IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ グーグル インコーポレイテッドの特許一覧

<>
  • 特許-パラメータ値の自動的な決定 図1
  • 特許-パラメータ値の自動的な決定 図2A
  • 特許-パラメータ値の自動的な決定 図2B
  • 特許-パラメータ値の自動的な決定 図3A
  • 特許-パラメータ値の自動的な決定 図3B
  • 特許-パラメータ値の自動的な決定 図4
  • 特許-パラメータ値の自動的な決定 図5
  • 特許-パラメータ値の自動的な決定 図6
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-01-04
(45)【発行日】2024-01-15
(54)【発明の名称】パラメータ値の自動的な決定
(51)【国際特許分類】
   H04N 21/235 20110101AFI20240105BHJP
   H04N 21/24 20110101ALI20240105BHJP
【FI】
H04N21/235
H04N21/24
【請求項の数】 10
(21)【出願番号】P 2022551712
(86)(22)【出願日】2021-08-27
(65)【公表番号】
(43)【公表日】2023-10-11
(86)【国際出願番号】 US2021047957
(87)【国際公開番号】W WO2023027728
(87)【国際公開日】2023-03-02
【審査請求日】2022-10-12
(73)【特許権者】
【識別番号】502208397
【氏名又は名称】グーグル エルエルシー
【氏名又は名称原語表記】Google LLC
【住所又は居所原語表記】1600 Amphitheatre Parkway 94043 Mountain View, CA U.S.A.
(74)【代理人】
【識別番号】100108453
【弁理士】
【氏名又は名称】村山 靖彦
(74)【代理人】
【識別番号】100110364
【弁理士】
【氏名又は名称】実広 信哉
(74)【代理人】
【識別番号】100133400
【弁理士】
【氏名又は名称】阿部 達彦
(72)【発明者】
【氏名】ウェンボ・ジャン
(72)【発明者】
【氏名】ソン・カイン・ファム
【審査官】益戸 宏
(56)【参考文献】
【文献】米国特許出願公開第2018/0365295(US,A1)
【文献】米国特許出願公開第2017/0272809(US,A1)
【文献】中国特許出願公開第109831684(CN,A)
【文献】米国特許出願公開第2020/0314490(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H04N 21/00 ー 21/858
(57)【特許請求の範囲】
【請求項1】
コンテンツプラットフォームがビデオコンテンツを伴うデジタルコンポーネントの提供をそれに基づき制御するパラメータのパラメータ値を特定するために複数の反復を実行するステップであって、前記複数の反復における各反復を実行するステップが、
前記パラメータに対する一組の評価点を特定するステップであり、各評価点が、前記パラメータの評価パラメータ値および前記コンテンツプラットフォームによるデジタルコンポーネントの前記提供に対応するメトリックのメトリック値を含み、評価点の前記メトリック値が、前記コンテンツプラットフォームがデジタルコンポーネントを提供するために前記評価点の前記評価パラメータ値を使用することによって生成されるデータから決定される、ステップと、
前記一組の評価点を使用して第1のモデルを生成するステップと、
前記第1のモデルの平均値および信頼区間を生成するステップと、
前記第1のモデルおよび獲得関数に基づいて第2のモデルを生成するステップであり、前記獲得関数が、前記第1のモデルの前記平均値、前記第1のモデルの前記信頼区間、および前記パラメータを評価するための探索の優先度を制御する構成可能な探索重みに基づく、ステップと、
前記第2のモデルから、評価すべき次のパラメータ値を決定するステップと、
前記ビデオコンテンツと共にデジタルコンポーネントを提供するために前記次のパラメータ値を使用するように前記コンテンツプラットフォームを構成するステップと、
前記コンテンツプラットフォームがデジタルコンポーネントを提供するために前記次のパラメータ値を使用する結果として生じるデータに基づいて次のメトリック値を決定するステップとを含む、ステップと、
前記複数の反復の間に決定される前記パラメータのための前記パラメータ値および対応するメトリック値の中から、最高のメトリック値をもたらすか、または特定の閾値を満足させるかのいずれかである特定のパラメータ値を決定するステップと、
前記特定のパラメータ値を使用して前記コンテンツプラットフォームを、前記ビデオコンテンツと共に提供されるデジタルコンポーネントを制作中に制御または選択するように構成するステップと
を含むコンピュータ実装方法。
【請求項2】
前記第2のモデルから、前記次のパラメータ値以外の少なくとも1つの他の評価すべきパラメータ値を決定するステップを更に含む、請求項1に記載のコンピュータ実装方法。
【請求項3】
前記第1のモデルを生成するステップが、現在の一組の評価点に適合するモデルとして前記第1のモデルを生成するステップを含む、請求項1または2に記載のコンピュータ実装方法。
【請求項4】
前記第2のモデルから評価すべき前記次のパラメータ値を決定するときに、前記探索重みが、新たなパラメータ値を探索する優先度を制御する、請求項1から3のいずれか一項に記載のコンピュータ実装方法。
【請求項5】
前記探索重みが、前記獲得関数における信頼区間の重みに相当する、請求項4に記載のコンピュータ実装方法。
【請求項6】
前記探索重みが、より以前のパラメータ評価反復においてより高く、より後のパラメータ評価反復においてより低くなる、請求項1から5のいずれか一項に記載のコンピュータ実装方法。
【請求項7】
初期の一組の評価点における各評価点が、ランダムに発生されたパラメータ値を含む、請求項1から6のいずれか一項に記載のコンピュータ実装方法。
【請求項8】
前記第2のモデルから、評価すべき次のパラメータ値を決定するステップが、対応する最高獲得関数値を有するパラメータ値を決定するステップを含む、請求項1から7のいずれか一項に記載のコンピュータ実装方法。
【請求項9】
命令を記憶する1つまたは複数のメモリデバイスと、
前記1つまたは複数のメモリデバイスと対話し、前記命令が実行されると、請求項1から8のいずれか一項に記載の方法に係る動作を行うように構成される1つまたは複数のデータ処理装置と
を備える、システム。
【請求項10】
1つまたは複数のデータ処理装置によって実行されると、前記1つまたは複数のデータ処理装置に請求項1から8のいずれか一項に記載の方法に係る動作を行わせる命令を含むコンピュータプログラム。
【発明の詳細な説明】
【技術分野】
【0001】
本明細書は、概して、データ処理、ならびに、コンテンツプラットフォームによるコンテンツの提供を制御するまたはそれに影響を及ぼすパラメータ値を自動的に決定することに関する。
【背景技術】
【0002】
ユーザにストリーミングされるビデオは、一般に元のビデオストリームの上にオーバーレイされる1つまたは複数のデジタルコンポーネントを含むことができる。オーバーレイされたコンテンツは、元のビデオ画面の一部分にオーバーレイする矩形領域内でユーザに提供されてよい。デジタルコンポーネントは、元のビデオストリームの前に、間にまたは後に再生されるインストリームコンテンツを含むこともできる。ビデオおよびデジタルコンポーネントの提供は、ビデオと共に提示される多重デジタルコンポーネントの提示間の時間間隔、異なる種類のデジタルコンポーネントを選択する頻度もしくは可能性、または他の種類のパラメータなどの、各種のパラメータのパラメータ値に基づいてコンテンツプラットフォーム(例えば、ビデオシステム)によって制御できる。
【0003】
本文書を通して使用されるように、句「デジタルコンポーネント」は、個別の単位のデジタルコンテンツまたはデジタル情報(例えば、ビデオクリップ、オーディオクリップ、マルチメディアクリップ、画像、テキストまたは別の単位のコンテンツ)を指す。デジタルコンポーネントを単一のファイルとしてまたは一群のファイルで物理メモリデバイスに電子的に記憶でき、そしてデジタルコンポーネントは、ビデオファイル、オーディオファイル、マルチメディアファイル、画像ファイルまたはテキストファイルの形態をとることができる。例えば、デジタルコンポーネントは、ビデオまたは他のリソースのコンテンツを補足すると意図されるコンテンツでよい。より具体的には、デジタルコンポーネントは、リソースコンテンツに関連するデジタルコンテンツを含んでよい(例えば、デジタルコンポーネントは、ビデオに関する話題/コンテンツと同じであるまたはそうでなければ関連した話題に関してもよい)。デジタルコンポーネントの提供は、このようにウェブページまたはアプリケーションコンテンツを補足、および一般的に強化できる。
【発明の概要】
【課題を解決するための手段】
【0004】
概して、本明細書に記載される対象の1つの革新的な態様は、コンテンツプラットフォームがビデオコンテンツを伴うデジタルコンポーネントの提供をそれに基づき制御するパラメータのパラメータ値を特定するために複数の反復を実行する動作であって、複数の反復における各反復を実行する動作が、パラメータに対する一組の評価点を特定する動作であり、各評価点が、パラメータの評価パラメータ値およびコンテンツプラットフォームによるデジタルコンポーネントの提供に対応するメトリックのメトリック値を含み、評価点のメトリック値が、コンテンツプラットフォームがデジタルコンポーネントを提供するために評価点の評価パラメータ値を使用することによって生成されるデータから決定される、動作と、一組の評価点を使用して第1のモデルを生成する動作と、第1のモデルの平均値および信頼区間を生成する動作と、第1のモデルおよび獲得関数に基づいて第2のモデルを生成する動作であり、獲得関数が、第1のモデルの平均値、第1のモデルの信頼区間、およびパラメータを評価するための探索(exploration)の優先度を制御する構成可能な探索重みに基づく、動作と、第2のモデルから、評価すべき次のパラメータ値を決定する動作と、ビデオコンテンツと共にデジタルコンポーネントを提供するために次のパラメータ値を使用するようにコンテンツプラットフォームを構成する動作と、コンテンツプラットフォームがデジタルコンポーネントを提供するために次のパラメータ値を使用する結果として生じるデータに基づいて次のメトリック値を決定する動作とを含む、動作と、複数の反復中に決定されるパラメータのパラメータ値および対応するメトリック値の中から、最高のメトリック値をもたらすか、特定の閾値を満足させるかのいずれかである特定のパラメータ値を決定する動作と、特定のパラメータ値を使用してコンテンツプラットフォームを、ビデオコンテンツと共に提供されるデジタルコンポーネントを制作中に制御または選択するように構成する動作とを含む方法に具現化できる。この態様の他の実施形態には、対応する方法、装置、およびコンピュータ記憶デバイス上に符号化される、本方法の作用を行うように構成された、コンピュータプログラムを含む。これらおよび他の実施形態は、以下の特徴の1つまたは複数を各々任意選択で含むことができる。
【0005】
本明細書に記載される対象の特定の実施形態を、以下の利点の1つまたは複数を実現するように実装できる。本明細書に記載される技術は、例えば、コンテンツプラットフォームなどの、別のシステムのパラメータを自動的にチューニングできるパラメータチューニングシステムを提供する。コンテンツプラットフォームは、例えば、何百または何千ものパラメータ(例えば、デジタルコンポーネントの提示間の時間間隔を制御するパラメータ、或る種類のデジタルコンポーネントを選択する可能性を表すパラメータ)さえ有してよい。各パラメータを手動でチューニングすることは実施可能でなくてよい。したがって、パラメータチューニングシステムによるパラメータの自動チューニングは、手動チューニング手法で可能であるより多数のパラメータのチューニングを可能にすることができる。コンテンツプラットフォームは、数例を挙げると、データ記憶、プロセッサ時間、管理者時間、リアルタイム実験データおよびネットワーク帯域幅などの、限られたリソースへのアクセスを有してよい。限られたリソースとは、コンテンツプラットフォームが特定のパラメータ値を使用して構成されつつコンテンツを提供することに由来し得る効果(例えば、メトリック値)をコンテンツプラットフォームが決定するために、限定数の実験を行うことができることを意味する。したがって、あらゆる可能なパラメータ値を評価する総当たり法は実施可能でない。何百ものパラメータが、各々多重パラメータ値オプションを有しており、総当たり法では実施不可能な数のパラメータ値オプションの評価を含む必要があるであろう組合せ爆発が発生し得る。すなわち、実験のためのコンテンツプラットフォームの限られたリソースは、可能なパラメータ値の全てが評価される前に使い果たされるであろう。パラメータ値のランダム評価などの、他の手法は、所望のメトリック値に至らないパラメータ値が、良いパラメータ値候補でないにもかかわらず、評価のために選択され続け得るので、非効率であり得る。例えば、パラメータ値のランダム選択により、共に近いパラメータ値が選択され得るが、同様のパラメータを評価しても、より良いパラメータ値を決定することに関して一般にほとんど価値を生み出さないので、リソースを浪費する。本明細書で使用されるより良いパラメータ値とは、異なるパラメータ値で構成されつつコンテンツプラットフォームによって生成されるデータから導出されるより悪いメトリック値と比較して、パラメータ値が構成されつつコンテンツプラットフォームによって生成されるデータからより良いメトリック値が導出されることに至るパラメータ値である。より良いメトリック値とは、コンテンツプラットフォームのプロバイダおよび/またはコンテンツプラットフォームを使用するエンティティによってより好まれるまたはより望ましいメトリック値(他のメトリック値と比較して)である。より良いメトリック値は、コンテンツプラットフォームまたはコンテンツプラットフォームを使用するエンティティの目標に対応してよい。エンティティ目標は以下により詳細に記載される。より良いメトリック値は、コンテンツプラットフォームが異なるパラメータ値で構成されるときに達成されるより悪いメトリック値と比較して、コンテンツプラットフォームが特定のパラメータ値で構成されるときに達成される値であることができる。
【0006】
対照的に、本明細書に記載されるパラメータチューニングシステムは、例えば、最高予測メトリック値を伴うパラメータ値(他のパラメータ値に対応するメトリック値に対して)および/またはまだ未探索のパラメータ値空間に含まれる点で最高潜在性を伴うパラメータ値(他のパラメータ値に対して)を特定する獲得関数に基づいてパラメータ値を自動的かつ反復的に選択することによって評価すべきパラメータ値を選択できる。パラメータチューニングシステムによって使用される選択プロセスは、総当たりまたはランダム法から達成され得るよりも迅速に評価(および実装)のためにより良いパラメータ値が選択されることに至ることができる。より良いパラメータ値をより迅速に選択することによって、より良いパラメータ値を決定するために行われる必要がある実験が少なくなり、したがって選択パラメータを評価するための実験をすることからコンテンツプラットフォームによって消費されるリソースを削減できる。このようにして、パラメータチューニングシステムによるパラメータ値の選択は、より良いパラメータ値および改善されたリソース効率(総当たりまたはランダム法などの、他の方法に対して)でのコンテンツプラットフォームのより速い構成に至ることができる。
【0007】
より少ない実験によりリソースを節約することに加えて、一旦コンテンツプラットフォームが、上記の技術(本明細書を通して更に記載される)を使用して、例えばパラメータチューニングシステムによって、決定されるパラメータ値を使用して構成されると、より良いパラメータ値でコンテンツプラットフォームを構成することも、コンテンツプラットフォームのためのリソース削減または節約に至ることができる。例えば、メトリック例には、ユーザがビデオを放棄する率を示すビデオ放棄率およびユーザがビデオと共に提示されるデジタルコンポーネントを視聴する率を示すビュースルー率を含んでよい。パラメータチューニングシステムは、上記の選択プロセス(本明細書を通して更に記載される)を使用して、一旦コンテンツプラットフォームに構成されると、より良いビデオ放棄率およびビュースルー率メトリックの生成に至る1つまたは複数のパラメータ(例えば、デジタルコンポーネントのための時間間隔パラメータ)のための新たなパラメータ値を自動的に決定できる。一部のメトリックに関して、より良いメトリック値は、より効率的な活用に相関する。例えば、ビデオ放棄率およびデジタルコンポーネントビュースルー率メトリックに関して、コンテンツプラットフォームによるリソース支出は、より良いビデオ放棄率またはより良いデジタルコンポーネントビュースルー率に至るように選択/決定された(例えば、パラメータチューニングシステムによって)新たなパラメータ値でコンテンツプラットフォームが構成された後に、より効率的であり得る。この例では、新たなパラメータ値が構成された前の期間と比較して、提供されるビデオコンテンツおよびデジタルコンポーネントがより消費されそうであるので、効果的なリソース支出が達成される。言い換えれば、ユーザがビデオコンテンツおよびデジタルコンポーネントを消費することなくクライアントデバイスがビデオコンテンツおよびデジタルコンポーネントを受信する可能性が低下されるので、ビデオコンテンツおよびデジタルコンポーネントを提供することに費やされる処理サイクル、ネットワーク帯域幅および他のリソースは、よりリソース効率的である。
【0008】
別の例として、パラメータチューニングシステムは、一旦コンテンツプラットフォームに構成されると、ユーザデバイスにビデオコンテンツまたはデジタルコンポーネントを提供する待ち時間などの待ち時間特有のメトリックに対するなどの、より良いリソース特有のメトリック値の生成に至るより良いパラメータ値を選択できる。例えば、パラメータチューニングシステムは、実装されれば、パラメータ値の実装の前の期間と比較して、より低い待ち時間特有のメトリック値に至るであろうパラメータ値を決定できる。別の例として、パラメータチューニングシステムは、一旦構成されると、コンテンツプラットフォームが以前のパラメータ値を使用して構成された以前の期間に以前に達成された同じ全デジタルコンポーネントインタラクション数と比較して、より少ないデジタルコンポーネントを提供することによって達成できる特定の期間における全デジタルコンポーネントインタラクション数などの或るメトリック値の生成に至るより良いパラメータ値を選択できる。例えば、パラメータチューニングシステムは、一旦コンテンツプラットフォームに構成されると、コンテンツプラットフォームが他のパラメータ値で構成された以前の期間にコンテンツプラットフォームによって選択されるデジタルコンポーネントと比較して、より高い率で対話されるデジタルコンポーネントのコンテンツプラットフォームによる選択に至るパラメータ値を選択できる。別の例として、パラメータチューニングシステムは、一旦コンテンツプラットフォームに構成されると、コンテンツプラットフォームが以前のパラメータ値を使用して構成された以前の期間に以前に消費されたのと同じリソースの量を使用して様々なメトリック(例えば、期間における全デジタルコンポーネントインタラクション数)に対するより良いメトリック値に至るより良いパラメータ値を選択できる。
【0009】
パラメータチューニングプラットフォームは、パラメータチューニングプラットフォームによって自動的に決定されない他のパラメータ値と比較して改善されたリソース活用に至る他のパラメータ値を自動的に決定できる。例えば、パラメータチューニングプラットフォームは、所与のユーザにコンテンツプラットフォームによって配布されるデジタルコンポーネントの数を制限できる様々なパラメータのパラメータ値を決定できる。様々な理由でコンテンツプラットフォームによるデジタルコンポーネントの配布を制限することは、例えばプロセッサリソースのより少ない使用およびネットワークリソースのより少ない活用に至ることができる。パラメータチューニングプラットフォームが値を自動的に決定でき、かつコンテンツプラットフォームが配布されるデジタルコンポーネントの数を制限するために使用できるパラメータ例には、1)特定の期間内に各ユーザにコンテンツプラットフォームによって配布できるデジタルコンポーネントの総数を制限するフリークエンシキャップパラメータ、および2)同じデジタルコンポーネントを特定の期間に同じユーザにコンテンツプラットフォームによって配布できる回数を制限する最大繰り返し数パラメータを含む。
【0010】
別の例として、パラメータチューニングシステムは、コンテンツプラットフォームによって行われるデジタルコンポーネント選択オークションに参加するデジタルコンポーネントの数を制御するためにコンテンツプラットフォームが使用できる様々なパラメータのための値を自動的に決定できる。コンテンツプラットフォームによって行われるオークションに参加するデジタルコンポーネントの数を制限することは、パラメータを使用しないでオークション参加体の数を制限することと比較して、処理リソースを節約できる。パラメータチューニングプラットフォームが値を自動的に決定でき、かつコンテンツプラットフォームがコンテンツオークションに参加するデジタルコンポーネントの数を制限するために使用できるパラメータ例には、1)コンテンツプラットフォームによって行われるコンテンツ選択オークションに参加できる特定のフォーマット(例えば、スキップ可能なフォーマット、非スキップ可能なフォーマット)のデジタルコンポーネントの最大数を各々制御する種々のパラメータ、2)コンテンツプラットフォームによって行われるデジタルコンポーネント選択オークションに参加できる特定のビデオ長範囲(例えば、0~1分、1~5分、5~10分、10分超)を有するビデオデジタルコンポーネントの最大数を各々制御する種々のパラメータ(例えば、コンテンツプラットフォームは、より長い長さのより少ないビデオおよびより短い長さのより多くのビデオがオークションに参加するのを許容するためにこれらのパラメータを使用できる)、3)特定の国におけるユーザに対して行われるオークションに参加できるデジタルコンポーネントの最大数を各々制御する種々のパラメータ(例えば、コンテンツプラットフォームは、第1の国におけるユーザのためにデジタルコンポーネントを選択するために、第2の国におけるユーザのためにデジタルコンポーネントを選択するためのより多数のオークション参加体と比較して、より少数のオークション参加体を許容するためにこれらのパラメータを使用できる)、ならびに4)コンテンツプラットフォームによって行われるデジタルコンポーネント選択オークションに参加できる特定の創造的品質(例えば、コンテンツプラットフォームの品質アナライザによって決定される、高品質、中品質、低品質)を有するビデオデジタルコンポーネントの最大数を各々制御する種々のパラメータ(例えば、コンテンツプラットフォームは、より低品質のより少ないビデオおよびより高い品質のより多くのビデオがオークションに参加するのを許容するためにこれらのパラメータを使用できる)を含む。
【0011】
本明細書に記載される対象の1つまたは複数の実施形態の詳細が添付の図面および以下の説明に定められる。その対象の他の特徴、態様および利点は、その説明、図面および特許請求の範囲から明らかになるであろう。
【図面の簡単な説明】
【0012】
図1】パラメータ値を自動的に決定するための環境例のブロック図である。
図2A】パラメータに対する評価点がプロットされるグラフ例である。
図2B】パラメータに対する真の関数を例示するグラフ例である。
図3A】平均値および信頼区間を例示するグラフである。
図3B】獲得関数を例示するグラフである。
図4】パラメータ値を自動的に決定するための擬似コード例を例示する。
図5】パラメータ値を自動的に決定するためのプロセス例のフロー図である。
図6】記載した動作を行うために使用できるコンピュータシステム例のブロック図である。
【発明を実施するための形態】
【0013】
以下に要約されかつ本明細書を通して記載されるように、本明細書に記載される技術は、コンテンツプラットフォームによるコンテンツの提供を制御するまたはそれに影響を及ぼすパラメータ値の自動決定を可能にする。一部の実装例において、本明細書に記載される技術は、コンテンツプラットフォーム(例えば、コンテンツプラットフォームによるコンテンツの供給のために)または何らかの他の種類のシステムに提供されるべきパラメータ値を決定できるパラメータチューニングシステムを提供する。コンテンツプラットフォームパラメータは、例えば、コンテンツプラットフォームによるコンテンツの提供を制御するまたはそれに影響を及ぼすことができる。パラメータチューニングシステムは、1つまたは複数のコンテンツプラットフォームパラメータのために異なるパラメータ値が構成されてコンテンツプラットフォームに行われる実験からの実験結果を評価できる。パラメータチューニングシステムは、実験結果に基づいて新たな評価すべきパラメータ値を反復的に選択できる。上述したように、パラメータチューニングシステムによるパラメータの反復選択は、他の手法を使用して達成できるよりも迅速により良いパラメータ値が選択されることに至ることができる。より良いパラメータ値とは、コンテンツプラットフォームが以前のパラメータ値を使用して構成されたときにコンテンツプラットフォームによって生成されたデータから導出されたより悪いメトリック値と比較して、コンテンツプラットフォームがより良いパラメータ値を使用して構成されるときにコンテンツプラットフォームによって生成されるデータからのより良いメトリック値の生成に至るパラメータ値である。
【0014】
更に詳細に、パラメータチューニングシステムは、コンテンツプラットフォームパラメータを評価する現在の反復中に、以前の実験に対応するパラメータに対する一組の評価点を特定できる。各評価点は、評価パラメータ値およびメトリック値を含む。メトリック値は、コンテンツプラットフォームが以前の実験中にデジタルコンポーネントを提供するために評価パラメータ値を使用するときに生成されたデータから決定される。
【0015】
例えば、パラメータ例は、ビデオ視聴セッション中のデジタルコンポーネントの提示間の時間間隔量でよい。このパラメータのパラメータ値例は10秒、30秒等でよい。メトリック例は、ユーザがどれくらいの頻度でビデオ視聴セッションを放棄するかを示すビデオ放棄率である。パラメータチューニングシステム(または実験システム)は、30秒のパラメータ値を使用して時間間隔量パラメータに対する第1の実験をすることができる。コンテンツプラットフォームは、第1の実験中にビデオ視聴セッションの開始および停止時間を含むユーザインタラクションデータを追跡できる。パラメータチューニングシステム(またはコンテンツプラットフォーム)は、第1の実験中に生成されるユーザインタラクションデータからビデオ放棄率メトリックを生成できる。例えば、第1の実験からのユーザインタラクションデータから生成され得るビデオ放棄率メトリック値例は10%でよい。すなわち、第1の実験は、時間間隔量パラメータが30秒であると10パーセントのユーザがビデオを早期に(すなわち、ビデオの最後に達する前に)放棄することを示してよい。したがって、第1の実験のための時間間隔量パラメータに対する評価点は、30秒のパラメータ値および10%のメトリック値を含む。パラメータチューニングシステムは第2の実験を行ってよく、例えば、10秒のパラメータ値および15%のメトリック値を含む時間間隔量パラメータに対する別の評価点に至る。すなわち、第2の実験は、時間間隔パラメータが10秒であると15パーセントのユーザがビデオを早期に放棄することを示してよい。
【0016】
パラメータチューニングシステムが以前の実験のためのパラメータに対する一組の評価点を特定した後に、パラメータチューニングシステムは、一組の評価点を使用して第1のモデルを生成できる。例えば、パラメータチューニングシステムは、評価点に適合する、ガウスモデルなどの第1のモデルを生成できる。パラメータチューニングシステムは、第1のモデルの平均値および信頼区間を生成できる。パラメータチューニングシステムは、次いで、第1のモデルの平均値、第1のモデルの信頼区間、およびパラメータを評価するための探索の優先度を制御する構成可能な探索重みに基づく獲得関数を使用して第1のモデルに基づいて第2のモデルを生成できる。探索は以下により詳細に記載される。
【0017】
パラメータチューニングシステムは、第2のモデルから、少なくとも1つの評価すべき次のパラメータ値を決定できる。例えば、パラメータチューニングシステムは、第2のモデルから生成される最高獲得関数値に至る次のパラメータ値を決定できる(または、場合により、パラメータチューニングシステムは、最高獲得関数値を有する所定数のパラメータ値を選択できる)。一旦パラメータチューニングシステムが1つまたは複数の評価すべきパラメータ値を選択すると、パラメータチューニングシステムは、次の実験中にデジタルコンポーネントを提供するときに次のパラメータ値を使用するようにコンテンツプラットフォームを構成できる。パラメータチューニングシステム(または実験システム)は次の実験を行うことができる。パラメータチューニングシステムは、コンテンツプラットフォームが次の実験中にデジタルコンポーネントを提供するために次のパラメータ値を使用する結果として生じるデータに基づいて次のメトリック値を決定できる。
【0018】
パラメータチューニングシステムは、次のメトリック値を評価して、コンテンツプラットフォームが以前に評価されたパラメータ値を使用して構成されたときに行われた以前の実験に対応する以前のメトリック値と比較して次のメトリック値が改善されたメトリック値であるかどうかを判定できる。一部の場合には、パラメータチューニングシステムは、コンテンツプラットフォームにおける非実験(例えば、制作)用途のために次の実験で評価された評価パラメータ値を選択すると決定できる。例えば、パラメータチューニングシステムは、次のメトリック値が所定の閾値より大きいと判定してよい(例えば、所定の閾値は所望のまたは目標メトリック値でよい)。別の例として、パラメータチューニングシステムは、所定数の実験を行うように構成されてよく、そして最近の実験が所定数の実験の最後の実験であったかもしれない。パラメータチューニングシステムが非実験用途のために評価パラメータ値を選択すると決定した後に、コンテンツプラットフォームは、コンテンツプラットフォームによって提供されるビデオコンテンツと共に提供すべきデジタルコンポーネントを、制作中に、制御または選択するために評価パラメータ値を使用するように構成できる。
【0019】
別の例として、パラメータチューニングシステムは、更に別の実験を行うと決定できる。例えば、パラメータチューニングシステムは、次のメトリック値が所定の閾値以下であると判定してよく、またはパラメータチューニングシステムは、パラメータチューニングシステムが所定数の実験を行う前に少なくとももう1回実験が行われるべきと判定してよい。そのような事例では、パラメータチューニングシステムは、一組の既存の評価点に追加の評価点を加えることによって、更新された一組の評価点を作成できる。各加えられる評価点は、最後の実験中に評価されたパラメータ値および最後の実験中にコンテンツプラットフォームによって生成されたデータから導出された対応するメトリック値を含む。更新された一組の評価点は、上記したように、新たな実験に(例えば、第1のモデルを作成するために)使用できる。
【0020】
各実験反復中に、パラメータチューニングシステムは、現在の実験中に探索の優先を制御するように探索重みを構成できる。探索に優先することは、他のパラメータ値範囲より探索されていないパラメータ値範囲に相当することができる、より高信頼区間を有する評価すべき次のパラメータ値を選択することに至ることができる。探索の手法は活用の手法と比較できる。活用の手法は、他のパラメータ値範囲と比較して高予測メトリック値を有するパラメータ値範囲を探索し続けることに相当することができる。活用を優先することは、探索重みを減少させることによって達成でき、例えば、より高平均値を有する評価すべき次のパラメータ値の選択に至ることができる。一部の場合には、パラメータチューニングシステムは、早期の実験では探索に優先し、そして後期の実験では活用に優先順位を付ける。例えば、反復の数が増加するにつれて評価点の数が増加するので、第1のモデルは、後期の反復において現在の一組の評価点のより正確な適合を表してよく、したがって、以前の反復と比較して、後期の反復において第1のモデルを使用してメトリック値のより正確な予測を生成できる。後期の反復においてメトリック値のより正確な予測がなされているので、パラメータチューニングシステムは、後期の反復において活用に優先することができる。追加的に、後期の反復と比較して早期の反復においてより大きな範囲の未探索のパラメータ値があるので、パラメータチューニングシステムは、早期の反復において探索に優先することができる。パラメータチューニングシステムは、探索/活用トレードオフのバランスを取るために他の手法を使用できる。探索重みが記載されるが、一部の実装例において、探索/活用トレードオフは、活用重みを同じくまたは追加的に構成することによって達成される。これらの特徴ならびに追加の特徴および利益は、図1図7を参照しつつ以下に一層詳細に更に記載される。
【0021】
本文書にわたる記述に関して、ユーザには、本明細書に記載されるシステム、プログラムまたは特徴がユーザ情報(例えば、ユーザの社会的ネットワーク、社会的行為もしくは活動、職業、ユーザの嗜好、またはユーザの現在位置についての情報)の収集を可能にしてよいかどうか、およびいつ可能にしてよいかに関しても、ユーザにサーバからコンテンツまたは通信が送られるかどうかに関しても、ユーザが選択するのを許容する制御手段が提供されてよい。加えて、或るデータは、個人識別可能情報が削除されるように、それが記憶または使用される前に1つまたは複数の仕方で処理されてよい。例えば、ユーザに対して個人識別可能情報を確定できないようにユーザの身元が処理されてよく、またはユーザの特定の位置を確定できないように、位置情報が得られる限り(都市、郵便番号もしくは州レベルまでなど)ユーザの地理的位置が一般化されてよい。このように、ユーザは、ユーザについてどんな情報が収集されるか、その情報がどのように使用されるか、およびどんな情報がユーザに提供されるかに対する制御手段を有してよい。
【0022】
図1は、パラメータ値を自動的に決定するための環境例100のブロック図である。環境例100は、ネットワーク104を含む。ネットワーク104は、ローカルエリアネットワーク(LAN)、ワイドエリアネットワーク(WAN)、インターネット、またはその組合せを含むことができる。ネットワーク104は、任意の種類の有線および/もしくは無線ネットワーク、衛星ネットワーク、ケーブルネットワーク、Wi-Fiネットワーク、移動通信ネットワーク(例えば、3G、4G等)、またはその任意の組合せも含むことができる。ネットワーク104は、インターネットプロトコル(IP)、伝送制御プロトコル(TCP)、ユーザデータグラムプロトコル(UDP)または他の種類のプロトコルなどのパケットベースおよび/またはデータグラムベースのプロトコルを含む、通信プロトコルを活用できる。ネットワーク104は、ネットワーク通信を容易にし、かつ/またはスイッチ、ルータ、ゲートウェイ、アクセスポイント、ファイアウォール、基地局、リピータもしくはその組合せなどの、ネットワークのためのハードウェアベースを形成する幾つかのデバイスを更に含むことができる。
【0023】
ネットワーク104は、クライアントデバイス102、コンテンツプラットフォーム106、コンテンツプロバイダ108およびパラメータチューニングシステム110を接続する。環境例100は、多くの異なるコンテンツプラットフォーム106、クライアントデバイス102およびコンテンツプロバイダ108を含むことができる。
【0024】
コンテンツプラットフォーム106は、コンテンツの配布を可能にするコンピューティングプラットフォーム(例えば、図7を参照しつつ記載されるネットワークサーバまたは別のデータ処理装置など)である。コンテンツプラットフォーム例106には、サーチエンジン、ソーシャルメディアプラットフォーム、ビデオ共有プラットフォーム、ニュースプラットフォーム、データアグリゲータプラットフォーム、または他のコンテンツ共有プラットフォームを含む。各コンテンツプラットフォーム106は、コンテンツプラットフォームサービスプロバイダによって運営されてよい。コンテンツプラットフォーム106のコンポーネントの各々は、プロセッサなどの処理エンティティによって実行される命令を含むソフトウェアコンポーネントである。
【0025】
コンテンツプラットフォーム106は、それ自体のコンテンツを公開かつ利用可能にすることができる。例えば、コンテンツプラットフォーム106はニュースプラットフォームでよく、それ自体のニュース記事を公開する。コンテンツプラットフォーム106は、コンテンツプラットフォーム106の一部でない1つまたは複数のコンテンツプロバイダ108によって提供されるコンテンツ(例えば、デジタルコンポーネント)を表示してもよい。以上の例では、ニュースプラットフォームは、1つまたは複数のコンテンツプロバイダ108によって提供されるサードパーティコンテンツを表示してもよい。別の例として、コンテンツプラットフォーム106は、それ自体のコンテンツを公開するのでなく、異なるコンテンツプロバイダ108によって提供されるサードパーティコンテンツを集約および表示するデータアグリゲータプラットフォームでよい。
【0026】
一部の実装例において、コンテンツプラットフォーム106は、クライアントデバイスについての或る情報(例えば、デバイス嗜好情報、コンテンツ消費情報等)を記憶してよい。そのようなユーザ情報は、例えば、クライアントデバイス102に提供されるコンテンツを調整するために、またはクライアントデバイス102によって頻繁にアクセスされる特定のコンテンツへの即座のアクセスを可能にするために、コンテンツプラットフォームによって使用されてよい。一部の実装例において、コンテンツプラットフォーム106は、そのようなデバイス情報をプラットフォーム上に記憶しなくてよいが、しかしながら、コンテンツプラットフォーム106は、それでもそのような情報を特定のサーバ(コンテンツプラットフォームと別個)上での記憶のために提供してよい。コンテンツプラットフォーム106(本明細書においてコンテンツプラットフォーム/サーバ106または単にサーバとも称される)とは、このように、そのようなデバイス情報を記憶するコンテンツプラットフォームまたはそのようなデバイス情報を記憶するサーバ(コンテンツプラットフォームと別個)を指す。
【0027】
一部の実装例において、コンテンツプラットフォーム106は、ユーザがストリーミングされるビデオコンテンツを視聴できるビデオサービスである。ユーザにストリーミングされるビデオは、元のビデオストリームの上にオーバーレイされる1つまたは複数のデジタルコンポーネント(例えば、コンテンツプロバイダ108によって提供される)を含むことができる。例えば、ビデオストリームのビューアにデジタルコンポーネントを提供するために、かつ所与のビデオストリーミング帯域幅のための視聴範囲内で配信されるコンテンツの量を改善するために、下になるビデオストリーム上でオーバーレイされるコンテンツを提供することが一般に望ましいはずである。ビデオストリーミングシナリオに加えてまたは代替的に、コンテンツプラットフォーム106は、オーバーレイされるコンテンツを含むようにビデオファイルを変更するためにビデオファイルを処理するビデオプロセッサを含むことができ、処理されたビデオファイルがオーバーレイされたコンテンツと共にクライアントデバイス102上での表示のためにクライアントデバイス102に提供される。別の例としてオーバーレイされるコンテンツの代替として、コンテンツプラットフォーム106は、ビデオストリーム内の予定したブレークポイントでユーザに提示される(ビデオストリームの上にオーバーレイされるよりも)デジタルコンポーネントを提供できる。
【0028】
コンテンツプラットフォーム106は、コンテンツプラットフォーム106によって提供されるコンテンツおよびコンテンツプロバイダ108によって提供されるコンテンツ(例えば、デジタルコンポーネント)に関するユーザ活動に対応する匿名化情報を含むユーザ活動ログ112を維持できる。例えば、ビデオコンテンツに対して、ユーザ活動ログ112は、ビデオ視聴セッションの開始および停止時間、ビデオコンテンツとのデジタルコンポーネントの提示、提示されるデジタルコンポーネントとのユーザインタラクションに関する情報、ならびに他のユーザ活動情報を含むことができる。
【0029】
コンテンツプラットフォーム106のメトリック生成器114は、ユーザ活動ログ112内のデータから様々な種類のメトリックを生成できる。メトリック生成器114によって生成されるメトリックはメトリックデータベース116に記憶できる。メトリック例には、以下により詳細に記載されるように、待ち時間または応答性に関連したメトリックを含むことができる。メトリック生成器114によって生成される他のメトリック例には、デジタルコンポーネントとのインタラクションの率を示すクリックスルー率、特定のビデオデジタルコンポーネントを完結まで視聴するユーザの割合を示すビュースルー率、ビデオコンテンツアイテムを放棄するユーザの割合を示す放棄率、デジタルコンポーネントを提示することから得られる収益を示す収益メトリック、投資利益メトリック、コンテンツおよびデジタルコンポーネント提示数、ならびに他の種類のメトリックを含むことができる。
【0030】
メトリック生成器114によって生成される一部のメトリックは、コンテンツプラットフォーム106を使用するユーザもしくはエンティティの特定の目標および/またはコンテンツプラットフォーム106に関するユーザもしくはエンティティの満足度に対応できる。例えば、コンテンツプラットフォーム106およびコンテンツプロバイダ108は、コンテンツプラットフォーム106によって提供されるコンテンツとのデジタルコンポーネントの提示から収益を受けてよい。したがって、収益メトリック、提示されるデジタルコンポーネントの数等などのメトリックが、コンテンツプラットフォーム106またはコンテンツプロバイダ108の関心でよくかつその目標に対応してよい。デジタルコンポーネントを提供するコンテンツプロバイダ108は、投資利益などの、他の目標を有してよく、それゆえに、提示されるデジタルコンポーネントとのインタラクション率などの、他のメトリックに関心を有してよい。
【0031】
別の例として、メトリック生成器114によって生成される一部のメトリックは、コンテンツプラットフォーム106によって提供されるコンテンツを消費するクライアントデバイス102のユーザによるコンテンツプラットフォーム106に関するユーザ満足度に対応してよい。例えば、一部のメトリックは、コンテンツプラットフォーム106によって提供されるコンテンツのユーザ認識(および/またはコンテンツプラットフォーム106自体に関するユーザ認識)と一致してよい。例えば、ビデオコンテンツに対して、デジタルコンポーネントに加えて提示されたビデオに対するビデオ離脱率メトリックは、提示されたデジタルコンポーネントに関するユーザ認識、提示されたデジタルコンポーネントの数および間隔等に相関してよい。したがって、異なるエンティティにとっての異なる目標間でトレードオフが発生し得る。例えば、ビデオ作成者は、自分のビデオとの提示のためにより多くのデジタルコンポーネントがスケジュールされることによってより多くの収益を受けることを所望してよいが、より多くのデジタルコンポーネントを提示することは、ビデオに関するユーザ満足度を低下させ得、かつユーザにビデオを早期に放棄させ得る(このように、スケジュールされたデジタルコンポーネントの一部の再生が差し替えられる)。追加的に、より多くのデジタルコンポーネントを提示することは、ユーザが多すぎるデジタルコンポーネントに圧倒されまたは困惑することか提示されるリソースコンテンツへのデジタルコンポーネントの関連性の全体的な減少かにより、それぞれのデジタルコンポーネントに対するインタラクション率を減少させ得るので、より多くのデジタルコンポーネントを提示することは、必ずしもデジタルコンポーネントのプロバイダにとっての長期投資利益を増加させ得るわけではない。ユーザ満足度またはユーザ目標に対応してよい他のメトリックには、全システム待ち時間または応答性を含んでよい。例えば、コンテンツまたはデジタルコンポーネントの再生のための待ち時間が増加するにつれて、コンテンツプラットフォーム106に関するユーザの満足度は一般に低下する。
【0032】
一部の実装例において、メトリック生成器114は、複数の異なるメトリックを組み合わせる複合メトリックを生成できる。例えば、複合メトリックは、コンテンツプラットフォーム106を使用する異なるエンティティの目標を各々表す異なるメトリックの組合せでよい。例えば、複合メトリックは、ユーザ受入れメトリック(例えば、ビデオ放棄率)、収益関連のメトリック(例えば、ビデオと共に提示されるデジタルコンポーネントの数)、およびデジタルコンポーネントインタラクション率メトリックを含むサブメトリックの組合せに基づいてよい。メトリック生成器114は、一部の場合には、各サブメトリック値を対応するサブメトリック重み(例えば、0と1との間の範囲の値)によって調整(例えば、乗算)し、そして調整されたサブメトリック値を集約(例えば、加算)することによって複合メトリックを生成できる。
【0033】
コンテンツプラットフォーム106によるコンテンツの提供は、様々なパラメータ118によって制御できる。パラメータ118はパラメータ設定器120によって構成でき、それは自動プロセスであることができかつ/または管理者からパラメータ値を受信するためのユーザインタフェースコンポーネントを含むことができる。パラメータ118は、例えば、ビデオと共に提示される多重デジタルコンポーネントの提示間の時間間隔を制御するためにコンテンツプラットフォーム106によって使用できる1つまたは複数のパラメータを含むことができる。他のパラメータは、或る種類のビデオに対する異なる種類のデジタルコンポーネント(例えば、或る種類のコンテンツを有するデジタルコンポーネント)を選択する頻度または可能性を制御するためにコンテンツプラットフォーム106によって使用できる。一般に、コンテンツプラットフォーム106は、何百もの様々な種類のパラメータを含むことができる。
【0034】
パラメータ設定器120は、所与のパラメータを特定のパラメータ値に設定でき、上記したように、コンテンツプラットフォーム106によるコンテンツの提供に影響を及ぼすことができる。種々のパラメータ値に従うコンテンツプラットフォーム106によるコンテンツの提供は、ユーザ活動に影響を及ぼすことができ、それゆえに次いで、メトリック生成器114によって生成される上記した目標関連のメトリックに影響を及ぼすことができる。例えば、時間間隔パラメータがパラメータ設定器120によって30秒から10秒に減少されれば(例えば、その結果ユーザがビデオを見ている間、10秒毎に新たなデジタルコンポーネントが表示される)、デジタルコンポーネントの提示数の増加によりビデオ作成者にとって短期収益は増加し得るが、ユーザは、例えばデジタルコンポーネントの提示によるビデオコンテンツ再生への繰り返される割込みから困惑することになり得、結果的にコンテンツプラットフォーム106上でコンテンツを視覚することに費やす時間は少なくなり得、それによってコンテンツプラットフォーム106およびコンテンツプロバイダ108にとっての長期収益を減少させる。
【0035】
コンテンツプラットフォーム106のための別のパラメータ例は、例えば、コンテンツプラットフォーム106によってビデオ内の或る時点での再生のためにデジタルコンポーネントが選択されると発生し得る長期収益コスト削減の大きさをその値が表すユーザコストペナルティパラメータである。ユーザコストペナルティパラメータ値は、ビデオとの再生のためのデジタルコンポーネントを選択するために使用されるオークションにおいてコンテンツプラットフォーム106によって使用できる。ユーザコストペナルティパラメータ値は、デジタルコンポーネントとの予測インタラクション、予測短期収益等などの、他の要因のバランスを取るためにコンテンツプラットフォーム106によって使用できる。コンテンツプラットフォームの管理者は、ユーザコストペナルティパラメータに割り当てる値を最初は知らなくてよい。以下により詳細に記載されるように、パラメータチューニングシステム110は、ユーザコストペナルティパラメータ(および他のパラメータ)のために使用すべき値を自動的に決定するために使用できる。
【0036】
パラメータ設定器120がパラメータ値を変更することにより、最終的に様々なメトリックに影響を有し得るが、コンテンツプラットフォーム106の管理者は、それぞれのメトリック値を達成する(パラメータに対する他の決定されたメトリック値に対してまたは所定の閾値に対して)ために或るパラメータのために特定すべきパラメータ値を知らなくてよい。例えば、所与のメトリックに関してパラメータに対して未知のランドスケープが存在してよい。メトリックに関するパラメータに対するランドスケープは複雑でよく、かつ高自由度および非線形性を有する未知関数に相当してよく、その結果、関数を知ることなく、任意の所与のパラメータ値に対する予測メトリック値を直接計算することは不可能であり得る。したがって、パラメータに対する他の決定されたメトリック値に対してまたは所定の閾値に対してより良いメトリック値を達成するパラメータ値をパラメータ設定器120が計算する直接的な仕方はないかもしれない。
【0037】
コンテンツプラットフォーム106は、パラメータ設定器120が実験システム122を使用することによってパラメータ値を変更したことに応答して、メトリックに対する影響を学習できる。実験システム122は、様々な実験124を構成できる。実験124は、1つまたは複数の評価パラメータに対する実験中に評価すべき1つまたは複数の値を特定する情報を含むことができる。例えば、デジタルコンポーネント間の間隔を制御する時間間隔パラメータのための現在の値は30秒でよい。実験124は、10秒などの異なるパラメータ値が実験中に評価されるべきであることを特定できる。コンテンツプラットフォーム106は、制作(例えば、非実験)間のライブトラフィックおよび実験トラフィック126を分割するために実験システム122を使用できる。例えば、コンテンツプラットフォーム106は、コンテンツ要求の第1の部分(例えば、99%)が現在の(例えば、制作)パラメータ値に従ってコンテンツプラットフォーム106によって扱われ、そしてコンテンツ要求の第2の部分(例えば、1%)が実験124において特定される情報に従ってコンテンツプラットフォーム106によって実験トラフィック126として扱われるように、実験システム122を使用できる。パラメータ設定器120は、例えば、実験124中に、コンテンツ要求の第2の部分に対して、実験124情報に従ってパラメータ値を設定できる。
【0038】
パラメータ設定器120による実験中のパラメータ値の変更は、コンテンツプラットフォーム106によるコンテンツ(例えば、全体としてのビデオまたはビデオと共に/中に提供されるデジタルコンポーネント)の提供に影響を及ぼすことができる。例えば、或る種類のデジタルコンポーネントがコンテンツプラットフォーム106によってより多くもしくは少なく選択されてよく、または異なる数のデジタルコンポーネントがコンテンツプラットフォーム106によって選択されてよい。クライアントデバイス102のユーザは、コンテンツプラットフォーム106によるコンテンツの影響された提供に反応してよい。例えば、ユーザは、デジタルコンポーネントとより多くもしくは少なく、または異なる仕方で対話してよい(例えば、クリック/選択するまたは視聴に時間を費やすことによって)。別の例として、ユーザは、デジタルコンポーネントが共に提示されるビデオコンテンツと、例えば異なって対話してよい。例えば、実験に従ってコンテンツを受信するユーザは、より低もしくは高頻度でビデオコンテンツを放棄する傾向があり得、またはビデオの最後により近くもしくは遠くでビデオコンテンツを放棄し得る。コンテンツプラットフォーム106は、実験中のこれらおよび他の種類のユーザインタラクションを実験活動128として追跡および記憶できる。
【0039】
メトリック生成器114は、実験活動128から実験メトリック130を生成できる。実験メトリック130は、実験124のためにどのパラメータ値が使用されたかを示す情報を含むことができる。実験システム122は、実験活動128からメトリック生成器114によって生成された実験メトリック130を非実験トラフィックからのユーザ活動からメトリック生成器114によって生成されたメトリックデータベース116内の対応する非実験メトリックに比較して、実験メトリック130の少なくとも一部が対応する非実験メトリックより良いかどうかを判定できる。実験メトリック130が対応する非実験メトリックより良ければ、パラメータ設定器120は、実験中に使用されたパラメータ値を決定し、そしてコンテンツプラットフォーム106による以降の(例えば、非実験)コンテンツ提供のために、対応するパラメータをそれらのパラメータ値に設定できる。
【0040】
上述したように、実験システム122によって実験をすることは、リソースの点で高価であり得る。実験のためにコンテンツプラットフォーム106が利用可能なリソース(例えば、処理時間、データ記憶、管理者時間、ネットワーク帯域幅、実験のためのリアルタイムコンテンツ要求)は制限されてよい。したがって、あらゆるパラメータに対して、全ての可能なパラメータ値を試みる総当たり法は実施可能でない。パラメータ値をランダムに選択することなどの、他の手法は、所望のメトリック値を達成するための劣った選択であるパラメータ値が評価のために選択され続け得るので、一般に効果的でない。
【0041】
パラメータ値を選択するための総当たり、ランダムまたは他の手法の代替として、パラメータチューニングシステム110は、パラメータに対するパラメータチューニングプロセスを行うことによってパラメータ値を自動的に決定できる。パラメータチューニングシステム110のコンポーネントの各々は、プロセッサなどの処理エンティティによって実行される命令を含むソフトウェアコンポーネントである。パラメータチューニングシステム110がコンテンツプラットフォーム106のためのパラメータをチューニングするとして記載されるが、パラメータチューニングシステム110は、他の種類のシステムのためのパラメータをチューニングできる。コンテンツプラットフォーム106と別個として図示されるが、一部の実装例において、パラメータチューニングシステム110のコンポーネントの一部または全てがコンテンツプラットフォーム106に含まれてよい。
【0042】
パラメータチューニングシステム110のドライバ131は、パラメータチューニングプロセスを制御するために使用できる。例えば、管理者は、パラメータチューニングプロセスを開始するまたはパラメータチューニングプロセスを停止するためにドライバ131を使用できる。別の例として、ドライバ131は、パラメータに対する自動パラメータチューニングを行うために使用できる。例えば、ドライバ131は、パラメータに対するパラメータチューニングプロセスを自動的および/または定期的に(例えば、毎週、毎月)行うことができる。
【0043】
パラメータチューニングプロセスを開始する要求または決定に応答して、ドライバ131は、パラメータ値セレクタ132を呼び出すことができる。パラメータ値セレクタ132は、パラメータをチューニングするときに多重パラメータチューニング反復を行うことができる。パラメータ値セレクタ132は、各パラメータチューニング反復中に、過去の実験からのデータに基づいて、次の実験で評価すべき1つまたは複数の次のパラメータ値を自動的に選択できる。以下により詳細に記載されるように、パラメータ値セレクタ132は、パラメータチューニングプロセス中に既定数のパラメータチューニング反復を行うように構成でき、またはパラメータ値セレクタ132は、評価パラメータ値に対する実験データから生成される実験メトリック値が閾値メトリック値を満足させる(例えば、満たすもしくは超える)との判定に応答してパラメータチューニングプロセスを停止できる。
【0044】
更に詳細に、パラメータ値セレクタ132は、入力として、過去の実験に対応する評価点134を使用できる。以下により詳細に記載されるように、初期の一組の評価点134は、ランダムパラメータ値を使用して実験システム122によって行われる実験に対応できる。パラメータ値セレクタ132によって使用される他の評価点134は、パラメータチューニングプロセスの早期の反復においてパラメータ値セレクタ132によって以前に選択されたパラメータ値を使用して実験システム122によって以前に行われた実験に対応できる。各評価点134は、以前の実験からの実験メトリック値および以前の実験中にコンテンツを提供するためにコンテンツプラットフォーム106によって使用されたパラメータ値を含む。評価器135は、例えば評価点134を生成するために、コンテンツプラットフォーム106からメトリック生成器114によって生成された実験データ(例えば、実験メトリック130)を受信またはアクセスできる。評価点は、図2Aに関して以下により詳細に例示および記載される。
【0045】
初期評価点を生成するために、パラメータ値セレクタ132は、パラメータのための既定数のランダムパラメータ値をランダムに発生できる。各ランダムパラメータ値に対して、ドライバ131は、評価すべきランダムパラメータ値を含む実験ファイル138を作成するために実験ファイルエディタ136を使用できる。パラメータチューニングシステム110は、実験システム122に実験ファイル138を提供できる。実験システム122は、実験ファイル138を使用してランダムパラメータ値実験を行うことができ、その間にランダムパラメータ値に従ってコンテンツプラットフォーム106によってコンテンツが提供される(例えば、実験トラフィック126として)。上記したように、ランダムパラメータ値実験中に、パラメータ設定器120は、パラメータをランダムパラメータ値に設定でき、そしてコンテンツプラットフォーム106は、実験トラフィック126に応答して発生する実験活動128を追跡できる。メトリック生成器114は、実験活動128に基づいて実験メトリック130を生成でき、そして実験メトリック130は、コンテンツプラットフォーム106によって評価器135に提供できる。評価器135は、ランダムパラメータ値およびランダムパラメータ値実験から生成された受信したメトリックを使用してパラメータに対する初期評価点134を設定できる。
【0046】
パラメータチューニング反復中に、パラメータ値セレクタ132は、現在の一組の評価点134(例えば、第1の反復に対する初期評価点または第1の反復後の後続の反復に対する評価点)を得る。パラメータ値セレクタ132は、得られた評価点134を使用して第1のモデル140を生成する。第1のモデル140は、評価点134に適合する評価点134の確率モデルであることができる。第1のモデル140は、例えば、未評価パラメータ値に対するメトリック値に対する予測を生成できるガウスモデルであることができる。パラメータ値セレクタ132は、第1のモデル140から平均値142および信頼区間144を決定できる。信頼区間は、例えば標準偏差値に対応できる。第1のモデル140、平均値142および信頼区間144は、図3Aおよび図4に関して以下により詳細に記載される。
【0047】
パラメータ値セレクタ132が第1のモデル140を生成した後に、パラメータ値セレクタ132は、第1のモデル140から導出される平均値142および信頼区間144を使用して第2のモデル146を生成できる。例えば、第2のモデル146は、平均値142、信頼区間144、および信頼区間144に重みを与える探索重みの組合せに基づく獲得関数に基づくことができる。第1のモデル140が既存の評価点の適合に基づくパラメータ値に対する予測メトリック値を表すのに対して、第2のモデル146は、未探索のパラメータ値の潜在性を表すことができる。
【0048】
パラメータ値セレクタ132は、早期のパラメータチューニング反復においてより大きな探索重みを、そして後期のパラメータチューニング反復においてより小さな探索重みを割り当てることができる。パラメータ値セレクタ132は、第2のモデル146に基づいて1つまたは複数の次の評価すべきパラメータを決定できる。パラメータ値セレクタ132は、例えば獲得関数が最高獲得関数値を発生するパラメータ値を選択できる。第2のモデル146、獲得関数および探索対活用は、図3Bおよび図4に関して以下により詳細に記載される。
【0049】
パラメータ値セレクタ132によって選択される各パラメータ値に対して、ドライバ131は、選択パラメータ値を含む実験ファイル138を作成するために実験ファイルエディタ136を使用できる。パラメータチューニングシステム110は、実験システム122に実験ファイル138を提供でき、そして実験システム122は、選択パラメータ値に従ってコンテンツプラットフォーム106によってコンテンツが提供される(例えば、実験トラフィック126として)実験を行うことができる。上記したように、パラメータ設定器120は、パラメータを選択パラメータ値に設定でき、そしてコンテンツプラットフォーム106は、実験トラフィック126に応答して発生する実験活動128を追跡できる。メトリック生成器114は、実験活動128に基づいて実験メトリック130を生成でき、そして実験メトリック130は評価器135に提供できる。実験メトリック130は、上記した目標関連のメトリックを含むことができる。上述したように、目標関連のメトリックは、コンテンツプラットフォーム106を使用する異なるエンティティの異なる目標の組合せを表す複合メトリックであることができる。
【0050】
一部の実装例において、評価器135は、選択パラメータ値に対する受信した実験メトリックが閾値メトリック値を満たすかどうかを判定する。例えば、パラメータチューニングプロセスは、選択パラメータ値を使用して行われる実験からメトリック生成器114によって生成されるメトリック値が閾値メトリック値(例えば、所定の、良好なまたは所望のメトリック値)を満足させる(例えば、満たすまたは超える)と停止するように構成できる。選択パラメータ値に対する受信した実験メトリックが閾値メトリック値を満たせば、パラメータチューニングシステム110は、パラメータに対してパラメータチューニングプロセスが完了したと判定できる。他方で、選択パラメータ値が閾値メトリック値を満足させない(例えば、より小さい)場合、パラメータチューニングプロセスは、追加のパラメータチューニング反復を通じて反復され続けることができる。別の例として、パラメータチューニングシステム110は、パラメータに対して所定数のパラメータチューニング反復が行われた場合も、パラメータに対してパラメータチューニングプロセスが完了したと判定できる。
【0051】
パラメータに対してパラメータチューニングプロセスが完了したとの判定に応答して、パラメータチューニングシステム110は、非実験トラフィックのために、パラメータ値セレクタ132によって以前に評価された評価パラメータ値を使用するようにコンテンツプラットフォーム106に命令できる。パラメータ値セレクタ132は、例えば、最良評価されたメトリック値に至った以前に評価されたパラメータ値を選択できる。例えば、パラメータ設定器120は、パラメータを選択された以前に評価されたパラメータ値に設定でき、そしてコンテンツプラットフォーム106は、パラメータ値に従って以降のコンテンツの要求に応答してコンテンツを提供できる。例えば、コンテンツプラットフォーム106は、ビデオコンテンツと共に提供すべきデジタルコンポーネントを、制作中に、制御または選択するために、選択された以前に評価されたパラメータ値を使用できる。
【0052】
パラメータチューニングシステム110がパラメータに対するパラメータチューニングプロセスについて停止点が達されなかったと判定すれば、評価器135は、更新された評価点134を生成する(例えば、新たな評価点を既存の一組の評価点134に加えることができる)ために、以前の反復においてパラメータ値セレクタ132によって選択されたパラメータ値および以前の反復においてパラメータ値セレクタ132によって選択されたパラメータ値を使用して行われた実験からメトリック生成器114によって生成された対応するメトリック値を使用して、パラメータに対する新たな評価点134を生成できる。パラメータ値セレクタ132は、パラメータに対する更新された評価点134を使用して、パラメータに対する次のパラメータチューニング反復を行うことができる。
【0053】
パラメータチューニングシステム110は、異なるパラメータに対して異なるパラメータチューニングプロセスを行うことができる。パラメータチューニングシステム110によって行われるパラメータに対する各パラメータチューニングプロセスは、所与のメトリックに関してパラメータをチューニングすることを伴うことができる。パラメータチューニングシステム110は、異なるメトリックに対して異なるパラメータチューニングプロセスを行うことができる。パラメータチューニングシステム110は、異なるパラメータチューニングプロセスを並列にまたは順次に行うことができる。パラメータチューニングシステム110およびパラメータチューニングプロセスのこれらのコンポーネントの追加の構造および動作態様は、図2A図6を参照しつつ下記される。
【0054】
図2Aは、パラメータに対する評価点がプロットされるグラフ例200である。X軸202はパラメータの値に対応する。パラメータは、例えば0と1との間の実数値を取ることができる設定でよい。Y軸204は、例えば、コンテンツプラットフォーム106が実験中にパラメータのための特定のパラメータ値に基づいてコンテンツを提供したときにメトリック生成器114によって生成されるメトリックの値に対応する。評価点206、208、210、212および214は、評価パラメータ値および対応するメトリック値を各々含む観測点である。例えば、評価点206、208、210、212および214によって例示されるように、パラメータが0.8、0.36、0.4、0.78および0.95の値を有したとき、メトリック生成器114によって生成された対応するメトリック値は、それぞれ0.28、0.55、0.44、0.61および0.44であった。評価点206、208、210、212および214は、例えば、図1に関して上記した評価点134に含めることができる。
【0055】
0.78のパラメータ値および0.61のメトリック値を持つ評価点212が、評価点206、208、210、212および214の中で最高メトリック値に相当する。評価点212の0.78のパラメータ値が観測点の中でパラメータのための最良パラメータ値であるかもしれないが、他のまだ未評価のパラメータ値がパラメータ設定器120によってパラメータに対して構成されれば、メトリック生成器114によってより良い対応するメトリック値が生成されることに至るかもしれない。しかしながら、上記したように、パラメータ値のランドスケープ、またはパラメータに対する「真の関数」は、現在の観測点だけを観測した後ではパラメータチューニングシステム110によって知られていなくてよい。パラメータに対する真の関数は、様々な可能なパラメータ値に対する実際のメトリック値を反映する関数であることができる。真の関数は(分かれば)、パラメータの特定のパラメータ値が与えられてメトリック値を出力できる。パラメータチューニングシステム110が真の関数を知らないので、パラメータチューニングシステム110はパラメータに対するパラメータチューニングプロセスを行うことができる。
【0056】
図2Bは、パラメータに対する真の関数を例示するグラフ例250である。X軸252、Y軸254ならびに評価点256、258、260、262および264は、それぞれ図2AのX軸202、Y軸204ならびに評価点206、208、210、212および214に対応する。真の関数線266が、真の関数、または異なるパラメータ値が与えられたメトリック値のランドスケープを例示する。前述したように、パラメータチューニングシステム110は真の関数を知らない。むしろ、パラメータチューニングシステム110は、現在は評価点256、258、260、262および264(図2Aの評価点206、208、210、212および214に対応する)を知っている。上述したように、評価点262(図2Aの評価点212に対応する)が最高観測メトリック値(例えば、0.61)を有するが、真の関数線266上の点268によって図示されるように、0.23の未評価パラメータ値がパラメータ設定器120によって構成されれば、メトリック生成器114によってより高いメトリック値(例えば、0.80)が生成されることに至るであろう。パラメータ値セレクタ132は、点268の0.23のパラメータ値など、観測評価点のものより良いパラメータ値を見つけるためにパラメータチューニングプロセスを行うように構成される。
【0057】
図3Aは、平均値および信頼区間を例示するグラフ300である。X軸302、Y軸304ならびに評価点306、308、310、312および314は、それぞれ図2AのX軸202、Y軸204ならびに評価点206、208、210、212および214に対応する。真の関数線316は図2Bの真の関数線266に対応する。
【0058】
図1に関して上記したように、パラメータ値セレクタ132は、評価点306、308、310、312および314を使用して第1のモデルを生成できる。第1のモデル(第1のモデル140であることができる)は、例えば評価点306、308、310、312および314に適合するガウスモデルであることができる。第1のモデルは、ガウス線318としてグラフ300上に図示される。ガウスモデルは、観測点(例えば、評価点306、308、310、312および314)ならびに観測点の間である点に対する予測(例えば、平均値142)を含むことができる。例えば、予測点315が0.27のパラメータ値、0.64の予測メトリック値を含む。
【0059】
一部の実装例において、第1のモデルは、複数の他のモデルを組み合わせる集計モデルであり、ここで複数の他のモデルの各々は、評価点306、308、310、312および314に適合するために異なる手法を使用する。第1のモデルが集計モデルであると、第1のモデルは、複数の他のモデルの平均予測メトリック値として決定される中間平均値を含むことができる。
【0060】
陰影領域320などのグラフ300上の陰影領域は、パラメータ値セレクタ132が第1のモデルから計算する信頼区間(例えば、信頼区間144)を表す。グラフ300に図示されるように、評価点306、308、310、312および314が予測メトリック値に対応するよりもむしろ既知または観測点であることにより、評価点306、308、310、312および314ならびにその付近における信頼区間は低い。ガウス線318の他の部分に関して、観測点がより少なく、それゆえに他のパラメータ値範囲より探索されないパラメータ値の範囲内など、より大きな信頼区間が存在する。例えば、縦線322、324、326および328がグラフ300の他の範囲内より大きな信頼区間を例示する。
【0061】
上記したように、パラメータ値セレクタ132は、第1のモデルの平均値および第1のモデルの信頼区間の組合せを使用する第2のモデル(例えば、第2のモデル146)に基づいて評価すべき次のパラメータ値を選択できる。パラメータ値セレクタ132は、図3Bに関して以下に例示されるように、第2のモデルを生成するために、例えば獲得関数を発生させて使用できる。図4に関して以下により詳細に記載されるように、獲得関数は、式(1)で以下に示される一般形を有することができる。
f(x)=Exploration_Weight*Confidence_Interval(x)+Mean(x) (1)
【0062】
探索重みは、管理者によっておよび/またはパラメータ値セレクタ132によって設定でき、獲得関数において平均値に対して信頼区間値に使用される優先度またはバイアスを制御できる。高い探索重みほど、パラメータ値セレクタ132によって探索(例えば、まだ探索されていないパラメータ値範囲内の探索)に対して与えられる高い優先度に至ることができる。低い探索重みほど、パラメータ値セレクタ132にとっての探索の優先度を下げることができ、それによりパラメータ値セレクタ132にとっての活用の優先度を上げることができる。活用により、最高メトリック値に至るであろうと第1のモデルが予測するパラメータ値をパラメータ値セレクタ132が選択することを指すことができる。上記したように、パラメータ値セレクタ132は、最初は評価パラメータ値の数がより小さいときに探索を優先し(例えば、より高い探索重みを構成することによって)、そしてその後評価パラメータ値の数が増えるにつれて活用を優先する(例えば、より低い探索重みを構成することによって)ことができる。要約すると、パラメータ値セレクタ132は、最初は未探索のパラメータ値範囲を探索することを優先し、その後ここまでで最高メトリック値に至った評価パラメータ値に近いパラメータ値など、最高メトリック値を有すると予測されるパラメータ値を探索できる。
【0063】
獲得関数が信頼区間値および平均値の組合せを使用することを考慮すれば、活性化関数を使用してパラメータ値セレクタ132によって生成される最高獲得関数値は、他のパラメータ値に対して、比較的大きな信頼区間、比較的大きな平均値を有する、または比較的大きな信頼区間および平均値の組合せを有するパラメータ値でよい。例えば、0.27のパラメータ値を持つ予測点315は、パラメータ値の中で0.64の最大予測メトリック値および他のパラメータ値より大きな信頼区間(例えば、縦線322の高さによって表される)を有する。したがって、パラメータ値セレクタ132は、図3Bに関して以下により詳細に記載されるように、次の評価すべきパラメータとして予測点315のパラメータ値0.27を選択してよい。
【0064】
一部の場合には、パラメータ値セレクタ132は、各次の実験のための1つの次の評価すべきパラメータを選択する。他の場合には、パラメータ値セレクタ132は、次の実験のための2つ以上の評価すべき次のパラメータ値を選択してよい。そのため、パラメータ値セレクタ132は、予測点315のパラメータ値0.27以外の他のパラメータ値を選択してよい。例えば、0.58のパラメータ値を持つ予測点332は0.35の予測メトリック値を有するが、予測点315に対する予測メトリック値0.64より低い。しかしながら、予測点332のパラメータ値0.58に対する信頼区間(例えば、縦線324の高さによって表される)は、予測点315に対する信頼区間より大きい。探索重みの値に応じて、予測点のパラメータ値0.58は、次の評価すべきパラメータとして選択されてよい。予測点332のパラメータ値0.58に対する比較的高信頼区間は、高潜在性(例えば、パラメータ値セレクタ132が既存の評価パラメータ値と比較して最良またはより良いパラメータ値を見つける高潜在性)を表すことができる。パラメータ値0.58の比較的高潜在性は、たとえパラメータ値0.58に対する予測メトリック値が他の予測点より低くても、パラメータ値0.58がパラメータ値セレクタ132によって次の評価すべきパラメータとして選択されることに至ってよい。他の例として、予測点334および336の、それぞれ0.68および0.85のパラメータ値は、それらの予測点の重み付き信頼区間および平均値の組合せが最高獲得関数値(または所定数の最高獲得関数値内)に至る場合、パラメータ値セレクタ132によって評価すべき次のパラメータ値として選択されてよい。
【0065】
図3Bは、獲得関数を例示するグラフ350である。X軸352はパラメータ値に対応する。Y軸354は、特定のパラメータ値が与えられた獲得関数の値に対応する。獲得関数線355がグラフ350にプロットされる。獲得関数は、次の評価するパラメータ値を選択するためにパラメータ値セレクタによって使用される値を出力できる関数である(例えば、獲得関数は、パラメータチューニングプロセス中のパラメータ値空間の探索の仕方をパラメータ値セレクタ132に指示する値を発生できる)。例えば、パラメータ値セレクタ132は、最高獲得関数値を有するパラメータ値を決定することによって次の評価すべきパラメータを選択できる。例えば、パラメータ値セレクタ132は、獲得関数線355上の点356が、0.27のパラメータ値で、0.043の最高獲得関数値を有すると判定できる。点356は、例えば獲得関数線355の最高ピークにある。点356は、図3Aに関して上記した予測点315に対応する。点356の0.27のパラメータ値を信頼値(例えば、探索)および平均値(例えば、活用)の組合せに基づいてパラメータ値セレクタ132によって選択できるが、0.27のパラメータ値は、主に平均値に基づいてパラメータ値セレクタ132によって選択されてよい。そのため、0.27のパラメータ値は、主に「活用」パラメータ値であると考えられてよい。
【0066】
パラメータ値セレクタ132は、獲得関数に基づいて他の評価すべきパラメータ値を選択できる。例えば、パラメータ値セレクタ132は、点358および360の、それぞれ0.68および0.85のパラメータ値を選択できる。点358および360は、各々獲得関数線355の他のピークにある。点358および360は、それぞれ図3Aの予測点334および336に対応する。パラメータ値セレクタ132が信頼値(例えば、探索)および平均値(例えば、活用)の組合せに基づいてパラメータ値0.68および0.85を選択できるが、0.68および0.85のパラメータ値は、主に信頼値に基づいてパラメータ値セレクタ132によって選択されてよい。したがって、0.68および0.85のパラメータ値は、主に「探索」パラメータ値であると考えられてよい。パラメータ値0.68および0.85の平均値には、近傍の既知の評価点312の平均値によって影響を及ぼすことができる(例えば、ここで「近傍の」は既知の評価点312から閾値距離内を意味する)。パラメータ値セレクタ132がパラメータ値0.68および0.85を選択することは、既知の評価点312の周りの範囲を更に探索することであると考えることができる。
【0067】
図4は、パラメータ値を自動的に決定するための擬似コード例400を例示する。一部の実装例において、擬似コード400に対応するコードは、例えば、図1に関して上記したパラメータ値セレクタ132および実験システム122を含む、任意の適切なデータ処理装置によって実行できる。
【0068】
行1で、パラメータ値セレクタ132が、ラウンド当たりの試行回数に変数mを設定する。ラウンド当たりの試行回数は、各ラウンドどれだけのパラメータ値が評価されるかを表すことができる。
【0069】
行2で、パラメータ値セレクタ132は、実験ラウンド数に変数kを設定する。
【0070】
行3で、パラメータ値セレクタ132は、探索バイアス値にガンマ変数を設定する。ガンマ変数は、図3Bに関して上記した探索重みに相当する。
【0071】
行4で、パラメータ値セレクタ132は、data_points配列を空配列であると設定する。
【0072】
行5で、パラメータ値セレクタ132は、new_trials配列を空配列であると設定する。
【0073】
行6で、パラメータ値セレクタ132は、第1の反復構造を、合計でm回繰り返す(例えば、各試行ごとに1反復)ように構成する。
【0074】
行7で、第1の反復構造の所与の反復中に、パラメータ値セレクタ132は、ランダムパラメータ値x[i]を発生させる。
【0075】
行8で、パラメータ値セレクタ132は、ランダムパラメータ値をnew_trials配列に追加する。
【0076】
行9で、実験システム122が、new_trials配列内のランダムパラメータ値を使用して実験を行って、メトリック値y1、y2、…、ymを生成する。
【0077】
行10で、パラメータ値セレクタ132は、評価点(x1,y1)、(x2,y2)、…(xm,ym)を作成し、そして評価点をdata_points配列に追加する。
【0078】
行11で、パラメータ値セレクタ132は、第2の反復構造を、合計でk-1回繰り返すように構成する。例えば、図1に関して上記したように、パラメータ値セレクタ132は、パラメータチューニングプロセス中に既定数のパラメータチューニング反復を行うように構成できる。行11での値kは、パラメータチューニング反復の既定数に相当する。
【0079】
行12で、パラメータ値セレクタ132は、data_points配列内の評価点に適合する第1のモデル(例えば、第1のモデル140)を作成する。
【0080】
行13で、パラメータ値セレクタ132は、new_trials配列を空配列であるとリセットする。
【0081】
行14で、パラメータ値セレクタ132は、new_trials配列を空配列であると設定し、そこにdata_points配列内の評価点をクローンし、そしてクローンした評価点を一時配列に記憶する。
【0082】
行15で、パラメータ値セレクタ132は、第1のモデルをクローンし、そしてクローンした第1のモデルを一時オブジェクトに記憶する。
【0083】
行16で、パラメータ値セレクタ132は、第3の反復構造を、合計でm回繰り返す(例えば、各試行ごとに1反復)ように構成する。
【0084】
行17で、第1のモデル(例えば、行12で作成された適合ガウスモデル)に基づいて、パラメータ値セレクタ132は、図3Bに例示される獲得関数に相当する信頼上限(ucb)関数を使用して関数値を決定する。パラメータ値セレクタ132は、ガウスモデルの平均、ガウスモデルの標準偏差(例えば、信頼)、およびガンマパラメータを使用してucb関数値を計算する。ガンマパラメータは、図3Bに関して上記したようにおよび行24に関して下記するように、探索(対活用)に対する優先レベルを制御するようにパラメータ値セレクタ132が構成できるパラメータである。
【0085】
行18で、パラメータ値セレクタ132は、最大ucb関数値(例えば、最大獲得関数値)を有するパラメータ値x[i]を決定する。例えば、図3Bに図示されるように、点356が最大獲得関数値に対応する。
【0086】
行19で、パラメータ値セレクタ132は、最大獲得関数値を有するパラメータ値x[i]をnew_trials配列に追加する(例えば、次のパラメータチューニング反復のために設定される新たな実験に最大獲得関数値を含めることに相当する)。
【0087】
行20で、パラメータ値セレクタ132は、一時モデルに新たな点を追加し、ここで新たな点は、最高獲得関数値を伴うパラメータ値のX値x[i]および最高獲得関数値のY値を含む。
【0088】
行21で、パラメータ値セレクタ132は、一時モデル(例えば、ここで一時モデルは、最高獲得関数値を持つ新たな点を含む)に点を適合させる適合動作を行うことによって、調整された第1のモデルを作成する。適合動作に新たな点を含めることは、第3の反復構造の後期の反復において(例えば、行17で)x[i]に対する信頼値がゼロになることに至ることができ、これによりパラメータ値セレクタ132に対して、より高い(例えば、非ゼロ)信頼値を有する他のパラメータ値を評価のために選択させることができる。すなわち、行17のucb関数によれば、高い信頼値ほど、高い獲得関数値に至ることができる。一例として、パラメータ値セレクタ132は、部分的に点358および360の非ゼロ信頼値に基づいて、点358および360を選択できる。
【0089】
行22で、実験システム122は、new_trials配列内のパラメータ値を使用して実験を行って、メトリック値y1、y2、…、ymを生成する。
【0090】
行23で、パラメータ値セレクタ132は、評価点(x1,y1)、(x2,y2)、…(xm,ym)を作成し、そして評価点をdata_points配列に追加する。
【0091】
行24で、パラメータ値セレクタ132は、任意選択でガンマ変数が異なる探索重みに相当するように調整する。図3Bに関して上記したように、探索重みは、早期の反復においてより高くそして後期の探索においてより低くなることができる(その結果、早期の反復においてパラメータ値セレクタ132によって探索が優先され、そして後期の反復においてパラメータ値セレクタ132によって活用が優先される)。パラメータ値セレクタ132は、行11から始まる第2の反復構造の各反復中にガンマパラメータの値を減少させることができる。パラメータ値セレクタ132は、第2の反復構造の最終反復中にゼロまでガンマパラメータを減少させることができ、その結果、最終反復において、パラメータ値セレクタ132は、ガウスモデルの標準偏差値でなくガウスモデルの平均値だけを使用してucb値を決定する。ガンマ値が所与の反復中に調整された後、最後の反復が既に行われていない限り、パラメータ値セレクタ132は次の反復を行うことができる。
【0092】
図5は、パラメータ値を自動的に決定するためのプロセス例500のフロー図である。プロセス500の動作は、図1図4に記載および描写されるシステムのコンポーネントによって行われるものとして下記される。プロセス500の動作は例示目的でのみ下記される。プロセス500の動作は、任意の適切なデバイスまたはシステム、例えば任意の適切なデータ処理装置によって行うことができる。プロセス500の動作は、非一時的でよいコンピュータ可読媒体上に記憶される命令としても実装できる。命令の実行は、1つまたは複数のデータ処理装置にプロセス500の動作を行わせる。
【0093】
パラメータチューニングシステム110は、コンテンツプラットフォームがビデオコンテンツを伴うデジタルコンポーネントの提供をそれに基づき制御するパラメータのパラメータ値を特定するために多重反復を実行する(502で)。多重反復の間の各反復において、パラメータチューニングシステムは動作504~516を行い、その各々が下記される。
【0094】
パラメータチューニングシステム110は、パラメータに対する一組の評価点を特定する(504で)。例えば、図1図4を参照しつつ上記したように、パラメータ値セレクタ132は評価点134を特定する。各評価点は、パラメータの評価パラメータ値およびコンテンツプラットフォーム106によるデジタルコンポーネントの提供に対応するメトリックのメトリック値を含む。メトリック生成器114は、コンテンツプラットフォーム106が以前の実験中にデジタルコンポーネントを提供するために評価点の評価パラメータ値を使用することによって生成されたデータから評価点のメトリック値を決定する。
【0095】
パラメータチューニングシステム110は、一組の評価点を使用して第1のモデルを生成する(506で)。例えば、図1図4を参照しつつ上記したように、パラメータ値セレクタ132は、現在の一組の評価点に適合する第1のモデル140を生成できる。第1のモデルは、現在の一組の評価点に適合するガウスモデルであることができる。別の例としてかつ図3Aに関して上記したように、第1のモデルは、複数の他のモデルの集計モデルであることができ、ここで各他のモデルは、現在の一組の評価点に適合するために異なる手法を使用する。第1のモデルは、各パラメータ値に対して、それぞれの他のモデルによって生成されるそれぞれの予測メトリック値の平均に基づいて決定される平均予測メトリック値を含むことができる。
【0096】
パラメータチューニングシステム110は、第1のモデルの平均値および信頼区間を生成する(508で)。例えば、図1図4を参照しつつ上記したように、パラメータ値セレクタ132は平均値142および信頼区間144を生成できる。現在の一組の評価点以外の点に対する平均値は、第1のモデルによって生成される予測メトリック値に対応する。現在の一組の評価点のための平均値は、予測メトリック値よりもむしろ既知のメトリック値である。したがって、現在の一組の評価点に対する信頼値はゼロである(例えば、現在の一組の評価点に関してメトリック値が既知であるので、パラメータチューニングシステムは、現在の一組の評価点のためのメトリック値への完全な信頼を有することができる)。現在の一組の評価点以外の点に対する信頼値は非ゼロであり、そして所与の点が既知の現在の評価点から遠いほど高くなる。すなわち、所与の点に対する信頼値は、その点に対する予測メトリック値へのパラメータチューニングシステムの信頼を表しており、高い信頼値ほど予測メトリック値へのパラメータチューニングシステムの低い信頼を表す。
【0097】
パラメータチューニングシステム110は、獲得関数を使用して第1のモデルに基づいて第2のモデルを生成する(510で)。獲得関数は、第1のモデルの平均値、第1のモデルの信頼区間、およびパラメータを評価するための探索の優先度を制御する構成可能な探索重みに基づく。例えば、図1図4を参照しつつ上記したように、パラメータ値セレクタ132は第2のモデル146を生成できる。パラメータチューニングシステム110は、第2のモデルから評価すべき次のパラメータ値を決定するときに新たなパラメータ値を探索する優先度を制御するために探索重みを使用できる。探索重みは、獲得関数における信頼区間の重みに相当することができる。探索重みは、より以前のパラメータ評価反復においてより高く、より後のパラメータ評価反復においてより低くなり得る。
【0098】
パラメータチューニングシステム110は、第2のモデルから、評価すべき次のパラメータ値を決定する(512で)。例えば、図1図4を参照しつつ上記したように、パラメータ値セレクタ132は、第2のモデル146から生成される最高獲得関数値に基づいて評価すべき次のパラメータ値を決定できる。パラメータ値セレクタ132は2つ以上の評価すべき次のパラメータ値を決定できる。例えば、パラメータ値セレクタ132は、上位所定数の最高獲得関数値に対応するパラメータ値を決定できる。
【0099】
パラメータチューニングシステム110は、ビデオコンテンツと共にデジタルコンポーネントを提供するために次のパラメータ値を使用するようにコンテンツプラットフォーム106を構成する(514で)。例えば、図1図4を参照しつつ上記したように、パラメータチューニングシステム110は、次のパラメータ値に基づいて実験を行うように実験システム122を構成するために実験システム122に実験ファイル138を提供できる。
【0100】
パラメータチューニングシステム110は、コンテンツプラットフォーム106がデジタルコンポーネントを提供するために次のパラメータ値を使用する結果として生じるデータに基づいて次のメトリック値を決定する(516で)。例えば、図1図4を参照しつつ上記したように、評価器135はコンテンツプラットフォーム106から実験メトリック130を受信できる。
【0101】
パラメータチューニングシステム110は、複数の反復中に決定されるパラメータのパラメータ値および対応するメトリック値の中から、最高メトリック値に至るか特定の閾値を満足させる特定のパラメータ値を決定する(518で)。一部の実装例において、かつ図1図4を参照しつつ上記したように、パラメータチューニングシステム110は、パラメータのための様々なパラメータ値の中から最高メトリック値(他のパラメータ値に対して決定される他のメトリック値に対して)に至るパラメータ値を選択する。代替的に、かつ図1図4を参照しつつ上記もしたように、パラメータチューニングシステム110は、パラメータのための様々なパラメータ値の中からパラメータに対する閾値を満足させる(例えば、満たすまたは超える)パラメータ値を選択する。
【0102】
一部の実装例において、複数の反復は、現在の反復からのメトリック値が閾値を満足させる(例えば、満たすまたは超える)か最大数の反復が達されることに基づいて判定される。
【0103】
パラメータチューニングシステム110は、ビデオコンテンツと共に提供されるデジタルコンポーネントを、制作中に、制御または選択するために特定のパラメータ値(518で決定された)を使用するようにコンテンツプラットフォームを構成する(520で)。
【0104】
図6は、上記した動作を行うために使用できるコンピュータシステム例600のブロック図である。システム600は、プロセッサ610、メモリ620、ストレージデバイス630および入出力デバイス640を含む。コンポーネント610、620、630および640の各々は、例えばシステムバス650を使用して相互接続できる。プロセッサ610は、システム600内での実行のために命令を処理することが可能である。一部の実装例において、プロセッサ610はシングルスレッドプロセッサである。別の実装例において、プロセッサ610はマルチスレッドプロセッサである。プロセッサ610は、メモリ620にまたはストレージデバイス630に記憶される命令を処理することが可能である。
【0105】
メモリ620は、システム600内で情報を記憶する。1つの実施例において、メモリ620はコンピュータ可読媒体である。一部の実装例において、メモリ620は揮発性メモリユニットである。別の実装例において、メモリ620は不揮発性メモリユニットである。
【0106】
ストレージデバイス630は、システム600に大容量記憶を提供することが可能である。一部の実装例において、ストレージデバイス630はコンピュータ可読媒体である。様々な異なる実装例において、ストレージデバイス630には、例えば、ハードディスクデバイス、光ディスクデバイス、複数コンピューティングデバイスによってネットワークを通じて共有されるストレージデバイス(例えば、クラウドストレージデバイス)、または何らかの他の大容量ストレージデバイスを含むことができる。
【0107】
入出力デバイス640は、システム600に入出力動作を提供する。一部の実装例において、入出力デバイス640には、ネットワークインタフェースデバイス、例えばイーサネットカード、シリアル通信デバイス、例えばRS-232ポート、および/または無線インタフェースデバイス、例えば802.11カードの1つまたは複数を含むことができる。別の実装例において、入出力デバイスには、入力データを受信し、周辺デバイス660、例えばキーボード、プリンタおよびディスプレイデバイスに出力データを送信するように構成されるドライバデバイスを含むことができる。しかしながら、モバイルコンピューティングデバイス、移動通信デバイス、セットトップボックステレビジョンクライアントデバイス等など、他の実装例も使用できる。
【0108】
図6に処理システム例が記載されたが、本明細書に記載される対象および機能均動作の実装例は、他の種類のデジタル電子回路網で、または本明細書に開示される構造およびそれらの構造的均等物を含め、コンピュータソフトウェア、ファームウェアもしくはハードウェアで、またはそれらの1つもしくは複数の組合せで実装できる。
【0109】
本明細書に記載される対象および動作の実施形態は、デジタル電子回路網で、本明細書に開示される構造およびそれらの構造的均等物を含め、コンピュータソフトウェア、ファームウェアもしくはハードウェアで、またはそれらの1つもしくは複数の組合せで実装できる。本明細書に記載される対象の実施形態は、1つまたは複数のコンピュータプログラム、すなわち、データ処理装置による実行のために、またはその動作を制御するためにコンピュータ記憶メディア(または媒体)上に符号化されたコンピュータプログラム命令の1つまたは複数のモジュールとして実装できる。代替的に、または加えて、プログラム命令は、データ処理装置による実行のために適切な受信器装置に伝送するための情報を符号化するために発生される人工発生伝搬信号、例えば機械発生電気、光または電磁信号上に符号化できる。コンピュータ記憶媒体は、コンピュータ可読記憶デバイス、コンピュータ可読記憶基板、ランダムもしくはシリアルアクセスメモリアレイもしくはデバイス、またはそれらの1つもしくは複数の組合せである、またはそれに含めることができる。その上、コンピュータ記憶媒体は伝搬信号でないが、コンピュータ記憶媒体は、人工発生伝搬信号に符号化されるコンピュータプログラム命令の供給源または供給先であることができる。コンピュータ記憶媒体は、1つまたは複数の別々の物理的コンポーネントまたは媒体(例えば、複数CD、ディスクまたは他の記憶デバイス)である、またはそれに含めることもできる。
【0110】
本明細書に記載される動作は、1つまたは複数のコンピュータ可読記憶デバイスに記憶されたまたは他の供給源から受信されたデータに対してデータ処理装置によって行われる動作として実装できる。
【0111】
用語「データ処理装置」は、例としてプログラマブルプロセッサ、コンピュータ、システムオンチップ、または以上の複数もしくは組合せを含め、データを処理するための全ての種類の装置、デバイスおよび機械を包含する。同装置は、専用論理回路網、例えばFPGA(フィールドプログラマブルゲートアレイ)またはASIC(特定用途向け集積回路)を含むことができる。同装置は、ハードウェアに加えて、当該コンピュータプログラムのための実行環境を作成するコード、例えばプロセッサファームウェアを構成するコード、プロトコルスタック、データベース管理システム、オペレーティングシステム、クロスプラットフォーム実行時環境、仮想マシン、またはそれらの1つもしくは複数の組合せも含むことができる。同装置および実行環境は、ウェブサービス、分散コンピューティングおよびグリッドコンピューティングインフラストラクチャなどの様々な異なるコンピューティングモデルインフラストラクチャを実現できる。
【0112】
コンピュータプログラム(プログラム、ソフトウェア、ソフトウェアアプリケーション、スクリプトまたはコードとしても知られている)は、コンパイラ型またはインタープリタ型言語、宣言型または手続き型言語を含め、任意の形式のプログラミング言語で書くことができ、そしてそれは、スタンドアロンプログラムとして、またはモジュール、コンポーネント、サブルーチン、オブジェクトもしくはコンピューティング環境での使用に適する他のユニットとしてを含め、任意の形態に展開できる。コンピュータプログラムは、ファイルシステムにおけるファイルに対応してよいが、しなくてもよい。プログラムは、他のプログラムもしくはデータ(例えば、マークアップ言語文書に記憶される1つもしくは複数のスクリプト)を保持するファイルの一部分に、当該プログラムに専用の単一のファイルに、または複数連係ファイル(例えば、1つもしくは複数のモジュール、サブプログラムもしくはコードの一部分を記憶するファイル)に記憶できる。コンピュータプログラムは、展開されて1つのコンピュータ上で、または1つのサイトに設けられるもしくは複数サイトにわたって分散されて通信ネットワークによって相互接続される複数コンピュータ上で実行できる。
【0113】
本明細書に記載されるプロセスおよび論理フローは、1つまたは複数のコンピュータプログラムを実行して、入力データを演算し出力を生成することによって作用を行う1つまたは複数のプログラマブルプロセッサによって行うことができる。同プロセスおよび論理フローは、専用論理回路網、例えばFPGA(フィールドプログラマブルゲートアレイ)またはASIC(特定用途向け集積回路)によっても行うことができ、そして上記装置も、それとして実装できる。
【0114】
コンピュータプログラムの実行に適するプロセッサには、例として、汎用および専用の両マイクロプロセッサを含む。一般に、プロセッサは、リードオンリメモリまたはランダムアクセスメモリまたは両方から命令およびデータを受けることになる。コンピュータの必須要素は、命令に従って作用を行うためのプロセッサ、ならびに命令およびデータを記憶するための1つまたは複数のメモリデバイスである。一般に、コンピュータは、データを記憶するための1つまたは複数の大容量ストレージデバイス、例えば磁気、光磁気ディスクまたは光ディスクも含む、または作動的に結合されて、それらからデータを受けるもしくはそれらにデータを転送するもしくは両方行うことにもなる。しかしながら、コンピュータは、そのようなデバイスを有する必要はない。その上、コンピュータは、別のデバイス、例えば、数例を挙げると、移動電話、携帯情報端末(PDA)、モバイルオーディオもしくはビデオプレーヤ、ゲーム機、全地球測位システム(GPS)受信器、またはポータブルストレージデバイス(例えば、ユニバーサルシリアルバス(USB)フラッシュドライブ)に組み込むことができる。コンピュータプログラム命令およびデータを記憶するのに適するデバイスには、例として半導体メモリデバイス、例えばEPROM、EEPROMおよびフラッシュメモリデバイス、磁気ディスク、例えば内部ハードディスクまたはリムーバブルディスク、光磁気ディスク、ならびにCD-ROMおよびDVD-ROMディスクを含め、全ての形態の不揮発性メモリ、媒体およびメモリデバイスを含む。プロセッサおよびメモリは、専用論理回路網によって補足またはそれに統合できる。
【0115】
ユーザとのインタラクションを提供するために、本明細書に記載される対象の実施形態は、ユーザに情報を表示するためのディスプレイデバイス、例えばCRT(陰極線管)またはLCD(液晶表示)モニタならびにユーザがコンピュータに入力を提供できるキーボードおよびポインティングデバイス、例えばマウスまたはトラックボールを有するコンピュータ上に実装できる。ユーザとのインタラクションを提供するために他の種類のデバイスも使用でき、例えば、ユーザに提供されるフィードバックは任意の形態の感覚フィードバック、例えば視覚フィードバック、聴覚フィードバックまたは触覚フィードバックであることができ、そしてユーザからの入力は、音響、音声または触覚入力を含め、任意の形態で受け取ることができる。加えて、コンピュータは、ユーザによって使用されるデバイスに文書を送信し、それから文書を受信することによって、例えば、ユーザのクライアントデバイス上のウェブブラウザから受信される要求に応じてウェブブラウザにウェブページを送信することによって、ユーザと対話できる。
【0116】
本明細書に記載される対象の実施形態は、バックエンドコンポーネントを、例えばデータサーバとして含む、またはミドルウェアコンポーネント、例えばアプリケーションサーバを含む、またはフロントエンドコンポーネント、例えば、ユーザが本明細書に記載される対象の実装例と対話できるようなグラフィカルユーザインタフェースもしくはウェブブラウザを有するクライアントコンピュータを含むコンピューティングシステム、あるいは1つまたは複数のそのようなバックエンド、ミドルウェアまたはフロントエンドコンポーネントの任意の組合せで実装できる。システムのコンポーネントは、デジタルデータ通信の任意の形態または媒体、例えば通信ネットワークによって相互接続できる。通信ネットワークの例には、ローカルエリアネットワーク(「LAN」)およびワイドエリアネットワーク(「WAN」)、インターネットワーク(例えば、インターネット)、ならびにピアツーピアネットワーク(例えば、アドホックピアツーピアネットワーク)を含む。
【0117】
コンピューティングシステムはクライアントおよびサーバを含むことができる。クライアントおよびサーバは、一般に互いから離れており、典型的に通信ネットワークを通じて対話する。クライアントおよびサーバの関係は、それぞれのコンピュータ上で動いており、互いにクライアント-サーバ関係を有するコンピュータプログラムによって生じる。一部の実施形態において、サーバがクライアントデバイスにデータ(例えば、HTMLページ)を送信する(例えば、クライアントデバイスと対話するユーザにデータを表示し、ユーザからユーザ入力を受信する目的で)。クライアントデバイスにおいて生成されるデータ(例えば、ユーザインタラクションの結果)は、サーバにおいてクライアントデバイスから受信できる。
【0118】
本明細書が多くの具体的な実装詳細を含むが、これらは、いかなる発明のまたは特許請求され得るものの範囲へも限定としてでなく、むしろ特定の発明の特定の実施形態に固有の特徴の記述として解釈されるべきである。別々の実施形態の文脈で本明細書に記載される或る特徴が、組み合わせて単一の実施形態でも実装できる。反対に、単一の実施形態の文脈で記載される様々な特徴が、別々に複数の実施形態でも、または任意の適切な下位組合せでも実装できる。その上、特徴が或る組合せで作用すると上記され、しかも当初そのように特許請求され得るが、特許請求された組合せからの1つまたは複数の特徴が一部の場合に同組合せから削除でき、特許請求された組合せは下位組合せまたは下位組合せの変形とされ得る。
【0119】
同様に、動作が特定の順に図面に描かれるが、これは、望ましい結果を達成するために、そのような動作が図示の特定の順にもしくは順番に行われること、または全ての例示された動作が行われることを必要とすると理解されるべきでない。或る状況では、マルチタスキングおよび並列処理が有利であり得る。その上、上記した実施形態における様々なシステムコンポーネントの分離は、全ての実施形態においてそのような分離を必要とすると理解されるべきでなく、記載されたプログラムコンポーネントおよびシステムが一般に単一のソフトウェア製品に共に統合できるまたは複数のソフトウェア製品へ実装できることが理解されるべきである。
【0120】
このように、本対象の特定の実施形態が記載された。他の実施形態は以下の特許請求の範囲内である。一部の場合には、特許請求の範囲に列挙される作用は異なる順に行うことができ、それでも望ましい結果を達成できる。加えて、添付図に描かれるプロセスは、望ましい結果を達成するために、必ずしも図示の特定の順または順番を必要とするわけではない。或る実装例において、マルチタスキングおよび並列処理が有利であり得る。
【符号の説明】
【0121】
100 環境
102 クライアントデバイス
104 ネットワーク
106 コンテンツプラットフォーム
108 コンテンツプロバイダ
110 パラメータチューニングシステム
112 ユーザ活動ログ
114 メトリック生成器
116 メトリックデータベース
118 パラメータ
120 パラメータ設定器
122 実験システム
124 実験
126 実験トラフィック
128 実験活動
130 実験メトリック
131 ドライバ
132 パラメータ値セレクタ
134 評価点
135 評価器
136 実験ファイルエディタ
138 実験ファイル
140 第1のモデル
142 平均値
144 信頼区間
146 第2のモデル
200 グラフ
202 X軸
204 Y軸
206、208、210、212、214 評価点
250 グラフ
252 X軸
254 Y軸
256、258、260、262、264 評価点
266 真の関数線
268 点
300 グラフ
302 X軸
304 Y軸
306、308、310、312、314 評価点
315、332、334、336 予測点
316 真の関数線
318 ガウス線
320 陰影領域
322、324、326、328 縦線
350 グラフ
352 X軸
354 Y軸
355 獲得関数線
356、358、360 点
400 擬似コード
600 コンピュータシステム
610 プロセッサ
620 メモリ
630 ストレージデバイス
640 入出力デバイス
650 システムバス
660 周辺デバイス
図1
図2A
図2B
図3A
図3B
図4
図5
図6