IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 榊原 和征の特許一覧

<>
  • 特許-充電システム 図1
  • 特許-充電システム 図2
  • 特許-充電システム 図3
  • 特許-充電システム 図4
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-01-09
(45)【発行日】2024-01-17
(54)【発明の名称】充電システム
(51)【国際特許分類】
   H01M 10/48 20060101AFI20240110BHJP
   H02J 7/02 20160101ALI20240110BHJP
   H01M 10/44 20060101ALI20240110BHJP
   H02J 7/10 20060101ALI20240110BHJP
【FI】
H01M10/48 P
H02J7/02 G
H01M10/44 Q
H02J7/02 J
H02J7/10 A
【請求項の数】 2
(21)【出願番号】P 2023529340
(86)(22)【出願日】2021-06-23
(86)【国際出願番号】 JP2021023851
(87)【国際公開番号】W WO2022269827
(87)【国際公開日】2022-12-29
【審査請求日】2023-10-19
【早期審査対象出願】
(73)【特許権者】
【識別番号】507307651
【氏名又は名称】榊原 和征
(74)【代理人】
【識別番号】100141427
【弁理士】
【氏名又は名称】飯村 重樹
(72)【発明者】
【氏名】榊原 和征
【審査官】木村 励
(56)【参考文献】
【文献】特開2015-15777(JP,A)
【文献】国際公開第2012/086825(WO,A1)
【文献】特開2013-13236(JP,A)
【文献】特開2009-232559(JP,A)
【文献】国際公開第2016/051635(WO,A1)
【文献】特開2014-33604(JP,A)
【文献】特開平4-248332(JP,A)
【文献】特開2014-3771(JP,A)
【文献】特開2020-18085(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01M 10/48
H01M 10/44
H02J 7/02
H02J 7/10
(57)【特許請求の範囲】
【請求項1】
充電回路と、
少なくとも3個の電池モジュールと、
前記電池モジュール間の残容量アンバランスをバランス制御するバランス回路と、
を備え、
相対的に1番目および2番目に残容量の多い電池モジュールから順に選択的かつ個別に充電制御を行う充電シーケンスと、前記バランス制御を行うバランスシーケンスを交互に切り換える充電システム。
【請求項2】
前記電池モジュールの内少なくとも1個の電池モジュールの異常を検知した場合に、前記充電シーケンスおよび前記バランスシーケンスを中断する請求項1に記載の充電システム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、充電システムに関する。
【背景技術】
【0002】
近年、地球環境への配慮から、内燃機関すなわちエンジンで駆動するエンジン駆動式自動車がモータで駆動する電気自動車、エンジンおよびモータで駆動するハイブリッド自動車または充電器による充電が可能なプラグインハイブリッド自動車に置き換わりつつある。特に、前記電気自動車またはプラグインハイブリッド自動車の性能の向上に伴い電気自動車1台当たりの電池電源すなわち電池モジュールの搭載量が増える傾向にある。
【先行技術文献】
【特許文献】
【0003】
【文献】特開2020-129863号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
従来技術の電気自動車に搭載される電池電源とモータを備えるモータシステムでは、前記電気自動車の1充電あたりの航続距離を延長するための種々の工夫が為されているが、その航続距離は前記エンジン駆動式自動車の燃料満タン1回あたりの航続距離にはおよばない。
【0005】
本発明はこのような背景を鑑みてなされたものであり、効率的に充電を制御することができる技術を提供することを目的とする。
【課題を解決するための手段】
【0006】
上記課題を解決するための本発明の主たる発明は、充電システムであって、充電回路と、少なくとも3個の電池モジュールと、前記電池モジュール間の残容量アンバランスをバランス制御するバランス回路と、を備え、相対的に1番目および2番目に残容量の多い電池モジュールから順に選択的かつ個別に充電制御を行う充電シーケンスと、前記バランス制御を行うバランスシーケンスを交互に切り換える。
【0007】
その他本願が開示する課題やその解決方法については、発明の実施形態の欄及び図面により明らかにされる。
【発明の効果】
【0008】
本発明によれば、効率的に充電を制御することができる。
【図面の簡単な説明】
【0009】
図1】本実施形態に係る充電システム100の1つの状態である状態aを示す回路ブロック図である。
図2】本実施形態に係る充電システム101の1つの状態である状態aを示す充電システム101(a)の回路ブロック図である。
図3】本実施形態に係る充電システム101の別の1つの状態である状態bを示す充電システム101(b)の回路ブロック図である。
図4】本実施形態に係る充電システム101のメインコントローラ40の制御の概略を示すフローチャート図である。
【発明を実施するための形態】
【0010】
充電システム100(a)は、図1に示すように、リチウムイオン二次電池セル群1を有する3個の電池モジュール2の内、特定の1個の電池モジュール2がそれぞれオンまたはオフに操作されたスイッチ6を介して充電回路3と接続される。これにより前記充電回路3から前記特定の1個の電池モジュール2へ充電電流が流れる通電経路が形成され、相対的に1番目に残容量の多い電池モジュール2から選択的個別に充電が行われる。
【0011】
充電システム101(a)は、図2に示すように、リチウムイオン二次電池セル群1を有する3個の電池モジュール2の内、特定の2個の電池モジュール2がそれぞれオンまたはオフに操作されたスイッチ6を介して充電回路3Aおよび充電回路3Bとそれぞれ接続される。これにより、後述の図4のフローチャート図に従い前記充電回路3Aおよび充電回路3Bから前記特定の2個の電池モジュール2へ個別に充電電流が流れる独立した2個の通電経路が形成され、前記特定の2個の電池モジュール2に対する充電が同時に行われる。前記充電回路3Aおよび充電回路3Bは共通の回路基板を用いることができ、前記充電システム101は、充電システム100の充電回路3よりも充電回路基板の個数が増えても前記共通化によりトータルコストダウンを実現する。
【0012】
充電システム101(b)は、図3に示すように、スイッチ6の全てがオンに操作され、3個の電池モジュール2を並列接続する。仮に、前記3個の電池モジュール2間の残容量がアンバランスであった場合、前記並列接続によって前記3個の電池モジュール2間に電流が往来して電圧が均衡し自律的に前記3個の電池モジュール2の残容量がバランスする。
【0013】
充電システム101のメインコントローラ40の制御について、次に、図4のフローチャート図を用いて説明する。
【0014】
充電システム101のメインコントローラ40は、Step1にて、3個の電池モジュール2の残容量を検知し、Step2にて、前記3個の電池モジュール2の内、相対的に1番目および2番目に残容量の多い電池モジュール2を選択する。前記残容量の検知は、前記メインコントローラ40が前記電池モジュール2の端子に現れる電圧を直接検知する方法、または、図示しない前記電池モジュール2内のモジュールコントローラと通信を行いリチウムイオン二次電池セル群1の電圧値情報を取得する方法、のいずれであっても良い。
【0015】
充電システム101のメインコントローラ40は、Step2にて選択した前記3個の電池モジュール2の内、対的に1番目および2番目に残容量の多い2個の電池モジュール2に対する充電を充電回路3Aおよび充電回路3Bを用いて独立に2個同時に充電を行うStep3の充電シーケンスへ移行する。前記充電シーケンスにおける充電の方法は、前記充電回路3Aおよび充電回路3Bが商用電源である交流電圧をそれぞれ入力し直流電圧に変換し独立にそれぞれ所望のCCCV充電を行う。
【0016】
充電システム101のメインコントローラ40は、Step4にて、図示しない通信信号を用いて充電回路3Aまたは充電回路3Bのいずれかが充電中に異常状態を検知したか否か、例えば、前記2個の電池モジュール2内のリチウムイオン二次電池セル群1が過電圧状態か否か、または、高温状態か否かを検知する。Step4にて前記異常状態でないと判定するとStep5へ移行し、前記充電回路3Aまたは充電回路3Bのいずれか1個が前記2個の電池モジュール2内の少なくとも1個の電池モジュール2の充電を完了したか否かを検知する。Step5にて、前記充電回路3Aまたは充電回路3Bが前記少なくとも1個の電池モジュール2を充電完了していないと判定するとStep3に帰還する一方、前記少なくとも1個の電池モジュール2を充電完了した、すなわち、前記少なくとも1個の電池モジュール2が満充電になったと判定すると充電回路3Aおよび充電回路3Bの充電電流の出力を停止しStep6へ移行しバランスシーケンスを実行する。バランスシーケンスは、図3に示す状態bすなわち充電システム101(b)の構成で行われる。メインコントローラ40は、スイッチ6の全てをオンに操作し、3個の電池モジュール2を並列接続する。この際、Step5で満充電となった1個の前記電池モジュール2、Step3にて充電途中の別の1個の電池モジュール2、および、充電されていない残り1個の電池モジュール2の間の残容量アンバランスが解消する。すなわち、満充電でなかった前記2個の電池モジュール2がバランスシーケンスによりそれらの残容量が満充電すなわち100%に近づく。
【0017】
充電システム101のメインコントローラ40は、Step7にてバランス中に異常状態を検知したか否か、例えば、3個の電池モジュール2の内少なくとも1個の電池モジュール2内のリチウムイオン二次電池セル群1が過電圧状態か否か、過電流状態か否か、または、高温状態か否かを検知する。Step7にて前記異常状態でないと判定するとStep8へ移行し、バランスが完了したか否か、すなわち、前記並列接続された3個の電池モジュール2間の残容量差すなわち電圧差が所定値以下であるか否かを検知する。Step8にて、バランスが完了していないと判定するとStep6へ帰還する一方、前記バランスが完了したと判定するとStep10へ移行し、Step3の充電シーケンスにおいて3個の電池モジュール2の全てが充電完了したか否かを検知する。前記3個の電池モジュール2の全てが充電完了したと判定すると充電システム100の制御が終了し、一方、前記3個の電池モジュール2が全て充電完了していないと判定すると、Step1へ帰還し、前記3個の電池モジュール2の全てが充電完了するまで、Step1ないしStep3の相対的に1番目および2番目に残容量の多い2個の電池モジュール2に対して選択個別に2個同時に充電する充電シーケンス、およびStep6のバランスシーケンスを繰り返す。
【0018】
一般に電気自動車のモータ駆動用に使用されるリチウムイオン二次電池は内部抵抗が低いため前記リチウムイオン二次電池間の電流往来による電圧均衡が速く前記バランスに要する時間は通常のCCCV充電による充電時間に対して比較的極めて短いことを利用できる。したがって、充電回路3Aおよび充電回路3Bの出力電流定格を充電システム100の充電回路3よりも下げて1個の電池モジュール2に対する充電時間が相応に長くなる場合においても相対的に1番目および2番目に残容量の多い電池モジュール2に対して選択的個別に2個同時に充電する充電シーケンスと前記短時間のバランスシーケンスを組み合わせることにより充電システムのコストダウンと3個の電池モジュール2の合計充電時間の短縮の両立を実現できる。
【0019】
また一方、Step4にて、前記異常状態であると判定するとStep9へ移行し全シーケンス、すなわち、充電シーケンスおよびバランスシーケンスを中断する。この際、充電システム101は、スイッチ6の全てをオフに操作した状態となり、充電システム内のあらゆる箇所の通電を遮断しリチウムイオン二次電池の様々な故障モードに対応し安全性を確保する。
【0020】
以上、本実施形態について説明したが、上記実施形態は本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得ると共に、本発明にはその等価物も含まれる。
【符号の説明】
【0021】
2 電池モジュール
40 メインコントローラ
101 充電システム
図1
図2
図3
図4