(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-01-05
(45)【発行日】2024-01-16
(54)【発明の名称】青色レーザーを使用して銅を溶接するための方法及びシステム
(51)【国際特許分類】
B23K 26/32 20140101AFI20240109BHJP
B23K 26/21 20140101ALI20240109BHJP
【FI】
B23K26/32
B23K26/21 F
(21)【出願番号】P 2022187104
(22)【出願日】2022-11-24
(62)【分割の表示】P 2021112758の分割
【原出願日】2018-01-31
【審査請求日】2022-12-23
(32)【優先日】2017-01-31
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】316003531
【氏名又は名称】ヌブル インク
(74)【代理人】
【識別番号】100083895
【氏名又は名称】伊藤 茂
(74)【代理人】
【識別番号】100175983
【氏名又は名称】海老 裕介
(72)【発明者】
【氏名】フィナフ, マシュー
(72)【発明者】
【氏名】グレイ, ウィリアム, シー.
(72)【発明者】
【氏名】フリッツ, ロバート ディー.
(72)【発明者】
【氏名】ゼディカー, マーク
【審査官】柏原 郁昭
(56)【参考文献】
【文献】特開2006-094600(JP,A)
【文献】特表2013-528496(JP,A)
【文献】特開2005-219115(JP,A)
【文献】特表2011-527635(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B23K 26/32
B23K 26/21
(57)【特許請求の範囲】
【請求項1】
銅系材料にキーホールモード溶接部を形成する際の、蒸発、スパッター、及び微小爆発を最小限にするための方法であって、
a.波長が400nmから575nmでパワー密度が約50kW/cm
2から5MW/cm
2であるレーザービームスポットを提供するレーザー源を準備する段階と、
b.相互に接触した第1の材料部片及び第2の材料部片を有する被加工物であって、前記第1の材料部片は銅を有し前記第2の材料部片は金属を有する被加工物を保持器に設置する段階と、
前記レーザービームスポットを前記被加工物に方向決めし、それにより前記第1の材料部片と前記第2の材料部片との間に、HAZ及び再凝固領域を有する溶接部がキーホールモード溶接によって形成されるようにする段階と、
を有し、
前記第1の材料部片と、前記第2の材料部片と、前記HAZと、前記再凝固領域との微細構造が、同様であるようにされた、方法。
【請求項2】
前記微細構造が、前記溶接部の脆弱さを示唆することになる前記溶接部の判別可能な差異を示さない、請求項1に記載の方法。
【請求項3】
前記微細構造が、同等サイズの結晶成長領域を備えている、請求項1又は2に記載の方法。
【請求項4】
銅系材料にキーホールモード溶接部を形成する際の、蒸発、スパッター、及び微小爆発を最小限にするための方法であって、
a.波長が400nmから575nmでパワー密度が約50kW/cm
2から5MW/cm
2であるレーザービームスポットを提供するレーザー源を備えるレーザーシステムを準備する段階と、
b.相互に接触した第1の材料部片及び第2の材料部片を有する被加工物であって、前記第1の材料部片は銅を有し前記第2の材料部片は金属を有する被加工物を保持器に設置する段階と、
前記レーザービームスポットを前記被加工物に方向決めし、それにより前記第1の材料部片と前記第2の材料部片との間に、HAZ及び再凝固領域を有する溶接部がキーホールモード溶接によって形成されるようにする段階と、
を有し、
前記HAZの硬度の範囲が前記第1の材料部片の硬度の範囲内である、方法。
【請求項5】
前記第1の材料部片、前記第2の材料部片、前記HAZ、及び前記再凝固領域のそれぞれが微細構造を備え、前記微細構造の全てが前記溶接部の脆弱さを示唆することになる前記溶接部の判別可能な差異を示さない、請求項4に記載の方法。
【請求項6】
前記第1及び第2の材料部片が約10μmから約500μmの厚さを有する、請求項1乃至5のいずれか一項に記載の方法。
【請求項7】
前記第1の材料部片が銅箔の複数の層を有する、請求項1乃至6のいずれか一項に記載の方法。
【請求項8】
前記レーザービームスポットが800kW/cm
2より小さいパワー密度を有する、請求項1乃至7のいずれか一項に記載の方法。
【請求項9】
前記レーザービームスポットが500kW/cm
2より小さいパワー密度を有する、請求項1乃至8のいずれか一項に記載の方法。
【請求項10】
前記レーザービームスポットが約100kW/cm
2から800kW/cm
2のパワー密度を有する、請求項1乃至
7のいずれか一項に記載の方法。
【請求項11】
前記溶接部はスパッター無しで形成される、請求項1乃至10のいずれか一項に記載の方法。
【請求項12】
前記溶接部の形成中に、前記レーザービームスポットは前記被加工物を蒸発させない、請求項1乃至11のいずれか一項に記載の方法。
【請求項13】
前記第1の材料部片が、約10重量パーセントから約95重量パーセントの銅を有する銅合金である、請求項1乃至12のいずれか一項に記載の方法。
【請求項14】
前記第2の材料部片が、約10重量パーセントから約95重量パーセントの銅を有する銅合金である、請求項1乃至13のいずれか一項に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
本願は、合衆国法典第35巻、第119条(e)(1)の下に、2017年1月31日出願の米国仮特許出願第62/452,598号の出願日の恩典を主張し、同仮特許出願の開示全体をここに参考文献として援用する。
【0002】
本発明は、材料のレーザー加工に関しており、より詳細には約350nmから約500nm及びそれより大きい波長を有するレーザービームを使用して銅材料をレーザー接合することに関する。
【背景技術】
【0003】
銅のレーザー溶接は、高い反射率、高い熱伝導率、及び高い熱容量のために非常に難しいことが分かっている。銅を溶接するために、超音波溶接からIRレーザー溶接に及ぶ数々の方法が開発されてきた。しかしながら、これら従来の銅溶接方法は多くの短所と制限事項を有している。例えば、これらの制限事項が目にされる1つの市場は、成長する電気自動車市場のための高性能電子機器の分野にある。成長する自動車市場のための高性能なバッテリ及び電子機器を生産するには、これらの従来技法によって得ることができるよりも速い速度でのより優れた溶接品質が必要である。
【0004】
1030nmのIRレーザー源を使用した場合、この波長における銅の高い反射率によってパワーを材料の中へ結合し材料を加熱して溶接することが困難になる。高い反射率を克服する1つの方法は、ハイパワーレベル(>1kW)IRレーザーを使用してキーホール溶接を開始させたうえでパワーを材料の中へ結合させる、というものである。この溶接方法に関わる問題は、中でも特に、ホール内の蒸気が微小爆発を招き、溶融した銅を被溶接部品一面に浴びせてしまう或いは微小爆発によってホールが被溶接部品を完全に貫通してしまうことになりかねないということである。結果として、研究者らは、溶接時のこれらの欠陥を防ごうとするにはレーザーパワーを急速に変調することに頼らなくてはならなかった。欠陥はプロセスそのものの直接的結果であることが発見されており、というのも、レーザーによって銅を溶接しようとする際、レーザーは、最初に銅を溶融点まで加熱し、次いで銅を蒸発させる段階へ急速に遷移するからである。銅が蒸発するやキーホールが形成され、レーザー結合が当初の5%から100%へ急激に上昇し、この遷移があまりに急速に起こるので、結合される熱の量が部品を溶接するのに必要な熱の量を一気に超過してしまい、結果的に上記微小爆発を引き起こすことになる。
【0005】
現下の赤外線レーザーの方法及びシステムを用いた銅のレーザー溶接は、高い反射率、高い熱伝導率、低い蒸発点、及び高い熱容量のせいで難しく、課題を抱えている。IRレーザーを用いて銅を溶接するために、IRレーザーを緑色レーザーと組み合わせること、溶融池内のスポットを揺動すること、真空中で動作させること、及びレーザーを高い周波数で変調すること、に及ぶ数々の方法が試行されてきた。これらの手法は一部の銅溶接用途で現在使用されているが、それらは、狭い加工ウインドー、無制御なスパッター、及び溶接部の予測不能な変動性を有する傾向があり、概して、望ましい又は最適といえるほどではないことが判明している。より困難な銅溶接プロセスの1つは、どうやって銅箔の積層体を互いへ及びより厚肉のバスバーへ溶接するかということである。目下のところ、これは、IRレーザーを用いた場合、信頼性高く行われることも製造者らによって必要とされている溶接品質を現出させるやり方で行われることも無理である。そこで、製造者らは、これらの箔を一体に結着させるのに超音波溶接方法に頼っている。これらの超音波方法もまた最適といえるほどではなく、問題を孕んでいる。例えば、超音波溶接方法の場合、作製中にソノトロードが摩耗し、結果的に不完全な溶接部からデブリが残留した溶接部にまで及ぶプロセス変動を生じさせかねない。これらの不備は、製造歩留まり、バッテリの内部抵抗、結果として得られるバッテリのエネルギー密度、そして多くの場合バッテリの信頼度を、制限する。
【0006】
「銅系材料」という用語は、別途明示的に提示されていない限り、それの可能な限り最も広範な意味を与えられるべきであり、銅、銅材料、銅金属、銅で電気めっきされている材料、少なくとも約10重量%から100重量%の銅を含有する金属材料、少なくとも約10重量%から100重量%の銅を含有する金属及び合金、少なくとも約20重量%から100重量%の銅を含有する金属及び合金、少なくとも約10重量%から100重量%の銅を含有する金属及び合金、少なくとも約50重量%から100重量%の銅を含有する金属及び合金、少なくとも約70重量%から100重量%の銅を含有する金属及び合金、及び少なくとも約90重量%から100重量%の銅を含有する金属及び合金、を含むものとする。
【0007】
「レーザー加工」、「材料のレーザー加工」という用語、及び類似のその様な用語は、別途明示的に提示されていない限り、それらの可能な限り最も広範な意味を与えられるべきであり、溶接、はんだ付け、溶融製錬、接合、焼なまし、軟化、粘着付与、リサーフェシング、ピーニング、熱処理、融合、封止、及び積付けを含むものとする。
【0008】
ここでの使用に際し、別途明示的に表明されていない限り、「UV」、「紫外線」、「UVスペクトル」、及び「スペクトルのUV部分」、及び類似の用語は、それらの最も広範な意味を与えられるべきであり、約10nmから約400nm、及び約10nmから約400nmの波長の光を含むものとする。
【0009】
ここでの使用に際し、別途明示的に表明されていない限り、「可視」、「可視スペクトル」、及び「スペクトルの可視部分」という用語、及び類似の用語は、それらの最も広範な意味を与えられるべきであり、約380nmから約750nm及び約400nmから約700nmの波長の光を含むものとする。
【0010】
ここでの使用に際し、別途明示的に表明されていない限り、「青色レーザービーム」、「青色レーザー」、及び「青色」という用語は、それらの最も広範な意味を与えられるべきであり、概して、レーザービームを提供するシステム、レーザービーム、レーザー源、例えばレーザー及びダイオードレーザーであって、約400nmから約500nmの波長を有するレーザービーム又は光を提供するもの、例えば伝播させるもの、をいう。
【0011】
ここでの使用に際し、別途明示的に表明されていない限り、「緑色レーザービーム」、「緑色レーザー」、及び「緑色」という用語は、それらの最も広範な意味を与えられるべきであり、概して、レーザービームを提供するシステム、レーザービーム、レーザー源、例えばレーザー及びダイオードレーザーであって、約500nmから約575nmの波長を有するレーザービーム又は光を提供するもの、例えば伝播させるもの、をいう。
【0012】
ここでの使用に際し、別途明示的に表明されていない限り、「少なくとも」、「より大きい」の様な用語は、更に「以上」を意味し、即ち、その様な用語は別途明示的に表明されていない限り、より下の値を除外する。
【0013】
概して、ここでの使用に際し「約」という用語及び「~」という符号は、別途指定されていない限り、±10%の分散又は範囲、表明されている値を得ることに関連付けられる実験誤差又は計器誤差、及び望ましくはこれらのうちのより大きい方、を網羅するものとする。
【0014】
発明の背景技術の項は、本発明の実施形態と関連付けられ得る技術の様々な態様を紹介することを意図している。したがって、本項での上記論考は、本発明をより深く理解するための枠組みを提供しており、先行技術の是認と見なされてはならない。
【発明の概要】
【発明が解決しようとする課題】
【0015】
金属の溶接、特に電子構成要素及びバッテリのための銅金属の溶接では、より優れた溶接品質、より高速な溶接に加え、より優れた再現性、高い信頼度、高い裕度、及びよりいっそうの堅牢性に対する必要性が長年存在し、増加してきており、未だ成就されていない。これらの必要性の中には、銅を銅へ及び他の金属へ溶接するための改善された方法に対する必要性が含まれ、また銅箔の積層体同士を溶接すること及びこれらの積層体をより厚肉の銅部品又はアルミニウム部品へ溶接することに付きまとう問題の解決に対処する必要性が含まれる。本発明は、中でも特に、ここに教示され開示されている製造物品、装置、及びプロセスを提供することによってこれらの必要性を解決する。
【課題を解決するための手段】
【0016】
かくして、銅系材料に完全な溶接部を形成する方法が提供されており、当該方法は、銅系材料の第1部片を銅材料の第2部片と接触させて設置した被加工物をレーザーシステム内に設置する段階と;青色レーザービームを被加工物に方向決めし、それにより銅系材料の第1部片と銅系材料の第2部片の間に、HAZ及び再凝固領域を含む溶接部が形成されるようにする段階と、を含んでおり;銅系材料とHAZと再凝固領域との微細構造が同一である。
【0017】
更に、以下のシステムの1つ又はそれ以上を有しているこれらの溶接部、システム、及び方法、即ち、同一の微細構造は溶接部の脆弱さを示唆することになる溶接部の判別可能な差異を示さない;同一の微細構造は同等サイズの結晶成長領域を含む;溶接部は伝導モード溶接によって形成される;溶接部はキーホールモード溶接によって形成される;第1部片及び第2部片は約10μmから約500μmの厚さを有している;第1部片は銅箔の複数の層を含んでいる;第1部片は銅金属である;第1部片は約10重量パーセント%から約95重量パーセントの銅を有する銅合金である;レーザービームは800kW/cm2より小さいパワー密度を有する集束スポットとして被加工物へ方向決めされる;レーザービームは500kW/cm2より小さいパワー密度を有する集束スポットとして被加工物へ方向決めされる;レーザービームは約100kW/cm2から約800kW/cm2のパワー密度を有する集束スポットとして被加工物へ方向決めされる;レーザービームは100kW/cm2より大きいパワー密度を有する集束スポットとして被加工物へ方向決めされる;レーザービームは500Wより小さいパワーを有する;レーザービームは275Wより小さいパワーを有する;レーザービームは150Wより小さいパワーを有する;レーザービームは150Wから約750Wの範囲のパワーを有する;レーザービームは約200Wから約500Wの範囲のパワーを有する;レーザービームは約50μmから約250μmのスポットサイズを有する集束スポットとして被加工物へ方向決めされる;レーザービームは約405nmから約500nmの波長を有する;溶接部はスパッター無しで形成される;及び、レーザーは被加工物を蒸発させない;のうちの1つ又はそれ以上を有する溶接部、方法、及びシステムが提供されている。
【0018】
更にまた、銅系材料に完全な溶接部を形成する方法が提供されており、当該方法は、銅系材料の第1部片を銅材料の第2部片と接触させて設置した被加工物をレーザーシステム内に設置する段階と;青色レーザービームを被加工物に方向決めし、それにより銅系材料の第1部片と銅系材料の第2部片の間に、HAZ及び再凝固領域を含む溶接部が形成されるようにする段階と、を含んでおり;HAZの硬度の範囲が銅系材料の硬度の範囲内にある。
【0019】
更に加えて、以下の特徴の1つ又はそれ以上を有するこれらの溶接部、システム、及び方法、即ち、再凝固領域の硬度の範囲は銅系材料の硬度の範囲内にある;銅系材料とHAZと再凝固領域との微細構造が同一である;同一の微細構造は溶接部の脆弱さを示唆することになる溶接部の判別可能な差異を示さない;同一の微細構造は溶接部の脆弱さを示唆することになる溶接部の判別可能な差異を示さない;及び、同一の微細構造は同等サイズの結晶成長領域を含んでいる、のうちの1つ又はそれ以上を有する溶接部、システム、及び方法が提供されている。
【0020】
更に、銅系材料に完全な溶接部を形成する方法が提供されており、当該方法は、銅系材料の第1部片を銅材料の第2部片と接触させて設置した被加工物をレーザーシステム内に設置する段階と;青色レーザービームを被加工物に方向決めし、それにより銅系材料の第1部片と銅系材料の第2部片の間に、HAZ及び再凝固領域を含む溶接部が形成されるようにする段階と、を含んでおり;再凝固領域の硬度の範囲が銅系材料の硬度の範囲内にある。
【0021】
更に、405nmから500nmの波長範囲を有する青色レーザーを用いての銅の溶接、及びこの溶接によって作製される溶接部及び製品が提供されている。
【0022】
また、以下の特徴の1つ又はそれ以上を含んでいるこれらの溶接部、方法、及びシステム、即ち、伝導モードでの銅の溶接;溶接プロセス中の溶融池の蒸発無しの伝導モードでの銅の溶接;母材と大きさが同等である結晶成長領域を有する母材金属と同様の微細構造を作製する伝導モードでの銅の溶接;熱影響領域(HAZ:Heat Affected Zone)に母材金属と同様の微細構造を作製する伝導モードでの銅の溶接;溶接ビードに母材金属と同様の微細構造を作製する伝導モードでの銅の溶接;熱影響領域に母材金属と同等の硬度を現出させる伝導モードでの銅の溶接;溶接ビードに母材金属と同等の硬度を現出させる伝導モードでの銅の溶接;溶接部の微細構造が母材金属とは異なる銅の溶接;HAZの微細構造が母材金属と同様である銅の溶接、のうちの1つ又はそれ以上を含んでいる溶接部、方法、及びシステムが提供されている。
【0023】
また、以下の特徴の1つ又はそれ以上を含んでいるこれらの溶接部、方法、及びシステム、即ち、キーホールモードでの銅の溶接;溶接中に起こるスパッターが非常に低く溶接後に銅の表面に観察されるスパッターが殆ど或いは全くないキーホールモードでの銅の溶接;500kW/cm2又はそれより大きいパワー密度及びキーホールを開いたままにすることが可能な溶接速度を用いた銅の溶接;400kW/cm2又はそれより大きいパワー密度及びキーホールを開いたままにすることが可能な溶接速度を用いた銅の溶接;100kW/cm2又はそれより大きいパワー密度及びキーホール溶接レジームへの遷移を防止するのに十分に高速な溶接速度を用いた銅の溶接;溶接中の溶込み深さを改善するための予加熱を用いた銅の溶接;Ar-CO2アシストガスを用いた銅の溶接;Ar-H2アシストガスを用いた銅の溶接;Arアシストガスを用いた銅の溶接;空気を用いた銅の溶接;Heアシストガスを用いた銅の溶接;N2アシストガスを用いた銅の溶接;及び、アシストガスを用いた銅の溶接、のうちの1つ又はそれ以上を含んでいる溶接部、方法、及びシステムが提供されている。
【0024】
また、以下の特徴の1つ又はそれ以上を含んでいるこれらの溶接部、方法、及びシステム、即ち、レーザーパワーが1HZから1kHzへ変調される;レーザーパワーが1kHZから50kHzへ変調される;細長くされた青色レーザースポットを使用してキーホールを開いたままに保つ;ロボットを使用してスポットを円形振動運動又は長円形振動運動で高速に動かす;検流計に取り付けられたミラーを使用してスポットを溶接方向に平行に振動させる;検流計に取り付けられたミラーを使用してスポットを溶接方向に垂直に振動させる;及び、一対の検流計に取り付けられた一対のミラーを使用してスポットを円形振動運動又は長円形振動運動で高速に動かす、のうちの1つ又はそれ以上を含んでいる溶接部、方法、及びシステムが提供されている。
【0025】
加えて、銅系材料にキーホール溶接部を形成する方法が提供されており、当該方法は、銅系材料の第1部片を銅材料の第2部片と接触させて設置した被加工物をレーザーシステム内に設置する段階と;青色レーザービームを被加工物に方向決めし、それにより銅系材料の第1部片と銅系材料の第2部片の間に、HAZ及び再凝固領域を有するキーホールモード溶接部が形成される段階と、を含んでいる。
【0026】
更に、以下の特徴の1つ又はそれ以上を含んでいるこれらの溶接部、方法、及びシステム、即ち、レーザーパワーはキーホール溶接部については1000kWより小さい;レーザーパワーはキーホール溶接部については500kWより小さい;レーザーパワーはキーホール溶接部については300kWより小さい;キーホールからのスパッターを抑制するようにレーザービームを細長くすることを備える;キーホールからのスパッターを抑制するようにレーザーパワーを変調することを備える;キーホールモードの溶接中のスパッターを抑制するようにビームを高速走査することを備える;溶接が開始された後に自動式か又は手動式の何れかでレーザーパワーを急速に減少させることを備える;溶接プロセス中のガス閉じ込め及びスパッターを低減するように低い気圧を使用することを備える;シールドガスを適用することを備える;He、Ar、N2から成る群より選択されたシールドガスを適用することを備える;Ar-H2、N2、N2-H2から成る群より選択された混合シールドガスを適用することを備える;及び、酸化物層を除去して溶接部の湿潤を促すために、シールドガスを適用し且つシールドガスへ水素を添加することを備える、のうちの1つ又はそれ以上を含んでいる溶接部、方法、及びシステムが提供されている。
【図面の簡単な説明】
【0027】
【
図1】本発明による、銅のスパッター無し伝導モード溶接部の或る実施形態の写真である。
【
図2】本発明による、銅上のキーホール溶接部の或る実施形態の写真である。
【
図3】厚さ127μmの銅に対する本発明の或る実施形態についての溶込み深さ対速度を示すグラフであり、銅は8m/分の速度までは完全に溶け込んでいる。
【
図4】厚さ254μmの銅に対する本発明の或る実施形態についての溶込み深さ対速度を示すグラフであり、銅は0.5m/分から0.75m/分の速度までは完全に溶け込んでいる。
【
図5】本発明の或る実施形態の溶込み深さ対速度を示すグラフである。
【
図6】本発明の実施形態についての、幾つかの異なる速度での溶込み深さを示すグラフである。
【
図7】本発明による、厚さ70μmの銅箔上の伝導モード溶接部の或る実施形態を示す注釈付き写真である。
【
図8】本発明による、或る実施形態のキーホールモード溶接部断面の注釈付き写真である。
【
図9】各種金属についての吸収曲線であり、IRレーザーと可視レーザーの間での吸収における差を示している。
【
図10】本発明による、材料の中への伝導モード溶接伝幡の或る実施形態の模式図である。
【
図11】本発明による、材料の中へのキーホール溶接伝幡の或る実施形態の模式図である。
【
図12】本発明による、レーザー溶接のための部品保持器の或る実施形態の斜視図である。
【
図13】本発明による、重ね溶接部を作るために薄肉部品を保持するための部品保持器の或る実施形態の斜視図である。
【
図14】本発明による、伝導モード溶接部についてのビード・オン・プレートの或る実施形態の写真である。
【
図15】本発明による、伝導溶接モードを用いて溶接された箔の積層体の或る実施形態の写真である。
【
図16】本発明による、キーホールモード溶接についてのビード・オン・プレートの或る実施形態の写真である。
【
図17】本発明による、キーホールモードを用いて溶接された40枚の銅箔の積層体の或る実施形態の写真である。
【
図18】本発明による、様々なパワーレベル及び様々な速度の実施形態についての銅の溶込み深さのグラフである。
【
図19】本発明による、本レーザー溶接方法の実施形態を遂行する際に使用するための150ワット青色レーザーシステムの或る実施形態の概略図である。
【
図20】本発明による、2つの150ワット青色レーザーシステムを使用して300ワット青色レーザーシステムを作り出している或る実施形態の模式的光線軌道線図である。
【
図21】本発明による、4つの150ワット青色レーザーシステムを使用して800ワット青色レーザーシステムを作り出している或る実施形態の模式的光線軌道線図である。
【発明を実施するための形態】
【0028】
概して、本発明は、金属特に銅及び銅系の金属及び合金を溶接するためのレーザー、レーザービーム、システム、及び方法に関する。概括的には、本発明は、更に、レーザービーム、ビームサイズ、ビームパワーの適用のための方法、部品を保持するための方法、及び部品の酸化を防止するためにシールドガスを導入するための方法、に関する。
【0029】
或る実施形態では、本発明は、高い品質の溶接部、高い溶接速度、及びそれら両方を、バッテリを含む電子構成要素のための銅系材料について提供する。或る実施形態では、本発明は、高い品質の溶接部、高い溶接速度、及びそれら両方を、バッテリを含む自動車用電子構成要素のための銅系材料について提供する。
【0030】
本発明の或る実施形態では、ハイパワー青色レーザー源(例えば~450nm)は、従来の銅溶接技法に係る課題を解決する。青色レーザー源は青色レーザービームを提供していて、この波長において、銅の吸収は~65%であり、全てのパワーレベルでレーザーパワーを材料の中へ効率的に結合することを可能にする。このシステム及び方法は、伝導溶接モード及びキーホール溶接モードを含む多くの溶接技法での安定した溶接をもたらす。このシステム及び方法は、蒸発、スパッター、微小爆発、及びこれらの組合せ及び変形型を最小限にし、低減し、及び望ましくは排除する。
【0031】
或る実施形態では、150ワットから275ワットの範囲のパワーレベルでの~200μmのスポットサイズを有する青色レーザーでの銅溶接は、全てのパワー範囲に亘って安定した低スパッターの溶接を実現する。この溶接システム及び方法の或る実施形態では、溶接は伝導モードにあり、結果として得られる溶接部微細構造は母材に似る。
【0032】
望ましくは、諸実施形態では、レーザー波長は350nmから500nmの波長範囲とすることができ、スポットサイズ(直径又は断面)は、100ミクロン(μm)から3mmの範囲とすることができ、より大きいスポットサイズも考えられる。スポットは、円形、楕円形、直線形、四角形、又は他のパターンとすることができる。レーザービームは連続的であるのが望ましい。諸実施形態では、レーザービームは、例えば約1マイクロ秒及びそれより長いパルスであってもよい。
【0033】
図6を見ると、様々な溶接速度での溶込み深さ対パワーが示されている。溶接は、実施例1に説明されている型式のシステムを使用して遂行された。溶接は500μmの銅にレーザービームのパワーを275Wとしてアシストガス無しで形成された。
【0034】
図7の写真は、厚さ70μmの銅箔上での伝導モード溶接部を示しており、HAZ及び溶接部を通る微細構造を示している。溶接部は、実施例1に説明されているパラメータを使用して形成された。各試料の溶込み深さは、最初に試料を切断し次いで試料をエッチングして溶接部及びHAZ区域の微細構造を露にすることによって判定された。加えて、試料の1つを切断したところ、母材金属に亘るビッカース硬度は133HV-141HVの範囲にあり、溶接ビードは大凡135HVであり、HAZは118HV-132HVの範囲であった。結論は、母材とHAZと溶接ビード例えば再凝固領域の硬度は、元の材料に近似するということである。加えて、伝導モード溶接ビードとHAZと母材について微細構造は非常に似通っており微細構造の差異は軽微である。これらの特性を有する溶接部は、銅ではこれまでレーザー又は何れかの他の手段を用いて溶接されるときには決して観察されなかった。この溶接品質は
図7に示されており、試料は、溶接部に対し横断方向に切断され、微細構造を露にするためにエッチングされている。
【0035】
この様に、本発明の実施形態は、以下の溶接部を得るために銅系材料を溶接する方法及び結果として得られる溶接部自体を含む。これらの方法及び溶接部は、溶接部の周りの区域で、材料の硬度(受容され確立されている硬度試験、一例としてビッカース硬度、ASTM試験、など、によって測定される硬度)が以下であるように、即ち、溶接ビード硬度が母材の硬度の範囲内にある、溶接ビード硬度が母材の硬度の1%内にある、溶接ビード硬度(例えば再凝固領域)が母材の硬度の5%内にある、及び溶接ビード硬度が母材の硬度の10%内にあるように、2つ又はそれ以上の銅系材料を一体に溶接することを含むものである。これらの方法及び溶接部は、溶接部の周りの区域で、材料の硬度(受容され確立されている硬度試験、一例としてビッカース硬度、ASTM試験、など、によって測定される硬度)が以下であるように、即ち、HAZ硬度が母材の硬度の範囲内にある、HAZ硬度が母材の硬度の1%内にある、HAZ硬度が母材の硬度の5%内にある、及びHAZ硬度が母材の硬度の10%内にあるように、2つ又はそれ以上の銅系材料を一体に溶接することを含むものである。これらの方法及び溶接部は、溶接部の周りの区域で、母材とビード(例えば再凝固領域)とHAZの微細構造が同一であるように、即ち溶接部の区域の溶接構造の脆弱さ又は溶接部の区域の脆弱さを暗示する又は示すことになる微細構造の判別可能な差異が無いように、2つ又はそれ以上の銅系材料を溶接することを含むものである。
【0036】
図8は、厚さ500μmの銅シートの試料について、キーホール溶接モードでの動作時に観察された微細構造である。キーホール溶接プロセス中は蒸気プルームがはっきり視認でき、溶融銅は溶接部の長さに沿ってゆっくりと押し出された。IRレーザーを用いて溶接する場合に通常観察される溶接プロセスからのスパッターの形跡は、溶接中も溶接後もなかった。これは、電気構成要素上に高品質溶接部を作製するのに適する安定し十分に制御されたキーホールプロセスを示唆する。
図8に示されている型式の非常に高い品質と均一性のキーホールモード溶接部断面が、800kW/cm
2以下ほどに低いパワー密度について獲得可能である。再固化区域[1]-[2]は442μmから301μm、HAZ[2]は1314μmだった。
【0037】
本発明の或る実施形態は、可視レーザーシステムを使用して銅を銅又は他の材料に溶接するための方法、装置、及びシステムであって、銅材料への高効率熱移動レート;安定した溶融池;及びこれらの恩恵を特に伝導モード溶接でもキーホールモードの溶接でも有すること、を含む便益を実現するように溶接するための方法、装置、及びシステムに関する。銅は、
図9に示されている様に青色波長範囲では吸収性が高い。現下の好適な青色レーザービームとレーザービームシステムと方法は、非常に効率的なやり方でレーザーパワーを銅の中へ結合する。本レーザービームシステム及び方法は、母材(被溶接材料、例えば銅)を、熱がレーザースポットから離れて伝導されるよりも速く加熱する。これは伝導モードレーザー溶接についての非常に高効率で優れた溶接特性を提供し、つまりレーザービーム中の材料が急速に溶融点まで加熱され、連続レーザービームによって溶融点に維持されることで、結果として安定した溶接ビードが形成されるのである。本伝導モード溶接では、金属は急速に溶融されるが、溶接部の溶込み深さは、材料内への熱拡散によって決定付けられ、球形状で材料中に進んでゆく。これは、伝導モード溶接1000の或る実施形態の模式図を示す
図10に示されており、溶接の方向が矢印1004で示されている。例えば青色波長のレーザービーム1001が、溶融池1002の上で集束され、溶融池1002を維持する。溶融池1002の後方には固体溶接材料1003がある。母材例えば銅金属又は銅合金は、溶接部の下にある。シールドガスストリーム1005も使用されている。
【0038】
本発明の或る実施形態は、青色レーザーシステムを用いた銅のキーホール溶接に関する。これらの方法及びシステムは、厚肉銅材料並びに銅箔の厚い積層体を含む積層体を溶接するための新たな可能性を開く。このキーホールモードの溶接は、レーザーエネルギーが非常に急速に吸収され、吸収されたエネルギーが被溶接材料を溶かし蒸発させて起こる。蒸発した金属は被溶接金属内に高い圧力を作り出し、ホール又は毛細管を開き、そこにレーザービームが伝幡し吸収されることになる。キーホールモードが開始されたら、深い溶込み溶接が実現され得る。レーザービームの吸収は、銅での青色レーザーの場合の65%の初期吸収からキーホールでは100%の吸収へ変化する。高い吸収は、キーホールの壁からの多重反射に因るものとされ、そこではレーザービームは連続吸収に曝される。青色波長での銅の高い吸収率と組み合わされた場合にキーホールを開始させそれを維持するのに要求されるパワーは、IRレーザーを使用する場合よりも実質的に低くなる。
図11を見ると、キーホールモード溶接部2000の或る実施形態の模式図が示されており、溶接の方向は矢印2007で示されている。キーホール2006内には金属/蒸気プラズマがある。青色レーザービーム2002は、プラズマクラウド2002、溶融池2003、及び固体溶接金属2004を作り出す。シールドガスストリーム2005も使用されている。
【0039】
図11のキーホール溶接部を
図10の伝導モード溶接部と比べると、キーホール溶接部の最終的な溶接再凝固領域の壁は、伝導モード溶接部に比べ、部品又は母材をより垂直に貫いている。
【0040】
本システム及び方法の実施形態のためのハイパワーレーザービーム(例えば、可視レーザービーム、緑色レーザービーム、及び青色レーザービーム)は、約50μm又はそれ以上のスポットサイズへ集束される又はシステムの光学器を通して約50μm又はそれ以上のスポットサイズへ集束される能力を有し、少なくとも10W又はそれ以上のパワーを有しているのが望ましい。青色レーザービームを含むレーザービームのパワーは、10W、20W、50W、100W、10W-50W、100W-250W、200W-500W、及び1000Wであってもよく、より高いパワー及びより低いパワーも考えられ、全ての波長はこれらの範囲内とする。これらのパワー及びこれらのレーザービームについてのスポットサイズ(最長断面距離、円の場合は直径)は、約20μmから約4mm、約3mmより小さい、約2mmより小さい、約20μmから約1mm、約30μmから約50μm、約50μmから約250μm、約50μmから約500μm、約100μmから約4000μmであってもよく、より大きいスポット及びより小さいスポットも考えられ、全てがこれらの範囲内のサイズとする。レーザービームスポットのパワー密度は、約50kW/cm2から5MW/cm2、約100kW/cm2から4.5MW/cm2、約100kW/cm2から1000kW/cm2、約500kW/cm2から2MW/cm2、約50kW/cm2より大きい、約100kW/cm2より大きい、約500kW/cm2より大きい、約1000kW/cm2より大きい、約2000kW/cm2より大きい、及びより高いパワー密度及びより低いパワー密度とすることができ、全てのパワー密度はこれらの範囲内とする。銅については約0.1mm/秒から約10mm/秒の溶接速度、及び様々な条件に依存してより遅い速度及びより速い速度が考えられ、全ての速度はこれらの範囲内とする。速度は、被溶接材料の厚さに依存し、したがって単位厚さ当たりの速度即ちmm/秒/mm厚さは、例えば、厚さ10μmから1mmの銅に対して0.1/秒から1000/秒とすることができる。
【0041】
本方法及びシステムの実施形態は、溶接部を形成するのに1つ、2つ、3つ、又はそれ以上のレーザービームを使用し得る。レーザービームは溶接を開始するために同じ一般区域上に集束されることができる。レーザービームスポットは、重なり合っていてもよく、同時入射であってもよい。複数のレーザービームが同時に使用されることもでき、複数のレーザービームは同時入射で同時発生とすることもできる。単一レーザービームが使用されて溶接を開始させたうえで、続いて第2のレーザービームが追加されることもできる。複数のレーザービームが使用されて溶接を開始させたうえで、続いてそれより少ないビーム例えば単一ビームを使用して溶接を継続させることもできる。この複数のレーザービーム内のレーザービームは異なるパワーであってもよいし又は同じパワーであってもよく、パワー密度は異なっていてもよいし又は同じであってもよく、波長は異なっていてもよいし又は同じであってもよく、及びこれらの組合せ及び変形型であってもよい。追加のレーザービームの使用は同時発生的であってもよいし又は順次的であってもよい。また、複数レーザービームを使用するというこれらの実施形態の組合せ及び変形型が使用されることもできる。複数レーザービームの使用は、溶接部からのスパッターを抑制することができ、しかも深溶込み溶接方法でそうすることができる。
【0042】
諸実施形態では、溶接プロセス中に母材から酸化物層を除去するために、水素ガスH2が不活性ガスと混合されることもある。水素ガスは溶接区域に亘って流される。水素ガスは溶接部の湿潤も促進する。水素ガスは、シールドガスに添加され又はシールドガスとの混合ガスを形成し、シールドガスの一部として溶接部へ適用されることができる。これらの混合ガスは、例えば、Ar-H2、He-H2、N2-H2を含む。
【0043】
図18は、様々な実施形態のレーザーシステム構成及び127μmから500μmを範囲とする材料厚さについて、銅での溶込み深さ、レーザービームパワー、及び溶接速度の例を提供している。
【0044】
青色レーザーシステムを用いた銅、銅合金、及び他の金属の伝導モード溶接のための方法
【0045】
本システムは、IR溶接が銅系材料へ適用される場合に付きまとう課題及び困難を克服する。本レーザービーム及びビームスポットの青色波長での銅の高い吸収率(65%)は、材料の熱拡散率を凌ぎ、しかも~150ワットという比較的低いパワーレベルでそうすることができる。本青色レーザービームの銅との相互作用は、銅をその溶融点に容易く到達させ、広い加工ウインドーを可能にさせる。
【0046】
或る実施形態では、部品保持装置又は固定具の使用によって、安定した伝導モード溶接が遂行され、高品質溶接部が安定した速いレートで得られる。
【0047】
レーザービームによって熱移動が部品内に誘導されている間中、被溶接材料を所定位置に保持するのに溶接固定具が使用される。溶接クランプの直線状区分の或る実施形態の斜視図である
図12と断面図である
図12Aの固定具は、重ね溶接、突合せ溶接、更には縁溶接にさえ使用できる。溶接固定具4000は、基板又は支持構造4003を有している。基板4003へ2つのクランプ部材又は押さえ4001が取り付けられている。押さえ4001は、基板4002の表面に置かれているタブと、(単数又は複数の)被溶接加工品に接触し押さえる自由端と、を有している。基板4002には、押さえ4001の自由端間の区域にスロット例えば幅2mmx深さ2mmのスロットがある。4本のボルト、例えば4004(他の型式の調節式締付け装置が使用されることもできる)が、クランプを被加工物に当てて調節し、締め付け、及び押さえ、こうして被加工物を保持し又は固定する。
【0048】
この固定具向けの好適な材料は、ステンレス鋼の様な低熱伝導性材料である、例えばステンレス鋼であり、それは溶接中に部品を所定位置に保持するのに要求される挟み付け圧力を加えるのに十分に堅いからである。諸実施形態では、クランプ、基板、及びそれら両方は、溶接プロセス中の被加工物への絶縁品質又は絶縁効果を有し得る。固定具としての低い熱伝導性を有する材料の使用は、部品内へ堆積される熱が固定具そのものによって急速に伝導されていってしまうのを防止し、最小限にし、及び低減させる。これは、銅の様な高熱伝導性材料を溶接する場合に付加恩恵をもたらす。したがって、クランプ向けに選択される材料、クランプの幅、及び部品の下のギャップは、どれもが、溶接の溶込み深さ、溶接ビードの幅、及び溶接ビードの全体品質を決めるパラメータである。
図14を見ると、断面(エッチング後)が示されており、伝導モード溶接部は、母材例えば被加工物内の溶接ビードの円形状6001によって識別できる。銅又は何れかの他の材料での、熱が部品の最上面に加えられたときの熱移動プロセスの等方性の性質が理由で、溶接部はこの形状をしている。
【0049】
或る好適な実施形態では、固定具4000の基板4002はステンレス鋼で構築されており、幅2mmのギャップ4003が、溶接領域の真下に位置するように基板に切り込まれていて、溶接部の裏面の酸化を最小限にするためにアルゴン、ヘリウム、又は窒素の様な(カバーガス又はシールドガスとしての)不活性ガスで充溢される。カバーガスは、水素と不活性ガスの混合ガスとすることもできる。クランプ4001は、基板4002のギャップ4003の縁から2mmにて被溶接部品を押圧するように設計されている。したがって、この実施形態では、被溶接部品の幅6mmの面積がレーザービームへ開放されているということになる(レーザービームはクランプから僅かな距離しか離れていないものと認識する)。クランプのこの位置決めは、レーザービームが簡単に表面にアクセスできるようにすると共に部品の密な挟み付けを可能にさせる。この型式のクランプは、50μmから数mmまで厚さが様々に異なる2枚の銅箔又は銅シートを一体に突合せ溶接するための好適な方法である。この固定具は更に、200μmから数mmに及ぶ2枚のより厚肉の銅板を一体に重ね溶接するのにも適している。挟み付け圧力の量は非常に重要であり、レーザーパワーの量、溶接の速度、部品の厚さ、及び遂行される溶接の型式に依存して、挟み付け用ボルトには、0.05ニュートンメートル(Nm)まで、又は3Nmに及んで、又はより厚肉の材料については更に多く、トルクが与えられてもよい。このトルク値は、ボルトサイズ、ねじ式係合、及びボルト中心から挟み付け点までの距離に大いに依存する。
【0050】
或る実施形態では、高品質の優れた溶接部は、溶接中の部品の運動を防止するのに十分な挟み付け力を提供し尚且つ固定具そのものへの寄生熱損失を最小限にすることによって得られる。理解しておくべきこととして、
図12及
図12Aの固定具の実施形態は、溶接固定具の一直線状の部分の断面を表現しており、何れかの種類の形状物を一体に溶接するために何れかの任意の2D経路(例えば、-S-、-C-、-W-など)へ設計されることができる。別の実施形態では、固定具への寄生熱損失を低減させながらも溶接の速度及び溶込み深さを増加させるために、固定具が予加熱されるか又は溶接加工中に加熱されてもよい。固定具は、数百度(℃)へ加熱されると、溶接速度又は溶込み深さ及び品質を、2倍又はそれ以上向上させることができる。溶接の最上面へのシールドガスは、
図10に示されている様に、溶接進行方向の前から溶接進行方向の後ろへ長手方向に送達される。この固定具4000を用いて厚さ254μmの銅のシートへ遂行されたビード・オン・プレート伝導モード溶接部が
図14に示されている。溶接ビードの凝固パターンは、この型式の溶接部に典型的な球状溶融パターンを示している。
【0051】
2つの部品を、伝導モード溶接プロセスを使用して重ね溶接するためには、部品同士が密に接触して設置され保持されるが要求される。2つの部品(集合的に被加工物)は、固定具5000の斜視図である
図13及び断面図である
図13Aに示されている型式であるのが望ましい固定装置内に設置されることができる。固定具5000は、基板5003と2つのクランプ5002を有している。クランプは、押さえボルト例えば5001に対応する4つのスロット例えば5010を有している。この様式では、クランプの被加工物に対する位置及び互いに対する位置は調節されて固定されることができ、更には挟み付け力又は挟み付け圧力の量も調節できる。クランプは、それらの位置決め及び固定を支援するために磁石を有することができる。クランプ5002は、シールドガスを輸送するための内部チャネル例えば5004を有している。チャネル5004は、シールドガス出口例えば5005と流体連通している。シールドガス出口とシールドガスチャネルは、クランプ内のシールドガス送達系からである。したがって、ガス送達系は、アルゴン、ヘリウム、又は窒素の様な不活性ガスを送達するクランプの長さに沿った孔の列であり孔を通っている。アルゴンは、空気よりも重く、部品に定着して酸素を押し退け上面の酸化を防止しようとするので好適なガスである。部品上の酸化物層のスカベンジングを促し、溶融プロセスの部品の湿潤を促すために、少量の水素が不活性ガスへ添加されてもよい。
【0052】
箔の積層体内の個々の箔に互いとの接触を保ち積層体としての接触を維持するよう仕向けるのに使用されるインサート5006も存在している。インサート5006は、それらの箔を互いとの密で均一な接触に至らせるように伸ばし押し付ける。
図13及び
図13Aの実施形態では、インサート5006は逆V字形状である。箔の積層体及び箔個々の厚さに依存して、インサートは湾曲状、ハンプ状、又は他の形状をしていてもよい。加えて、
図13及び
図13Aの実施形態では、インサート5006は、クランプ5002に隣接しているがクランプによって覆われていない。インサートはクランプの端部から抜去されるようになっていてもよく、又はクランプの一方又は両方はインサートを部分的に覆っていてもよい。
【0053】
好適な実施形態では、基板5000は、クランプ5002と同様にステンレス鋼から作られている。固定装置は、セラミック又は熱絶縁性材料から作られていてもよい。ハンプ5006は、重なり合うプレート(2枚、3枚、数十枚、など)を密な接触に保つ圧力を溶接部の底から提供する。この実施形態では、シールドガスの提供は、アルゴン、ヘリウム、又は窒素の様な不活性ガスを送達するクランプの長さに沿った孔の列の形態で(2つの)クランプに築かれている。アルゴンは、空気よりも重く、部品に定着して酸素を押し退け上面の酸化を防止することになるので好適なガスである。基板5003内のインサートのハンプ5006もまた、酸化を防止するために溶接部の裏面へカバーガス又はシールドガスを送達するための一連のチャネル、孔、又はスロットを有していてもよい。図に示されている固定具5000は、溶接部の一直線状部分の断面を表しており、任意の形状物を一体に溶接するための何れかの任意の2D経路へ設計されることができる。この用途では、ボルトについてのトルク値が重要となることもあり、被加工物の性質に依存して、低すぎるトルク値、例えば0.1Nmなら、部品同士は接触状態に留まらず、高すぎるトルク値、即ち>1Nmなら、寄生熱移動が溶接プロセスの効率を下げ、溶込み及び溶接ビード幅を低下させる。
【0054】
青色レーザーシステムを用いて銅、銅合金、及び他の金属をキーホールモード溶接するための方法
【0055】
青色レーザー光は、IRレーザーよりはるかに高い吸収レベル(65%)を有しており、(IRシステムがキーホール溶接プロセスを開始させるのに要する2000Wから3000Wとは対照的に)275ワットという比較的低いパワーレベルでキーホール溶接を開始することができる。(開始に際しIRシステムは更に、他にも課題はあるが中でも特に暴走の課題に直面する)。キーホールモードが青色レーザーシステムを用いて開始されると、吸収が増加し、吸収は65%から約90%及び100%へ増加するので今やそれは暴走プロセスではない。ゆえに、本キーホール溶接プロセスは、IRとはまったく異なる吸収時間プロファイルを有する。本青色キーホール溶接プロセスは、開始から溶接を進展させる段階までの吸収時間プロファイルが35%又はそれより小さくなった吸収時間プロファイルを有している。本レーザー溶接システムを使用する青色レーザー溶接プロセスの始動及び連続溶接への移行は、IRレーザーを使用した場合にスパッターを防止するのに要求されるところのレーザーのパワーレベル又は溶接速度を急速に変化させることを要することなく達成される。青色レーザーを使用した場合のキーホール溶接の始まりの高速映像は、キーホールから押し出されるスパッターを最小限に又は無しにして銅箔及び銅プレートの複数層を溶接することのできる安定したプロセスを示している。2つのキーホール溶接された試料の断面が
図16及び
図17に示されており、材料凝固パターンは、
図14に示されている伝導モード溶接された試料の形状とは明らかに異なっている。
図16及び
図17に見られる様に、材料の表面に垂直の材料凝固パターンの形成は伝導モード溶接部とは異なっており、というのも部品の表面を貫通し最終的な溶接部深さへ延びるキーホールの全体長さに沿って熱移動が起こるからである。これは、レーザーエネルギー全てが材料の表面に堆積される伝導モード溶接とは対照をなす。
【0056】
キーホール溶接プロセスは、伝導モード溶接プロセスの様に、部品が溶接中に動くのを防止するために固定具に保持されることが要求される。キーホールモードは、キーホールが部品を貫いて穿ち、2つ又はそれ以上の部品の積層体を一体に溶接する(例えば、
図17参照)という重ね溶接構成で使用されるのが典型的である。
【0057】
図20のレーザーシステムは、スポットのパワー密度800kW/cm
2を有する275W青色レーザービームを生成することができる。
図20のレーザーシステムは、第1レーザーモジュール1201と第2レーザーモジュール1202を有しており、レーザービームは、レーザーモジュールを出発すると、光線軌道1200によって示されているレーザービーム経路を辿る。レーザービームは、反射鏡1203、1205を経て、100mm集束レンズと100mm保護窓とを有する集束レンズ構成1205を通って進む。構成1205の集束レンズはスポット1250を形成する。
【0058】
図21に示されているレーザーシステムは、400μmスポット又は200μmスポットを形成するのに使用できる。
図21のレーザーシステムは、4つのレーザーモジュール1301、1302、1303、1304から成る。レーザーモジュールは、それぞれ、米国特許公開第2016/0322777号に開示され及び教示されている型式とすることができ、同特許の開示全体をここに参考文献として援用する。例えば、モジュールは、
図19に示されている型式とすることができ、当該型式では、レーザーダイオードサブアッセンブリ210、210a、201b、210cのそれぞれからの合成ビームがパターンミラー例えば225へ伝搬し、当該ミラーを使用して4つのレーザーダイオードサブアッセンブリからのビームが向け直され単一ビームへと組み合わされる。偏光ビーム折り畳みアッセンブリ227が、ビームを低速軸で半分に折り畳んで、合成レーザーダイオードビームの輝度を二倍にする。テレスコープアッセンブリ228は、組み合わされたレーザービームを低速軸で拡大させるか又は高速軸を圧縮してより小さいレンズの使用を可能にさせる。この実施例に示されているテレスコープ228は、ビームを2.6xの倍率で拡大し、ビームサイズを11mmから28.6mmへ増加させ、しかも低速軸の発散を同じ2.6xの倍率で縮小する。テレスコープアッセンブリが高速軸を圧縮するのであれば、その場合、それは、高速軸を22mmの高さ(合成ビーム全体での高さ)から11mmの高さへ縮小し11mmx11mmとなる合成ビームを与える2xのテレスコープになるはずである。これはより低い費用という理由で好適な実施形態である。非球面レンズ229が合成ビームを集束させる。
【0059】
500ワットで200μmスポットの場合、パワー密度は、実質的にこの波長でのキーホール溶接閾値より上である>1.6MW/cm2となるものと理解されたい。このパワー密度では、青色レーザーでさえ溶接部のスパッター及び孔隙を生じさせる可能性を有する。しかしながら、吸収が十分に制御されるので、スパッターを抑制、制御、又は排除することが可能である。スパッターを抑制するための第1の方法は、スパッタープロセスが始まったら溶接速度を一定に保持しながらパワーレベルを落とすというものである。スパッターを抑制するための第2の方法は、溶融池を引き伸ばしてシールドガス及び蒸発金属をキーホールから排出させられるようにし、スパッター無し欠陥無しの溶接部を現出させるというものである。スパッターを抑制するための第3の方法は、検流計モーターのセットに取り付けられているミラーのセットか又はロボットを使用して青色レーザービームを揺動するというものである。スパッターを抑制するための第4の方法は、真空の使用を含め、溶接環境の圧力を小さくするというものである。最後に、スパッターを抑制するための第5の方法は、レーザービームパワーを1Hzから1kHz又は50kHzほどの高い範囲に亘って変調するというものである。プロセス中のスパッターを最小限にするように溶接パラメータが最適化されるのが望ましい。
【0060】
概して、本発明の実施形態は、材料のレーザー加工に、及び、被加工材料が当該材料による吸収率の高いレベル又は増加されたレベルを有するように、事前に選択されるレーザービーム波長を被加工材料に適合させることによるレーザー加工に、そしてとりわけ、材料による高い吸収率を有するレーザービームを用いて材料をレーザー溶接することに、関する。
【0061】
本発明の或る実施形態は、350nmから700nmの波長の可視レーザービームを有するレーザービームを使用して、これらの波長についてより高い吸収率を有する材料を溶接する又はそれ以外にレーザー加工を通して接合することに関する。具体的には、レーザービーム波長は、被レーザー加工材料に基づき、当該材料が、少なくとも約30%、少なくとも約40%、少なくとも約50%、及び少なくとも約60%、又はそれ以上の吸収、及び約30%から約65%、約35%から85%、約80%、約65%、約50%、及び約40%の吸収を有するように事前決定される。こうして、例えば、金、銅、真鍮、銀、アルミニウム、ニッケル、これらの金属の合金、ステンレス鋼、及び他の金属、材料、及び合金を溶接するには約400nmから約500nmの波長を有するレーザービームが使用される。
【0062】
金、銅、真鍮、銀、アルミニウム、ニッケル、ニッケルめっきされた銅、ステンレス鋼、及び他の材料、めっきされた材料、及び合金の様な材料を溶接するには、青色レーザーの使用、例えば約405nmから約495nmの波長の使用が好適であり、その理由は、それら材料の室温での高い吸収率、例えば約50%より大きい吸収率である。本発明の幾つかの利点の1つは、青色レーザービームの様な事前に選択された波長のレーザービームの能力、つまりレーザー動作中例えば溶接プロセス中にレーザーエネルギーを材料の中により良好に結合することができる能力である。レーザーエネルギーを被溶接材料の中へより良好に結合することによって、暴走プロセスの可能性は格段に低減され、望ましくは排除される。レーザーエネルギーのより良好な結合は、更に、より低いパワーのレーザーが使用されることを可能にし、費用節減をもたらす。より良好な結合は、更に、溶接部のより優れた制御、より高い許容度、ひいてはより優れた再現性をもたらす。IRレーザー及びIRレーザー溶接動作の場合には見出されないこれらの特徴は、製品の中でも特に電子工学及び電力貯蔵の分野の製品にとって重要である。
【0063】
或る実施形態ではCWモードで動作する青色レーザーが使用されている。CW動作は、レーザー出力を急速に且つ完全に変調し、フィードバックループでの溶接プロセスを制御し、結果的に、最適な機械的及び電気的特性を有する高度に再現可能なプロセスをもたらす能力に因り、多くの用途ではパルスレーザーを凌いで好適とされ得る。
【0064】
本発明の或る実施形態には、1つ、2つ、又はそれ以上の構成要素のレーザー加工が関わる。構成要素は、レーザービーム例えばレーザービームエネルギーを吸収する何れかの種類の材料、プラスチック、金属、複合材、非晶質材料、及び他の種類の材料から作られることができる。或る実施形態では、レーザー加工は2つの金属構成要素を一体にはんだ付けすることを伴う。或る実施形態では、レーザー加工は2つの金属構成要素を一体に溶接することを伴う。
【0065】
或る実施形態では、レーザー溶接動作が、自生溶接、レーザーハイブリッド溶接、キーホール溶接、重ね溶接、隅肉溶接、突合せ溶接、及び非自生溶接から成る群より選択される、工具、システム、及び方法が提供されている。
【0066】
レーザー溶接技法は、多くの様々な状況で有用であり、具体的には電気接続を形成するために、特にバッテリの様な電力貯蔵装置での電気接続を形成するために、溶接が必要である場合に有用である。概して、本レーザー溶接動作及びシステムの実施形態は、可視波長レーザー、好適には青色波長レーザーを含んでおり、それらレーザーは自生式であるものとされ、自生式とはつまり母材しか使用されないことを意味し、キーホール溶接、伝導溶接、重ね溶接、隅肉溶接、及び突合せ溶接では一般的である。レーザー溶接は、非自生式であってもよく、非自生式ではギャップを「充填する」べく又は溶接部の強度のための隆起ビードを作製するべく溶融パッドルへフィラー材料が加えられる。レーザー溶接技法は、更に、レーザー材料蒸着(「LMD」)を含むものとする。
【0067】
本レーザー溶接動作及びシステムの実施形態は、可視波長レーザー、好適には青色波長レーザーを含んでおり、それらレーザーはハイブリッドであるものとされ、フィラー材料のより急速な送りを提供するためにレーザービームと共に電流が使用されている。レーザーハイブリッド溶接は、定義上は非自生式である。
【0068】
好適には、幾つかの実施形態では、溶接部の品質をその場でチェックするために能動的な溶接部モニター例えばカメラが使用されてもよい。これらのモニターは、例えば、X線検査システム及び超音波検査システムを含み得る。更に、システム特性及び動作特性の完全理解を有するために、稼働中のビーム分析及びパワーモニタリングが利用されてもよい。
【0069】
本レーザーシステムの諸実施形態は、新規性のあるレーザーシステム及び方法を従来式フライス加工機器及び機械加工機器と組み合わせたハイブリッドシステムとすることができる。このやり方では、製造プロセス、造形プロセス、再仕上げプロセス、又は他のプロセスの間に材料が付加され及び除去されることができる。レーザーシステムの他の実施形態を使用しているその様なハイブリッドシステムの実施例で、本発明者らの一人又はそれ以上によって発明されているハイブリッドシステムの実施例が米国特許出願第14/837,782号に開示され教示されており、同特許出願の開示全体をここに参考文献として援用する。
【0070】
典型的に、諸実施形態では、レーザー溶接は、光学器をきれいに保つための非常に低い流量のガス、光学器をきれいに保つためのエアーナイフ、又は光学器をきれいに保つための不活性環境を使用する。レーザー溶接は、空気中、不活性環境中、又は他の制御された環境例えばN2中で遂行されることができる。
【0071】
本発明の諸実施形態は、銅、純銅、銅合金、及び、青色レーザー波長望ましくは約400nmから約500nmの青色レーザー波長での約40%から75%の吸収を有するのに十分な量の銅を有しているあらゆる材料、を含むとされる銅材料の溶接に多大な利点を見出すことができる。
【0072】
本レーザーシステム及びプロセスの実施形態を用いて遂行される好適な自生溶接モード及びそれらモードが現出させる自生溶接部は、伝導溶接とキーホール溶接の2つがある。伝導溶接は、低強度(<100kW/cm2)のレーザービームを使用して金属の2つの部片が一体に溶接される場合である。ここで、金属の2つの部片は、互いに突き合せられることもあるし、一辺が重なり合っていることもあれば、完全に重なり合っていることもある。伝導溶接は、キーホール溶接ほど深く溶け込む傾向はなく、概して、突合せ溶接については非常に強固である特徴的な「球」形状の溶接接合部を現出させる。また一方、キーホール溶接は、相対的に高いレーザービーム強度(>500kW/cm2)によって起こり、この溶接は、材料の中へ、また材料が重ね合わされている場合にはたいてい材料の複数の層を貫いて、深く溶け込むことができる。伝導モードからキーホールモードへの遷移の厳密な閾値は、青色レーザー源についてはまだ断定されていないが、キーホール溶接は、再凝固される材料のほぼ平行なチャネルが材料の中へ深く溶け込んだ状態で材料の頂部に特徴的な「v」字形状を有している。キーホールプロセスは、レーザーエネルギーを材料内へ深く伝送するうえで金属の溶融池の側面からのレーザービームの反射を頼りにしている。これらの型式の溶接は何れのレーザーを用いて遂行されることもできるが、青色レーザーは、これら両方の型式の溶接を開始させるうえで赤外線レーザーよりも実質的に低い閾値を有するはずであると予想される。
【0073】
銅で電気めっきされた材料、白金で電気めっきされた材料、及び他の伝導性材料で電気めっきされた材料の様な、電気めっきされた材料の青色レーザー溶接を含め、電気めっきされた材料を、これらの材料を溶接する青色レーザー動作を使用して溶接することも考えられる。
【0074】
以下の実施例は、本レーザーシステム及び動作、具体的には電子工学的貯蔵装置内の構成要素を含む構成要素を溶接するための青色レーザーシステム、の様々な実施形態を例示するために提供されている。これらの実施例は、例示が目的であり、予知的であるとしてもよく、本発明の範囲を限定するものと見なされてはならず、またそれ以外にも本発明の範囲を限定するものではない。
【0075】
実施例1
【0076】
レーザー源は、0-275ワットの性能のハイパワー青色ダイレクトダイオードレーザーである。ビームは、1.25倍のビーム拡大器を通して送達され、100mmの非球面レンズによって集束される。被加工物上のスポット径は200μm×150μmであり、最大パワーでのパワー密度1.2MW/cm2を現出させる。ステンレス鋼の固定具を使用して試料を所定位置に保持し、He、Ar、Ar-CO2、及び窒素を用いて試験を遂行したところ、どれも有益であったが、最良の結果はAr-CO2の場合に実現された。
【0077】
実施例1A
【0078】
実施例1のシステムを使用し、最初の試験結果は、150ワットのパワーレベルで銅表面に高品質伝導モード溶接部を作製した。ハイパワー青色レーザー源によって作製された溶接部を特徴付けるために、一連のビード・オン・プレート(BOP)試験を行った。
図1は伝導モード溶接部についてのシェブロンパターンを示しており、この溶接部の固有の特徴は、溶接プロセス中のスパッターが無いこと、微細構造が母材に似ていること、及び溶接部の硬度が母材と同様であること、を含む。
図1は、厚さ70μの銅箔での150ワットの青色レーザーを用いた溶接時に形成されるBOPを示している。
【0079】
実施例1B
【0080】
実施例1のシステムを使用し、レーザーのパワー出力を275ワットへ増大して、パワー密度を、銅でのキーホール溶接を開始させるのに十分なパワー密度である1.2MW/cm
2へ増加させた。
図2は、厚さ500μmの銅試料上のキーホール溶接部の或る実施例を示している。キーホールプロセス中は、キーホール内に発達した蒸気圧が、溶融した銅を溶接ビードから追い出す。これは、
図2に見ることができ、押し出された銅が溶接ビードの縁に一列に並んでいる。この押し出しプロセスは安定していて、材料に微小爆発を生じさせることはなく、必然的に、IRレーザー源で銅を溶接するときに観察されるスパッターパターンを発生させない。
【0081】
実施例1C
【0082】
実施例1のシステムを使用して、127μmから500μmに及ぶ銅厚さについて溶接実験を遂行した。
図3から
図5は、これらのBOP試験の結果をまとめている。
図3は、275Wでの、9m/分までの完全溶込みの後に、予想される様に速度に伴う溶込み深さの減退が続くことを示している。
図4は、アシストガス無しの0.6m/分までの完全溶込み及びAr-CO
2カバーガス使用時の0.4m/分までの完全溶込みを有するBOP結果を示している。
図5は、500μmの銅についての275Wでの溶込み深さ対速度を示している。
【0083】
実施例2
【0084】
図13及び
図13Aの固定具5000を使用して、厚さ178μmの2枚の銅箔の積層体を、伝導モード溶接を用いて成功裏に重ね溶接した。固定具は数百度(℃)へ加熱されると、溶接速度及び品質に2倍又はそれ以上の改善をもたらすものであり、というのも溶接中の部品加熱に失われるエネルギーが今や予加熱によって提供されるからである。溶接部の最上面のためのシールドガスは、
図10に示されている様に、溶接進行方向の前から溶接進行方向の後ろへ送達される。
【0085】
実施例3
【0086】
2枚の厚さ125μmの銅プレートを、固定具5000を使用し伝導モード溶接を用いて一体に重ね溶接した。この溶接は
図15の断面写真に示されている。
【0087】
実施例4
【0088】
図13及び
図13Aに示されている固定具5000を使用し、厚さ10μmの40枚の銅箔の積層体を、孔隙無し欠陥無しに溶接する。この溶接部の断面が
図17に示されている。この積層体の溶接は、どの様に箔が調製されるか、どの様に箔が挟み付けられるか、及びどれほど多くのトルクがクランプへ加えられるかに依存する。箔は、せん断され平たくされてから、製造時又は取り扱い時の何らかの油を除去するためにアルコールで清浄にされ、最終的に固定具内に積層される。溶接プロセス中に部品が所定位置に堅く保持されることを保証するために、挟み付けボルト5001は1Nmまでトルクが加えられる。これらの部品を溶接するのに使用されるレーザーは、
図19に示されている150ワットレーザー4つからなっていて、それらは500ワットレーザーシステムを作り出すよう
図21に示されている様に光学的に組み合わされている。このレーザーは、400kW/cm
2の平均パワー密度及びキーホール溶接プロセスを開始させるのに十分なピークパワー密度を有する400μmのスポットを現出させる。
【0089】
項目名及び実施形態
【0090】
理解されるべきこととして、この明細書での項目名の使用は、明確にするという目的のためであり、如何様にも制限を課すものではない。ゆえに、或る項目名の下に記述されているプロセス及び開示は、様々な実施例を含む本明細書の全体に係る文脈内において閲読されるべきである。この明細書での項目名の使用は、本発明に与えられる保護の範囲を限定するものではない。
【0091】
本発明の実施形態の主題である又は本発明の実施形態と関連付けられる新規で画期的なプロセス、材料、性能、又は他の有益な特徴及び特性の根底にある理論を提供する又は提出する要求事項はないことを指摘しておく。それでもなお、本明細書にはこの分野の技術を更に進展させるための様々な理論が提供されている。本明細書に提言されているこれらの理論は、別途明示的に表明されていない限り、断じて、特許請求の範囲に記載の発明に与えられるべき保護の範囲を限定、制限、又は狭小化するものではない。本発明を利用するうえでこれらの理論は必要とならないかもしれないし又は実践されないかもしれない。更に理解しておきたいこととして、本発明は、本発明の方法、物品、材料、装置、及びシステムの実施形態の機能特徴を解説するための新しい理論及びこれまで知られていない理論へとつながる可能性があり、その様な後発理論は本発明に与えられる保護の範囲を限定するものではない。
【0092】
本明細書に示されているシステム、機器、技法、方法、活動、及び動作の様々な実施形態は、ここに示されているものに加え他の活動のために及び様々な他の分野で使用されてもよい。加えて、これらの実施形態は、例えば、将来開発され得る他の機器又は活動と共に、及び、本明細書の教示に基づき一部が修正され得る既存の機器又は活動と共に、使用されてもよい。更に、本明細書に示されている様々な実施形態は互いと一体に異なる様々な組合せで使用されてもよい。ゆえに、例えば、本明細書の様々な実施形態の中で提供されている構成は互いと一体に使用されてもよく、本発明に与えられる保護の範囲は、特定の実施形態、特定の実施例、又は特定の図にある実施形態に示されている特定の具現化、構成、又は配列に限定されてはならない。
【0093】
発明は、その精神又は本質的な特性から逸脱することなく、ここに具体的に開示されている以外の他の形態に具現化されることもできる。説明されている実施形態は、あらゆる点で、例示にすぎず制限を課すものではないと考えられるべきである。