【識別番号】100106116
【弁理士】
【氏名又は名称】鎌田 健司
(74)【代理人】
【識別番号】100131495
【弁理士】
【氏名又は名称】前田 健児
(72)【発明者】
【氏名】堂本 真也
(72)【発明者】
【氏名】加藤 直也
(72)【発明者】
【氏名】石川 諒
【審査官】柏原 郁昭
(56)【参考文献】
【文献】国際公開第2017/139630(WO,A1)
【文献】米国特許出願公開第2006/0013532(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
B23K 26/00
B23K 26/064
G02B 6/00
(57)【特許請求の範囲】
【請求項1】
レーザビームを発生するレーザ発振器と、
前記レーザ発振器から出射された前記レーザビームを集光する集光レンズと、
前記集光レンズで集光された前記レーザビームを伝送するコアと前記コアの周囲に設けられたクラッドとを少なくとも有する伝送ファイバと、
前記レーザビームが前記伝送ファイバのレーザビーム入射部に入射されるときに、前記レーザビーム入射部で反射あるいは散乱された前記レーザビームの光量を含む光量を検出する反射光モニタと、
前記反射光モニタが検出した光量が低減するように、前記集光レンズの位置を調整するレンズ駆動部と、を備えるレーザ装置。
【請求項2】
請求項に記載のレーザ装置において、
前記反射光モニタが検出する光量は、前記レーザ発振器から出射された前記レーザビームの出力に比例して検出される光量を含み、
前記レーザ発振器から出射された前記レーザビームの一部の光量を検出する出力光モニタをさらに備え、
前記レンズ駆動部は、前記出力光モニタが検出した光量に基づいて、前記レーザ発振器から出射された前記レーザビームの出力に比例して検出される光量を算出し、算出した光量を、前記反射光モニタが検出した光量から差し引いた光量が低減するように、前記集光レンズの位置を調整することを特徴とするレーザ装置。
【請求項3】
請求項1または2のいずれか1項に記載のレーザ装置において、
前記レンズ駆動部は、前記レーザ発振器がレーザ発振を断続的に繰り返す断続発振期間におけるレーザ発振中に前記集光レンズを所定の位置から前記レーザビームの進行方向に沿って移動させ、レーザ発振停止後に所定の時間をかけて前記所定の位置に戻すことにより、前記断続発振期間を通じて前記クラッドに入射される前記レーザビームの光量を低減することを特徴とするレーザ装置。
【請求項4】
請求項1ないしのいずれか1項に記載のレーザ装置において、
前記レンズ駆動部は、前記レーザ装置内での温度上昇に起因した熱レンズ効果によって前記レーザビームの焦点位置がシフトするのを補償するように前記集光レンズの位置を調整することを特徴とするレーザ装置。
【請求項5】
請求項1ないしのいずれか1項に記載のレーザ装置において、
前記レーザ発振器は、互いに異なる波長のレーザビームを発する複数のレーザモジュールと、
前記複数のレーザモジュールから出射された互いに異なる波長の複数のレーザビームを波長合成して一つのレーザビームとして出射するビーム合成器と、を有することを特徴とするレーザ装置。
【請求項6】
レーザビームを発生するレーザ発振器と、
前記レーザ発振器から出射された前記レーザビームを集光する集光レンズと、
前記集光レンズで集光された前記レーザビームを伝送するコアと前記コアの周囲に設けられたクラッドとを少なくとも有する伝送ファイバと、
前記クラッドに入射される前記レーザビームの光量を低減するように前記集光レンズの位置を調整するレンズ駆動部と、を備え、
前記レンズ駆動部は、前記レーザ発振器による加工中に調整されることを特徴とするレーザ装置。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、レーザ装置に関し、より詳細には、集光レンズを用いてレーザ発振器から出射されたレーザビームを伝送ファイバに伝送するレーザ装置に関する。
【背景技術】
【0002】
近年、ダイレクトダイオードレーザ(以下、「DDL」という)の高出力化に伴い、DDLを用いたレーザ加工装置の開発が加速している。DDLは複数のレーザモジュールから出射されたレーザビームを合成することで数kWを超える高い出力を得ることができる。ビーム合成器から出射されたレーザビームは、伝送ファイバを介して所定の位置に設置された加工ヘッドに伝送される。この際、ビーム合成器から出射されたレーザビームは集光レンズで集光され、伝送ファイバのレーザビーム入射端面(以下、単に「入射端面」という)において、その集光スポット(以下、単に「スポット」という)が伝送ファイバのコアに収まるサイズまで縮小されて伝送ファイバに入射される(例えば、特許文献1参照)。
【先行技術文献】
【特許文献】
【0003】
【文献】国際公開第2016/152404号
【発明の概要】
【発明が解決しようとする課題】
【0004】
ところで、レーザビームの発振前に、伝送ファイバの入射端面においてレーザビームのスポットが伝送ファイバのコアに収まるように、集光レンズの位置が調整される。しかしながら、レーザビームの発振後にレーザビームの焦点位置がずれることにより、そのスポットが伝送ファイバのコアに入りきらず、クラッドに漏れ込む光の光量が増加する場合がある。
【0005】
例えば、集光レンズ等の光学素子にレーザビームを入射すると、熱レンズ効果と呼ばれる現象が生じる場合がある。図10は、熱レンズ効果によるレーザビーム70の焦点位置のシフトを説明する模式図である。同図において、集光レンズ21にレーザビーム70が入射した直後のレーザビーム70の焦点位置をf0とする。集光レンズ21にレーザビーム70が入射し続けると、集光レンズ21はレーザビーム70の一部を吸収してその温度が上昇し熱膨張する。この熱膨張により、レーザビーム70の焦点位置がレンズ側にシフト、この場合はf1の位置にシフトする。この現象が前述の熱レンズ効果である。つまり、集光レンズ21通過後のレーザビーム70は、集光レンズ21の熱膨張に応じて異なる位置に焦点位置を有することになる。
【0006】
しかし、上記従来の構成において、レーザビームのスポット径に対して伝送ファイバのコア径に十分な余裕がない場合、レーザビームの焦点位置がずれることにより伝送ファイバでの漏れ光、つまり、伝送ファイバのコアに入りきらず、クラッドに漏れ込む光の光量が増加することになる。この漏れ光の増加は伝送ファイバで伝送されるレーザビームの出力低下や、伝送ファイバの入射端面近傍の局所的な発熱を招くおそれがある。特に、発熱によるダメージが蓄積すると伝送ファイバの破損に至るおそれがある。
【0007】
本開示はかかる点に鑑みなされたもので、その目的は、集光レンズを用いて伝送ファイバにレーザビームを伝送するレーザ装置において、伝送ファイバでの漏れ光を低減するレーザ装置を提供することにある。
【課題を解決するための手段】
【0008】
示は、レーザビームを発生するレーザ発振器と、レーザ発振器から出射されたレーザビームを集光する集光レンズと、集光レンズで集光されたレーザビームを伝送するコアとコアの周囲に設けられたクラッドとを少なくとも有する伝送ファイバと、光レンズの位置を調整するレンズ駆動部と、前記レーザビームが前記伝送ファイバのレーザビーム入射部に入射されるときに、前記レーザビーム入射部で反射あるいは散乱された前記レーザビームの光量を含む光量を検出する反射光モニタと、を備え、前記レンズ駆動部は、前記反射光モニタが検出した光量が低減するように、前記集光レンズの位置を調整することを特徴とするレーザ装置を提供する。
また、本開示は、レーザビームを発生するレーザ発振器と、前記レーザ発振器から出射された前記レーザビームを集光する集光レンズと、前記集光レンズで集光された前記レーザビームを伝送するコアと前記コアの周囲に設けられたクラッドとを少なくとも有する伝送ファイバと、前記クラッドに入射される前記レーザビームの光量を低減するように前記集光レンズの位置を調整するレンズ駆動部と、を備え、前記レンズ駆動部は、前記レーザ発振器による加工中に調整されることを特徴とするレーザ装置を提供する。
【発明の効果】
【0009】
本開示によれば、伝送ファイバでの漏れ光、すなわち、伝送ファイバのクラッドに直接入射されるレーザビームの光量を低減することができる。
【図面の簡単な説明】
【0010】
図1】実施形態1に係るレーザ装置の構成を示す図である。
図2図1におけるII-II線での断面模式図である。
図3】レンズ駆動部の機能ブロック図である。
図4A】伝送ファイバのレーザビーム入射端面におけるレーザビームの入射状態を示す模式図である。
図4B】伝送ファイバのレーザビーム入射端面におけるレーザビームの別の入射状態を示す模式図である。
図4C】伝送ファイバのレーザビーム入射端面におけるレーザビームのさらなる別の入射状態を示す模式図である。
図5】レンズ駆動部によるレーザビームの焦点位置シフトを補償する機能を説明する模式図である。
図6】伝送ファイバのレーザビーム入射部近傍の断面模式図である。
図7】レーザビーム出力と反射光モニタの検出信号との関係を示す図である。
図8】集光レンズ通過後のレーザビームの焦点位置に対する、反射光モニタの検出信号と出力光モニタの検出信号とレーザビーム出力との挙動を示す図である。
図9】実施形態2に係る集光レンズの位置調整手順を示すフローチャートである。
図10】熱レンズ効果によるレーザビームの焦点位置シフトを説明する模式図である。
【発明を実施するための形態】
【0011】
以下、本開示の実施形態を図面に基づいて詳細に説明する。以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本開示、その適用物或いはその用途を制限することを意図するものでは全くない。
【0012】
(実施形態1)
[レーザ装置の構成]
図1は、本実施形態に係るレーザ装置100の構成図である。また、図2は、図1におけるII-II線での断面模式図である。また、図3は、レンズ駆動部80の機能ブロック図である。なお、以降の説明において、図2におけるレーザビーム70が部分透過ミラー13に向かう方向をY方向、部分透過ミラー13から伝送ファイバ40に向かう方向をZ方向、Y方向及びZ方向と直交する方向をX方向と呼ぶことがある。なお、Z方向は、集光レンズユニット20から出射されるレーザビーム70の光軸方向に、レーザ装置100の光学系の組立公差の範囲で一致している。
【0013】
図1に示すように、レーザ装置100は、レーザ発振器10と、集光レンズユニット20と、レーザビーム出射ヘッド30と、伝送ファイバ40と、制御部50とを備えている。レーザ発振器10と、集光レンズユニット20と、伝送ファイバ40のレーザビーム入射部44(図2参照)とは筐体60内に収容されている。
【0014】
レーザ発振器10は、複数のレーザモジュール11とビーム合成器12とを有している。レーザ発振器10は、複数のレーザモジュール11からそれぞれ出射された異なる波長のレーザビームをビーム合成器12で一つのレーザビーム70に波長合成する。なお、以降の説明において、レーザ発振器10をDDL発振器と呼ぶことがある。また、レーザモジュール11自体が複数のレーザダイオードからなっており、例えば、半導体レーザアレイで構成されている。
【0015】
図2に示すように、ビーム合成器12で波長合成されたレーザビーム70は、集光レンズユニット20に配設された集光レンズ21で集光され、伝送ファイバ40に入射する。レーザ発振器10をこのような構成とすることで、レーザビーム出力が数kWを超える高出力のレーザ装置100を得ることができる。また、ビーム合成器12は内部に部分透過ミラー13と出力光モニタ14とを有している。部分透過ミラー13はビーム合成器12内で波長合成されたレーザビーム70を集光レンズユニット20に向けて偏向する一方、レーザビーム70の一部、例えば、0.1%を透過するように構成されている。出力光モニタ14は、部分透過ミラー13を透過したレーザビーム70を受光し、受光されたレーザビーム70の光量に対応する検出信号を生成するようにビーム合成器12内に配設されている。出力光モニタ14の機能については後述する。また、レーザ発振器10は、図示しない電源装置から電力が供給されてレーザ発振を行う。
【0016】
集光レンズユニット20は、内部に集光レンズ21とスライダ22と反射光モニタ23とを有している。集光レンズ21は、伝送ファイバ40の入射端面46において、伝送ファイバ40のコア径よりも小さいスポット径となるようにレーザビーム70を集光する。スライダ22は、制御部50からの制御信号に応じて集光レンズ21をZ方向に自動で移動可能に保持している。スライダ22は、例えば、モータ(図示せず)で駆動されるボールねじ(図示せず)に連結され、ボールねじの回転に伴い、Z方向に移動する。なお、スライダ22は、光学系の初期位置調整時に、主にXY方向に移動し、後述する焦点位置のシフト補償時にはZ方向に沿って移動する。XY方向へスライダ22が移動する際は手動でもよいし自動で移動してもよい。自動で移動する場合は、上記のボールねじ等がスライダ22に連結される。反射光モニタ23は、伝送ファイバ40のレーザビーム入射部44で反射または散乱されたレーザビーム70を受光して、受光されたレーザビーム70の光量に対応する検出信号を生成する。反射光モニタ23の機能については後述する。また、集光レンズユニット20はコネクタ24を有し、コネクタ24には伝送ファイバ40のレーザビーム入射部44が接続されている。また、コネクタ24は、伝送ファイバ40の入射端面46に接して設けられた石英ブロック25を保持している。石英ブロック25は入射端面46を保護する機能を有している。
【0017】
伝送ファイバ40は、レーザ発振器10及び集光レンズ21に光学的に結合され、集光レンズ21を介してレーザ発振器10から受け取ったレーザビーム70をレーザビーム出射ヘッド30に伝送する。また、伝送ファイバ40はレーザビーム70を伝送するコア41と、その周囲に設けられ、レーザビーム70をコア41内に閉じ込める機能を有するクラッド42と、クラッド42の表面を覆う被膜43とを有している(図6参照)。また、伝送ファイバ40のレーザビーム入射部44にはモードストリッパ45(図6参照)が設けられており、その詳細は後述する。なお、図示しないが、モードストリッパ45は、伝送ファイバ40のレーザビーム出射部にも設けられている。
【0018】
レーザビーム出射ヘッド30は、伝送ファイバ40で伝送されたレーザビーム70を外部に向けて照射する。例えば、このレーザ装置100をレーザ加工に用いる場合は、所定の位置に配置されたワーク(図示せず)に向けてレーザビーム70を出射する。
【0019】
制御部50は、レーザ発振器10のレーザ発振を制御する。具体的には、レーザ発振器10に接続された電源装置(図示せず)に対して出力及びオン時間等を制御することによりレーザ発振の制御を行う。また、図3に示すように、制御部50は、レンズ移動制御部51を有している。レンズ移動制御部51は、反射光モニタ23及び出力光モニタ14の検出信号を受けて、スライダ22を移動させ集光レンズ21が所期の位置に来るように調整する。レンズ移動制御部51とスライダ22とはレンズ駆動部80を構成する。なお、このレーザ装置100をレーザ加工に用いる場合は、制御部50は、レーザビーム出射ヘッド30が取り付けられたマニピュレータ(図示せず)の動作を制御してもよい。
【0020】
[レーザビームの光路及び焦点位置のシフト補償]
次に、レーザ発振器10から伝送ファイバ40に入射するレーザビーム70の光路及び伝送ファイバ40の入射端面46でのレーザビーム70のスポット形状について説明する。図2に示すように、複数のレーザモジュール11から出射されたレーザビームはビーム合成器12で一つのレーザビーム70に合成された後、ビーム合成器12内に設けられた部分透過ミラー13で反射され、集光レンズユニット20内の集光レンズ21へと導かれる。集光レンズ21は、例えば伝送ファイバ40のコア径が100μmであれば、伝送ファイバ40の入射端面46において100μmよりも小さいスポット径となるようにレーザビーム70を集光する。集光されたレーザビーム70は石英ブロック25を通過し、さらに伝送ファイバ40のコア41へと入射すると、コア41内を全反射により伝搬し、伝送ファイバ40のレーザビーム出射部(図示せず)へと伝送される。ここで、伝送ファイバ40とレーザ発振器10との光結合効率を高め、高品質のレーザビーム70を得るためには、集光レンズ21で集光されたレーザビーム70を伝送ファイバ40のコア41内に正確に入射する必要がある。言い換えるとレーザビーム70のスポット71の径であるスポット径を伝送ファイバ40のコア41の径であるコア径内に正確に収める必要がある。
【0021】
図4Aは、伝送ファイバ40の入射端面46におけるレーザビームの入射状態を示し、コア41内にレーザビーム70が収まっている理想的な状態を示す。図4Bは、コア41の中心とレーザビーム70との光軸がずれて、レーザビーム70がクラッド42にはみ出して入射された状態を示している。また、図4Cは、レーザビーム70のスポット径が伝送ファイバ40のコア径よりも大きく、レーザビーム70がクラッド42にはみ出して入射された状態を示している。
【0022】
図4Aに示す状態では、レーザビーム70の焦点位置が伝送ファイバ40のコア41の中心にほぼ一致し、かつレーザビーム70のスポット71はその径が伝送ファイバ40のコア径以下となっている。また、図4Bに示す状態は、図4Aに示す場合に比べて、レーザビーム70の焦点位置が伝送ファイバ40の入射端面46に平行な面内、つまり、XY平面内でずれてレーザビーム70がコア41からはみ出している。このような状態でレーザビーム70を出射するとクラッド42にレーザビーム70が入射し、レーザビーム70の品質が低下するとともに伝送ファイバ40にダメージを与えるおそれがある。そのため、この場合は、集光レンズ21をXY平面内で移動させて焦点レンズの焦点位置を調整することにより、コア41内にレーザビーム70を収めるようにすることができる。
【0023】
一方、図4Cに示す状態は、レーザビーム70の焦点位置は、伝送ファイバ40のコア41の中心にほぼ一致するものの、レーザビーム70のスポット71のスポット径が伝送ファイバ40のコア41のコア径より大きく、スポット71がコア41からはみ出してクラッド42に入射された状態となっている。これは、集光レンズ21から伝送ファイバ40の入射端面46までの距離が集光レンズ21の焦点距離に一致していない状態である。
【0024】
ここで、集光レンズ21の位置を調整する作業は、通常、伝送ファイバ40を集光レンズユニット20に接続した時点で行うものであり、レーザ発振を行う際には集光レンズ21の位置は固定されている。また、図4Bに示すような状態は、通常、この初期の調整作業で解消される。
【0025】
しかし、前述したように、集光レンズ21等の光学部品はレーザ発振により温度が上昇することで熱レンズ効果を生じる。そのため、レーザ発振直後から、各光学部品のサイズ等が熱的に飽和するまでの間、レーザビーム70の焦点位置はシフトし続け、この場合、焦点位置はZ方向にシフトする。よって、レーザ発振前に集光レンズ21の位置を調整し、図4Aに示す状態を実現したとしても、レーザ発振中の発熱により、伝送ファイバ40の入射端面46でレーザビーム70のスポット71のスポット径は図4Cに示す状態になってしまい、伝送ファイバ40コア41のコア径内に収まらず、漏れ光が増加するおそれがあった。
【0026】
そこで、図2,3に示すように、本実施形態では、集光レンズユニット20内に、集光レンズ21を保持しつつZ方向に移動可能なスライダ22を設けている。また、スライダ22とレンズ移動制御部51とで構成されるレンズ駆動部80により集光レンズ21を移動させてレーザビーム70の焦点位置のシフトを補償するようにしている。
【0027】
図5は、レンズ駆動部80によるレーザビーム70の焦点位置シフトを補償する機能を説明する模式図である。伝送ファイバ40の調芯及び光学系の初期調整を行い、集光レンズ21を通過したレーザビーム70の光軸と伝送ファイバ40のコア41の中心軸とは、組立公差の範囲で一致している。
【0028】
図5の上側の(a)に示すように、レーザ発振初期は、伝送ファイバ40の入射端面46において、レーザビーム70のスポット径が伝送ファイバ40のコア径よりも小さくなるようにレーザビーム70の焦点位置が調整されている。一方、レーザ発振が継続すると、図5の中段の(b)に示すように、熱レンズ効果によりレーザビーム70の焦点位置が集光レンズ21側にシフトして、レーザビーム70のスポット径が伝送ファイバ40のコア径よりも大きくなる。よって、図5の下側の(c)に示すように、本実施形態に係るレーザ装置100において、このシフトを補償するようにレンズ駆動部80は集光レンズ21の位置をZ方向に伝送ファイバ40側へ近づける。この結果、再びレーザビーム70のスポット径が伝送ファイバ40のコア径よりも小さくなるようにレーザビーム70の焦点位置が調整される。
【0029】
また、集光レンズ21をZ方向に移動するにあたっては、伝送ファイバ40のレーザビーム入射部44近傍に反射光モニタ23を設け、その検出信号に基づいてレンズ駆動部80が、集光レンズ21の移動方向、つまり、Z方向にレーザ発振器10側か伝送ファイバ40側かのどちら側に移動するかを決定するとともに、その移動量を決定するようにしている。
【0030】
図6は、伝送ファイバ40のレーザビーム入射部44近傍の断面模式図である。また、図7はレーザビーム70の出力と反射光モニタ23の検出信号との関係を示す図である。なお、図7に示す(a)~(c)は、図5に示す(a)~(c)に対応している。
【0031】
ここで、反射光モニタ23の機能について説明する。図6に示すように、一般的な伝送ファイバ40は、レーザビーム入射部44の近傍と出射部近傍のそれぞれにモードストリッパ45を備えている。モードストリッパ45は、伝送ファイバ40に入射されるレーザビーム70のうち、コア41を伝搬せずクラッド42に入射される漏れ光を除去するための機構である。モードストリッパ45が無い場合、クラッド42に入射されたレーザビーム70がクラッド42中を伝搬し、伝送ファイバ40のレーザビーム出射部から低品質のレーザビーム70が出射されてしまう。モードストリッパ45の詳細な機構は伝送ファイバ40を製造するメーカーにより異なるが、原理としては、クラッド42に入射した光を全反射させずに、熱に変換して除去するものであり、この時、クラッド42に入射した光の一部は散乱あるいは反射される。
【0032】
本実施形態では、伝送ファイバ40が接続される集光レンズユニット20内に、モードストリッパ45で散乱あるいは反射された光を検出するよう反射光モニタ23を配設している。モードストリッパ45で散乱あるいは反射された光が反射光モニタ23で検出されると、検出された光量に対応する検出信号が生成される。そして、図3に示すように、反射光モニタ23での検出信号はレンズ移動制御部51に入力され、この検出信号に基づいて、レンズ移動制御部51でスライダ22の移動方向及び移動量が算出される。この算出結果に基づいてレンズ移動制御部51からスライダ22に制御信号が供給され、所期の位置に集光レンズ21が来るようにスライダ22を移動させる。なお、レンズ移動制御部51は、専用の電子回路やLSIで構成される必要はなく、例えば、汎用CPU(Central Processing Unit)等のハードウェア上でソフトウェアを実行して実現される機能ブロックであってもよい。
【0033】
反射光モニタ23の検出信号が所定値以下になるようにレンズ駆動部80が集光レンズ21を移動させることで、レーザビーム70の焦点位置のシフトが補償され、伝送ファイバ40での漏れ光、すなわち、クラッド42に直接入射されるレーザビーム70の光量が低減される。また、伝送ファイバ40の入射端面46において、集光レンズ21で集光されたレーザビーム70をコア41内に収めるようにすることができる。
【0034】
ここで、図7に示すように、反射光モニタ23は、伝送ファイバ40のコア41に入りきらない漏れ光が無くても、レーザ発振器10のレーザ発振出力に比例した信号を出力する。これは、集光レンズユニット20と伝送ファイバ40との接続部に石英ブロック25が位置する等、レーザビーム70の光路に各種の光学部品が配置され、各々の境界面において必然的に反射光が発生しているためである。従って、伝送ファイバ40における漏れ光の光量を正確にモニタするにはこのレーザ発振出力に比例する信号を差し引かなければならない。
【0035】
レーザ発振器10のレーザ発振出力に比例する信号は、制御部50からレーザ発振器10に送られる発振指令値から算出することも可能である。しかし、例えば、レーザモジュール11の経時劣化等による出力低下が生じると、正確なモニタリングができなくなる。
【0036】
そこで、本実施形態では、反射光モニタ23とは別に、ビーム合成器12内に前述の出力光モニタ14を設け、この検出信号に基づいて、レーザビーム70の実際の出力を算出するようにしている。部分透過ミラー13を透過したレーザビーム70の一部が出力光モニタ14で検出されると、検出された光量に対応する検出信号が生成される。出力光モニタ14での検出信号は、反射光モニタ23での検出信号と同様にレンズ移動制御部51に入力され、この検出信号に基づいてレンズ移動制御部51でレーザビーム70の実出力値が算出される。算出されたレーザビーム70の実出力値から、この実出力値のときに出力される反射光モニタ23の値が算出され(図7参照)、算出された反射光モニタ23の出力値を、反射光モニタ23の検出信号に対応する値から差し引くことで伝送ファイバ40における漏れ光の光量に対応する差分信号が生成される。そして、この差分信号に基づいて集光レンズ21を保持するスライダ22の移動を制御する制御信号が生成される。
【0037】
図8は、集光レンズ21通過後のレーザビーム70の焦点位置に対する、反射光モニタ23の検出信号と出力光モニタ14の検出信号と伝送ファイバ40から出射されるレーザビーム70の出力との挙動を示している。なお、図8に示す(a)~(c)は、図5に示す(a)~(c)に対応している。
【0038】
レーザビーム70の焦点位置が伝送ファイバ40の入射端面46付近にあれば伝送ファイバ40から出射されるレーザビーム70の出力は最大値となる。レーザビーム70のスポット径が伝送ファイバ40のコア径に対して十分な余裕をもっていれば、この最大値を取る焦点位置の範囲、つまり、レーザ装置100の使用可能範囲が広がる(図8の(a))。しかし、焦点位置がずれて、例えば、レーザビーム70のスポット径が大きくなると、伝送ファイバ40での漏れ光が増加して、伝送ファイバ40から出射されるレーザビーム70の出力が低下する(図8の(b))。
【0039】
ここで、レーザビーム70の焦点位置がシフトして、伝送ファイバ40のレーザビーム入射部44において、伝送ファイバ40にレーザビーム70が入光する際の伝送ファイバ40に対する漏れ光が多くなると、伝送ファイバ40のレーザビーム入射部44にあるモードストリッパ45で散乱される散乱光の増加に伴い、集光レンズ21の後に設けられた反射光モニタ23の検出信号が増加する。なお、出力光モニタ14の検出信号は集光レンズ21より手前で、集光レンズ21に入光される前に分光して検出されるレーザビーム70の出力を反映しているため、集光レンズ21で生じる熱レンズ効果には依存しない。
【0040】
よって、反射光モニタ23での検出信号と出力光モニタ14での検出信号とに基づいて得られる差分信号はモードストリッパ45で散乱あるいは反射される光の光量に比例し、この差分信号が所定値以下になるように集光レンズ21を移動させることで、レーザビーム70の焦点位置のシフトに伴う伝送ファイバ40での漏れ光を確実に低減することができる。このことにより、伝送ファイバ40の入射端面46における損傷を抑制し、また、レーザ発振器10と伝送ファイバ40との光結合効率を高めて、レーザビーム出力の低下を抑制することができる。
【0041】
特に、レーザ発振器10としてレーザダイオードを用いたDDL発振器を用いる場合、レーザダイオードからの出射ビーム形状が楕円形である。そのため、ビーム合成器12で波長合成されたレーザビーム70のスポット形状が円形になりにくく、コーナー部を有する形状となる場合がある。この場合、コア41からはみ出てクラッド42に漏れ込む漏れ光は、モードストリッパ45の特定箇所に集中して照射されるため、モードストリッパ45の当該箇所で局所発熱が起こりやすく、伝送ファイバ40の損傷が発生しやすくなっていた。
【0042】
本実施形態によれば、上記の場合にも集光レンズ21の位置を調整して、レーザビーム70の焦点位置を変更することにより、伝送ファイバ40での漏れ光を低減することができる。このことにより、伝送ファイバ40の損傷を抑制し、また、レーザビーム70の出力の低下を抑制することができる。
【0043】
[効果等]
以上のように、レーザビームが伝送ファイバのレーザビーム入射部に入射されるときに、レーザビーム入射部で反射あるいは散乱されたレーザビームの光量を含む光量を検出する反射光モニタをさらに備え、レンズ駆動部は、反射光モニタが検出した光量が低減するように、集光レンズの位置を調整するのが好ましい。
【0044】
この構成によれば、反射光モニタが、伝送ファイバからの漏れ光に起因する反射光あるいは散乱光を含む光量を検出し、検出した光量が低減するように集光レンズの位置を調整するので、伝送ファイバでの漏れ光を低減することができる。
【0045】
反射光モニタが検出する光量は、レーザ発振器から出射されたレーザビームの出力に比例して検出される光量を含み、レーザ発振器から出射されたレーザビームの一部の光量を検出する出力光モニタをさらに備え、レンズ駆動部は、出力光モニタが検出した光量に基づいて、レーザ発振器から出射されたレーザビームの出力に比例して検出される光量を算出し、算出した光量を、反射光モニタが検出した光量から差し引いた光量が低減するように、集光レンズの位置を調整するのが好ましい。
【0046】
この構成によれば、反射光モニタが検出した光量に含まれる漏れ光に依存しない成分を出力光モニタが検出した光量を用いて算出することで、漏れ光の光量を正確に算出することができ、伝送ファイバでの漏れ光を確実に低減することができる。
【0047】
レンズ駆動部は、レーザ装置内での温度上昇に起因した熱レンズ効果によってレーザビームの焦点位置がシフトするのを補償するように集光レンズの位置を調整するのが好ましい。
【0048】
この構成によれば、レーザ装置で発生する熱レンズ効果の影響を抑制して、伝送ファイバでの漏れ光を低減できる。
【0049】
レーザ発振器は、互いに異なる波長のレーザビームを発する複数のレーザモジュールと、複数のレーザモジュールから出射された互いに異なる波長の複数のレーザビームを波長合成して一つのレーザビームとして出射するビーム合成器と、を有するのが好ましい。
【0050】
この構成によれば、高出力のレーザ装置を実現できる。
【0051】
(実施形態2)
本実施形態に係るレーザ装置100は、実施形態1に示す構成と基本的に同じであり、レーザ発振時の集光レンズ21の移動制御の態様が異なる。
【0052】
図9は、本実施形態に係る集光レンズ21の位置調整手順を示す。まず、レーザ加工前に、集光レンズ21の位置等光学系の初期調整を行う。具体的には、レーザ発振器10でレーザ発振を行い、レーザビーム70を発生させ、レンズ駆動部80により集光レンズ21を移動させて、その位置を調整し、集光レンズ21の初期位置を決定する(ステップS1)。この場合、レーザビーム70による集光レンズ21の発熱温度が所定値以下になるようレーザ発振時間を調整している。また、ステップS1において、図4Aに示すように、レーザビーム70の光軸は、伝送ファイバ40のコア41の中心にほぼ位置し、スポット径は伝送ファイバ40のコア径以下となるように集光レンズ21の位置が調整される。また、初期調整後はレーザ発振を停止する。
【0053】
次に、レーザ発振器10でレーザ発振を行い、レーザビーム70を発生させる(ステップS2)。この状態でレーザ発振を継続すると、レーザビーム70の一部を集光レンズ21が吸収することで集光レンズ21が発熱し、前述の熱レンズ効果が生じて集光レンズ21の曲率が変化する。このことにより、レーザビーム70のスポット71が、例えば、図4Bに示すようにコア41からはみ出すようにレーザビーム70の焦点位置がシフトする。反射光モニタ23の検出信号と出力光モニタ14の検出信号とに基づいて、焦点位置のシフト量を算出し、このシフト量が所定値以下になるように、レンズ駆動部80により集光レンズ21をZ方向、つまり、レーザビーム70の進行方向に沿って移動させる(ステップS3)。
【0054】
次に、レーザ発振器10でのレーザ発振を停止すると、集光レンズ21でのレーザビーム70の吸収が無くなり、集光レンズ21が冷えて温度が低下する。これに伴い、熱レンズ効果が小さくなり、焦点位置のシフトが元に戻るように集光レンズ21の曲率が復元する。集光レンズ21の温度が元に戻るのに、所定の時間、例えば、5秒かかるとすると、レンズ駆動部80は5秒をかけて集光レンズ21をステップS1における初期位置に移動させる(ステップS4)。なお、所定の時間は、予め求めておいた時間に対する集光レンズ21の温度低下特性に基づいて予測される。
【0055】
再び、レーザ発振器10でのレーザ発振が行われるかどうかを確認し(ステップS5)、レーザ発振が行われる場合は、ステップS2~S4を繰り返し、レーザ発振が行われない場合はフローを終了する。
【0056】
以上説明したように、本実施形態によれば、レーザ発振器10が断続的にレーザ発振を繰り返す場合、言いかえると断続発振期間に、集光レンズ21の温度低下時間を予測し、それに合わせて、集光レンズ21の位置を調整することで、レーザビーム70の焦点位置のシフトを補償することができる。このことにより、集光レンズ21の熱膨張、収縮が繰り返される断続発振期間を通じて伝送ファイバ40での漏れ光を低減することができる。また、伝送ファイバ40の入射端面46での損傷を抑制し、さらに、レーザ発振器10と伝送ファイバ40との光結合効率を高めて、レーザビーム70の出力低下を抑制することができる。
【0057】
[効果等]
以上のように、レンズ駆動部は、レーザ発振器がレーザ発振を断続的に繰り返す断続発振期間におけるレーザ発振中に集光レンズを所定の位置からレーザビームの進行方向に沿って移動させ、レーザ発振停止後に所定の時間をかけて所定の位置に戻すことにより、断続発振期間を通じてクラッドに入射されるレーザビームの光量を低減するのが好ましい。
【0058】
この構成によれば、断続的なレーザ発振により、集光レンズの熱膨張、収縮が繰り返される場合にも、安定して伝送ファイバでの漏れ光を低減できる。
【0059】
なお、実施形態1,2において、レーザビーム70の焦点位置がシフトする原因として、集光レンズ21の熱レンズ効果を例にとって説明してきたが、実際には他の要因による焦点位置のシフトも発生しうる。例えば、ビーム合成器12や集光レンズユニット20内の他の光学部品の熱膨張による熱レンズ効果やレーザモジュール11、特に温度に対してレーザダイオードから出射されるレーザビーム70の特性が変化すること等により、集光レンズ21へのレーザビーム70の入射角度や入射ビーム径が変化し、レーザビーム70の焦点位置が変動することが考えられる。この場合においても、実施形態1,2に示す構成によれば、レーザビーム70の焦点位置のシフトを補償し、伝送ファイバ40での漏れ光を低減することができる。
【0060】
また、実施形態1,2において、出力光モニタ14での検出信号に基づいて、反射光モニタ23での検出信号に含まれるレーザ発振出力に比例した信号を差し引いたが、前述したように、この比例信号を発振指令値から求めて反射光モニタ23での検出信号から差し引いてもよい。その場合は、レンズ移動制御部51は、出力光モニタ14での検出信号を用いることなく、スライダ22を移動させる制御信号を生成し、当該制御信号に基づいて集光レンズ21の位置を調整することも可能である。
【産業上の利用可能性】
【0061】
本開示に係るレーザ装置は、伝送ファイバでの漏れ光を低減して、レーザビーム出力低下や伝送ファイバの損傷を抑制できるため、高出力のレーザビームを要するレーザ加工装置等に適用する上で有用である。
【符号の説明】
【0062】
10 レーザ発振器
11 レーザモジュール
12 ビーム合成器
13 部分透過ミラー
14 出力光モニタ
20 集光レンズユニット
21 集光レンズ
22 スライダ
23 反射光モニタ
24 コネクタ
25 石英ブロック
30 レーザビーム出射ヘッド
40 伝送ファイバ
41 コア
42 クラッド
44 レーザビーム入射部
45 モードストリッパ
46 伝送ファイバ40のレーザビーム入射端面
50 制御部
51 レンズ移動制御部
60 筐体
70 レーザビーム
71 スポット
80 レンズ駆動部
100 レーザ装置
図1
図2
図3
図4A
図4B
図4C
図5
図6
図7
図8
図9
図10