(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-01-09
(45)【発行日】2024-01-17
(54)【発明の名称】てんかん発作予測装置、心電指標データの分析方法、発作予測コンピュータプログラム、モデル構築装置、モデル構築方法、モデル構築コンピュータプログラム
(51)【国際特許分類】
A61B 5/346 20210101AFI20240110BHJP
A61B 5/352 20210101ALI20240110BHJP
A61B 5/347 20210101ALI20240110BHJP
【FI】
A61B5/346
A61B5/352 100
A61B5/347
(21)【出願番号】P 2020548217
(86)(22)【出願日】2019-08-27
(86)【国際出願番号】 JP2019033590
(87)【国際公開番号】W WO2020066430
(87)【国際公開日】2020-04-02
【審査請求日】2022-07-26
(31)【優先権主張番号】P 2018181414
(32)【優先日】2018-09-27
(33)【優先権主張国・地域又は機関】JP
【国等の委託研究の成果に係る記載事項】(出願人による申告)平成29年度、国立研究開発法人日本医療研究開発機構、医療分野研究成果展開事業・先端計測分析技術・機器開発プログラム「てんかん発作オンデマンド介入のための発作予測システムの開発」委託研究開発、産業技術力強化法第17条の適用を受ける特許出願
(73)【特許権者】
【識別番号】504132272
【氏名又は名称】国立大学法人京都大学
(74)【代理人】
【識別番号】100111567
【氏名又は名称】坂本 寛
(72)【発明者】
【氏名】藤原 幸一
(72)【発明者】
【氏名】坂根 史弥
【審査官】永田 浩司
(56)【参考文献】
【文献】特表2009-519803(JP,A)
【文献】特許第6344912(JP,B2)
【文献】辰岡 鉄郎,ウェアラブルのための組み込みAI生体計測の研究,Interface 第44巻 第6号,日本,CQ出版株式会社 CQ Publishing Co.,Ltd.,2018年06月,第44巻,p.117-125
【文献】HASHIMOTO Hirotsugu, et al.,Analysis of Changes in HRV of Epileptic Patients in Preictal Period,生体医工学,日本,2013年,51巻 Supplement 号,p.R-198
(58)【調査した分野】(Int.Cl.,DB名)
A61B 5/24
(57)【特許請求の範囲】
【請求項1】
発作予測処理を実行するてんかん発作予測装置であって、
前記発作予測処理は、
てんかん患者の心電信号から生成された学習用心電指標データを学習用入力データとして与えて学習されたオートエンコーダに対して、被検者の心電信号から生成された心電指標データを入力データとして与えて、前記入力データの再構築データである出力データを取得する処理と、
前記被検者の前記入力データと前記出力データとの誤差を算出する処理と、
前記誤差が、てんかんの発作間欠期である場合に収まるべき管理限界を超えたか否かに基づいて、前記被検者のてんかん発作の兆候を検出する検出処理と、
を含
み、
前記心電指標データは、複数種類の心拍変動指標(HRV指標)を含み、
前記誤差は、前記入力データと前記出力データとにおける前記複数種類のHRV指標それぞれの再構成誤差から算出される単一の誤差である
てんかん発作予測装置。
【請求項2】
前記学習用心電指標データは、前記てんかん患者の発作間欠期の心電信号から生成されたものである
請求項1に記載のてんかん発作予測装置。
【請求項3】
前記検出処理において、前記被検者のてんかん発作の兆候は、前記誤差が前記管理限界を所定時間連続して超えた場合に検出される
請求項1又は2に記載のてんかん発作予測装置。
【請求項4】
前記心電指標データは、前記被検者の心電信号から生成されたRRI(R-R Interval)から算出される
請求項1から3のいずれか1項に記載のてんかん発作予測装置。
【請求項5】
前記学習用心電指標データは、複数のてんかん患者の心電信号から生成されたものであり、
前記複数のてんかん患者は、前記被検者及び前記被検者以外のてんかん患者を含む
請求項1から4のいずれか1項に記載のてんかん発作予測装置。
【請求項6】
記憶装置に予め記憶された前記管理限界を調整するための調整処理を更に実行するよう構成されている
請求項1から5のいずれか1項に記載のてんかん発作予測装置。
【請求項7】
被検者の心電信号から生成された心電指標データを分析するためにコンピュータが実行する方法であって、
前記コンピュータが、
てんかん患者の心電信号から生成された学習用心電指標データを学習用入力データとして与えて学習されたオートエンコーダに対して、前記被検者の心電信号から生成された心電指標データを入力データとして与えて、前記入力データの再構築データである出力データを取得し、
前記被検者の前記入力データと前記出力データとの誤差を算出し、
前記誤差が、てんかんの発作間欠期である場合に収まるべき管理限界を超えたか否かを判定する
ことを含
み、
前記心電指標データは、複数種類の心拍変動指標(HRV指標)を含み、
前記誤差は、前記入力データと前記出力データとにおける前記複数種類のHRV指標それぞれの再構成誤差から算出される単一の誤差である
心電指標データの分析方法。
【請求項8】
コンピュータに発作予測処理を実行させるコンピュータプログラムであって、
前記発作予測処理は、
てんかん患者の心電信号から生成された学習用心電指標データを学習用入力データとして与えて学習されたオートエンコーダに対して、被検者の心電信号から生成された心電指標データを入力データとして与えて、前記入力データの再構築データである出力データを取得する処理と、
前記被検者の前記入力データと前記出力データとの誤差を算出する処理と、
前記誤差が、てんかんの発作間欠期である場合に収まるべき管理限界を超えたか否かに基づいて、前記被検者のてんかん発作の兆候を検出する検出処理と、
を含
み、
前記心電指標データは、複数種類の心拍変動指標(HRV指標)を含み、
前記誤差は、前記入力データと前記出力データとにおける前記複数種類のHRV指標それぞれの再構成誤差から算出される単一の誤差である
発作予測コンピュータプログラム。
【請求項9】
てんかん発作予測のためのモデル構築処理を実行するモデル構築装置であって、
前記モデル構築処理は、
てんかん患者の心電信号から生成された学習用心電指標データを学習用入力データとして与えて学習されたオートエンコーダに対して、被検者の心電信号から生成された心電指標データを入力データとして与えて、前記入力データの再構築データである出力データを取得する処理と、
前記入力データと前記出力データとの誤差を算出する算出処理と、
前記誤差に基づいて、前記被検者がてんかんの発作間欠期である場合に収まるべき管理限界を設定する設定処理と、
を含
み、
前記心電指標データは、複数種類の心拍変動指標(HRV指標)を含み、
前記誤差は、前記入力データと前記出力データとにおける前記複数種類のHRV指標それぞれの再構成誤差から算出される単一の誤差である
モデル構築装置。
【請求項10】
前記設定処理において、前記管理限界は、前記算出処理により算出された複数の前記誤差のうちの大部分である所定割合の誤差が前記管理限界に収まり、複数の前記誤差のうちの残りが管理限界を超えるように設定される
請求項9に記載のモデル構築装置。
【請求項11】
前記大部分である前記所定割合は、90%以上100%未満の範囲内の割合である
請求項10に記載のモデル構築装置。
【請求項12】
てんかん発作予測のためのモデルを構築する方法であって、
てんかん患者の心電信号から生成された学習用心電指標データを学習用入力データとして与えて学習されたオートエンコーダに対して、被検者の心電信号から生成された心電指標データを入力データとして与えて、前記入力データの再構築データである出力データを取得し、
前記入力データと前記出力データとの誤差を算出し、
前記誤差に基づいて、前記被検者がてんかんの発作間欠期である場合に収まるべき管理限界を設定する
ことを含
み、
前記心電指標データは、複数種類の心拍変動指標(HRV指標)を含み、
前記誤差は、前記入力データと前記出力データとにおける前記複数種類のHRV指標それぞれの再構成誤差から算出される単一の誤差である
モデル構築方法。
【請求項13】
コンピュータにモデル構築処理を実行させるコンピュータプログラムであって、
前記モデル構築処理は、
てんかん患者の心電信号から生成された学習用心電指標データを学習用入力データとして与えて学習されたオートエンコーダに対して、被検者の心電信号から生成された心電指標データを入力データとして与えて、前記入力データの再構築データである出力データを取得する処理と、
前記入力データと前記出力データとの誤差を算出する算出処理と、
前記誤差に基づいて、前記被検者がてんかんの発作間欠期である場合に収まるべき管理限界を設定する設定処理と、
を含
み、
前記心電指標データは、複数種類の心拍変動指標(HRV指標)を含み、
前記誤差は、前記入力データと前記出力データとにおける前記複数種類のHRV指標それぞれの再構成誤差から算出される単一の誤差である
モデル構築コンピュータプログラム。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、てんかん発作予測装置、心電指標データの分析方法、発作予測コンピュータプログラム、モデル構築装置、モデル構築方法、モデル構築コンピュータプログラムに関する。
【背景技術】
【0002】
従来、被検者について計測した心拍パターンからてんかん発作の兆候を予測する装置が提案されている(例えば、特許文献1参照)。特許文献1では、てんかん発作を予測するものとして知られている心拍パターンを記憶しておき、記憶した心拍パターンと計測して得た心拍パターンとの比較結果に基づいててんかん性発作の兆候を検知する。
【先行技術文献】
【特許文献】
【0003】
【文献】特表2009-519803号公報
【文献】特許第6344912号公報
【発明の概要】
【0004】
しかしながら、実際には、てんかん発作を予測する心拍パターンは知られていない。また、上記特許文献に記載された技術では、てんかん発作を予測する心拍パターンを示すデータが必須となる。しかも、被検者の心拍データ計測中にてんかん発作が起きる頻度は少なく、てんかん発作を予測する心拍パターン(てんかん発作の兆候を示す心拍パターン)を取得することは困難であるという実態がある。
【0005】
ここで、特許文献2は、発作兆候検知モデルに基づいて、てんかん発作の兆候を識別することを開示している。特許文献2の発作兆候検知モデルは、心拍に関する前記複数種類の指標それぞれについての指標値を示す複数の第2指標データについて主成分分析を行うことにより生成されている。
【0006】
特許文献2の発作兆候検知モデルは、発作間欠期における心電信号から生成されたサンプルデータに基づいて生成されており、てんかん発作の兆候が表れているデータが不要となっている。特許文献2の発明者の一人を含む本発明者らは、特許文献2に開示の方式とは異なるアプローチにより、てんかん発作の兆候が表れているデータを非必須化できる新たな手法を見出した。
【0007】
本開示における、ある態様は、発作予測処理を実行するてんかん発作予測装置であって、前記発作予測処理は、てんかん患者の心電信号から生成された学習用心電指標データを学習用入力データとして与えて学習されたオートエンコーダに対して、被検者の心電信号から生成された心電指標データを入力データとして与えて、前記入力データの再構築データである出力データを取得する処理と、前記被検者の前記入力データと前記出力データとの誤差を算出する処理と、前記誤差が、てんかんの発作間欠期である場合に収まるべき管理限界を超えたか否かに基づいて、前記被検者のてんかん発作の兆候を検出する検出処理と、を含むてんかん発作予測装置である。
【0008】
本開示における他の態様は、被検者の心電信号から生成された心電指標データを分析するためにコンピュータが実行する方法である。
【0009】
本開示における他の態様は、コンピュータに発作予測処理を実行させるコンピュータプログラムである。
【0010】
本開示における他の態様は、てんかん発作予測のためのモデル構築処理を実行するモデル構築装置であって、前記モデル構築処理は、てんかん患者の心電信号から生成された学習用心電指標データを学習用入力データとして与えて学習されたオートエンコーダに対して、被検者の心電信号から生成された心電指標データを入力データとして与えて、前記入力データの再構築データである出力データを取得する処理と、前記入力データと前記出力データとの誤差を算出する算出処理と、前記誤差に基づいて、前記被検者がてんかんの発作間欠期である場合に収まるべき管理限界を設定する設定処理と、を含むモデル構築装置である。
【0011】
本開示における他の態様は、てんかん発作予測のためのモデルを構築する方法である。
【0012】
本開示における他の態様は、コンピュータにモデル構築処理を実行させるコンピュータプログラムである。
【0013】
更なる詳細は、後述の実施形態として説明される。
【図面の簡単な説明】
【0014】
【
図1】
図1は、てんかん発作予測装置を備えるシステム100の構成図である。
【
図2】
図2、(a)は心電信号の一例を示す。
図2(b)は、R波データを示す。
【
図3】
図3は、てんかん発作予測装置の構成図である。
【
図4】
図4は、てんかん発作予測モデル構築装置の構成図である。
【
図6】
図6は、モデル構築処理のフローチャートである。
【
図8】
図8は、発作予測処理のフローチャートである。
【発明を実施するための形態】
【0015】
<1.てんかん発作予測装置、心電指標データの分析方法、発作予測コンピュータプログラム、モデル構築装置、モデル構築方法、モデル構築コンピュータプログラムの概要>
【0016】
(1)実施形態に係るてんかん発作予測装置は、発作予測処理を実行する。前記発作予測処理では、オートエンコーダが用いられる。オートエンコーダは、入力データである学習用データから、入力データ(学習用データ)と等しいデータを再構築し、再構築データとして出力するよう学習させるニューラルネットワークである。実施形態においては、オートエンコーダは、てんかん患者の心電信号から生成された学習用心電指標データを学習用入力データとして与えて学習されたものである。てんかん患者の数は、1又は複数である。学習用心電指標データは、てんかん発作の兆候が表れているデータを含む必要はなく、発作間欠期におけるデータであれば足りる。したがって、学習用心電指標データの取得は容易である。
【0017】
てんかん発作が起きる頻度は少ないため、てんかん患者の心電信号から生成された学習用心電指標データは、必然的に、発作間欠期のみのデータ又は主に発作間欠期におけるデータとなる。このようなデータによって学習されたオートエンコーダは、発作間欠期の入力データからは、精度よく出力データを再構築できる一方、てんかん発作の兆候が表れると入力データと出力データとの誤差(再構築誤差)が大きくなる。これを利用し、実施形態の発作予測処理は、前記オートエンコーダに対して、被検者の心電信号から生成された心電指標データを入力データとして与えて、前記入力データの再構築データである出力データを取得する処理を含む。前記発作予測処理は、さらに、前記被検者の前記入力データと前記出力データとの誤差を算出する処理と、前記誤差が、てんかんの発作間欠期である場合に収まるべき管理限界を超えたか否かに基づいて、前記被検者のてんかん発作の兆候を検出する検出処理と、を含む。これらの処理によれば、被検者の前記入力データと前記出力データとの誤差が大きくなって管理限界を超えると、てんかん発作の兆候を検出することができる。
【0018】
実施形態の発作予測処理によれば、てんかん発作の兆候が表れているデータを非必須化しても、てんかん発作の兆候を検出することができる。
【0019】
なお、オートエンコーダは、てんかん発作予測装置が備えていてもよいし、てんかん発作予測装置以外の装置(例えば、インターネット上のサーバコンピュータ)が備えていてもよい。この場合、てんかん発作予測装置とオートエンコーダとして機能する装置(サーバコンピュータ等)とは、ネットワークを介して通信可能に接続される。てんかん発作予測装置は、入力データを、ネットワークを介して、てんかん発作予測装置からオートエンコーダに与えられる。また、てんかん発作予測装置は、出力データを、ネットワークを介してオートエンコーダから、取得する。すなわち、前記発作予測処理において、出力データを取得する前記処理は、てんかん患者の心電信号から生成された学習用心電指標データを学習用入力データとして与えて学習されたオートエンコーダに対して、被検者の心電信号から生成された心電指標データを入力データとして、ネットワークを介して、与えて、前記入力データの再構築データである出力データを、前記ネットワークを介して前記オートエンコーダから、取得する処理であってもよい。
【0020】
(2)前記学習用心電指標データは、前記てんかん患者の発作間欠期の心電信号から生成されたものであるのが好ましい。この場合、てんかん発作の兆候が表れているデータが不要であるため有利である。また、被検者の心電指標データも、被検者の発作間欠期の心電信号から生成されたもので足りる。
【0021】
(3)前記検出処理において、前記被検者のてんかん発作の兆候は、前記誤差が前記管理限界を所定時間連続して超えた場合に検出されるのが好ましい。この場合、瞬間的な誤差の増大による誤検出を抑制することができる。
【0022】
(4)前記心電指標データは、被検者の心電信号から生成されたRRI(R-R Interval)から算出されるのが好ましい。
【0023】
(5)前記学習用心電指標データは、複数のてんかん患者の心電信号から生成されたものであるのが好ましい。また、前記複数のてんかん患者は、前記被検者及び前記被検者以外のてんかん患者を含むのが好ましい。
【0024】
(6)記憶装置に予め記憶された管理限界を調整するための調整処理を更に実行するよう構成されていてもよい。この場合、被検者に応じて、医師又はユーザが管理限界を調整することができる。
【0025】
(7)実施形態に係る心電指標データの分析方法は、被検者の心電信号から生成された心電指標データを分析するためにコンピュータが実行する方法である。前記方法は、前記コンピュータが、てんかん患者の心電信号から生成された学習用心電指標データを学習用入力データとして与えて学習されたオートエンコーダに対して、被検者の心電信号から生成された心電指標データを入力データとして与えて、前記入力データの再構築データである出力データを取得し、前記被検者の前記入力データと前記出力データとの誤差を算出し、前記誤差が、てんかんの発作間欠期である場合に収まるべき管理限界を超えたか否かを判定することを含む。
【0026】
(8)実施形態に係る発作予測コンピュータプログラムは、コンピュータに発作予測処理を実行させるコンピュータプログラムである。前記発作予測処理は、てんかん患者の心電信号から生成された学習用心電指標データを学習用入力データとして与えて学習されたオートエンコーダに対して、被検者の心電信号から生成された心電指標データを入力データとして与えて、前記入力データの再構築データである出力データを取得する処理と、前記被検者の前記入力データと前記出力データとの誤差を算出する処理と、前記誤差が、てんかんの発作間欠期である場合に収まるべき管理限界を超えたか否かに基づいて、前記被検者のてんかん発作の兆候を検出する検出処理と、を含む。コンピュータプログラムは、コンピュータ読み取り可能な記憶媒体に格納される。
【0027】
(9)実施形態に係るモデル構築装置は、てんかん発作予測のためのモデル構築処理を実行する。前記モデル構築処理は、てんかん患者の心電信号から生成された学習用心電指標データを学習用入力データとして与えて学習されたオートエンコーダに対して、被検者の心電信号から生成された心電指標データを入力データとして与えて、前記入力データの再構築データである出力データを取得する処理と、前記入力データと前記出力データとの誤差を算出する算出処理と、前記誤差に基づいて、前記被検者がてんかんの発作間欠期である場合に収まるべき管理限界を設定する設定処理と、を含む。
【0028】
(10)前記設定処理において、前記管理限界は、前記算出処理により算出された複数の前記誤差のうちの大部分である所定割合の誤差が前記管理限界に収まり、複数の前記誤差のうちの残りが管理限界を超えるように設定されるのが好ましい。前記学習用心電指標データが、前記てんかん患者の発作間欠期の心電信号から生成されている場合には、算出された複数の誤差は、全て発作間欠期において生じる誤差である。これら複数の誤差全てが発作間欠期となるように管理限界を設定しようとすると、管理限界の適切な設定が困難となる。これに対して、実施形態においては、複数の前記誤差のうちの大部分である所定割合の誤差が前記管理限界に収まり、複数の前記誤差のうちの残りが管理限界を超えるように設定すればよいため、管理限界を容易に設定することができる。
【0029】
(11)前記大部分である前記所定割合は、例えば、90%以上100%未満の範囲内の割合であるのが好ましい。前記所定割合の下限は、95%以上であるのがより好ましく、98%以上であるのがさらに好ましい。
【0030】
(12)実施形態に係るモデル構築方法は、てんかん発作予測のためのモデルを構築する方法である。方法は、てんかん患者の心電信号から生成された学習用心電指標データを学習用入力データとして与えて学習されたオートエンコーダに対して、被検者の心電信号から生成された心電指標データを入力データとして与えて、前記入力データの再構築データである出力データを取得し、前記入力データと前記出力データとの誤差を算出し、前記誤差に基づいて、前記被検者がてんかんの発作間欠期である場合に収まるべき管理限界を設定することを含む。
【0031】
(13)実施形態に係るモデル構築コンピュータプログラムは、コンピュータにモデル構築処理を実行させる。前記モデル構築処理は、てんかん患者の心電信号から生成された学習用心電指標データを学習用入力データとして与えて学習されたオートエンコーダに対して、被検者の心電信号から生成された心電指標データを入力データとして与えて、前記入力データの再構築データである出力データを取得する処理と、前記入力データと前記出力データとの誤差を算出する算出処理と、前記誤差に基づいて、前記被検者がてんかんの発作間欠期である場合に収まるべき管理限界を設定する設定処理と、を含む。
【0032】
<2.てんかん発作予測装置、心電指標データの分析方法、発作予測コンピュータプログラム、モデル構築装置、モデル構築方法、モデル構築コンピュータプログラムの例>
【0033】
図1は、実施形態に係るてんかん発作予測装置1を備えるシステム100の構成の概略を示す図である。システム100は、てんかん発作予測装置1(以下、「予測装置1」という)と心拍計測器2とを含む。予測装置1と心拍計測器2とは互いに通信可能である。通信は、無線通信であってもよいし、有線通信であってもよい。
【0034】
心拍計測器2は、被検者Pの身体に取り付けられ、被検者Pの心拍を計測するための小型軽量なウェアラブル端末である。心拍計測器2には、被検者Pの体表に取り付けられる複数(
図1では3つ)の電極21Aが接続されている。3つの電極21Aは、たとえばプラス電極、マイナス電極、及び、接地電極である。なお、心拍計測器2として機能するウェアラブル端末としては、例えば、心拍計測機能を有するスマートウォッチがあげられる。なお、ウェアラブル端末自体が、予測装置1及び心拍計測器2として機能してもよい。
【0035】
図2(a)は、心電信号の一例を示す図である。
図2(a)の縦軸は電位、横軸は時間を示している。電極21Aを用いて心拍を計測すると、
図2(a)に示すようなP~T波からなる電位変化が周期的に現れる。単位周期の電位変化の中で最も電位の高いピークをR波といい、R波のタイミングで心臓が拍動する。心拍計測器2は、R波を示すR波データを予測装置1に送信する。
【0036】
図2(b)は、
図2(a)の心電信号に対応するR波データを示す。
図2(b)に示すように、R波データは、心電信号におけるR波に対応する期間(信号強度Iが所定の強度閾値Ithを超える期間)が「1」に設定され、それ以外の期間が「0」に設定された矩形パルス列を表すデータである。R波の間隔をRRI(R-R Interval)という。
【0037】
予測装置1は、心拍計測器2から送信されたR波データを受信し、被検者Pのてんかん発作の兆候を検出することで、てんかん発作を予測する。
図3に示すように、予測装置1は、処理部10及び記憶装置20を備えるコンピュータによって構成される。処理部10は、例えば、CPUである。予測装置1は、心拍計測器2との間で通信するための通信部30をも備える。通信部30は、Bluetooth(登録商標)などの近距離無線通信のための通信機構であってもよいし、無線LANのための通信機構であってもよい。
【0038】
予測装置1を構成するコンピュータは、例えば、スマートフォン、タブレットなどのモバイル端末であるのが好ましい。この場合、被検者Pが保有するモバイル端末を予測装置1として活用でき好ましい。また、モバイル端末であれば、てんかん発作の予兆検知を被検者Pへ報知する場合にも、モバイル端末の報知機能(音、光、文字の出力機能)を活用でき好ましい。なお、モバイル端末は、スマートウォッチなどのウェアラブルデバイスであってもよい。予測装置1を構成するコンピュータは、複数であってもよい。例えば、予測装置1は、複数台のモバイル端末の連携によって構成されてもよい。複数台のモバイル端末は、例えば、スマートフォンとスマートウォッチである。
【0039】
また、予測装置1を構成するコンピュータは、インターネット等のネットワーク上のサーバコンピュータであってもよい。この場合、被検者Pの心拍計測器2から送信されたR波データは、インターネット等のネットワークを介して、サーバコンピュータに送信される。サーバコンピュータが、てんかん発作の予兆を検知した場合には、ネットワークを介して、被検者Pの端末(モバイル端末等)へ報知すればよい。
【0040】
予測装置1の記憶装置20には、てんかん発作予測処理12を処理部10に実行させるためのコンピュータプログラム21が記憶されている。処理部10が、コンピュータプログラム21を実行することで、コンピュータは、予測装置1として機能する。なお、コンピュータプログラム21は、後述の管理限界調整処理13も、処理部10に実行させることができる。
【0041】
予測装置1の記憶装置20には、てんかん発作予測処理12に用いられるてんかん発作予測モデル22を構成するためのデータが記憶されている。実施形態において、発作予測モデル22を構成するためのデータは、処理部60を学習済みオートエンコーダAEとして機能させるためのパラメータを含む。オートエンコーダAEとして機能させるためのパラメータは、ニューラルネットワークにおけるパラメータであって、ニューラルネットワークにおける各ユニット間の重み、各ユニットのバイアス、活性化関数などを含む。重み等のパラメータは、学習により最適化されている。実施形態のモデル22は、管理限界Lも含む。管理限界Lについては、後述する。
【0042】
なお、予測装置1は、それ自体が、オートエンコーダAEを備えていなくてもよく、予測装置1と通信可能である外部の装置がオートエンコーダAEを備えていてもよい。例えば、コンピュータプログラム提供サーバからインターネットを介してダウンロードされたコンピュータプログラム21が、被検者Pが保有するモバイル端末に、インストールされることで、予測装置1が構築される場合を想定する。この場合において、ダウンロードされたコンピュータプログラム21は、被検者Pが保有するモバイル端末をオートエンコーダAEとして機能させるためのデータ(パラメータ)を有している必要はない。オートエンコーダAEは、インターネット等のネットワーク上のサーバコンピュータ上に構築されたものでよい。オートエンコーダAEの規模が大きくなった場合、演算負荷が大きくなり、被検者Pが保有する端末では十分な処理能力が得られないおそれがある。これに対して、サーバコンピュータ等の外部装置であれば、オートエンコーダAEの実行に必要な高い処理能力を確保することが容易である。
【0043】
図4は、てんかん発作予測モデル構築装置51(以下、「構築装置51」という)を示している。構築装置51は、てんかん発作予測のためのモデル構築処理61を実行する。モデル構築処理61により構築されたてんかん発作予測モデル73を構成するデータは、予測装置1の記憶装置20に、保存され、予測装置1における予測モデル22として機能する。
【0044】
構築装置51は、処理部60及び記憶装置70を備えるコンピュータによって構成される。処理部60は、例えば、CPUである。構築装置51は、例えば、インターネット等のネットワーク上のサーバコンピュータである。構築装置51の記憶装置70には、モデル構築処理61を処理部60に実行させるためのコンピュータプログラム71が記憶されている。処理部60が、コンピュータプログラム71を実行することで、コンピュータは、構築装置51として機能する。なお、コンピュータプログラム71は、後述の管理限界調整処理62も、処理部60に実行させることができる。
【0045】
構築装置51と予測装置1とは、同じコンピュータ(例えば、ネットワーク上のサーバコンピュータ)によって構成されてもよいが、構築装置51と予測装置1とが異なるコンピュータによって構成されるのが好ましい。後者の場合(例えば、構築装置51がサーバコンピュータであり、予測装置1がモバイル端末である場合)、発作予測モデルを構成するデータは、構築装置51から予測装置1に送信される。発作予測モデルを構成するデータは、構築装置51から、一旦、データ送信用サーバに保存され、データ送信用サーバから、予測装置1に送信されてもよい。また、構築装置51が、予測装置1によって用いられるオートエンコーダAEとして機能してもよい。
【0046】
構築装置51のモデル構築処理61では、まず、てんかん発作予測に用いられるオートエンコーダAEの学習が行われる。
図5に示すオートエンコーダAEは、入力層、隠れ層、及び出力層を有する。
図5に示すオートエンコーダAEは、一例として、入力層に8個のユニットN11,N12,N13,N14,N15,N16,N17,N18を有し、出力層に8個のユニットN21,N22,N23,N24,N25,N26,N27,N28を有する。すなわち、
図5のオートエンコーダAEの入力変数及び出力変数の数は、それぞれ8である。
図5において、隠れ層の数は1であるが、隠れ層の数は1に限られず、適宜決定できる。
【0047】
なお、オートエンコーダの符号化器の伝達関数には、例えば、ロジスティックシグモイド伝達関数、正の飽和線形伝達関数、正規化線形ユニット、又は双曲線正接シグモイド伝達関数を採用できる。復号化器の伝達関数には、例えば、線形伝達関数を採用できる。本発明者らの実験によれば、実施形態のてんかん発作予測においては、符号化器の伝達関数としては、ロジスティックシグモイド伝達関数であるのが好ましい。
【0048】
実施形態において、学習用入力データとして、オートエンコーダAEに与えられる8個の変数は、心拍変動(Heart Rate Variability;HRV)に関する8個の指標(HRV指標)である。実施形態においては、8個のHRV指標として、以下のものが採用されている。
1)meanNN:RRIの平均値
2)SDNN:RRIの標準偏差
3)RMSSD:隣接するRRIの差の2乗平均平方根
4)NN50:隣接するRRIの差が50msを超えた回数
5)TotalPower:RRIの分散
6)LF/HF:HFに対するLFの比
7)LFnu:LF/TotalPower
8)HFnu:HF/TotalPower
【0049】
なお、HFは、RRIの時系列データのパワースペクトル密度(PSD)の高周波(0.15~0.40Hz)のパワーである。LFは、PSDの低周波(0.04~0.15Hz)のパワーである。
【0050】
上記の8個のHRV指標のうち、1)から5)は時間領域指標であり、6)から8)は周波数領域指標である。時間領域指標は、RRIの時系列データ(RRIデータ)から直接算出される。周波数領域指標は、RRIデータのPSDから算出される。なお、RRIデータは等間隔にサンプリングされていないため、PSDを得るためにサンプリングする必要がある。PSDはリサンプリング後のRRIデータより自己回帰(AR:Auto Regression)モデル又はFourier変換を用いて算出される。
【0051】
構築装置51の記憶装置70には、複数(I人:Iは2以上の整数)のてんかん患者の心電指標データであるHRV指標データ72が記憶されている。患者i毎(iは1からIまでの整数)のHRV指標データ72は、上記の8個のHRV指標を含む。8個のHRV指標は、それぞれ時系列データであるため、患者i毎(iは1からIまでの整数)のHRV指標データは、8個の時系列データの集合となっている。
【0052】
実施形態において、HRV指標データ72は、複数のてんかん患者それぞれの発作間欠期の心電信号から生成されている。発作間欠期の心電信号は取得が容易であり好適である。てんかん発作の兆候が表れているときの心電信号が入手可能であれば、HRV指標データ72は、てんかん発作の兆候が表れているときの心電信号と発作間欠期の心電信号とから生成されていてもよい。
【0053】
オートエンコーダAEの学習に用いられる複数(I人)のてんかん患者のHRV指標データ72は、予測装置1のユーザである被検者のHRV指標データを含んでいてもよいし、含んでいなくてもよい。複数のてんかん患者のデータ72が、被検者のデータを含んでいる場合、被検者の特性が反映されたより適切な学習が可能である。
【0054】
オートエンコーダAEの学習のため、複数のてんかん患者のHRV指標データ72に含まれる8個のHRV指標時系列データは、標準化され、学習用心電指標データとして、オートエンコーダAEの入力層に与えられる。例えば、複数のてんかん患者のmeanNN時系列データが、ユニットN11に与えられる。以下同様に、SDNN時系列データがユニットN12に、RMSSD時系列データがユニットN13に、NN50時系列データがユニットN14に、TotalPower時系列データがユニットN15に、LF/HF時系列データがユニットN16に、LFnu時系列データがユニットN17に、HFnu時系列データがN18に与えられる。なお、HRV指標データ72を学習用心電指標データとしてオートエンコーダAEに与える方法は、後述のモデル構築処理61の際に、管理限界Lを設定するために、HRV指標データ72をオートエンコーダAEに与える方法と同様であり、詳細は、後述する。
【0055】
オートエンコーダAEの学習においては、オートエンコーダAEの入力層に入力された入力データが、隠れ層によって次元圧縮され、入力データと等しいデータを再構築して、出力層から出力するよう学習がなされる。したがって、学習済みのオートエンコーダAEにおいては、入力されたmeanNNを再構築した出力データが出力層のユニットN21から出力される。同様に、ユニットN22からはSDNNを再構築した出力データが出力され,ユニットN23からはRMSSDを再構築した出力データが出力され、ユニットN24からはNN50を再構築した出力データが出力され、ユニットN25からはTotalPowerを再構築した出力データが出力され、ユニットN26からはLF/HFを再構築した出力データが出力され、ユニットN27からはLFnuを再構築した出力データが出力され、ユニットN28からはHFnuを再構築した出力データが出力される。なお、学習エポック数は特に限定されないが、例えば、200回から3000回程度にすることができる。
【0056】
学習済みオートエンコーダAEのパラメータは、発作予測モデル73を構成するためのデータの一部として、記憶装置70に記憶される。
【0057】
続いて、学習済みオートエンコーダAEを用いて、管理限界Lの設定が行われる。
図6は、モデル構築処理61における管理限界Lの設定のための手順を示している。まず、ステップS11において、処理部60は、複数人(I人)のてんかん患者iそれぞれのHRV指標データ(心電指標データ)72を、記憶装置70から読み出す。読み出されたHRV指標データ72が、オートエンコーダAEへの入力データとなる。以下では、各患者iのHRV指標データ72を、HRV指標行列X
0
[i]として扱う。HRV指標行列X
0
[i]は、患者iについての8個のHRV指標時系列データそれぞれを行列の要素として有する。
【0058】
続いて、ステップS12において、複数のてんかん患者i全員のHRV指標行列X
0
[i]が、一つの行列X
0に統合され、ステップS13において、各HRV指標が、平均0分散1を持つように、行列X
0が標準化される(標準化入力データである行列Xの生成)。
図5には、複数人分が統合された標準化入力データXが示されている。なお、複数人(I人)分の統合は、1番目のてんかん患者(第1患者)の時系列データの後に、2番目のてんかん患者(第2患者)の時系列データを繋げ、以下同様に、I番目のてんかん患者(第I患者)まで、I人分の時系列データを繋げたものである。
【0059】
なお、各患者iのHRV指標時系列データの時間長さを、Ti[s]とした場合、統合された標準化入力データにおいて、各HRV指標時系列データの時間長さTは、T=Σi=
1
I(Ti)[s]となる。標準化入力データは、離散時間t(tは0からTまでの値)毎の値が、順次、オートエンコーダAEに与えられる。ここで、行列Xとして表される標準化入力データにおいては、行列Xの同一行に含まれる8個の要素が、(同一人の)同一の時間tにおける8個のHRV指標の値を示すものとする。
【0060】
ある時間tの8個のHRV指標の値が入力データとしてオートエンコーダAEに与えられると、オートエンコーダAEは、その時間tの8個のHRV指標の値を再構築し、出力データとして出力する。したがって、全時間長さT分の標準化入力データ(行列X)が、オートエンコーダAEに与えられると、オートエンコーダAEは、時間長さT分の出力データ、すなわち、行列Xと同じ行列サイズの行列Xnormを出力データとして出力することになる(ステップS14)。
【0061】
処理部60は、出力データXnormを非標準化し、非標準化出力データXRを得る(ステップS15)。非標準化は、ステップS13の標準化と逆の処理である。
【0062】
続いて、処理部60は、X0-XRを計算し、各てんかん患者iの時間t毎の再構築誤差RE(t)を算出する(ステップS16)。再構築誤差RE(t)は、時間tにおける入力データと出力データとの誤差である。
【0063】
入力データと出力データとの誤差は、HRV指標毎に算出されるが、実施形態においては、再構築誤差RE(t)は、X0-XRの各行のL1ノルムとして算出される。X0-XRの各行は、その行に対応した時間tにおける(meanNNの再構築誤差,SDNNの再構築誤差,RMSSDの再構築誤差,NN50の再構築誤差,TotalPowerの再構築誤差,LF/HFの再構築誤差,LFnuの再構築誤差,HFnuの再構築誤差)を示している。X0-XRのある行(時間tに対応)が、例えば、(-1,-2,-3,-4,4,3,2,1)であれば、L1ノルムは、20である。したがって、時間tにおける再構築誤差RE(t)は、20である。
【0064】
また、行列X0-XRにおいて、患者iに対応する行は、統合(ステップS12)の操作から既知であるため、各行のL1ノルムの算出により、各てんかん患者iの時間t毎の再構築誤差RE(t)が得られる。すなわち、ステップS16により、各てんかん患者iの再構築誤差RE(t)の時系列データが得られる。患者iの再構築誤差RE(t)時系列データは、データ時間幅であるTiの時間内において、離散的な複数の誤差を有して構成されている。
【0065】
上記のように、実施形態においては、管理限界Lは、複数のHRV指標毎に設定されるのではなく、複数のHRV指標の誤差(入力データと出力データとの差)から単一の管理限界Lが設定される。なお、管理限界Lは複数のHRV指標毎に設定されてもよいが、本発明者らの実験によれば、実施形態のてんかん発作予測においては、管理限界Lを複数のHRV指標毎に設定し、管理限界を超えたHRV指標が所定数以上になることによって発作兆候を予測するよりも、複数のHRV指標の誤差から単一の管理限界Lを設定するほうが、発作予測精度が良好であった。
【0066】
図7は、再構築誤差RE(t)の時系列データの模式図を示している。処理部60は、この再構築誤差RE(t)の時系列データに基づいて、各てんかん患者iについての再構築誤差の管理限界Lを設定する(ステップS17)。管理限界Lは、患者iのHRV指標が正常であると判断するための指標であり、再構築誤差RE(t)が管理限界Lに収まる場合、すなわち、管理限界L以下である場合、HRV指標は正常であると判断される。ここで、正常であるとは、患者iが発作間欠期にあることをいう。実施形態では、再構築誤差RE(t)が管理限界Lを超えたことに基づいて、患者iのてんかん発作の兆候が検出される。
【0067】
管理限界Lは、ある患者iについて、再構築誤差RE(t)時系列データに含まれる複数の誤差のうちの大部分である所定割合の誤差が、その管理限界Lに収まるが、所定割合以外の残りは管理限界Lを超えるように設定される。ここでは、所定割合を99%とする。すなわち、管理限界Lは、時系列データに含まれる複数の誤差のうち、99%が正常であると判定されるように設定される。
図7では、時系列データに含まれる再構築誤差RE(t)のうちごく一部(1%相当)だけが、管理限界Lを超えている。オートエンコーダAEに与えられるHRV指標データ72が、患者iの発作間欠期の心電信号から生成されたものである場合、管理限界Lを超えている時点tのHRV指標も、本来、正常であるとみなされるべきものであるが、実施形態では、この時点tの誤差を非正常とみなす。
【0068】
仮に、時系列データに含まれる複数の誤差の全てが正常であるとみなされるように、管理限界Lを設定しようとする場合、
図7に示す管理限界Lよりも上方に設定されるべきであるが、どの程度上方に設定すべきであるのかの指針が存在しないため、管理限界Lの適切な設定が困難になる。これに対して、本実施形態では、明確かつ統一的な管理限界Lの設定が容易である。
【0069】
上記のような管理限界Lの設定は、患者i毎に行われ、患者i毎の管理限界Lが、てんかん発作予測モデル73を構成するデータの一部として、記憶装置70に記憶される。実施形態では、患者iのてんかん発作予測モデル73は、学習済みオートエンコーダAEと患者iの管理限界Lとから構成される。
【0070】
処理部60は、上記のように設定された管理限界Lを調整(変更)するための、管理限界調整処理62(
図4参照)を実行することができる。管理限界調整処理62は、例えば、医師等の専門家が、ネットワークを介して、設定された管理限界Lを参照し、設定された管理限界(デフォルト値)Lを、個々の患者iに適した値に微調整する操作を可能とする処理である。管理限界調整処理62は、例えば、医師等の専門家が利用する端末に対して、設定された管理限界(デフォルト値)Lを出力させる処理と、医師等の専門家が利用する端末から、設定された管理限界(デフォルト値)Lを調整する操作を受け付け、調整された管理限界Lを記憶装置70に保存する処理と、を含む。
【0071】
管理限界調整処理62は、また、
図6の手順で用いられた複数(I人)のてんかん患者以外のてんかん患者jのための管理限界Lを設定するために用いられてもよい。例えば、複数(I人)のてんかん患者の管理限界Lの平均値を、汎用的な管理限界Lの値として設定しておき、汎用的な管理限界Lを、医師等の専門家が、患者jに応じた値に調整するために管理限界調整処理62が用いられていてもよい。
【0072】
患者iのてんかん発作予測モデル73を構成するデータは、構築装置51から、患者iを被検者とする予測装置1に移行され、予測装置1の記憶装置20に、患者(被検者)iのてんかん発作予測モデル22を構成するデータとして保存される(
図3参照)。モデル73を構成するデータの予測装置1への移行は、例えば、てんかん発作予測コンピュータプログラム21の新規入手又はアップデートのため、予測装置1を構成するコンピュータに、モデル22を構成するデータがプログラム21の一部としてダウンロードされることで行われる。予測装置1の処理部10は、記憶装置20からてんかん発作予測モデル22を構成するデータを読み出し、てんかん発作予測モデル22を機能させることができる。なお、患者iのてんかん発作予測モデル73を構成するデータのうち、予測装置1へ移行されるデータは、管理限界Lを含むが、オートエンコーダAEを構成するデータを含まなくてもよい。この場合、オートエンコーダAEを構成するデータは、構築装置51又はてんかん予測のためのサービスを提供するサーバコンピュータ等の外部装置が保有していればよい。
【0073】
予測装置1の処理部10は、記憶装置20に設定されたてんかん発作予測モデル22における管理限界調整処理13を実行することができる(
図3参照)。管理限界調整処理13は、例えば、医師等の専門家又はユーザが、記憶装置20に設定された管理限界Lを参照し、設定された管理限界(デフォルト値)Lを調整する操作を可能とする処理である。
【0074】
予測装置1における管理限界調整処理13も、記憶装置20に設定された汎用的な管理限界Lを、医師等の専門家が、患者jに応じた値に調整するために用いられてもよい。
【0075】
図8は、てんかん発作予測モデル22を搭載した予測装置1による発作予測処理12を示している。発作予測処理12では、ステップS21の初期設定の後、発作検出ループ(ステップS22-1からステップS22-2まで)が繰り返し実行される。
【0076】
初期設定では、継続時間τ[0]がゼロにセットされ、状態C[0]がNにセットされる。継続時間τは、再構築誤差RE(t)が管理限界Lを超えている状態、又は超えていない状態の継続時間を示す変数である。状態Cは、P又はNの値をとり、Pは、Positive(発作周辺期)を示し、NはNegative(発作間欠期)を示す。発作検出ループの実行中において、予測装置1は、心拍計測器2からR波データを受信し、記憶装置20に保存する。発作予測処理12では、受信したR波データに基づいて、発作予測がなされる。なお、発作検出ループにおいて、tはカウンタ値であり、初期値はゼロであって、ループが繰り返される度にインクリメントされる。
【0077】
発作検出ループでは、まず、被験者(予測装置1のユーザ)のt番目のRRIデータy[t]を、受信したR波データから算出する(ステップS23)。続いて、RRIデータy[t]からt番目のHRV指標x0[t]を得る(ステップS24)。HRV指標x0[t]は、モデル構築と同様に、8個のHRV指標(meanNN,SDNN,RMSSD,NN50,TotalPower,LF/HF,LFnu,HFnu)からなり、オートエンコーダAEへの入力データとなる。
【0078】
さらに、HRV指標x
0[t]に対する前処理を行い、前処理後HRV指標x[t]を得る(ステップS25)。前処理は、
図6に示すステップS13における標準化と同様の処理である。
【0079】
前処理後HRV指標x[t]は、入力データとして、てんかん発作予測モデル22を構成するオートエンコーダAEの入力層に与えられる。オートエンコーダAEの出力層からは、x[t]の再構築データが出力データとして出力される。出力データは、入力データと同様に、8個のHRV指標(meanNN,SDNN,RMSSD,NN50,TotalPower,LF/HF,LFnu,HFnu)からなる。出力データに対しては、後処理が行われ、後処理された出力データxR[t]が得られる。
【0080】
そして、入力データx0[t]と出力データxR[t]とから、再構築誤差RE[t]が算出される(ステップS26)。実施形態において、再構築誤差RE[t]は、入力データx0[t]と出力データxR[t]との差を示すベクトル(meanNNの再構築誤差,SDNNの再構築誤差,RMSSDの再構築誤差,NN50の再構築誤差,TotalPowerの再構築誤差,LF/HFの再構築誤差,LFnuの再構築誤差,HFnuの再構築誤差)のL1ノルムとして算出される。
【0081】
続く、ステップS27,S28,S29,S30,S31,S32では、再構築誤差REに基づいて、発作周辺期を検出する検出処理が行われる。この検出処理では、再構築誤差REが、管理限界LをTh[s]連続して超えれば(ステップS30でYES)、P(発作周辺期)と判定される。すなわち、てんかん発作の兆候が検出される。一方、再構築誤差REが、管理限界LをTh[s]連続して下回っていれば(ステップS30でYES)、N(発作間欠期)と判定される。ここでは、Thを10秒に設定した。
【0082】
実施形態では、再構築誤差REが、瞬間的に管理限界Lを超えたり、下回ったりしても、直ちに状態Cを変更せずに、管理限界Lを超えるか下回った状態が、Th[s]継続した場合に、状態Cを変更(反転:ステップS31)するため、瞬間的な再構築誤差REの変動による誤検出を防止できる。また、本実施形態では、発作間欠期における再構築誤差REの99%が正常となるが残り1%においては、発作間欠期であっても、再構築誤差REが管理限界Lを超えることがある。しかし、上記のように、発作周辺期の検出には、再構築誤差REが管理限界Lを所定時間継続して超える必要があるため、上記の1%に相当する再構築誤差REが発生したとしても、発作周辺期として誤検出されることが防止されている。
【0083】
発作検出ループにおいて、状態CがP(発作周辺期)である場合には、被験者が発作周辺期であることを知らせる報知処理が行われる(ステップS33)。報知は、音、文字表示、光など様々な形態を採用できる。報知は、発作予測処理12を実行した装置自体からなされてもよいし、例えば、予測処理12を実行した装置とは別の装置からなされてもよい。例えば、発作予測処理12は、被検者Pのスマートフォンによって実行され、報知は、被検者Pのスマートウォッチなどのウェアラブル端末からなされてもよい。
【0084】
なお、本実施形態では、モデル構築の際に、予測装置1のユーザとなる被検者の心電信号から生成されたHRV指標データを用いて、オートエンコーダAEの学習と管理限界Lの設定とが行われたが、モデル構築の際に、予測装置1のユーザとなる被検者の心電信号から生成されたHRV指標データを用いる必要はない。
【0085】
例えば、予測装置1の新規ユーザである被験者が、予測装置1を使い始める前の段階(予測装置1又は発作予測コンピュータプログラム21の購入時点など)では、被検者の心電信号から生成されたHRV指標データを用いたモデル構築は、事実上、困難である。そこで、例えば、被験者が、予測装置1を使い始める時点では、予測装置1には、他の複数のてんかん患者のデータから生成されたモデル22が格納されており、被験者は、その状態で予測装置1の使用を開始することができる。そして、予測装置1の使用中において、被験者の心電信号(又はR波データ)が、ネットワークを介して、モデル構築装置51に送信される。モデル構築装置51は、被験者を追加した複数のてんかん患者のHRV指標データ(発作間欠期のHRV指標データ)からモデル構築処理61を実行する。生成された新たなてんかん発作予測モデル73を構成するデータは、予測装置1へネットワークを介して送信される。予測装置1は、新たなてんかん発作予測モデルを構成するデータを記憶装置20に格納し、てんかん発作予測処理12に用いることができる。
【0086】
このようにすることで、予測装置1のユーザが増えるにしたがって、てんかん発作予測モデルをアップデートすることができる。なお、新たなてんかん発作予測モデル73を構成するデータは、アップデートのため、他の被検者の予測装置1へ送信されてもよい。
【0087】
図9A,
図9B,
図9Cは、実施形態の予測装置1を用いた発作予測実験結果を示している。実験では、符号化器の伝達関数としてロジスティックシグモイド関数を用いた。
図9Aは、感度(sensitivity)の実験結果を示している。
図9Aにおいて、横軸は、隠れ層のユニット数を示し、縦軸は、感度を示す。
図9Aに示すように、予測装置1は、概ね良好な感度を有しており、特に、隠れ層のユニット数が5であるときに、80%程度の良好な結果が得られている。
【0088】
図9Bは、偽陽性率(False Positive rate)の実験結果を示している。
図9Bにおいて、横軸は、隠れ層のユニット数を示し、縦軸は、偽陽性率を示している。偽陽性率は、誤検出、すなわち、発作間欠期において発作周辺期と誤検出された回数(1時間あたり回数)を示している。
図9Bに示すように、偽陽性率はおおむね低く、特に、隠れ層のユニット数が5であるときに、0.7程度の良好な結果が得られている。
【0089】
図9Cは、検証用発作間欠期のうち発作周辺期と誤検出された時間の割合(proportion
of duration under false alarms)についての実験結果を示している。
図9Cにおいて、横軸は、隠れ層のユニット数を示し、縦軸は、検証用発作間欠期のうち発作周辺期と誤検出された時間の割合(proportion of duration under false alarms)を示している。
図9Cに示すように、検証用発作間欠期のうち発作周辺期と誤検出された時間の割合は、おおむね低く、特に、隠れ層のユニット数が5であるときに、0.02%程度の良好な結果が得られている。
【0090】
<3.付記>
本発明は、上記実施形態に限定されるものではなく、様々な変形が可能である。
【符号の説明】
【0091】
1 :てんかん発作予測装置
2 :心拍計測器
10 :処理部
12 :発作予測処理
13 :管理限界調整処理
20 :記憶装置
21 :コンピュータプログラム
21A :電極
22 :てんかん発作予測モデル
30 :通信部
51 :てんかん発作予測モデル構築装置
60 :処理部
61 :モデル構築処理
62 :管理限界調整処理
70 :記憶装置
71 :コンピュータプログラム
72 :HRV指標データ
73 :てんかん発作予測モデル
100 :システム