IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 三菱重工業株式会社の特許一覧

特許7412458複合材構造体の製造方法及び積層体の製造方法並びに積層体及び積層型
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-12-28
(45)【発行日】2024-01-12
(54)【発明の名称】複合材構造体の製造方法及び積層体の製造方法並びに積層体及び積層型
(51)【国際特許分類】
   B29C 70/30 20060101AFI20240104BHJP
【FI】
B29C70/30
【請求項の数】 16
(21)【出願番号】P 2021575597
(86)(22)【出願日】2020-07-06
(86)【国際出願番号】 JP2020026484
(87)【国際公開番号】W WO2021157106
(87)【国際公開日】2021-08-12
【審査請求日】2022-07-08
(31)【優先権主張番号】PCT/JP2020/004922
(32)【優先日】2020-02-07
(33)【優先権主張国・地域又は機関】JP
【前置審査】
(73)【特許権者】
【識別番号】000006208
【氏名又は名称】三菱重工業株式会社
(74)【代理人】
【識別番号】100112737
【弁理士】
【氏名又は名称】藤田 考晴
(74)【代理人】
【識別番号】100136168
【弁理士】
【氏名又は名称】川上 美紀
(74)【代理人】
【識別番号】100172524
【弁理士】
【氏名又は名称】長田 大輔
(72)【発明者】
【氏名】清水 正彦
(72)【発明者】
【氏名】北澤 俊樹
(72)【発明者】
【氏名】真能 翔也
【審査官】田代 吉成
(56)【参考文献】
【文献】特開2010-120167(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B29C 70/30
(57)【特許請求の範囲】
【請求項1】
複数の繊維シートを積層して、一方向に延びる変形部を有する積層体を製作する積層ステップと、
前記積層ステップで製作された前記積層体に対して前記変形部に含まれ前記一方向に延びる変形線に沿って曲げ成形を施すことで前記変形部を変形させる成形ステップと、を備え、
前記積層ステップは、前記変形部の形状が、前記積層体の積層方向及び前記一方向と交差する交差方向の断面の形状が屈曲または湾曲していて、前記一方向に沿って前記一方向の中心部から両端部に向かうにしたがって前記交差方向の長さが長く又は短くなるように変化する形状となるように、前記積層体を製作する複合材構造体の製造方法。
【請求項2】
前記積層ステップは、前記変形部の形状が、前記交差方向の断面の形状が上向きに突出するように屈曲または湾曲するとともに、前記一方向の端部における前記交差方向の長さが前記一方向の中心部における前記交差方向の長さよりも長い形状となるように、前記積層体を製作し、
前記成形ステップは、前記変形線に沿って前記変形部の突出する方向とは反対方向へ曲げ成形を施す請求項1に記載の複合材構造体の製造方法。
【請求項3】
前記積層ステップは、前記変形部の形状が、前記交差方向の断面の形状が下向きに突出するように屈曲または湾曲するとともに、前記一方向の端部における前記交差方向の長さが前記一方向の中心部における前記交差方向の長さよりも短い形状となるように、前記積層体を製作し、
前記成形ステップは、前記変形線に沿って前記変形部の突出する方向と同一方向へ曲げ成形を施す請求項1に記載の複合材構造体の製造方法。
【請求項4】
前記積層ステップは、前記変形部の形状が、前記一方向の断面の形状が湾曲するとともに、前記一方向の端部における前記一方向の断面の曲率半径が、前記一方向の中心部における前記一方向の断面の曲率半径よりも大きい形状となるように前記積層体を製作する請求項2に記載の複合材構造体の製造方法。
【請求項5】
前記積層ステップは、前記変形部の形状が、前記一方向の断面の形状が湾曲するとともに、前記一方向の端部における前記一方向の断面の曲率半径が、前記一方向の中心部における前記一方向の断面の曲率半径よりも小さい形状となるように前記積層体を製作する請求項3に記載の複合材構造体の製造方法。
【請求項6】
複数の繊維シートを積層して、積層体を製作する積層ステップと、
一方向に延びる変形部が形成されるように、前記積層体を変形させる変形ステップと、
前記変形ステップで変形させた前記積層体に対して前記変形部に含まれ前記一方向に延びる変形線に沿って曲げ成形を施すことで前記変形部を変形させる成形ステップと、を備え、
前記変形ステップは、前記変形部の形状が、前記積層体の積層方向及び前記一方向と交差する交差方向の断面の形状が屈曲または湾曲していて、前記一方向に沿って前記一方向の中心部から両端部に向かうにしたがって前記交差方向の長さが長く又は短くなるように変化する形状となるように、前記積層体を変形させる複合材構造体の製造方法。
【請求項7】
曲げ成形を施されることによって複合材構造体に加工される積層体の製造方法であって、
一方向に延びる変形部を有するように複数の繊維シートを積層する積層ステップを備え、
前記積層ステップは、前記変形部の形状が、前記積層体の積層方向及び前記一方向と交差する交差方向の断面の形状が屈曲または湾曲していて、前記一方向に沿って前記一方向の中心部から両端部に向かうにしたがって前記交差方向の長さが長く又は短くなるように変化する形状となるように、前記積層体を製造する積層体の製造方法。
【請求項8】
前記積層ステップは、前記変形部の形状が、前記交差方向の断面の形状が上向きに突出するように屈曲または湾曲するとともに、前記一方向の端部における前記交差方向の長さが前記一方向の中心部における前記交差方向の長さよりも長い形状となるように、前記積層体を製造する請求項7に記載の積層体の製造方法。
【請求項9】
前記積層ステップは、前記変形部の形状が、前記交差方向の断面の形状が下向きに突出するように屈曲または湾曲するとともに、前記一方向の端部における前記交差方向の長さが前記一方向の中心部における前記交差方向の長さよりも短い形状となるように、前記積層体を製造する請求項7に記載の積層体の製造方法。
【請求項10】
曲げ成形を施されることによって複合材構造体に加工される積層体の製造方法であって、
複数の繊維シートを積層する積層ステップと、
前記積層ステップで積層された複数の前記繊維シートを、一方向に延びる変形部が形成されるように、変形させる変形ステップと、を備え
前記変形ステップは、前記変形部の形状が、前記積層体の積層方向及び前記一方向と交差する交差方向の断面の形状が屈曲または湾曲していて、前記一方向に沿って前記一方向の中心部から両端部に向かうにしたがって前記交差方向の長さが長く又は短くなるように変化する形状となるように、複数の前記繊維シートを変形させて積層体を製造する積層体の製造方法。
【請求項11】
複数の繊維シートを積層して製作され、曲げ成形を施されることによって複合材構造体に加工される積層体であって、
一方向に延び、前記積層体の積層方向及び前記一方向と交差する交差方向の断面の形状が屈曲または湾曲していて、前記一方向に沿って前記一方向の中心部から両端部に向かうにしたがって前記交差方向の長さが長く又は短くなるように変化している変形部を有する積層体。
【請求項12】
前記変形部は、前記交差方向の断面が上向きに突出するように屈曲または湾曲していて、前記一方向の端部における前記交差方向の長さが、前記一方向の中心部における前記交差方向の長さよりも長い請求項11に記載の積層体。
【請求項13】
前記変形部は、前記交差方向の断面が下向きに突出するように屈曲または湾曲していて、前記一方向の端部における前記交差方向の長さが、前記一方向の中心部における前記交差方向の長さよりも短い請求項11に記載の積層体。
【請求項14】
積層される複数の繊維シートを有していて、曲げ成形を施されることによって複合材構造体に加工される積層体を製作するための積層型であって、
前記繊維シートが載置される積層面を備え、
前記積層面は、一方向に延び、前記積層体の積層方向及び前記一方向と交差する交差方向の断面の形状が屈曲または湾曲していて、前記一方向に沿って前記一方向の中心部から両端部に向かうにしたがって前記交差方向の長さが長く又は短くなるように変化している湾曲面部を有する積層型。
【請求項15】
前記湾曲面部は、前記交差方向の断面が上向きに突出するように湾曲していて、前記一方向の端部における前記交差方向の長さが、前記一方向の中心部における前記交差方向の長さよりも長い請求項14に記載の積層型。
【請求項16】
前記湾曲面部は、前記交差方向の断面が下向きに突出するように湾曲していて、前記一方向の端部における前記交差方向の長さが、前記一方向の中心部における前記交差方向の長さよりも短い請求項14に記載の積層型。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、複合材構造体の製造方法及び積層体の製造方法並びに積層体及び積層型に関する。
【背景技術】
【0002】
航空機の胴体、主翼等の航空機部品は、複合材、例えば炭素繊維強化プラスチック(CFRP)が用いられるものがある。航空機部品を構成するCFRP製の構造部材(複合材構造体)は、任意の断面形状を有している。このような複合材構造体を製造する方法の1つに、複数の繊維シート(プリプレグ等)を積層することで、平坦な繊維シートの積層体(チャージとも呼ばれる。)を製作し、この積層体に対して曲げ成形を施すことで、任意の断面形状を付す方法がある(例えば、特許文献1)。
【0003】
特許文献1には、積層体に対して曲げ成形を施すことで複合材構造体を製造する旨が記載されている。また、特許文献1では、積層体を曲げる際に積層体の繊維が不足すると予想される箇所で、積層体を製作する際に積層される材料の量を増加させている。
【先行技術文献】
【特許文献】
【0004】
【文献】米国特許第10105940号明細書
【発明の概要】
【発明が解決しようとする課題】
【0005】
積層体に対して曲げ成形を施す際に、折り曲げ線が屈曲または湾曲している場合には、積層体の一部の領域において、繊維が余る状態(以下、「繊維余り状態」ともいう。)や、繊維が不足する状態(以下、「繊維不足状態」ともいう。)となる場合がある。このように、繊維余り状態となった領域では、図33の矢印で示すように、積層体に圧縮力が作用する。また、繊維不足状態となった領域では、図34の矢印で示すように、積層体に引張力が作用する。積層体に圧縮力や引張力が作用すると、積層体に皺(リンクル)が発生し易くなる可能性がある。積層体に皺が発生すると、複合材構造体の強度が低減する可能性がある。
【0006】
特許文献1では、積層体を曲げる際に繊維が不足すると予想される箇所で、積層体を製作する際に積層される材料の量を増加させている。特許文献1では、材料の量を増加させた部分を板厚方向に突出した形状としている。しかしながら、材料の量を増加させた部分の形状は、複合材構造体に応じた形状ではないので、特許文献1の方法では、曲げ成形を施す際に、材料の量を増加させた部分において、皺が発生する可能性があった。
【0007】
本開示は、このような事情に鑑みてなされたものであって、曲げ成形時において積層体に発生する皺を抑制することができる複合材構造体の製造方法及び積層体の製造方法並びに積層体及び積層型を提供することを目的とする。
【課題を解決するための手段】
【0008】
上記課題を解決するために、本開示の複合材構造体の製造方法及び積層体の製造方法並びに積層体及び積層型は以下の手段を採用する。
本開示の一態様に係る複合材構造体の製造方法は、複数の繊維シートを積層して、一方向に延びる変形部を有する積層体を製作する積層ステップと、前記変形部に含まれ前記一方向に延びる変形線に沿って曲げ成形を施すことで前記変形部を変形させる成形ステップと、を備え、前記積層ステップは、前記変形部の形状が、前記一方向の断面の形状及び前記一方向と交差する交差方向の断面の形状が屈曲または湾曲していて、前記一方向に沿って前記交差方向の長さが変化する形状となるように、前記積層体を製作する。
【0009】
また、本開示の一態様に係る積層体は、複数の繊維シートを積層して製作され、曲げ成形を施されることによって複合材構造体に加工される積層体であって、一方向に延び、前記一方向の断面の形状及び前記一方向と交差する交差方向の断面の形状が屈曲または湾曲していて、前記一方向に沿って前記交差方向の長さが変化している変形部を有する。
【発明の効果】
【0010】
本開示によれば、曲げ成形時において積層体に発生する皺を抑制することができる。
【図面の簡単な説明】
【0011】
図1】本開示の第1実施形態に係る積層体を示す斜視図である。
図2図1のA-A矢視断面を示す断面図である。
図3図1のB-B矢視断面を示す断面図である。
図4】本開示の第1実施形態に係る成形型及び積層体を示す斜視図である。
図5】本開示の第1実施形態に係る複合材構造体及び成形型を示す斜視図である。
図6】本開示の第1実施形態に係る積層型及び積層体を示す斜視図である。
図7】本開示の第1実施形態に係る複合材構造体を製造する方法を示すフローチャートである。
図8図4の変形例を示す斜視図である。
図9図1の変形例を示す斜視図である。
図10図9のA-A矢視断面を示す断面図である。
図11図9のB-B矢視断面を示す断面図である。
図12図4の変形例を示す斜視図である。
図13図4の変形例を示す斜視図である。
図14図13に示す変形例に係る複合材構造体及び成形型を示す斜視図である。
図15】本開示の第2実施形態に係る成形型及び積層体を示す斜視図である。
図16】本開示の第2実施形態に係る複合材構造体及び成形型を示す斜視図である。
図17】本開示の第2実施形態に係る積層型及び積層体を示す斜視図である。
図18図4及び図15の変形例を示す斜視図である。
図19図18に示す変形例に係る複合材構造体及び成形型を示す斜視図である。
図20】本開示の第3実施形態に係る積層型及び積層体を示す斜視図である。
図21】本開示の第3実施形態に係る変形型及び積層体を示す斜視図である。
図22】本開示の第3実施形態に係る複合材構造体及び成形型を示す斜視図である。
図23図22の積層体のC-C矢視断面を示す断面図である。
図24】繊維シートの伸び方向を示す模式的な斜視図である。
図25】繊維シートの伸び方向を示す模式的な斜視図である。
図26】繊維シートの伸び量を示す模式的な斜視図である。
図27】繊維シートの伸び量を示す模式的な斜視図である。
図28】本開示の第4実施形態に係る積層型及び積層体を示す斜視図である。
図29】本開示の第4実施形態に係る変形型及び積層体を示す斜視図である。
図30】本開示の第4実施形態に係る複合材構造体及び成形型を示す斜視図である。
図31】本開示の第1実施形態の比較例に係る積層体を示す斜視図である。
図32】本開示の第1実施形態の比較例に係る成形型及び積層体を示す斜視図である。
図33】本開示の第1実施形態の比較例に係る成形型及び積層体を示す斜視図である。
図34】本開示の第2実施形態の比較例に係る複合材構造体を示す斜視図である。
【発明を実施するための形態】
【0012】
以下に、本開示に係る複合材構造体の製造方法及び積層体の製造方法並びに積層体及び積層型の一実施形態について、図面を参照して説明する。
【0013】
〔第1実施形態〕
本開示の第1実施形態について、図1から図7を用いて説明する。本実施形態では、まず、繊維シートを賦形しつつ積層することによって中間成形品である積層体20(図1参照)を製作する。そして、製作された積層体20に対して更に曲げ成形を施すことによって最終形状の成形品である複合材構造体40を製造する(図4及び図5参照)。複合材構造体40は、例えば、航空機構造体を構成する航空機部品であるストリンガ、スパー、フレーム、リブ等である。なお、繊維シートの例としては、例えば、プリプレグが挙げられる。
なお、以下の説明において、積層体20の板厚方向(積層方向)をZ軸方向とし、Z軸方向と直交する面に含まれる方向のうちの一方向をX軸方向とし、Z軸方向及びX軸方向と直交する方向をY軸方向として説明する。本実施形態では、Z軸方向が上下方向とされている例について説明するため、Z軸方向を上下方向として説明する場合もある。
【0014】
繊維シートは、所定の方向に長いテープ状である。繊維シートの短手方向の長さは、積層体20のX軸方向の長さ及びY軸方向の長さよりも短い。繊維シートは、配列される繊維の方向(以下、「繊維方向」という。)が繊維シートの長手方向に対して平行となるように揃えられた繊維基材及び繊維基材に含侵された樹脂によって構成される。繊維基材には、炭素繊維、ガラス繊維等の任意の繊維が用いられる。繊維基材に含浸される樹脂は、例えば、エポキシ樹脂、ポリイミド、ポリウレタン、不飽和ポリエステル等、加熱されることで硬化する熱硬化性樹脂を用いることができる。その他、加熱を経て固化する、ポリアミド、ポリエチレン、ポリスチレン、ポリ塩化ビニル等の熱可塑性樹脂を用いることもできる。なお、繊維シートは上記説明の繊維シートに限定されない。例えば、賦形可能なドライなものであってもよい。また、例えば、繊維方向がシートの長手方向に対して平行でない方向であってもよい。また、本実施形態では、繊維シートがテープ状の例について説明するが、繊維シートの形状はこれに限定されない。
【0015】
積層体20は、以下のように製作(製造)される。まず、積層型10(図6参照)の積層面11上に隙間なく繊維シートを載置することで、積層体20の最下層を形成する。次に、最下層を形成する繊維シートの上面に、隙間なく繊維シートを載置していく。すなわち、最下層の繊維シートの上に、次の層の繊維シートを積層していく。次に、最上層の繊維シートの上に、次の層の繊維シートを積層していく。これを所定の回数繰り返すことで、積層体20が製作される(積層ステップ)。積層型10に繊維シートを積層していく手段については、特に限定されない。例えば、積層装置によって積層してもよいし、手作業で積層してもよい。また、繊維シートを載置する際に、隣接する繊維シート同士の間にわずかに隙間を形成するように載置してもよい。
【0016】
積層型10は、図6に示すように、ブロック状の部材であって、上面が積層面11とされている。積層面11は、製作される積層体20の形状に応じた形状をしている。詳細には、積層面11は、後述する積層体20の変形部21に対応する第1面部12(湾曲面部)と、第1面部12のY軸方向の一端部から湾曲して斜め下方へ延びる第2面部13と、第1面部12のY軸方向の他端部(一端部の反対側の端部)から湾曲して斜め上方へ延びる第3面部14と、を有している。第1面部12と第2面部13及び第3面部14とは、段部等を介さずに、連続的に接続されている。
【0017】
第1面部12は、積層体20が製作された際に、積層体20の変形部21が載置される。すなわち、第1面部12は、積層体20の変形部21に対応した形状をしている。第1面部12は、X軸方向と直交する面で切断した際の断面(以下、「X軸方向の断面」という。)が上向きに突出するように湾曲している。また、第1面部12は、Y軸方向と直交する面で切断した際の断面(以下、「Y軸方向の断面」という。)が上向きに突出するように湾曲している。また、第1面部12は、X軸方向の中心部から両端部へ向かうにしたがって、Y軸方向の長さが長くなっている。すなわち、第1面部12は、X軸方向の両端部におけるY軸方向の長さが、X軸方向の中心部におけるY軸方向の長さよりも長い。また、第1面部12は、X軸方向の中心部から両端部へ向かうにしたがって、X軸方向の断面の曲率半径が大きくなっている。すなわち、第1面部12は、X軸方向の両端部におけるX軸方向の断面の曲率半径が、X軸方向の中心部におけるX軸方向の断面の曲率半径よりも大きい。
【0018】
第2面部13は、積層体20が製作された際に、後述する積層体20の第1隣接部22が載置される。すなわち、第2面部13は、積層体20の第1隣接部22に対応した形状をしている。第2面部13は、Y軸方向の断面が上向きに突出するように湾曲している。
【0019】
第3面部14は、積層体20が製作された際に、後述する積層体20の第2隣接部23が載置される。すなわち、第3面部14は、積層体20の第2隣接部23に対応した形状をしている。第3面部14は、Y軸方向の断面が上向きに突出するように湾曲している。
なお、積層型の形状は、上記の積層型10の形状に限定されない。積層型の形状は製作される積層体の形状に応じた形状とされる。例えば、製作される積層体の第1隣接部が平板状である場合には、第2面部は平面状であってもよい。また、製作される積層体の第2隣接部が平板状である場合には、第3面部は平面状であってもよい。
【0020】
積層体20は、図1に示すように、Y軸方向の中心部に設けられる変形部21と、変形部21のY軸方向の一端部から湾曲して斜め下方へ延びる第1隣接部22と、変形部21のY軸方向の他端部から湾曲して斜め下方へ延びる第2隣接部23と、を有している。
【0021】
図6に示すように、変形部21は、積層体20が製作された際に、第1面部12上に位置している。すなわち、変形部21は、第1面部12に対応した形状をしている。詳細には、図1に示すように、変形部21は、X軸方向の断面が上向きに突出するように湾曲している。図4に示すように、変形部21には、X軸方向に延びる仮想線である変形線21aが含まれている。変形線21aは、上向きに突出するように湾曲している。また、図1に示すように、変形部21は、Y軸方向の断面が上向きに突出するように湾曲している。また、変形部21は、X軸方向に沿って、Y軸方向の長さが変化している。具体的には、変形部21は、X軸方向の中心部から両端部へ向かうにしたがって、Y軸方向の長さが長くなっている。すなわち、変形部21は、図2及び図3に示すように、X軸方向の両端部におけるY軸方向の長さ(周長)L1が、X軸方向の中心部におけるY軸方向の長さ(周長)L2よりも長い。なお、長さL1及び長さL2は、積層体20の形状に沿ったY軸方向の長さを意味している。また、以下の説明では、積層体20の形状に沿ったY軸方向の長さを「周長」という場合もある。
また、本実施形態では、変形部21は、平面視においても、X軸方向の両端部におけるY軸方向の長さが、X軸方向の中心部におけるY軸方向の長さよりも長い。
また、変形部21は、X軸方向の中心部から両端部へ向かうにしたがって、X軸方向の断面の曲率半径が大きくなっている。すなわち、変形部21は、X軸方向の両端部におけるX軸方向の断面の曲率半径が、X軸方向の中心部におけるX軸方向の断面の曲率半径よりも大きい。
【0022】
図6に示すように、第1隣接部22は、積層体20が製作された際に、第2面部13上に位置している。すなわち、第1隣接部22は、第2面部13に対応した形状をしている。詳細には、図1に示すように、第1隣接部22は、Y軸方向の断面が上向きに突出するように湾曲している。また、第1隣接部22のX軸方向の両端部22a、22bは、Y軸方向の一端部22c(変形部21と接続される端部とは反対側の端部)に向かうにしたがって、両端部22a、22b同士が近づくように傾斜している。また、第1隣接部22のY軸方向の一端部22cは、X軸方向の中心部がX軸方向の両端部22a、22bよりもY軸方向の他端側に位置するように、湾曲している。
【0023】
図6に示すように、第2隣接部23は、積層体20が製作された際に、第3面部14上に位置している。すなわち、第2隣接部23は、第3面部14に対応した形状をしている。詳細には、図1に示すように、第2隣接部23は、Y軸方向の断面が上向きに突出するように湾曲している。
なお、積層体の形状は、上記の積層体20の形状に限定されない。積層体の形状は製造される複合材構造体の形状に応じた形状とされる。例えば、第1隣接部及び第2隣接部は、平面状であってもよく、また、Y軸方向の断面及びX軸方向の断面の両方が上向きに突出するように湾曲していてもよい。また、第1隣接部は、X軸方向の両端部が傾斜していなくてもよく、また、Y軸方向の一端部が湾曲していなくてもよい。
【0024】
図5に示すように、製作された積層体20は、曲げ成形を施すことで、複合材構造体40に加工される。積層体20に対して、曲げ成形を施す方法については、特に限定されない。例えば、ローラ成形で行ってもよく、プレス成形で行ってもよい。以下では、一例として、成形型30を用いて積層体20に対して曲げ成形を施す方法について説明する。
【0025】
成形型30は、図4に示すように、略水平に延在していて積層体20が載置される載置部31と、載置部31のY軸方向の一端部から下方へ湾曲するように延びる湾曲部32と、湾曲部32の下端部から略鉛直に延びる鉛直部33と、を有している。
積層体20に対して、曲げ成形を施す際には、成形型30の載置部31に積層体20の第2隣接部23を載置した状態で、変形部21及び第1隣接部22の全域が、各々、湾曲部32及び鉛直部33に当接するように積層体20を押圧する(成形ステップ)。これにより、図5に示すように、第1隣接部22、変形部21及び第2隣接部23が、各々、載置部31、湾曲部32及び鉛直部33に沿った形状となる。このように積層体20を押圧することで、複合材構造体40が製造される。積層体20の変形部21は、複合材構造体40の接続部42となる。また、積層体20の第1隣接部22は、複合材構造体40の側面部43となる。また、積層体20の第2隣接部23は、複合材構造体40の上面部41となる。
このようにして、積層体20に対して曲げ成形を施す。なお、曲げ成形は、変形部21に含まれているX軸方向に延在する変形線21aに沿って積層体20が曲がるように加工を施している。したがって、曲げ成形を施すことで、変形部21が主に変形する。変形線21aは、変形部21に含まれる仮想線であり、変形部21の形状に沿って湾曲する線である。
【0026】
載置部31は、上述のように、曲げ成形時に、積層体20の第2隣接部23が載置される。このため、載置部31の上面は、第2隣接部23の形状と対応する形状となっている。詳細には、載置部31の上面は、Y軸方向の断面が上向きに突出するように湾曲している。
【0027】
湾曲部32は、載置部31のY軸方向の一端部と、鉛直部33の上端部とを接続している。湾曲部32の上面(変形部21が当接する面)は、X軸方向の断面が、湾曲している。詳細には、湾曲部32の上面は、X軸方向の全域において、X軸方向の断面が上方に突出する90度の円弧形状をしている。なお、湾曲部のX軸方向の断面の形状はこれに限定されない。湾曲部のX軸方向の断面の形状は、90度より小さい角度の円弧形状であってもよく、90度より大きい角度の円弧形状であってもよい。湾曲部のX軸方向の断面の形状は、製造する複合材構造体の形状によって決まる。
【0028】
また、湾曲部32の上面の曲率半径は、X軸方向の全域において、変形部21のX軸方向の中心部における曲率半径と略同一の曲率半径となっている。変形部21は、X軸方向の中心部が最も曲率半径が小さい。このため、変形部21は、X軸方向の中心部以外の領域において、曲率半径が湾曲部32の上面の曲率半径よりも大きい。変形部21のX軸方向の中心部以外の領域とは、例えば、変形部21のX軸方向の両端部等である。なお、湾曲部の上面の曲率半径は、変形部21のX軸方向の中心部における曲率半径と異なっていてもよい。
【0029】
鉛直部33は、側面(第1隣接部22が当接する面)が平面とされている。鉛直部33の上端部は、湾曲部32の形状に沿うように湾曲している。
なお、成形型の形状は、上記の成形型30の形状に限定されない。例えば、鉛直部の側面は、Z軸方向の断面が湾曲していてもよく、また、X軸方向の断面が湾曲していてもよい。
【0030】
積層体20から製造される複合材構造体40は、図5に示すように、上面部41と上面部41のY軸方向の一端部から下方へ湾曲する接続部42、接続部42の下端部から略鉛直に延びる側面部43と、を有するX軸方向の断面形状が略L状の部材である。なお、図5では、積層体20の変形部21を一点鎖線で図示している。
上面部41は、曲げ成形を施す前の第2隣接部23(図4参照)に対応する部分である。また、上面部41は、載置部31の上面に対応する形状である。具体的には、上面部41は、Y軸方向の断面が上向きに突出するように湾曲している。
【0031】
接続部42は、曲げ成形を施す前の変形部21(図4参照)に対応する部分である。接続部42は、上面部41のY軸方向の一端部と、側面部43の上端部とを接続している。接続部42は、湾曲部32に対応した形状であり、X軸方向の断面が上方に突出する90度の円弧形状をしている。
また、接続部42は、X軸方向の全域において、変形部21のX軸方向の中心部における曲率半径と同じ曲率半径となっている。なお、接続部の曲率半径は、変形部21のX軸方向の中心部における曲率半径と異なっていてもよい。
【0032】
側面部43は、曲げ成形を施す前の第1隣接部22(図4参照)に対応する部分である。側面部43は、鉛直部33の側面と対応する形状である。具体的には、上端部が接続部42の形状に沿うように湾曲している。
なお、複合材構造体は、上記の複合材構造体40の形状に限定されない。例えば、接続部は、X軸方向の断面が90度より小さい角度の円弧形状であってもよく、90度より大きい角度の円弧形状であってもよい。
【0033】
次に、複合材構造体40を製造する方法について、図7を用いて説明する。
まず、図7のステップS1に示すように、積層型10に繊維シートを積層することで、積層体20を製作する(積層ステップ)。このとき、積層体20が上述の変形部21、第1隣接部22及び第2隣接部23を有するように製作される。積層ステップを終えると、ステップS2に進む。
ステップS2では、製作された積層体20を成形型30に載置する(載置ステップ)。このとき、積層体20の第2隣接部23が成形型30の載置部31に載置されるようにする。載置ステップを終えると、ステップS3に進む。
ステップS3では、積層体20の変形部21及び第1隣接部22の全域が、各々、成形型30の湾曲部32及び鉛直部33に当接するように積層体20を押圧する。これにより、変形線21aに沿うように、積層体20が曲げられる。このように、変形部21に含まれる変形線21aに沿って曲げ成形を施すことで変形部21を変形させる(成形ステップ)。このとき、変形部21のY軸方向の断面が突出する方向と反対方向へ、変形部21に曲げ成形を施す。
このようにして、複合材構造体40が製造される。なお、本実施形態で説明する複合材構造体40を製造する方法は一例であり、本開示はこれに限定されない。
【0034】
本実施形態によれば、以下の作用効果を奏する。
本実施形態に係る積層体20ではない積層体に対して曲げ成形を施す場合には、Y軸方向の断面の形状が屈曲または湾曲している変形部(変形線)を曲げると、変形部とY軸方向に隣接する領域において、積層体の繊維が余る状態(以下、「繊維余り状態」ともいう。)や、積層体の繊維が不足する状態(以下、「繊維不足状態」ともいう。)となる可能性がある。このように、繊維余り状態となると積層体の一部の領域において、X軸方向に沿った圧縮力が作用する。また、繊維不足状態となると積層体の一部の領域において、X軸方向に沿った引張力が作用する。X軸方向に沿った圧縮力または引張力が作用すると、積層体に皺が発生する可能性がある。積層体に皺が発生すると、複合材構造体の強度が低減する可能性がある。
【0035】
具体的には、例えば、図31に示す比較例のように、上方に向かって突出するように湾曲する変形部52を有する積層体51であって、変形部52のY軸方向の長さがX軸方向の全域において一定である積層体51に対して曲げ成形を施す場合がある(図32及び図33参照)。このような場合には、積層体51の第1隣接部53に、図33の矢印で示すように、X軸方向に沿った圧縮力(X軸方向の端部から中心部へ向かう力)が作用する。また、図31で示す比較例では、変形部52のY軸方向の長さがX軸方向の全域において一定であるので、曲げ成形を施した際の変形部52の変形量が、X軸方向の全域において略一定となる。したがって、圧縮力を打ち消すような力は作用しない。したがって、積層体51が繊維余り状態となり、積層体51に皺Wが発生する。なお、図31のA-A断面は、図2に一点鎖線で示されている。また、図31のB-B断面は、図3に一点鎖線で示されている。
【0036】
本実施形態でも、図1に示すように、変形部21が、Y軸方向の断面の形状が上向きに突出するように湾曲している。これにより、曲げ成形時に、積層体20の変形部21とY軸方向に隣接する第2隣接部23において、X軸方向に沿った圧縮力が作用する。すなわち、繊維余り状態になろうとする力が作用する。
【0037】
一方、本実施形態では、図1に示すように、変形部21において、X軸方向の端部におけるY軸方向の長さと、X軸方向の中心部におけるY軸方向の長さとが異なっている。曲げ成形時における変形部21の変形量は、Y軸方向の長さによって変化する。このため、本実施形態では、曲げ成形時において変形する変形量が、X軸方向の端部と中心部とで異なることとなる。このため、曲げ成形時において積層体20には、例えば、変形量が少ない部分から変形量が多い部分へ積層体20が引っ張られる力等が作用する。本実施形態では、変形量がX軸方向の端部と中心部とで異なっているので、曲げ成形時において、X軸方向に沿った力(具体的には、図5の矢印A6及びA7で示すX軸方向の中心部から端部へ向かう力)が作用する。
【0038】
具体的には、変形部21において、図2及び図3で示すように、X軸方向の端部における曲率半径が、X軸方向の中心部における曲率半径よりも大きくなっている。これにより、X軸方向の端部におけるY軸方向の長さ(周長)L1が、X軸方向の中心部におけるY軸方向の長さ(周長)L2よりも長い形状となっている。なお、図2及び図3の一点鎖線は、図31で示す比較例の変形部52のX軸方向の同位置における長さ(周長)を示している。また、比較例の変形部52は、曲げ成形後の変形部(本実施形態では、接続部42としている部分)に対応する形状である。すなわち、比較例の変形部52は、曲げ成形前と曲げ成形後とで、周長が変わらない形状である。曲げ成形後の変形部52の周長は成形型30の湾曲部32のY軸方向の長さと略同一であるので、変形部52の周長は湾曲部32のY軸方向の長さと略同一である。なお、湾曲部32のY軸方向の長さとは、湾曲部32の形状に沿ったY軸方向の長さを意味する。
図2及び図3からわかるように、本実施形態の変形部21は、比較例の変形部52に対して、第1隣接部22から第2隣接部23までの経路をショートカットするように形成されている。すなわち、本実施形態の変形部21は、比較例の変形部52よりも周長が短い。上述のように、変形部52の周長は湾曲部32のY軸方向の長さと略同一である。よって、変形部21の周長は、湾曲部32のY軸方向の長さよりも短い。したがって、曲げ成形時において、積層体20(特に、第1隣接部22)が、変形部21側に引っ張られるように変形する。以下では、本実施形態の変形部21の周長と、比較例の変形部52の周長との差を、周長差という。
また、上述のように、変形部21は、X軸方向の端部におけるY軸方向の長さ(周長)L1が、X軸方向の中心部におけるY軸方向の長さ(周長)L2よりも長い形状となっている。すなわち、変形部21の端部は、変形部21の中心部よりもショートカット区間が長いこととなる。ショートカット区間とは、比較例の変形部52よりも、変形部21の方が直線に近い形状となる区間である。換言すれば、ショートカット区間とは、比較例の変形部52よりも、変形部21の方が、曲率半径が大きい区間である。よって、変形部21の端部の方が、変形部21の中心部よりも周長差が大きくなっている。これにより、端部において変形部21側に引っ張られることによる積層体20の変形量が中心部よりも多くなり、中心部において変形量が端部よりも少なくなる(図5の矢印A1~A5参照)。このため、曲げ成形時において、積層体20には、図5の矢印A6及び矢印A7で示すように、変形量が少ない中心部側から変形量が多い両端部側へ積層体20が引っ張られる力(X軸方向の中心部から端部へ向かう力)が作用する。
【0039】
このように、本実施形態では、X軸方向の端部から中心部へ向かう力とX軸方向の中心部から端部へ向かう力とが打ち消し合うため、X軸方向に沿った力(X軸方向の端部から中心部へ向かう力)が抑制される。これにより、積層体20が繊維余り状態になり難い。したがって、積層体20における皺の発生を抑制することができる。
【0040】
また、本実施形態では、変形部21の形状が湾曲している。詳細には、変形部21は、X軸方向の断面が湾曲している。これにより、変形部が平面状の場合と比較して、曲げ成形時において、変形部21を曲げ易い。したがって、より好適に変形部21に対して曲げ成形を施すことができる。
【0041】
また、繊維シートを積層して積層体20を製作する方法として、積層型10の積層面11の面積と同程度の面積である繊維シートを積層していく方法も考えられる。しかしながら、繊維シートは伸び難いことから、このような方法では、非平面形状である積層面11に対応する形状となるように、繊維シートを積層することができない場合がある。一方、本実施形態では、テープ状の繊維シートを用いて積層体20を製作している。これにより、繊維シートを非平面形状である積層面11に対応するように載置し易い。したがって、積層面11の面積と同程度の面積である繊維シートを積層していく場合と比較して、容易に積層体20を製作することができる。
なお、テープ状の繊維シートを用いて積層体20を製作する方法は、一例であり、本開示はこれに限定されない。例えば、好適に積層体20を製作することができる場合には、積層型10の積層面11の面積と同程度の面積である繊維シートを積層する方法を採用してもよい。
【0042】
また、繊維シートを複合材構造体40の最終形状となるように積層することで、複合材構造体を製造する方法も考えられる。しかしながら、幅(短手方向の長さ)の短いテープ状の繊維シートを複合材構造体40の最終形状のように複雑な形状(例えば、曲折部や曲率半径が小さい湾曲部を含む形状)となるように積層するためには、繊維シートを積層する挙動が複雑となる。このような複雑な挙動を、例えば機械加工で行う場合には、機械の限界により繊維シートを積層することができない場合や、積層できたとしても積層作業が長時間化する可能性がある。一方、本実施形態では、中間成形品である積層体20は、比較的単純な形状であるので、繊維シートを容易に積層することができる。したがって、比較的短時間で複合材構造体40を製造することができる。
【0043】
[変形例1]
次に、第1実施形態の変形例(変形例1)について、図8を用いて説明する。
本変形例では、上述の第1実施形態と、積層体の変形部の形状が主に異なっている。その他の点は、第1実施形態と略同一であるので、同一の構成については、同一の符号を付して詳細な説明は省略する。
【0044】
第1実施形態では、積層体20の変形部21のX軸方向の中心部における曲率半径が、成形型30の湾曲部32の曲率半径と略同一となる例について説明した(図4参照)。本変形例の積層体20Aの変形部21Aは、図8に示すように、X軸方向の端部における曲率半径が、成形型30の湾曲部32の曲率半径と略同一となっている。また、積層体20Aの変形部21AのX軸方向の中心部における曲率半径は、成形型30の湾曲部32の曲率半径よりも小さくなっている。なお、本変形例に係る変形部の形状は、上記説明の変形部21Aの形状に限定されない。例えば、変形部21Aは、X軸方向の端部における曲率半径が、成形型30の湾曲部32の曲率半径よりも大きくてもよく、小さくてもよい。
【0045】
このような構成とした場合でも、曲げ成形時に積層体20Aに対して、X軸方向の中心部から端部へ向かう力が作用する。このため、第1実施形態と同様に、X軸方向の端部から中心部へ向かう力とX軸方向の中心部から端部へ向かう力とが打ち消し合うため、X軸方向に沿った力(X軸方向の端部から中心部へ向かう力)を抑制することができる。よって、皺の発生を抑制することができる。
【0046】
[変形例2]
次に、第1実施形態の変形例(変形例2)について図9から図11を用いて説明する。
本変形例では、上述の第1実施形態と、積層体の変形部の形状が主に異なっている。その他の点は、第1実施形態と略同一であるので、同一の構成については、同一の符号を付して詳細な説明は省略する。
【0047】
第1実施形態では、積層体20の変形部21が、X軸方向の断面及びY軸方向の断面の両方が湾曲するように形成されている例について説明した(図1参照)。本変形例の積層体20Bの変形部21Bは、図9から図11に示すように、Y軸方向の断面のみが湾曲している。X軸方向の断面は、直線状に形成される。図10及び図11に示すように、このように構成した場合であっても、変形部21BのX軸方向の両端部におけるY軸方向の長さL3を、X軸方向の中心部におけるY軸方向の長さL4よりも長くすることができる。なお、図10及び図11の一点鎖線は、第1実施形態(図2及び図3参照)と同様に、図31で示す比較例の変形部52のX軸方向の同位置における長さ(周長)を示している。よって、図10及び図11からわかるように、本変形例においても、変形部21Bは、比較例の変形部52に対して、第1隣接部22から第2隣接部23までの経路をショートカットするように形成されている。すなわち、本変形例においても、変形部21Bの長さは、比較例の変形部52の周長よりも短い。したがって、本変形例においても、第1実施形態と同様の効果を奏する。
【0048】
[変形例3]
次に、第1実施形態の変形例(変形例3)について図12を用いて説明する。
本変形例では、上述の第1実施形態と、積層体20の形状が主に異なっている。その他の点は、第1実施形態と略同一であるので、同一の構成については、同一の符号を付して詳細な説明は省略する。
【0049】
第1実施形態では、積層体20の変形部21の変形線21aが、湾曲している例について説明した(図4参照)。
本変形例の変形部21Cは、X軸方向の断面が湾曲している点については、第1実施形態と同様である。本変形例の変形部21Cは、図12に示すように、平面視において、X軸方向の途中位置がY軸方向へ突出するように屈曲している。この点で、第1実施形態と異なっている。
また、変形部21Cは、屈曲部分からX軸方向の両端部へ向かうにしたがって、Y軸方向の長さが短くなっている。また、屈曲部分からX軸方向の両端部へ向かうにしたがって、曲率半径が小さくなっている。
また、変形部21Cに含まれる変形線21aCも、変形部21Cと同様に屈曲している。換言すれば、変形線21aCがキンク状とされている。また、本変形例の積層体20Cは、第1隣接部22C及び第2隣接部23Cも同様に、屈曲している。
また、本変形例に係る成形型30Cは、積層体20Cの形状に応じた形状をしている。詳細には、載置部31Cは、第2隣接部23Cの形状に対応するように、屈曲している。また、湾曲部32Cは、変形部21Cの形状に対応するように、屈曲している。また、鉛直部33Cは、第1隣接部22Cの形状に対応するように、屈曲している。
【0050】
積層体20Cをこのような形状に製作した場合であっても、曲げ成形時にX軸方向の中心部から端部へ向かう力が作用する。このため、第1実施形態と同様に、X軸方向の端部から中心部へ向かう力とX軸方向の中心部から端部へ向かう力とが打ち消し合うため、X軸方向に沿った力(X軸方向の端部から中心部へ向かう力)が抑制することができる。よって、皺の発生を抑制することができる。
【0051】
[変形例4]
次に、第1実施形態の変形例(変形例4)について図13及び図14を用いて説明する。
本変形例では、上述の第1実施形態と、積層体の変形部の形状が主に異なっている。その他の点は、第1実施形態と略同一であるので、同一の構成については、同一の符号を付して詳細な説明は省略する。
【0052】
本変形例の積層体20Dは、図13に示すように、変形部21Dと、第1隣接部22Dと、第2隣接部23Dと、を有している。変形部21Dは、X軸方向の中心部においてY軸方向の長さがゼロとされている。そして、この中心部を基点として、変形部21Dは、X軸方向の両端部へ向かうにしたがって、Y軸方向の長さが長くなっている。また、本変形例の成形型30Dは、湾曲部が存在しない。成形型30Dは、載置部31D及び鉛直部33Dが湾曲部を介することなく接続されている。
【0053】
積層体20Dに対して、成形型30Dを用いて曲げ成形を施すと、図14に示すように、接続部が存在せず、上面部41Dと側面部43Dとが直接接続される複合材構造体40Dが形成される。
このような複合材構造体40Dを形成する場合に、本変形例で説明した変形部21Dとすることで、第1実施形態と同様に、X軸方向の端部から中心部へ向かう力とX軸方向の中心部から端部へ向かう力とが打ち消し合うため、X軸方向に沿った力(X軸方向の端部から中心部へ向かう力)が抑制することができる。よって、皺の発生を抑制することができる。
【0054】
[第2実施形態]
次に、本開示の第2実施形態について図15から図17を用いて説明する。本実施形態では、第1実施形態と、積層体の形状が異なっている。また、それに伴って、積層型の形状、成形型の形状が異なっている。その他の点は、第1実施形態と略同一であるので、同一の構成については、同一の符号を付して詳細な説明は省略する。
【0055】
本実施形態の積層体120の変形部121は、図15に示すように、X軸方向の断面が下向きに突出するように湾曲している。変形部121には、X軸方向に延びる仮想線である変形線121aが含まれている。変形線121aは、下向きに突出するように湾曲している。また、変形部121は、Y軸方向の断面が下向きに突出するように湾曲している。また、変形部121は、X軸方向の中心部から両端部へ向かうにしたがって、Y軸方向の長さが短くなっている。また、X軸方向の中心部から両端部へ向かうにしたがって、X軸方向の断面の曲率半径が小さくなっている。
また、本実施形態の第1隣接部122及び第2隣接部123は、Y軸方向の断面が下向きに突出するように湾曲している。
【0056】
また、図17に示すように、本実施形態の積層型110の第1面部112は、本実施形態の変形部121に対応する形状をしている。すなわち、第1面部112は、X軸方向の断面が下向きに突出するように湾曲している。また、第1面部112は、Y軸方向の断面が下向きに突出するように湾曲している。また、第1面部112は、X軸方向の中心部から両端部へ向かうにしたがって、Y軸方向の長さが短くなっている。X軸方向の中心部から両端部へ向かうにしたがって、X軸方向の断面の曲率半径が小さくなっている。
また、本実施形態の第2面部113及び第3面部114は、Y軸方向の断面が下向きに突出するように湾曲している。
【0057】
また、図15に示すように、本実施形態の成形型130の湾曲部132の上面は、X軸方向の全域において、X軸方向の断面が下方に突出する90度の円弧形状をしている。また、本実施形態の成形型130の載置部131の上面は、Y軸方向の断面が下向きに突出するように湾曲している。鉛直部133の上端部は、湾曲部132の形状に応じるように湾曲している。なお、湾曲部132の上面は、X軸方向の断面の形状が90度より小さい角度の円弧形状であってもよく、90度より大きい角度の円弧形状であってもよい。
【0058】
本実施形態の複合材構造体140の接続部142は、図16に示すように、上面部141と側面部143とを接続している。接続部142は、X軸方向の全域において、X軸方向の断面が下方に突出する90度の円弧形状をしている。また、上面部141は、Y軸方向の断面が下向きに突出するように湾曲している。なお、接続部142は、X軸方向の断面の形状が90度より小さい角度の円弧形状であってもよく、90度より大きい角度の円弧形状であってもよい。なお、図16では、積層体120の変形部121を一点鎖線で図示している。
【0059】
本実施形態では、図15に示すように、変形部121が、Y軸方向の断面の形状が下向きに突出するように湾曲している。このようにY軸方向の断面の形状が下向きに突出するように湾曲している形状の積層体に対して、突出方向と同一の方向へ曲げ成形を施して、図34の比較例で示す複合材構造体150を製造する場合には、曲げ成形時に、積層体の変形部(曲げ成形後に接続部152となる部分)とY軸方向に隣接する第2隣接部(曲げ成形後に側面部153となる部分)において、図34の矢印で示すように、X軸方向に沿った引張力(X軸方向の中心部から端部へ向かう力)が作用する。すなわち、第2隣接部に対して、繊維不足状態になろうとする力が作用する。なお、図34に示す比較例に係る複合材構造体150は、変形部のY軸方向の長さがX軸方向の全域において一定とされた積層体に対して、曲げ成形を施したものである。
【0060】
一方、本実施形態では、図15に示すように、X軸方向の端部におけるY軸方向の長さ(周長)が、X軸方向の中心部におけるY軸方向の長さ(周長)よりも短い形状となっている。すなわち、中心部は端部よりもショートカット区間が長いこととなる。なお、ショートカット区間とは、比較例の変形部よりも、変形部121の方が直線に近い形状となる区間である。換言すれば、ショートカット区間とは、比較例の変形部よりも、変形部121の方が、曲率半径が大きい区間である。よって、中心部の方が端部より周長差が大きくなっている。これにより、中心部において変形部121側に引っ張られることによる積層体120の変形量が端部よりも多くなり、端部において変形量が中心部よりも少なくなる(図16の矢印A11~A15参照)。このため、曲げ成形時において、積層体120には、図16の矢印A16及び矢印A17で示すように、変形量が少ない端部から変形量が多い中心部へ積層体120が引っ張られる力(X軸方向の端部から中心部へ向かう力)が作用する。
【0061】
このように、本実施形態では、X軸方向の端部から中心部へ向かう力とX軸方向の中心部から端部へ向かう力とが打ち消し合うため、X軸方向に沿った力(X軸方向の中心部から端部へ向かう力)が抑制される。積層体120に作用するX軸方向に沿った力が抑制されるので、積層体120に含まれる繊維に作用するX軸方向に沿った力も抑制される。これにより、積層体120が繊維不足状態になり難い。したがって、積層体120における皺の発生を抑制することができる。
【0062】
[第3実施形態]
次に、本開示の第3実施形態について図20から図27を用いて説明する。本実施形態では、変形部を有する積層体を製作する方法が、第1実施形態及び第2実施形態と異なっている。第1実施形態及び第2実施形態と同一の構成については、同一の符号を付して詳細な説明は省略する。
【0063】
第1実施形態及び第2実施形態では、繊維シートを積層することで変形部を有する積層体を製作していたが、本実施形態では、まず、図20に示すように、繊維シートを積層し変形部321を有さない積層体300を製作し(積層ステップ)、次に、図21に示すように、変形部321を有さない積層体300を変形させることで変形部321を有する積層体320を製作する(変形ステップ)。そして、図22に示すように、製作された変形部321を有する積層体320に対して曲げ成形を施すことで、複合材構造体340に加工する(成形ステップ)。
【0064】
図20に示すように、積層型310に繊維シートを積層することで、変形部321を有さない積層体300を製作する。積層型310は、繊維シートが載置される積層面311がY軸方向の断面の形状が上向きに突出するように湾曲している。また、積層面311は、X軸方向の断面の形状が略直線状に形成されている。なお、積層面311のX軸方向の断面の形状は、緩やかに湾曲していてもよい。
本実施形態の積層型310で製作された積層体300は、積層面311に応じた形状とされている。すなわち、積層体300は、Y軸方向の断面の形状が上向きに突出するように湾曲するとともに、X軸方向の断面の形状が直線状となっている。なお、この段階の積層体300は、上述のように、第1実施形態等で説明した変形部321を有していない。
また、積層体300は、後述する変形型350を用いて変形された際に、第1隣接部322となる第1領域301と、第1領域301以外の領域である第2領域302を有している。第1領域301と第2領域302とは、隣接する領域であって、図20では一鎖線で区切られている。
【0065】
次に、図21に示すように、変形部321を有さない積層体300を変形型350の載置面351上に載置する。そして、変形部321を有さない積層体300を変形型350へ押し付けるように押圧することで、変形型350の載置面351に応じた形状に変形させる。具体的には、変形部321を有する積層体320に変形させる。なお、図21では、第1実施形態の変形例4(図13参照)に示す例のように、変形部321の形状がX軸方向の中心部においてY軸方向の長さがゼロとされている例について図示しているが、本実施形態の変形部321の形状はこれに限定されない。第1実施形態で説明した変形部321の形状であれば、いずれの形状であってもよい。
【0066】
変形型350は、図21に示すように、ブロック状の部材であって、上面が載置面351とされている。載置面351は、製作される積層体(変形部321を有する積層体320)の形状に応じた形状をしている。詳細には、載置面351は、後述する積層体320の変形部321に対応する第1面部352と、第1面部352のY軸方向の一端部から湾曲して斜め下方へ延びる第2面部353と、第1面部352のY軸方向の他端部(一端部の反対側の端部)から湾曲して斜め上方へ延びる第3面部354と、を有している。第1面部352と第2面部353及び第3面部354とは、段部等を介さずに、連続的に接続されている。
【0067】
第1面部352は、積層体320が製作された際に、積層体320の変形部321が載置される。すなわち、第1面部352は、積層体320の変形部321に対応した形状をしている。第1面部352は、X軸方向の断面が上向きに突出するように湾曲している。また、第1面部352は、Y軸方向の断面が上向きに突出するように湾曲している。また、第1面部352は、X軸方向の中心部から両端部へ向かうにしたがって、Y軸方向の長さが長くなっている。すなわち、第1面部352は、X軸方向の両端部におけるY軸方向の長さが、X軸方向の中心部におけるY軸方向の長さ(本実施形態では、長さがゼロとなっている)よりも長い。また、第1面部352は、X軸方向の中心部から両端部へ向かうにしたがって、X軸方向の断面の曲率半径が大きくなっている。すなわち、第1面部352は、X軸方向の両端部におけるX軸方向の断面の曲率半径が、X軸方向の中心部側におけるX軸方向の断面の曲率半径よりも大きい。
【0068】
上述したように、本実施形態の例では、変形型350によって製作される積層体320の形状は、第1実施形態の変形例4に示す積層体20D(図13参照)と同形状とされている。すなわち、積層体320は、図21に示すように、変形部321と、第1隣接部322と、第2隣接部323と、を有している。変形部321は、X軸方向の中心部においてY軸方向の長さがゼロとされている。そして、この中心部を基点として、変形部321は、X軸方向の両端部へ向かうにしたがって、Y軸方向の長さが長くなっている。変形部321には、X軸方向に延びる仮想線である変形線321aが含まれている。第1隣接部322は、変形部321のY軸方向の一端部から湾曲して斜め下方へ延びている。第2隣接部323は、変形部321のY軸方向の他端部から湾曲して斜め方へ延びている。
【0069】
また、本実施形態に係る積層体320は、第1隣接部322と第2隣接部323とが為す角度が、160度程度とされている。すなわち、変形ステップにおいて、第2隣接部323は、第1隣接部322に対して、変形部321との接続部分を中心として20度程度回転するように相対移動している。
【0070】
図22に示すように、製作された積層体320は、成形型330を用いて積層体320に対して曲げ成形を施すことで、複合材構造体340に加工される。本実施形態の成形型330は、第1実施形態の変形例4に示す成形型30D(図14参照)と略同形状とされている。すなわち、本実施形態の成形型330は、湾曲部が存在せず、載置部331及び鉛直部333が湾曲部を介することなく接続されている。
積層体320に対して、成形型330を用いて曲げ成形を施すと、図22に示すように、接続部が存在せず、上面部341と側面部343とが直接接続される複合材構造体340が形成される。上面部341は、X軸方向の断面が上向きに突出している。
【0071】
次に、本実施形態における複合材構造体340の製造方法の詳細について説明する。
まず、図20に示すように、積層型310に複数の繊維シートを積層することで、積層体300を製作する(積層ステップ)。このとき製作される積層体300には、変形部321が形成されていない。
【0072】
次に、積層ステップで製作された変形部321を有さない積層体300を変形型350(図21参照)に載置する。このとき、積層体300が変形型350の第3面部354に載置されるようにする。すなわち、積層体300を載置した状態では、積層体300と変形型350の第2面部353とは接触していない。次に、積層体300を変形型350の第3面部354に載置した状態で、積層体300が第1面部352及び第2面部353と当接するように、積層体300を押圧する。これにより、図21に示すように、積層体300が変形型350の載置面351に応じた形状となる。すなわち、変形部321、第1隣接部322及び第2隣接部323を有するように、積層体300を変形させる(変形ステップ)。本実施形態では、変形ステップにおいて、第1隣接部322と第2隣接部323とが為す角度が、160度程度となるように変形している。すなわち、変形ステップでは、第2隣接部323は、変形部321との接続部分を中心軸線として、20度程度回転するように、第1隣接部322に対して相対移動している。以下では、第1隣接部322に対して第2隣接部323が相対移動する角度を変形角度と称する。変形ステップにおける変形角度(本実施形態では、一例として20度程度)は、後述する成形ステップにおける変形角度(本実施形態では、一例として70度程度)よりも小さく設定されている。
なお、本実施形態では、変形ステップにおける変形角度が20度とされる例について説明したが、本開示はこれに限定されない。例えば、変形ステップにおける変形角度は、10度以上であって、30度以下とされる。変形角度が10度よりも小さい場合には、面内変形が好適に行えない可能性がある。また、変形角度が30度よりも大きいと、面内変形と層間滑りとの分離が難しくなる可能性がある。したがって、変形ステップにおける変形角度は、10度以上であって、30度以下とされると好適である。
【0073】
次に、変形部321を有する積層体320を成形型330に載置する。このとき、積層体320の第2隣接部323が成形型330の載置部331に載置されるようにする。次に、積層体320の変形部321及び第1隣接部322の全域が、各々、成形型330に当接するように積層体20を押圧する。これにより、変形線321aに沿うように、積層体320が曲げられる。このように、変形部321に含まれる変形線321aに沿って曲げ成形を施すことで変形部321を変形させる(成形ステップ)。このとき、変形部321のY軸方向の断面が突出する方向と反対方向へ、変形部321に曲げ成形を施す。このようにして、複合材構造体340が製造される。
【0074】
本実施形態では、成形ステップにおいて、第1隣接部322(複合材構造体340における側面部343)と第2隣接部323(複合材構造体340における上面部341)とが為す角度が、90度程度となるように、積層体320を変形している。すなわち、変形ステップでは、第2隣接部323は、変形部321との接続部分を中心軸線として、70度程度回転するように、第1隣接部322に対して相対移動している。このように、成形ステップにおける変形角度は、変形ステップにおける変形角度(本実施形態では、一例として20度程度)よりも大きく設定されている。
【0075】
なお、本実施形態では、複合材構造体340の側面部343と上面部341とが為す角度が90度程度である例について説明したが、本開示はこれに限定されない。複合材構造体340の側面部343と上面部341とが為す角度は、特に限定されないが、80度以上であって、100度以下である場合には、好適に本開示を適用することができる。
また、本実施形態では、成形ステップにおける変形角度が70度とされる例について説明したが、本開示はこれに限定されない。例えば、成形ステップにおける変形角度は、50度以上であって、90度以下とされる。
【0076】
本実施形態によれば、以下の作用効果を奏する。
本実施形態では、まず、変形部321を有するように積層体300を変形させ、その後に、変形部321を有する積層体320に対して曲げ成形を施している。また、変形部321において、一方向(X軸方向)に沿って交差方向(Y軸方向)の長さが変化している。これにより、成形ステップにおいて、積層体320が繊維余り状態または繊維不足状態になり難い。したがって、第1実施形態と同様に、成形ステップにおいて、積層体320における皺の発生を抑制することができる。よって、複合材構造体340の強度の低減を抑制することができる。
【0077】
また、本実施形態では、積層ステップで繊維シートを積層し、その後に積層体300を変形させて変形部321を形成することで、変形部321を有する積層体320を製作している。すなわち、積層ステップにおいて、積層体300に対して変形部321を形成する必要がない。これにより、積層ステップで変形部を有する積層体を製作する場合と比較して、積層ステップで製作する積層体300の形状を単純な形状にできる。したがって、積層ステップにおける作業を簡易化することができる。よって、積層ステップで生じるコストを低減することができる。また、積層ステップを短時間化することができる。
また、例えば、凹凸を有するような複雑な形状の積層体を製作する場合には、細いテープ状の繊維シートによって製作しなければならない場合がある。一方、例えば、平板状のような単純な形状の積層体を製作する場合には、積層体の投影面積と同程度の面積を有する幅広の繊維シートを積層していくことで積層体を製作することができる。このように、本実施形態では、積層ステップで製作する積層体の形状を単純な形状にできるので、積層体を構成する繊維シートの形状の自由度を向上させることができる。
【0078】
また、積層体を複合材構造体となるように加工する場合(すなわち、積層体に対して、90度前後の曲げ成形を施す場合)には、積層体の面内方向における形状変化と、積層されている繊維シート同士が滑るような変形とが、積層体に生じる。
面内方向における形状変化(以下、「面内変形」と称する。)とは、図21の矢印で示すように、積層体に面内方向(X軸方向及びY軸方向)に沿って生じる形状の変化である。詳細には、図21の矢印A31に示すように、積層体の型に載置されていない部分(図21では、第1隣接部322)において、X軸方向の両端部が、Y軸方向の他端部側から一端部側へ移動するように変形する。また、図21の矢印A32に示すように、X軸方向の中央部がY軸方向の一端部側から他端部側へ移動するように変形する。また、図21の矢印A33に示すように、Y軸方向の一端部が中央部から両端部へ移動するように変形するとともに、図21の矢印A34に示すように、Y軸方向の他端部が両端部側から中央部へ移動するように変形する。このように変形することで、繊維圧縮が起きる。
また、積層されている繊維シート同士が滑るような変形(以下、「層間滑り」と称する)とは、図23に示すように、積層体を構成する繊維シートのうち、内側に位置する繊維シート340aと外側に位置する繊維シート340bとの湾曲部分の長さの差によって生じる変形である。詳細には、図23の矢印A35に示すように、積層体の内側が曲げ方向の先端部側へ移動するように変形する。また、図23の矢印A36に示すように、積層体の外側が曲げ方向の基端部側(先端部とは反対側)へ移動するように変形する。なお、図23では、図示の関係上、上面部341と側面部343との接続部分の湾曲を強調して図示している。
このように、積層体を複合材構造体となるように加工する場合に、面内変形及び層間滑りが生じるため、積層体を変形させるステップを1段階だけで行うと、面内変形及び層間滑りが同時に起こるため、積層体の形状変化が複雑となり、積層体の変形が適切に行われない可能性がある。積層体の変形が適切に行われないと、積層体に皺が発生する可能性がある。
一方、本実施形態では、まず、変形部321を有するように積層体300を変形させ、その後に、変形部321を有する積層体320に対して曲げ成形を施している。すなわち、積層体300を変形させるステップを2段階(変形ステップと成形ステップ)に分けている。
変形ステップでは、図21に示すように、変形角度が20度程度と比較的小さな角度となるように、積層体300を変形する。層間滑りは、変形角度が大きくなると変形量が大きくなる。したがって、変形角度の小さい変形ステップでは、層間滑りはほとんど生じない。一方、本実施形態では、変形ステップにおいて、積層体320が変形部321を有するように変形しているので、面内変形の多くが変形ステップにおいて行われる。以上から、変形ステップでは、主に面内変形が行われ、層間滑りはほとんど行われない。
成形ステップでは、図22等に示すように、変形角度が70度程度と比較的大きな角度となるように、積層体320を変形する。変形角度の大きい成形ステップでは、層間滑りの変形量が大きくなる。一方、面内変形は、変形ステップにおいてすでに行われているので、成形ステップではほとんど行われない。以上から、成形ステップでは、主に層間滑りが行われ、面内変形はほとんど行われない。
このように、本実施形態では、面内変形が行われるステップと、層間滑りが行われるステップとを異なるステップとすることができる。したがって、積層体の形状変化が比較的単純なものとなるので、積層体の変形を適切に行うことができる。したがって、皺の発生を抑制することができるので、複合材構造体340の強度の低減を抑制することができる。
【0079】
また、本実施形態では、変形ステップにおける変形角度(本実施形態では、一例として20度程度)が、成形ステップにおける変形角度(本実施形態では、一例として70度程度)よりも小さく設定されている。これにより、変形ステップにおいて、層間滑りの変形量を、適切に小さくすることができる。したがって、より確実に、面内変形が行われるステップと、層間滑りが行われるステップとを異なるステップとすることができる。
【0080】
また、一般に、複数の繊維シートを積層した積層体は、積層体の強度を向上させるために、繊維の延在方向が異なる繊維シートを積層することで形成される。繊維シートは、繊維と直交する方向には伸び易く、繊維の延在方向には伸び難い。したがって、積層体に対して曲げ成形を施した場合には、図24及び図25に示すように、繊維シート毎に伸びる方向が異なることとなる。図24及び図25では、繊維の延在方向を破線で示している。図24に示すように、X軸方向に沿って繊維が延在している繊維シートF1は、矢印で示すように、X軸方向と直交するY軸方向に伸び易い。したがって、Y軸方向の伸び量が多くなる。一方、図25に示すように、Y軸方向に沿って繊維が延在している繊維シートF2は、矢印で示すように、Y軸方向と直交するX軸方向に伸び易い。したがって、X軸方向の伸び量が多くなる。このように、積層される繊維シート毎に伸びる方向が異なることで、繊維シート間(以下、「層間」と称する。)で摩擦が生じる。層間で生じる摩擦は、積層体に皺が発生する原因となる。
【0081】
本実施形態では、上述のように、積層体300を変形させるステップを2段階に分けている。これにより、各ステップにおける積層体300,320の変形量を少なくすることができる。積層体の変形量に応じて、繊維シートの伸び量も変化する。具体的には、例えば、図26で示すように、変形角度が90度程度となるように積層体に対して曲げ成形を施した場合の積層体を構成する繊維シートF3の伸び量L5は、比較的大きくなる。一方、図27に示すように、変形角度が20度程度となるように積層体に対して曲げ成形を施した場合の繊維シートF4の伸び量L6は、伸び量L5よりも小さくなる。
このように、各ステップにおける積層体300,320の変形量が少なくなることで、各ステップにおける各繊維シートの伸び量も少なくなる。各繊維シートが伸びる場合、同じ伸び量であっても、大きい伸び量を一度に行う場合よりも、少ない伸び量を複数回行う場合の方が層間の摩擦は少ない。したがって、本実施形態では、積層体を変形させるステップを分割しない場合と比較して、層間で生じる摩擦を抑制することができる。よって、積層体における皺の発生を抑制することができるので、複合材構造体340の強度の低減を抑制することができる。
【0082】
[変形例5]
積層ステップにおいて、図20に示す積層体300の第2領域302(変形型350を用いて変形された際に、第1隣接部322以外の部分になる領域)の層間接着力が、第1領域301(変形型350を用いて変形された際に、第1隣接部322になる領域)の層間接着力よりも強くなるように調整してもよい。すなわち、第1領域301では層間接着力を弱くし、第2領域302では層間接着力を強くする。層間接着力は、積層された繊維シートにおいて、隣接する繊維シートが互いに接着し合うとき、繊維シート間で作用する接着力をいう。
【0083】
第1領域301は、変形ステップ及び成形ステップにおいて移動する領域であるので、移動に伴って層間すべりが発生する領域である。一方、第2領域302は、主に、変形ステップ及び成形ステップにおいて、型に載置されており移動しない領域である。よって、第2領域302は、層間すべりが発生しない領域である。
【0084】
したがって、第2領域302の層間接着力が、第1領域301の層間接着力よりも強くなるように調整することで、変形ステップ及び成形ステップにおいて、第1領域301で層間すべりが適切に発生しやすくなり、曲げ成形性が向上する。その結果、繊維シートにおいて皺の発生を抑制できる。また、層間接着力が比較的強い第2領域302では、積層時に発生する繊維シートの剥がれを防ぐことができ、積層性が向上する。さらに、層間接着力が比較的強い第2領域302では、ハンドリング時の層間剥がれを防ぐことができ、ハンドリング性が向上する。
【0085】
層間接着力を調整する方法は、特に限定されない。例えば、積層体300を押圧する押圧力を調整して層間接着力を調整してもよい。この場合、第1領域301では、押圧力を低下させて層間接着力を弱くし、第2領域302では、押圧力を上昇させて層間接着力を強める。
また、積層体300を加熱する際の加熱温度を調整して層間接着力を調整してもよい。この場合、第1領域301では、加熱温度を低下させて層間接着力を弱くし、第2領域302では、加熱温度を上昇させて層間接着力を強める。
【0086】
[第4実施形態]
次に、本開示の第4実施形態について図28から図30を用いて説明する。本実施形態では、第3実施形態と、積層体の形状が異なっている。また、それに伴って、積層型の形状、変形型の形状及び成形型の形状が、異なっている。その他の点は、第1実施形態と略同一であるので、同一の構成については、同一の符号を付して詳細な説明は省略する。
【0087】
図28に示すように、本実施形態に係る積層型410は、繊維シートが載置される積層面411がY軸方向の断面の形状が下向きに突出するように湾曲している。また、積層面411は、X軸方向の断面の形状が略直線状に形成されている。なお、積層面411のX軸方向の断面の形状は、緩やかに湾曲していてもよい。
本実施形態の積層型410で製作された積層体400は、積層面411に応じた形状とされている。すなわち、積層体400は、Y軸方向の断面の形状が下向きに突出するように湾曲するとともに、X軸方向の断面の形状が直線状となっている。なお、この段階の積層体400は、変形部421を有していない。
【0088】
次に、図29に示すように、変形部421を有さない積層体400を変形型450の載置面451上に載置する。そして、変形部421を有さない積層体400を変形型450へ押し付けるように押圧することで、変形型450の載置面451に応じた形状に変形させる。具体的には、変形部421を有する積層体420に変形させる。なお、図29では、変形部421の形状がX軸方向の端部においてY軸方向の長さがゼロとされている例について図示しているが、本実施形態の変形部の形状は、上記で説明した変形部421の形状に限定されない。例えば、第2実施形態で説明した変形部121の形状(図17参照)であってもよい。
【0089】
変形型450は、上面が載置面451とされている。載置面451は、製作される積層体(変形部421を有する積層体420)の形状に応じた形状をしている。詳細には、載置面451は、後述する積層体420の変形部421に対応する第1面部452と、第1面部452のY軸方向の一端部から湾曲して斜め下方へ延びる第2面部453と、第1面部452のY軸方向の他端部(一端部の反対側の端部)から湾曲して斜め上方へ延びる第3面部454と、を有している。第1面部452と第2面部453及び第3面部454とは、段部等を介さずに、連続的に接続されている。
【0090】
第1面部452は、積層体420の変形部421に対応した形状をしている。第1面部452は、X軸方向の断面が下向きに突出するように湾曲している。また、第1面部452は、Y軸方向の断面が下向きに突出するように湾曲している。また、第1面部452は、X軸方向の端部から中心部へ向かうにしたがって、Y軸方向の長さが長くなっている。すなわち、第1面部452は、X軸方向の中心部におけるY軸方向の長さが、X軸方向の端部におけるY軸方向の長さ(本実施形態では、長さがゼロとなっている)よりも長い。
【0091】
上述したように、本実施形態の例では、変形型450によって製作される積層体420は、図29に示すように、変形部421と、第1隣接部422と、第2隣接部423と、を有している。変形部421は、X軸方向の両端部においてY軸方向の長さがゼロとされている。そして、この両端部を基点として、変形部421は、X軸方向の中心部へ向かうにしたがって、Y軸方向の長さが長くなっている。変形部421には、X軸方向に延びる仮想線である変形線421aが含まれている。
【0092】
図30に示すように、製作された積層体420は、成形型430を用いて曲げ成形を施すことで、複合材構造体440に加工される。本実施形態の成形型430は、湾曲部が存在せず、載置部431及び鉛直部433が湾曲部を介することなく接続されている。
積層体420に対して、成形型430を用いて曲げ成形を施すと、図30に示すように、接続部が存在せず、上面部441と側面部443とが直接接続される複合材構造体440が形成される。上面部441は、X軸方向の断面が下向きに突出している。
【0093】
本実施形態における複合材構造体の製造方法は、第3実施形態における方法と同様であるので、説明を省略する。
【0094】
本実施形態では、第2実施形態と同様に、成形ステップにおいて、積層体420のX軸方向の端部から中心部へ向かう力とX軸方向の中心部から端部へ向かう力とが打ち消し合うため、X軸方向に沿った力(X軸方向の中心部から端部へ向かう力)が抑制される。積層体420に作用するX軸方向に沿った力が抑制されるので、積層体420に含まれる繊維に作用するX軸方向に沿った力も抑制される。これにより、積層体420が繊維不足状態になり難い。したがって、積層体420における皺の発生を抑制することができる。
【0095】
なお、本開示は、上記各実施形態に限定されるものではなく、その要旨を逸脱しない範囲において、適宜変形が可能である。
例えば、第1実施形態において、積層体20を製作する積層型10と、積層体20に対して曲げ成形を施す成形型30と一つの共通の型としてもよい。共通の型の一例としては、積層体20の第1隣接部22に対応する部分を、他の部分に対して着脱可能な構成とする。このように構成することで、積層体20を製作した後に、当該部分を取り外すことで、積層体20に対して曲げ成形を施すためのスペースを形成することができる。したがって、一つの型で、積層体20の製作と、曲げ成形との両方を行うことができる。また、第2実施形態においても、同様に、積層型110と成形型130とを一つの共通の型としてもよい。
【0096】
また、例えば、上記各実施形態では、第1実施形態の変形部21(図4参照)や、第2実施形態の変形部121(図15参照)のように、変形部のY軸方向の断面が湾曲している例について説明したが、本開示はこれに限定されない。変形部は、Y軸方向の断面が屈曲していてもよい。
【0097】
また、第1実施形態と第2実施形態とを組み合わせてもよい。具体的には、変形部は、図18に示す積層体220の変形部221のように、Y軸方向の断面が、X軸方向に沿って連続して湾曲または屈曲していてもよい。変形部221は、図18に示すように、第1隣接部222と第2隣接部223とを接続している。また、変形部221は、Y軸方向の断面において、上方に屈曲する部分と下方に屈曲する部分とがX軸方向に連続して並んだ形状をしている。また、変形部221は、Y軸方向の長さが長い部分とY軸方向の長さが短い部分とが、X軸方向に沿って交互に並んでいる。また、この例では、積層体220に曲げ成形を施す際に用いられる成形型230の湾曲部232は、載置部231と鉛直部233とを接続している。湾曲部232の上面は、変形部221の形状に応じた形状とされている。具体的には、湾曲部232の上面は、Y軸方向の断面において、上方に屈曲する部分と下方に屈曲する部分とがX軸方向に連続した形状をしているまた、また、この例では、図19に示すように、積層体220から製造される複合材構造体240の接続部242が、上面部241と側面部243とを接続している。また、接続部242は、変形部221の形状に応じた形状とされている。具体的には、接続部242は、Y軸方向の断面において、上方に屈曲する部分と下方に屈曲する部分とがX軸方向に連続した形状をしている。
このような積層体220であっても、変形部221のY軸方向の長さがX軸方向に沿って変化しているので、積層体220に作用するX軸方向に沿った力が抑制される。よって、積層体220に含まれる繊維に作用するX軸方向に沿った力も抑制される。これにより、積層体220が繊維不足状態になり難い。したがって、積層体220における皺の発生を抑制することができる。
また、同様に、第3実施形態と第4実施形態とを組み合わせてもよい。また、第3実施形態及び第4実施形態と、第1実施形態の各変形例とを組み合わせてもよい。
【0098】
各実施形態に記載の複合材構造体の製造方法及び積層体の製造方法並びに積層体及び積層型は、例えば以下のように把握される。
本開示の一態様に係る複合材構造体(40、40D、140)の製造方法は、複数の繊維シートを積層して、一方向(X軸方向)に延びる変形部(21、21A、21B、21C、21D、121)を有する積層体(20、20A、20B、20C、20D、120)を製作する積層ステップと、前記変形部に含まれ前記一方向に延びる変形線に沿って曲げ成形を施すことで前記変形部を変形させる成形ステップと、を備え、前記積層ステップは、前記変形部の形状が、前記一方向と交差する交差方向(Y軸方向)の断面の形状が屈曲または湾曲していて、前記一方向に沿って前記交差方向の長さが変化する形状となるように、前記積層体を製作する。
【0099】
上記構成では、変形部の交差方向の断面形状が屈曲または湾曲している。このように、交差方向の断面の形状が屈曲または湾曲している変形部(変形線)を曲げると、変形部と交差方向に隣接する領域において、積層体の繊維が余る状態(以下、「繊維余り状態」ともいう。)や、積層体の繊維が不足する状態(以下、「繊維不足状態」ともいう。)となる場合がある。このように、繊維余り状態となると積層体の一部の領域において、一方向に沿った圧縮力が作用する。また、繊維不足状態となると積層体の一部の領域において、一方向に沿った引張力が作用する。一方向に沿った圧縮力または引張力が作用すると、積層体に皺が発生する可能性がある。積層体に皺が発生すると、複合材構造体の強度が低減する可能性がある。
上記構成では、変形部において、一方向に沿って交差方向の長さが変化している。換言すれば、変形部の交差方向の長さが、一方向に沿って一定ではない。成形ステップにおける変形部の変形量は、交差方向の長さによって変化する。このため、上記構成では、成形ステップにおいて変形する変形量が、一方向の位置によって異なることとなる。変形量が多い部分では、より多くの積層体を要する。このため、成形ステップにおいて積層体には、例えば、変形量が少ない部分から変形量が多い部分へ積層体が引っ張られる力等が作用する。上記構成では、変形量が一方向の位置によって異なっているので、成形ステップにおいて、一方向に沿った力が作用する。
このように、上記構成では、交差方向の断面が湾曲している変形部を曲げることに起因して生じる一方向に沿った力と、変形部の一方向に沿った交差方向の長さが変化することに起因して生じる一方向に沿った力との2つの力が積層体に作用する。このため、2つの一方向に沿った力が打ち消し合う場合には、一方向に沿った力が抑制される。これにより、積層体が繊維余り状態または繊維不足状態になり難い。したがって、成形ステップにおいて、積層体における皺の発生を抑制することができる。よって、複合材構造体の強度の低減を抑制することができる。
なお、一方向の断面とは、一方向と直交する面で切断した際の断面を意味している。また、交差方向の断面とは、交差方向と直交する面で切断した際の断面を意味している。また、一方向及び交差方向とは、積層ステップにおいて繊維シートを積層する方向と交差する面に含まれる方向である。また、変形部の交差方向の長さの変化とは、意図的に長さを異なるものとすることであり、製造誤差等による長さの変化等は含まれない。
【0100】
また、本開示の一態様に係る複合材構造体の製造方法は、前記積層ステップは、前記変形部の形状が、前記交差方向の断面の形状が上向きに突出するように屈曲または湾曲するとともに、前記一方向の端部における前記交差方向の長さが前記一方向の中心部における前記交差方向の長さよりも長い形状となるように、前記積層体を製作し、前記成形ステップは、前記変形線に沿って前記変形部の突出する方向とは反対方向へ曲げ成形を施す。
【0101】
上記構成では、変形部が、交差方向の断面の形状が上向きに突出するように屈曲または湾曲している。これにより、成形ステップで変形部を変形させると、積層体の変形部と交差方向に隣接する領域において、一方向に沿った圧縮力(一方向の端部から中心部へ向かう力)が作用する。すなわち、繊維余り状態になろうとする力が作用する。
一方、上記構成では、変形部において、一方向の端部における交差方向の長さが一方向の中心部における交差方向の長さよりも長い形状となっている。これにより、成形ステップにおいて変形する変形量が、端部と中心部とで異なることとなる。具体的には、端部において変形量が多くなり、中心部において変形量が少なくなる。このため、成形ステップにおいて、積層体には、変形量が少ない中心部から変形量が多い端部へ積層体が引っ張られる力(一方向の中心部から端部へ向かう力)が作用する。
このように、一方向の端部から中心部へ向かう力と一方向の中心部から端部へ向かう力とが打ち消し合うため、一方向に沿った力が抑制される。これにより、積層体が繊維余り状態または繊維不足状態になり難い。したがって、積層体における皺の発生を抑制することができる。よって、複合材構造体の強度の低減を抑制することができる。
【0102】
また、本開示の一態様に係る複合材構造体の製造方法は、前記積層ステップは、前記変形部の形状が、前記交差方向の断面の形状が下向きに突出するように屈曲または湾曲するとともに、前記一方向の端部における前記交差方向の長さが前記一方向の中心部における前記交差方向の長さよりも短い形状となるように、前記積層体を製作し、前記成形ステップは、前記変形線に沿って前記変形部の突出する方向と同一方向へ曲げ成形を施す。
【0103】
上記構成では、変形部が、交差方向の断面の形状が下向きに突出するように屈曲または湾曲している。これにより、成形ステップで変形部を変形させると、積層体の変形部と交差方向に隣接する領域において、一方向に沿った引張力(一方向の中心部から端部へ向かう力)が作用する。すなわち、繊維不足状態になろうとする力が作用する。
一方、上記構成では、変形部において、一方向の端部における交差方向の長さが一方向の中心部における交差方向の長さよりも短い形状となっている。これにより、成形ステップにおいて変形する変形量が、端部と中心部とで異なることとなる。具体的には、端部において変形量が少なくなり、中心部において変形量が多くなる。このため、成形ステップにおいて、積層体には、変形量が少ない端部から変形量が多い中心部へ積層体が引っ張られる力(一方向の端部から中心部へ向かう力)が作用する。
このように、一方向の中心部から端部へ向かう力と一方向の端部から中心部へ向かう力とが打ち消し合うため、一方向に沿った力が抑制される。これにより、積層体が繊維余り状態または繊維不足状態になり難い。したがって、積層体における皺の発生を抑制することができる。よって、複合材構造体の強度の低減を抑制することができる。
【0104】
また、本開示の一態様に係る複合材構造体の製造方法は、前記積層ステップは、前記変形部の形状が、前記一方向の断面の形状が湾曲するとともに、前記一方向の端部における前記一方向の断面の曲率半径が、前記一方向の中心部における前記一方向の断面の曲率半径よりも大きい形状となるように前記積層体を製作する。
【0105】
上記構成では、変形部の形状が、一方向の断面の形状が湾曲している。これにより、成形ステップにおいて、より好適に変形部に対して曲げ成形を施すことができる。
【0106】
また、本開示の一態様に係る複合材構造体の製造方法は、前記積層ステップは、前記変形部の形状が、前記一方向の断面の形状が湾曲するとともに、前記一方向の端部における前記一方向の断面の曲率半径が、前記一方向の中心部における前記一方向の断面の曲率半径よりも小さい形状となるように前記積層体を製作する。
【0107】
上記構成では、変形部の形状が、一方向の断面の形状が湾曲している。これにより、成形ステップにおいて、より好適に変形部に対して曲げ成形を施すことができる。
【0108】
本開示の一態様に係る複合材構造体(340,440)の製造方法は、複数の繊維シートを積層して、積層体(300,400)を製作する積層ステップと、一方向(X軸方向)に延びる変形部(321,421)が形成されるように、前記積層体を変形させる変形ステップと、前記変形部に含まれ前記一方向に延びる変形線(321a,421a)に沿って曲げ成形を施すことで前記変形部を変形させる成形ステップと、を備え、前記変形ステップは、前記変形部の形状が、前記一方向と交差する交差方向(Y軸方向)の断面の形状が屈曲または湾曲していて、前記一方向に沿って前記交差方向の長さが変化する形状となるように、前記積層体を変形させる。
【0109】
上記構成では、まず、変形部を有するように積層体を変形させ、その後に、変形部を有する積層体に対して曲げ成形を施している。また、変形部において、一方向に沿って交差方向の長さが変化している。これにより、成形ステップにおいて、積層体が繊維余り状態または繊維不足状態になり難い。したがって、成形ステップにおいて、積層体における皺の発生を抑制することができる。よって、複合材構造体の強度の低減を抑制することができる。
【0110】
また、上記構成では、積層ステップで繊維シートを積層し、その後に積層体を変形させて変形部を形成することで、変形部を有する積層体を製作している。すなわち、積層ステップにおいて、積層体に対して変形部を形成する必要がない。これにより、積層ステップで変形部を有する積層体を製作する場合と比較して、積層ステップで製作する積層体の形状を単純な形状にできる。したがって、積層ステップにおける作業を簡易化することができる。よって、積層ステップで生じるコストを低減することができる。また、積層ステップを短時間化することができる。
また、例えば、凹凸を有するような複雑な形状の積層体を製作する場合には、細いテープ状の繊維シートによって製作しなければならない場合がある。一方、例えば、平板状のような単純な形状の積層体を製作する場合には、積層体の投影面積と同程度の面積を有する繊維シートを積層していくことで積層体を製作することができる。上記構成では、積層ステップで製作する積層体の形状を単純な形状にできるので、積層体を構成する繊維シートの形状の自由度を向上させることができる。
【0111】
また、積層体を複合材構造体となるように加工する場合には、積層体の面内方向における形状変化と、積層されている繊維シート同士が滑るような変形とが、積層体に生じる。
面内方向における形状変化(以下、「面内変形」と称する。)とは、積層体に面内方向(X軸方向及びY軸方向)に沿って生じる形状の変化である。また、積層されている繊維シート同士が滑るような変形(以下、「層間滑り」と称する)とは、積層体を構成する繊維シートのうち、内側に位置する繊維シートと外側に位置する繊維シートとの湾曲部分の長さの差によって生じる変形である。
このように、積層体を複合材構造体となるように加工する場合に、面内変形及び層間滑りが生じるため、積層体を変形させるステップを1段階だけで行うと、面内変形及び層間滑りが同時に起こるため、積層体の形状変化が複雑となり、積層体の変形が適切に行われない可能性がある。特に、層間滑りが適切に行われない可能性がある。積層体の変形が適切に行われないと、積層体に皺が発生する可能性がある。
一方、上記構成では、まず、変形部を有するように積層体を変形させ、その後に、変形部を有する積層体に対して曲げ成形を施している。すなわち、積層体を変形させるステップを2段階(変形ステップと成形ステップ)に分けている。
上記構成では、変形ステップにおいて、積層体が変形部を有するように変形しているので、面内変形の多くは、最初の曲げ工程である変形ステップにおいて行われる。一方、変形工程において面内変形がすでに行われているので、成形ステップでは、面内変形はほとんど行われない。以上から、成形ステップでは、主に層間滑りが行われ、面内変形はほとんど行われない。
このように、本実施形態では、面内変形が行われるステップと、層間滑りが行われるステップとを異なるステップとすることができる。したがって、積層体の形状変化が比較的単純なものとなるので、積層体の変形を適切に行うことができる。したがって、皺の発生を抑制することができるので、複合材構造体の強度の低減を抑制することができる。
【0112】
また、一般に、複数の繊維シートを積層した積層体は、積層体の強度を向上させるために、繊維の延在方向が異なる繊維シートを積層することで形成される。繊維シートは、繊維と直交する方向には伸び易く、繊維の延在方向には伸び難い。したがって、積層体に対して曲げ成形を施した場合には、積層されている繊維シート毎に、伸びる方向(伸び量が多い方向)が異なることとなる。このように、積層される繊維シート毎に伸びる方向が異なることで、繊維シート間(以下、「層間」と称する。)で摩擦が生じる。層間で生じる摩擦は、積層体に皺が発生する原因となる。
上記構成では、上述のように、積層体を変形させるステップを2段階に分けている。これにより、各ステップにおける積層体の変形量を少なくすることができる。積層体の変形量が少なくなることで、各ステップにおける各繊維シートの伸び量も少なくなる。各繊維シートが伸びる場合、同じ伸び量であっても、大きい伸び量を一度に行う場合よりも、少ない伸び量複数回行う場合の方が層間の摩擦は少ない。したがって、上記構成では、積層体を変形させるステップを分割しない場合と比較して、層間で生じる摩擦を抑制することができる。よって、積層体における皺の発生を抑制することができるので、複合材構造体の強度の低減を抑制することができる。
【0113】
本開示の一態様に係る積層体(20、20A、20B、20C、20D、120)の製造方法は、曲げ成形を施されることによって複合材構造体(40、40D、140)に加工される積層体の製造方法であって、一方向に延びる変形部(21、21A、21B、21C、21D、121)を有するように複数の繊維シートを積層する積層ステップを備え、前記積層ステップは、前記変形部の形状が、前記一方向の断面の形状及び前記一方向と交差する交差方向の断面の形状が屈曲または湾曲していて、前記一方向に沿って前記交差方向の長さが変化する形状となるように、前記積層体を製造する。
【0114】
上記構成では、製造される積層体は、変形部を有する。変形部に含まれ一方向に延びる変形線に沿って曲げ成形を施し、積層体の変形部を変形させても、積層体に作用する2つの一方向に沿った力が打ち消し合う場合には、一方向に沿った力が抑制される。これにより、積層体が繊維余り状態または繊維不足状態になり難い。したがって、積層体における皺の発生を抑制することができる。よって、積層体から製造される複合材構造体の強度の低減を抑制することができる。
【0115】
本開示の一態様に係る積層体の製造方法は、前記積層ステップは、前記変形部の形状が、前記交差方向の断面の形状が上向きに突出するように屈曲または湾曲するとともに、前記一方向の端部における前記交差方向の長さが前記一方向の中心部における前記交差方向の長さよりも長い形状となるように、前記積層体を製造する。
【0116】
上記構成では、製造された積層体を変形させた場合、一方向の端部から中心部へ向かう力と一方向の中心部から端部へ向かう力とが打ち消し合うため、一方向に沿った力が抑制される。これにより、積層体が繊維余り状態または繊維不足状態になり難い。したがって、積層体における皺の発生を抑制することができる。よって、複合材構造体の強度の低減を抑制することができる。
【0117】
本開示の一態様に係る積層体の製造方法は、前記積層ステップは、前記変形部の形状が、前記交差方向の断面の形状が下向きに突出するように屈曲または湾曲するとともに、前記一方向の端部における前記交差方向の長さが前記一方向の中心部における前記交差方向の長さよりも短い形状となるように、前記積層体を製造する。
【0118】
上記構成では、製造された積層体を変形させた場合、一方向の中心部から端部へ向かう力と一方向の端部から中心部へ向かう力とが打ち消し合うため、一方向に沿った力が抑制される。これにより、積層体が繊維余り状態または繊維不足状態になり難い。したがって、積層体における皺の発生を抑制することができる。よって、複合材構造体の強度の低減を抑制することができる。
【0119】
本開示の一態様に係る積層体の製造方法は、曲げ成形を施されることによって複合材構造体に加工される積層体の製造方法であって、複数の繊維シートを積層する積層ステップと、前記積層ステップで積層された複数の前記繊維シートを、一方向に延びる変形部が形成されるように、変形させる変形ステップと、を備え前記変形ステップは、前記変形部の形状が、前記一方向と交差する交差方向の断面の形状が屈曲または湾曲していて、前記一方向に沿って前記交差方向の長さが変化する形状となるように、複数の前記繊維シートを変形させる。
【0120】
上記構成では、製造される積層体は、変形部を有する。これにより、変形部に含まれ一方向に延びる変形線に沿って曲げ成形を施し、積層体の変形部を変形させても、積層体が繊維余り状態または繊維不足状態になり難い。したがって、積層体における皺の発生を抑制することができる。よって、積層体から製造される複合材構造体の強度の低減を抑制することができる。
また、積層ステップで変形部を有する積層体を製作する場合と比較して、積層ステップで製作する積層体の形状を単純な形状にできる。したがって、積層ステップにおける作業を簡易化することができる。よって、積層ステップで生じるコストを低減することができる。また、積層ステップを短時間化することができる。また、積層ステップで製作する積層体の形状を単純な形状にできるので、積層体を構成する繊維シートの形状の自由度を向上させることができる。
【0121】
本開示の一態様に係る積層体(20、20A、20B、20C、20D、120)は、複数の繊維シートを積層して製作され、曲げ成形を施されることによって複合材構造体(40、40D、140)に加工される積層体であって、一方向に延び、前記一方向と交差する交差方向の断面の形状が屈曲または湾曲していて、前記一方向に沿って前記交差方向の長さが変化している変形部(21、21A、21B、21C、21D、121)を有する。
【0122】
上記構成では、変形部に含まれ一方向に延びる変形線に沿って曲げ成形を施し、積層体の変形部を変形させても、積層体に作用する2つの一方向に沿った力が打ち消し合う場合には、一方向に沿った力が抑制される。これにより、積層体が繊維余り状態または繊維不足状態になり難い。したがって、積層体における皺の発生を抑制することができる。よって、積層体から製造される複合材構造体の強度の低減を抑制することができる。
【0123】
また、本開示の一態様に係る積層体は、前記変形部は、前記交差方向の断面が上向きに突出するように屈曲または湾曲していて、前記一方向の端部における前記交差方向の長さが、前記一方向の中心部における前記交差方向の長さよりも長い。
【0124】
上記構成では、積層体を変形させても、一方向の端部から中心部へ向かう力と一方向の中心部から端部へ向かう力とが打ち消し合うため、一方向に沿った力が抑制される。これにより、積層体が繊維余り状態または繊維不足状態になり難い。したがって、積層体における皺の発生を抑制することができる。よって、複合材構造体の強度の低減を抑制することができる。
【0125】
また、本開示の一態様に係る積層体は、前記変形部は、前記交差方向の断面が下向きに突出するように屈曲または湾曲していて、前記一方向の端部における前記交差方向の長さが、前記一方向の中心部における前記交差方向の長さよりも短い。
【0126】
上記構成では、積層体を変形させても、一方向の中心部から端部へ向かう力と一方向の端部から中心部へ向かう力とが打ち消し合うため、一方向に沿った力が抑制される。これにより、積層体が繊維余り状態または繊維不足状態になり難い。したがって、積層体における皺の発生を抑制することができる。よって、複合材構造体の強度の低減を抑制することができる。
【0127】
本開示の一態様に係る積層型(10、110)は、積層される複数の繊維シートを有していて複合材構造体(40、40D、140)に加工される積層体(20、20A、20B、20C、20D、120)を製作するための積層型であって、前記繊維シートが載置される積層面(11)を備え、前記積層面は、一方向に延び、前記一方向と交差する交差方向の断面の形状が屈曲または湾曲していて、前記一方向に沿って前記交差方向の長さが変化している湾曲面部(12、112)を有する。
【0128】
また、本開示の一態様に係る積層型は、前記湾曲面部は、前記交差方向の断面が上向きに突出するように湾曲していて、前記一方向の端部における前記交差方向の長さが、前記一方向の中心部における前記交差方向の長さよりも長い。
【0129】
また、本開示の一態様に係る積層型は、前記湾曲面部は、前記交差方向の断面が下向きに突出するように湾曲していて、前記一方向の端部における前記交差方向の長さが、前記一方向の中心部における前記交差方向の長さよりも短い。
【符号の説明】
【0130】
10 :積層型
11 :積層面
12 :第1面部(湾曲面部)
13 :第2面部
14 :第3面部
20 :積層体
21 :変形部
21a :変形線
22 :第1隣接部
23 :第2隣接部
30 :成形型
31 :載置部
32 :湾曲部
33 :鉛直部
40 :複合材構造体
41 :上面部
42 :接続部
43 :側面部
112 :第1面部(湾曲面部)
113 :第2面部
114 :第3面部
120 :積層体
121 :変形部
122 :第1隣接部
123 :第2隣接部
130 :成形型
131 :載置部
132 :湾曲部
140 :複合材構造体
141 :上面部
142 :接続部
W :皺
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17
図18
図19
図20
図21
図22
図23
図24
図25
図26
図27
図28
図29
図30
図31
図32
図33
図34