(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-01-09
(45)【発行日】2024-01-17
(54)【発明の名称】タービンの組立方法、タービンの組立支援プログラム、及びタービンの組立支援装置
(51)【国際特許分類】
F01D 25/00 20060101AFI20240110BHJP
F01D 25/24 20060101ALI20240110BHJP
B23P 21/00 20060101ALI20240110BHJP
【FI】
F01D25/00 X
F01D25/24 R
B23P21/00 301Z
(21)【出願番号】P 2020141415
(22)【出願日】2020-08-25
【審査請求日】2023-03-29
(73)【特許権者】
【識別番号】000006208
【氏名又は名称】三菱重工業株式会社
(74)【代理人】
【識別番号】100149548
【氏名又は名称】松沼 泰史
(74)【代理人】
【識別番号】100162868
【氏名又は名称】伊藤 英輔
(74)【代理人】
【識別番号】100161702
【氏名又は名称】橋本 宏之
(74)【代理人】
【識別番号】100189348
【氏名又は名称】古都 智
(74)【代理人】
【識別番号】100196689
【氏名又は名称】鎌田 康一郎
(72)【発明者】
【氏名】熊谷 理
(72)【発明者】
【氏名】水見 俊介
(72)【発明者】
【氏名】石橋 光司
(72)【発明者】
【氏名】小寺 寿一
【審査官】高吉 統久
(56)【参考文献】
【文献】特開2018-178960(JP,A)
【文献】特開2016-211382(JP,A)
【文献】特開2006-266201(JP,A)
【文献】米国特許出願公開第2013/0039743(US,A1)
【文献】米国特許第5627761(US,A)
【文献】特開2019-070334(JP,A)
【文献】特開2018-168741(JP,A)
【文献】米国特許第6257829(US,B1)
【文献】特開2017-166474(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
F01D 25/00
F01D 25/24
B23P 21/00
(57)【特許請求の範囲】
【請求項1】
軸線を中心として回転可能な回転体と、前記回転体の外周を覆う車室を含む静止体と、を備え、前記車室は、前記軸線に対する周方向に並ぶ複数の車室部品と、前記複数の車室部品相互を締結する複数のボルトと、を有するタービンの組立方法において、
前記タービンを工場から出荷する前に得られた、前記静止体を構成する複数の静止体部品毎の基準形状データに基づき、前記複数の静止体部品毎の基準形状モデルを作成する基準形状モデル作成工程と、
前記タービンを分解した後で、前記複数の車室部品相互が前記複数のボルトで締結されていない開放状態で、前記複数の車室部品毎に予め定められた実測対象部の形状を計測して、前記複数の車室部品毎の実測形状データを取得する実測形状データ取得工程と、
前記複数の車室部品毎に、前記複数の車室部品毎の前記基準形状モデルを用いて、前記複数の車室部品毎に自重がかかった際の形状データである自重付与時形状データを作成する自重付与時形状データ作成工程と、
前記複数の車室部品毎に、前記実測対象部の前記実測形状データと、前記実測対象部の前記自重付与時形状データとの差から、前記基準形状モデルのモデル修正量を求めるモデル修正量演算工程と、
前記複数の車室部品毎の前記モデル修正量を用いて、前記複数の車室部品毎の前記基準形状モデルを修正して、修正形状モデルを作成する修正形状モデル作成工程と、
前記修正形状モデルを用いて、前記複数の車室部品相互が締結された状態での前記複数の車室部品毎の形状データである締結時形状データを推定する締結時形状データ推定工程と、
前記複数の車室部品相互が締結され且つ前記複数の静止体部品及び前記回転体が相互に組み付けられた状態での前記静止体と前記回転体との間の間隔のうち予め定められた部分の間隔を、前記複数の車室部品毎の前記締結時形状データを用いて求める間隔算出工程と、
前記複数の静止体部品及び前記回転体を相互に組み付ける組付け工程と、
を実行し、
前記自重付与時形状データは、前記車室部品の姿勢が、前記実測対象部の形状を実際に計測した際の前記車室部品の姿勢と同じであるときに、前記車室部品に自重がかかった際の形状データであり、
前記組付け工程は、前記間隔算出工程で求めた前記予め定められた部分の間隔が予め定められた許容範囲内に収まるよう調整する調整工程を含む、
タービンの組立方法。
【請求項2】
請求項1に記載のタービンの組立方法において、
前記複数の車室部品は、それぞれ、前記周方向に延びる本体と、前記本体における前記周方向の端から前記軸線に対する径方向外側に延びるフランジと、を有し、
前記複数のボルトは、前記複数の車室部品毎の前記フランジ相互を締結可能であり、
前記複数の車室部品毎の前記実測対象部は、前記複数の車室部品毎の前記フランジのうち、前記周方向で隣接する車室部品のフランジと対向するフランジ面である、
タービンの組立方法。
【請求項3】
請求項2に記載のタービンの組立方法において、
前記実測形状データ取得工程は、
前記複数の車室部品毎に前記実測対象部を含む領域中の複数の点での三次元位置データを計測する計測工程と、
前記複数の車室部品毎に、前記複数の点での前記三次元位置データを用いて、複数のポリゴンデータを作成するポリゴンデータ作成工程と、
前記複数のポリゴンデータのうちから、前記フランジ面に対する複数のポリゴンデータで特定される多角形平面の傾きが所定の傾き以内の複数のポリゴンデータを抽出するデータ抽出工程と、
前記データ抽出工程で抽出された前記複数のポリゴンデータを用いて、前記複数の車室部品毎の前記実測形状データを作成する実測形状データ作成工程と、
を含む、
タービンの組立方法。
【請求項4】
請求項3に記載のタービンの組立方法において、
前記実測形状データ作成工程は、
前記複数の車室部品毎に前記実測対象部を含む仮想三次元空間を複数の三次元ブロックに分割する準備工程と、
前記複数の三次元ブロック毎に、対象とする三次元ブロック中の代表点を定める代表点設定工程と、
前記複数の三次元ブロック毎の前記代表点を相互に補完面としての平面又は曲面で接続して、前記複数の三次元ブロック毎の前記代表点を含む補完面のデータを作成する補完面データ作成工程と、
を含み、
前記代表点設定工程では、前記データ抽出工程で抽出された前記複数のポリゴンデータで特定される多角形平面に含まれる複数の点のうち、前記対象とする三次元ブロック中に含まれる複数の点毎の三次元位置データの中央値となる点を、前記対象とする三次元ブロック中の前記代表点とし、
前記モデル修正量演算工程では、前記複数の車室部品毎の前記実測対象部の前記実測形状データとして、前記補完面のデータを用いる、
タービンの組立方法。
【請求項5】
請求項2から4のいずれか一項に記載のタービンの組立方法において、
前記複数の車室部品毎の前記実測対象部は、前記フランジ面のみである、
タービンの組立方法。
【請求項6】
請求項1に記載のタービンの組立方法において、
前記実測形状データ取得工程は、
前記複数の車室部品毎に前記実測対象部を含む領域中の複数の点で三次元位置データを計測する計測工程と、
前記複数の車室部品毎に前記実測対象部を含む仮想三次元空間を複数の三次元ブロックに分割する準備工程と、
前記複数の三次元ブロック毎に、対象とする三次元ブロック中の代表点を定める代表点設定工程と、
前記複数の三次元ブロック毎の前記代表点を相互に補完面としての平面又は曲面で接続して、前記複数の三次元ブロック毎の前記代表点を含む前記補完面のデータを作成する補完面データ作成工程と、
を含み、
前記代表点設定工程では、前記計測工程で計測された複数の点のうち、前記対象とする三次元ブロック中に含まれる複数の点毎の三次元位置データの中央値となる点を、前記対象とする三次元ブロック中の前記代表点とし、
前記モデル修正量演算工程では、前記複数の車室部品毎の前記実測対象部の前記実測形状データとして、前記補完面のデータを用いる、
タービンの組立方法。
【請求項7】
請求項1から6のいずれか一項に記載のタービンの組立方法において、
前記タービンを出荷する前に得られた、前記静止体を構成する複数の静止体部品毎の前記基準形状データは、前記静止体を構成する複数の静止体部品毎の設計データ、又は、前記静止体を構成する複数の静止体部品毎に、実際に計測して得られた実測データである、
タービンの組立方法。
【請求項8】
軸線を中心として回転可能な回転体と、前記回転体の外周を覆う車室を含む静止体と、を備え、前記車室は、前記軸線に対する周方向に並ぶ複数の車室部品と、前記複数の車室部品相互を締結する複数のボルトと、を有するタービンの組立支援プログラムにおいて、
前記タービンを工場から出荷する前に得られた、前記静止体を構成する複数の静止体部品毎の基準形状データに基づき、前記複数の静止体部品毎の基準形状モデルを作成する基準形状モデル作成工程と、
前記タービンを分解した後で、前記複数の車室部品相互が前記複数のボルトで締結されていない開放状態で、前記複数の車室部品毎に予め定められた実測対象部の形状が計測された結果に基づき、前記複数の車室部品毎の実測形状データを取得する実測形状データ取得工程と、
前記複数の車室部品毎に、前記複数の車室部品毎の前記基準形状モデルを用いて、前記複数の車室部品毎に自重がかかった際の形状データである自重付与時形状データを作成する自重付与時形状データ作成工程と、
前記複数の車室部品毎に、前記実測対象部の前記実測形状データと、前記実測対象部の前記自重付与時形状データとの差から、前記基準形状モデルのモデル修正量を求めるモデル修正量演算工程と、
前記複数の車室部品毎の前記モデル修正量を用いて、前記複数の車室部品毎の前記基準形状モデルを修正して、修正形状モデルを作成する修正形状モデル作成工程と、
前記複数の車室部品相互が締結され且つ前記複数の静止体部品及び前記回転体が相互に組み付けられた状態での前記静止体と前記回転体との間の間隔のうち予め定められた部分の間隔を、前記複数の車室部品毎の締結時形状データを用いて求める間隔算出工程と、
をコンピュータに実行させ、
前記自重付与時形状データは、前記車室部品の姿勢が、前記実測対象部の形状を実際に計測した際の前記車室部品の姿勢と同じであるときに、前記車室部品に自重がかかった際の形状データであり、
前記複数の車室部品毎の前記締結時形状データは、前記修正形状モデルを用いて、推定された前記複数の車室部品相互が締結された状態での前記複数の車室部品毎の形状データである、
タービンの組立支援プログラム。
【請求項9】
請求項8に記載のタービンの組立支援プログラムにおいて、
前記複数の車室部品は、それぞれ、前記周方向に延びる本体と、前記本体における前記周方向の端から前記軸線に対する径方向外側に延びるフランジと、を有し、
前記複数のボルトは、前記複数の車室部品毎の前記フランジ相互を締結可能であり、
前記複数の車室部品毎の前記実測対象部は、前記複数の車室部品毎の前記フランジのうち、前記周方向で隣接する車室部品のフランジと対向するフランジ面である、
タービンの組立支援プログラム。
【請求項10】
請求項9に記載のタービンの組立支援プログラムにおいて、
前記実測形状データ取得工程は、
前記複数の車室部品毎に前記実測対象部を含む領域中の複数の点で計測された三次元位置データを取得し、前記複数の車室部品毎に、前記複数の点での前記三次元位置データを用いて、複数のポリゴンデータを作成するポリゴンデータ作成工程と、
前記複数のポリゴンデータのうちから、前記フランジ面に対する複数のポリゴンデータで特定される多角形平面の傾きが所定の傾き以内の複数のポリゴンデータを抽出するデータ抽出工程と、
前記データ抽出工程で抽出された前記複数のポリゴンデータを用いて、前記複数の車室部品毎の前記実測形状データを作成する実測形状データ作成工程と、
を含む、
タービンの組立支援プログラム。
【請求項11】
請求項10に記載のタービンの組立支援プログラムにおいて、
前記実測形状データ作成工程は、
前記複数の車室部品毎に前記実測対象部を含む仮想三次元空間を複数の三次元ブロックに分割する準備工程と、
前記複数の三次元ブロック毎に、対象とする三次元ブロック中の代表点を定める代表点設定工程と、
前記複数の三次元ブロック毎の前記代表点を相互に補完面としての平面又は曲面で接続して、前記複数の三次元ブロック毎の前記代表点を含む前記補完面のデータを作成する補完面データ作成工程と、
を含み、
前記代表点設定工程では、前記データ抽出工程で抽出された前記複数のポリゴンデータで特定される多角形平面に含まれる複数の点のうち、前記対象とする三次元ブロック中に含まれる複数の点毎の三次元位置データの中央値となる点を、前記対象とする三次元ブロック中の前記代表点とし、
前記モデル修正量演算工程では、前記複数の車室部品毎の前記実測対象部の前記実測形状データとして、前記補完面のデータを用いる、
タービンの組立支援プログラム。
【請求項12】
請求項9から11のいずれか一項に記載のタービンの組立支援プログラムにおいて、
前記複数の車室部品毎の前記実測対象部は、前記フランジ面のみである、
タービンの組立支援プログラム。
【請求項13】
請求項8に記載のタービンの組立支援プログラムにおいて、
前記実測形状データ取得工程は、
前記複数の車室部品毎に前記実測対象部を含む仮想三次元空間を複数の三次元ブロックに分割する準備工程と、
前記複数の三次元ブロック毎に、対象とする三次元ブロック中の代表点を定める代表点設定工程と、
前記複数の三次元ブロック毎の前記代表点を相互に平面又は曲面で接続して、前記複数の三次元ブロック毎の前記代表点を含む補完面のデータを作成する補完面データ作成工程と、
を含み、
前記代表点設定工程では、前記複数の車室部品毎に前記実測対象部を含む領域中の複数の点で計測された三次元位置データを取得し、前記複数の車室部品毎の前記複数の点のうち、前記対象とする三次元ブロック中に含まれる複数の点毎の三次元位置データの中央値となる点を、前記対象とする三次元ブロック中の前記代表点とし、
前記モデル修正量演算工程では、前記複数の車室部品毎の前記実測対象部の前記実測形状データとして、前記補完面のデータを用いる、
タービンの組立支援プログラム。
【請求項14】
請求項8から13のいずれか一項に記載のタービンの組立支援プログラムにおいて、
前記修正形状モデルを用いて、前記複数の車室部品相互が締結された状態での前記複数の車室部品毎の前記締結時形状データを推定する締結時形状データ推定工程を、前記コンピュータにさらに実行させる、
タービンの組立支援プログラム。
【請求項15】
軸線を中心として回転可能な回転体と、前記回転体の外周を覆う車室を含む静止体と、を備え、前記車室は、前記軸線に対する周方向に並ぶ複数の車室部品と、前記複数の車室部品相互を締結する複数のボルトと、を有するタービンの組立支援装置において、
前記タービンを工場から出荷する前に得られた、前記静止体を構成する複数の静止体部品毎の基準形状データに基づき、前記複数の静止体部品毎の基準形状モデルを作成する基準形状モデル作成部と、
前記タービンを分解した後で、前記複数の車室部品相互が前記複数のボルトで締結されていない開放状態で、前記複数の車室部品毎に予め定められた実測対象部の形状が計測された結果に基づき、前記複数の車室部品毎の実測形状データを取得する実測形状データ取得部と、
前記複数の車室部品毎に、前記複数の車室部品毎の前記基準形状モデルを用いて、前記複数の車室部品毎に自重がかかった際の形状データである自重付与時形状データを作成する自重付与時形状データ作成部と、
前記複数の車室部品毎に、前記実測対象部の前記実測形状データと、前記実測対象部の前記自重付与時形状データとの差から、前記基準形状モデルのモデル修正量を求めるモデル修正量演算部と、
前記複数の車室部品毎の前記モデル修正量を用いて、前記複数の車室部品毎の前記基準形状モデルを修正して、修正形状モデルを作成する修正形状モデル作成部と、
前記複数の車室部品相互が締結され且つ前記複数の静止体部品及び前記回転体が相互に組み付けられた状態での前記静止体と前記回転体との間の間隔のうち予め定められた部分の間隔を、前記複数の車室部品毎の締結時形状データを用いて求める間隔算出部と、
を有し、
前記自重付与時形状データは、前記車室部品の姿勢が、前記実測対象部の形状を実際に計測した際の前記車室部品の姿勢と同じであるときに、前記車室部品に自重がかかった際の形状データであり、
前記複数の車室部品毎の前記締結時形状データは、前記修正形状モデルを用いて、推定された前記複数の車室部品相互が締結された状態での前記複数の車室部品毎の形状データである、
タービンの組立支援装置。
【請求項16】
請求項15に記載のタービンの組立支援装置において、
前記複数の車室部品は、それぞれ、前記周方向に延びる本体と、前記本体における前記周方向の端から前記軸線に対する径方向外側に延びるフランジと、を有し、
前記複数のボルトは、前記複数の車室部品毎の前記フランジ相互を締結可能であり、
前記複数の車室部品毎の前記実測対象部は、前記複数の車室部品毎の前記フランジのうち、前記周方向で隣接する車室部品のフランジと対向するフランジ面である、
タービンの組立支援装置。
【請求項17】
請求項16に記載のタービンの組立支援装置において、
前記実測形状データ取得部は、
前記複数の車室部品毎に前記実測対象部を含む領域中の複数の点で計測された三次元位置データを取得し、前記複数の車室部品毎に、前記複数の点での前記三次元位置データを用いて、複数のポリゴンデータを作成するポリゴンデータ作成部と、
前記複数のポリゴンデータのうちから、前記フランジ面に対する複数のポリゴンデータで特定される多角形平面の傾きが所定の傾き以内の複数のポリゴンデータを抽出するデータ抽出部と、
前記データ抽出部で抽出された前記複数のポリゴンデータを用いて、前記複数の車室部品毎の前記実測形状データを作成する実測形状データ作成部と、
を含む、
タービンの組立支援装置。
【請求項18】
請求項17に記載のタービンの組立支援装置において、
前記実測形状データ作成部は、
前記複数の車室部品毎に前記実測対象部を含む仮想三次元空間を複数の三次元ブロックに分割する準備部と、
前記複数の三次元ブロック毎に、対象とする三次元ブロック中の代表点を定める代表点設定部と、
前記複数の三次元ブロック毎の前記代表点を相互に補完面としての平面又は曲面で接続して、前記複数の三次元ブロック毎の前記代表点を含む前記補完面のデータを作成する補完面データ作成部と、
を含み、
前記代表点設定部は、前記データ抽出部で抽出された前記複数のポリゴンデータで特定される多角形平面に含まれる複数の点のうち、前記対象とする三次元ブロック中に含まれる複数の点毎の三次元位置データの中央値となる点を、前記対象とする三次元ブロック中の前記代表点とし、
前記モデル修正量演算部は、前記複数の車室部品毎の前記実測対象部の前記実測形状データとして、前記補完面のデータを用いる、
タービンの組立支援装置。
【請求項19】
請求項15から18のいずれか一項に記載のタービンの組立支援装置において、
前記複数の車室部品毎の前記実測対象部は、前記フランジ面のみである、
タービンの組立支援装置。
【請求項20】
請求項15に記載のタービンの組立支援装置において、
前記実測形状データ取得部は、
前記複数の車室部品毎に前記実測対象部を含む仮想三次元空間を複数の三次元ブロックに分割する準備部と、
前記複数の三次元ブロック毎に、対象とする三次元ブロック中の代表点を定める代表点設定部と、
前記複数の三次元ブロック毎の前記代表点を相互に補完面としての平面又は曲面で接続して、前記複数の三次元ブロック毎の前記代表点を含む補完面のデータを作成する補完面データ作成部と、
を含み、
前記代表点設定部は、前記複数の車室部品毎に前記実測対象部を含む領域中の複数の点で計測された三次元位置データを取得し、前記複数の車室部品毎の前記複数の点のうち、前記対象とする三次元ブロック中に含まれる複数の点毎の三次元位置データの中央値となる点を、前記対象とする三次元ブロック中の前記代表点とし、
前記モデル修正量演算部は、前記複数の車室部品毎の前記実測対象部の前記実測形状データとして、前記補完面のデータを用いる、
タービンの組立支援装置。
【請求項21】
請求項15から20のいずれか一項に記載のタービンの組立支援装置において、
前記修正形状モデルを用いて、前記複数の車室部品相互が締結された状態での前記複数の車室部品毎の前記締結時形状データを推定する締結時形状データ推定部を、さらに有する、
タービンの組立支援装置。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、タービンの組立方法、タービンの組立支援プログラム、及びタービンの組立支援装置に関する。
【背景技術】
【0002】
蒸気タービンは、一般的に、軸線を中心として回転するロータと、このロータの外周を覆う車室と、軸線方向の並んでいる複数のダイヤフラムと、を備える。ロータは、軸線方向に延びるロータ軸と、軸線方向に並んでロータ軸に取り付けられている複数の動翼列と、を有する。複数の動翼列は、いずれも、軸線に対する周方向に並ぶ複数の動翼を有する。車室は、ロータの外周側を覆う内車室と、内車室の外周側を覆う外車室と、を有する。外車室は、軸線よりも下側の部分を構成する下半外車室と、軸線よりも上側の部分を構成する上半外車室と、を有する。上半外車室は、ボルトにより、下半外車室に締結されている。また、内車室は、軸線よりも下側の部分を構成する下半内車室と、軸線よりも上側の部分を構成する上半内車室と、を有する。上半内車室は、ボルトにより、下半内車室に締結されている。下半内車室は、下半外車室に支持されている。ダイヤフラムは、軸線よりも下側の部分を構成する下半ダイヤフラムと、軸線よりも上側の部分を構成する上半ダイヤフラムと、を有する。下半ダイヤフラム及び上半ダイヤフラムは、いずれも、周方向に並ぶ複数の静翼と、複数の静翼の径方向内側の部分を相互に連結するダイヤフラム内輪と、複数の静翼の径方向外側の部分を相互に連結するダイヤフラム外輪と、を有する。下半ダイヤフラムは、下半内車室の内周側に取り付けられ、上半ダイヤフラムは、上半内車室の内周側に取り付けられている。
【0003】
蒸気タービンは、点検等を行う毎に、分解、組立が行われる。蒸気タービンの分解後の組立では、例えば、以下の特許文献1で従来技術として開示されている方法が実行される。なお、蒸気タービンの分解完了時には、上半外車室が下半外車室から外され、上半内車室が下半内車室から外され、ロータは車室外に配置され、複数のダイヤフラムは、内車室からは外されている。各ダイヤフラムは、下半ダイヤフラムと上半ダイヤフラムとに分離されている。
【0004】
まず、一次仮組付けを実行する。この一次仮組付けでは、下半ダイヤフラムに上半ダイヤフラムを組付け、ダイヤフラムの仮組みを行う。次に、下半外車室内に配置されている下半内車室に、仮組みされたダイヤフラムを取り付ける。次に、下半車室に上半内車室をボルトで締結し、内車室の仮組みを行う。以上で、一次仮組付けが終了する。なお、この一次仮組付けの状態では、内車室内にロータは配置されていない。
【0005】
次に、一次仮組みされた状態で、外車室及び内車室に対して相対的に定まる軸線上に、ピアノ線を張って、このピアノ線とダイヤフラムとの間の距離を計測する。言い換えると、ここでは、一次仮組された状態で、仮想のロータとダイヤフラムとの距離を計測する。
【0006】
次に、下半外車室から上半外車室を外し、下半内車室から上半内車室を外す。
【0007】
次に、再び、ピアノ線とダイヤフラムとの間の距離を計測する。言い換えると、上半外車室が下半外車室から外され、上半内車室が下半内車室から外されている状態で、仮想のロータとダイヤフラムとの距離を計測する。そして、上半外車室が下半外車室から外され、上半内車室が下半内車室から外されている状態から、上半外車室が下半外車室に締結され且つ上半内車室が下半内車室に締結されている状態に移行した際の、仮想のロータとダイヤフラムとの距離変位量等を算出する。
【0008】
次に、二次仮組付けを実行する。この二次仮組付けでは、まず、下半外車室内に配置されている下半内車室に、下半ダイヤフラムを取り付ける。次に、下半外車室上及び下半内車室上に、軸受を介して、ロータを配置する。次に、下半ダイヤフラムに上半ダイヤフラムを取り付ける。次に、下半内車室に上半内車室をボルトで締結する。そして、下半外車室に上半外車室をボルトで締結する。この二次仮組付けでの各工程では、先に算出した仮想のロータとダイヤフラムとの距離変位量等を考慮して、内車室とダイヤフラムとの間や外車室中で内車室を支持する部分に、シム等を配置して、回転体であるロータと、静止体である内車室やダイヤフラム等との間の隙間が許容範囲内に収まるよう、回転体と静止体との相対位置を調節する。また、この二次仮組付けでの各工程では、回転体と静止体との間であって、シールが配置される位置に、鉛部材を配置しておく。この鉛部材は、この二次仮組付け工程が終了した時点で、回転体と静止部材とに挟まれて、つぶされる。
【0009】
次に、二次仮組付けされた蒸気タービンを分解する。この分解過程で、二次仮組過程で蒸気タービン内に配置した鉛部材を回収し、この鉛部材の厚みを測定する。そして、この厚みに基づき、シールの高さ(軸線に対する径方向の寸法)を決定する。
【0010】
次に、本組付けを実行する。この本組付けでは、高さ調整されたシール装置を静止体等に取り付けることにより、シール装置の先端と回転体との間の微小隙間を調節する。
【0011】
以上のように、以下の特許文献1で従来技術として開示されている方法では、本組付けの前に、二回の仮組付けが必要で、蒸気タービンの組立に多大な労力を必要とする。
【0012】
そこで、特許文献1の実施形態や特許文献2では、前記一次仮組付けを省略する方法が開示されている。この方法では、上半外車室が下半外車室から外され、上半内車室が下半内車室から外されている状態から、上半外車室が下半外車室に締結され且つ上半内車室が下半内車室に締結されている状態に移行した際の、各車室の変形をシミュレートする。次に、シミュレート結果に基づき、上半外車室が下半外車室に締結され且つ上半内車室が下半内車室に締結されている状態での回転体と静止体との間の距離(両者間の隙間)を求める。特許文献1,2に開示されている方法では、この距離に基づき、内車室とダイヤフラムとの間や外車室中で内車室を支持する部分に、シム等を配置して、回転体であるロータと、静止体である内車室やダイヤフラム等との間の隙間が許容範囲内に収まるよう、回転体と静止体との相対位置を調節する。すなわち、特許文献1の実施形態や特許文献2に記載の技術では、車室の変形をシミュレータすることで、前記一次仮組付けを省略している。
【先行技術文献】
【特許文献】
【0013】
【文献】特開2018-178960号公報 (
図5)
【文献】特開2019-070334号公報
【発明の概要】
【発明が解決しようとする課題】
【0014】
特許文献1の実施形態や特許文献2に記載の技術では、仮組付けの回数を減らすことで、蒸気タービンの組立労力を軽減することができる。ところで、蒸気タービンの組立では、蒸気タービンの効率上昇等の観点から、回転体に対する静止体の相対位置が高精度で許容範囲内に収めることが要求される。
【0015】
そこで、本開示は、回転体に対する静止体の相対位置が高精度で許容範囲内に収めることができる技術を提供することを目的とする。
【課題を解決するための手段】
【0016】
前記目的を達成するための一態様としてのタービンの組立方法は、
軸線を中心として回転可能な回転体と、前記回転体の外周を覆う車室を含む静止体と、を備え、前記車室は、前記軸線に対する周方向に並ぶ複数の車室部品と、前記複数の車室部品相互を締結する複数のボルトと、を有するタービンの組立方法において、前記タービンを工場から出荷する前に得られた、前記静止体を構成する複数の静止体部品毎の基準形状データに基づき、前記複数の静止体部品毎の基準形状モデルを作成する基準形状モデル作成工程と、前記タービンを分解した後で、前記複数の車室部品相互が前記複数のボルトで締結されていない開放状態で、前記複数の車室部品毎に予め定められた実測対象部の形状を計測して、前記複数の車室部品毎の実測形状データを取得する実測形状データ取得工程と、前記複数の車室部品毎に、前記複数の車室部品毎の前記基準形状モデルを用いて、前記複数の車室部品毎に自重がかかった際の形状データである自重付与時形状データを作成する自重付与時形状データ作成工程と、前記複数の車室部品毎に、前記実測対象部の前記実測形状データと、前記実測対象部の前記自重付与時形状データとの差から、前記基準形状モデルのモデル修正量を求めるモデル修正量演算工程と、前記複数の車室部品毎の前記モデル修正量を用いて、前記複数の車室部品毎の前記基準形状モデルを修正して、修正形状モデルを作成する修正形状モデル作成工程と、前記修正形状モデルを用いて、前記複数の車室部品相互が締結された状態での前記複数の車室部品毎の形状データである締結時形状データを推定する締結時形状データ推定工程と、前記複数の車室部品相互が締結され且つ前記複数の静止体部品及び前記回転体が相互に組み付けられた状態での前記静止体と前記回転体との間の間隔のうち予め定められた部分の間隔を、前記複数の車室部品毎の前記締結時形状データを用いて求める間隔算出工程と、前記複数の静止体部品及び前記回転体を相互に組み付ける組付け工程と、を実行する。前記自重付与時形状データは、前記車室部品の姿勢が、前記実測対象部の形状を実際に計測した際の前記車室部品の姿勢と同じであるときに、前記車室部品に自重がかかった際の形状データである。前記組付け工程は、前記間隔算出工程で求めた前記予め定められた部分の間隔が予め定められた許容範囲内に収まるよう調整する調整工程を含む。
【0017】
前記目的を達成するための一態様としてのタービンの組立支援プログラムは、
軸線を中心として回転可能な回転体と、前記回転体の外周を覆う車室を含む静止体と、を備え、前記車室は、前記軸線に対する周方向に並ぶ複数の車室部品と、前記複数の車室部品相互を締結する複数のボルトと、を有するタービンの組立支援プログラムにおいて、前記タービンを工場から出荷する前に得られた、前記静止体を構成する複数の静止体部品毎の基準形状データに基づき、前記複数の静止体部品毎の基準形状モデルを作成する基準形状モデル作成工程と、前記タービンを分解した後で、前記複数の車室部品相互が前記複数のボルトで締結されていない開放状態で、前記複数の車室部品毎に予め定められた実測対象部の形状が計測された結果に基づき、前記複数の車室部品毎の実測形状データを取得する実測形状データ取得工程と、前記複数の車室部品毎に、前記複数の車室部品毎の前記基準形状モデルを用いて、前記複数の車室部品毎に自重がかかった際の形状データである自重付与時形状データを作成する自重付与時形状データ作成工程と、前記複数の車室部品毎に、前記実測対象部の前記実測形状データと、前記実測対象部の前記自重付与時形状データとの差から、前記基準形状モデルのモデル修正量を求めるモデル修正量演算工程と、前記複数の車室部品毎の前記モデル修正量を用いて、前記複数の車室部品毎の前記基準形状モデルを修正して、修正形状モデルを作成する修正形状モデル作成工程と、前記複数の車室部品相互が締結され且つ前記複数の静止体部品及び前記回転体が相互に組み付けられた状態での前記静止体と前記回転体との間の間隔のうち予め定められた部分の間隔を、前記複数の車室部品毎の締結時形状データを用いて求める間隔算出工程と、をコンピュータに実行させる。前記自重付与時形状データは、前記車室部品の姿勢が、前記実測対象部の形状を実際に計測した際の前記車室部品の姿勢と同じであるときに、前記車室部品に自重がかかった際の形状データである。前記複数の車室部品毎の前記締結時形状データは、前記修正形状モデルを用いて、推定された前記複数の車室部品相互が締結された状態での前記複数の車室部品毎の形状データである。
【0018】
前記目的を達成するための一態様としてのタービンの組立支援装置は、
軸線を中心として回転可能な回転体と、前記回転体の外周を覆う車室を含む静止体と、を備え、前記車室は、前記軸線に対する周方向に並ぶ複数の車室部品と、前記複数の車室部品相互を締結する複数のボルトと、を有するタービンの組立支援装置において、前記タービンを工場から出荷する前に得られた、前記静止体を構成する複数の静止体部品毎の基準形状データに基づき、前記複数の静止体部品毎の基準形状モデルを作成する基準形状モデル作成部と、前記タービンを分解した後で、前記複数の車室部品相互が前記複数のボルトで締結されていない開放状態で、前記複数の車室部品毎に予め定められた実測対象部の形状が計測された結果に基づき、前記複数の車室部品毎の実測形状データを取得する実測形状データ取得部と、前記複数の車室部品毎に、前記複数の車室部品毎の前記基準形状モデルを用いて、前記複数の車室部品毎に自重がかかった際の形状データである自重付与時形状データを作成する自重付与時形状データ作成部と、前記複数の車室部品毎に、前記実測対象部の前記実測形状データと、前記実測対象部の前記自重付与時形状データとの差から、前記基準形状モデルのモデル修正量を求めるモデル修正量演算部と、前記複数の車室部品毎の前記モデル修正量を用いて、前記複数の車室部品毎の前記基準形状モデルを修正して、修正形状モデルを作成する修正形状モデル作成部と、前記複数の車室部品相互が締結され且つ前記複数の静止体部品及び前記回転体が相互に組み付けられた状態での前記静止体と前記回転体との間の間隔のうち予め定められた部分の間隔を、前記複数の車室部品毎の締結時形状データを用いて求める間隔算出部と、を有する。前記自重付与時形状データは、前記車室部品の姿勢が、前記実測対象部の形状を実際に計測した際の前記車室部品の姿勢と同じであるときに、前記車室部品に自重がかかった際の形状データである。前記複数の車室部品毎の前記締結時形状データは、前記修正形状モデルを用いて、推定された前記複数の車室部品相互が締結された状態での前記複数の車室部品毎の形状データである。
【発明の効果】
【0019】
本開示の一態様では、回転体に対する静止体の相対位置が高精度で許容範囲内に収めることができる。
【図面の簡単な説明】
【0020】
【
図1】本開示に係る一実施形態における、ロータ、上半外車室、及び上半内車室が外されている状態での蒸気タービンの斜視図である。
【
図2】本開示に係る一実施形態における蒸気タービンの断面図である。
【
図3】本開示に係る一実施形態における蒸気タービンの側面図である。
【
図6】本開示に係る一実施形態における変形後の開放状態での蒸気タービンの側面図である。
【
図7】本開示に係る一実施形態における変形後の開放状態での蒸気タービンの断面図である。
【
図8】本開示に係る一実施形態における変形後の締結状態での蒸気タービンの断面図である。
【
図9】本開示に係る一実施形態における組立支援装置の構成を示す説明図である。
【
図10】本開示に係る一実施形態の組立方法の手順を示すフローチャートである。
【
図11】
図10の実測形状データ作成工程の詳細を示すフローチャートである。
【
図12】本開示に係る一実施形態における基準形状モデル中におけるフランジ面と、実際のフランジ面を含む領域中の実際に計測した複数の点との相対位置関係を示す説明図である。
【
図13】本開示に係る一実施形態における複数のポリゴンデータを説明するための説明図である。
【
図14】本開示に係る一実施形態におけるデータ抽出工程での特定の複数のポリゴンデータの抽出を説明するための説明図である。
【
図15】本開示に係る一実施形態における基準形状モデル中におけるフランジ面と、実際のフランジ面を含む領域中の実際に計測した複数の点のうち、データ抽出工程後の複数の点との相対位置関係を示す説明図である。
【
図16】本開示に係る一実施形態における準備工程、代表点設定工程、及び補完面データ作成工程での処理内容を説明するための説明図である。
【
図17】本開示に係る一実施形態における修正量演算工程での処理内容を説明するための説明図である。
【
図18】本開示に係る一実施形態における修正形状モデル生成工程での処理内容を説明するための説明図である。
【
図19】本開示に係る一実施形態における調整工程後の締結状態での蒸気タービンの断面図である。
【
図20】本開示に係る一実施形態の変形例における組立支援装置の構成を示す説明図である。
【発明を実施するための形態】
【0021】
以下、本開示に係るタービンの組立方法、この組立方法に用いる組立支援プログラム、この組立方法を支援する組立支援装置の実施形態について説明する。
【0022】
「蒸気タービンの実施形態」
本実施形態の蒸気タービンについて、
図1~
図5を参照して説明する。
【0023】
図1及び
図2に示すように、本実施形態の蒸気タービン10は、軸線Arを中心として回転するロータ15と、複数のダイヤフラム20と、このロータ15の外周側を覆うと共に複数のダイヤフラム20を収納する車室30と、ロータ15を回転可能に支持する軸受12(
図2参照)と、車室30を支持する架台11と、を備える。なお、ロータ15は、この蒸気タービン10の回転体である。また、車室30やダイヤフラム20は、この蒸気タービン10の静止体である。
【0024】
ここで、軸線Arが延びる方向を軸線方向Da、軸線Arに対する周方向を単に周方向Dc、軸線Arに対する径方向を単に径方向Drとする。また、この径方向Drで、軸線Arに近づく側を径方向内側Dri、軸線Arから遠ざかる側を径方向外側Droとする。
【0025】
ロータ15は、軸線方向Daに延びるロータ軸16と、軸線方向Daに並んでロータ軸16に取り付けられている複数の動翼列17と、を有する。複数の動翼列17は、いずれも、軸線Arに対する周方向Dcに並ぶ複数の動翼を有する。ロータ軸16の両端部は、架台11に取り付けられている軸受12により、回転可能に支持されている。
【0026】
車室30は、
図2~
図5に示すように、ロータ15の外周側を覆う内車室35と、内車室35の外周側を覆う外車室31と、を有する。
【0027】
外車室31は、
図3~
図5に示すように、軸線Arよりも下側の部分を構成する下半外車室32aと、軸線Arよりも上側の部分を構成する上半外車室32bと、下半外車室32aに対して上半外車室32bを締結するための複数のボルト33と、を有する。下半外車室32a及び上半外車室32bは、いずれも、周方向Dcに延びる外車室本体32ab,32bbと、外車室本体32ab,32bbの周方向Dcの両端部から径方向外側Droに突出する外車室フランジ32af,32bfと、を有する。下半外車室32aの外車室フランジ32afと上半外車室32bの外車室フランジ32bfとは、上下方向で互いに対向している。複数のボルト33は、下半外車室32aの外車室フランジ32af及び上半外車室32bの外車室フランジ32bfを貫通して、下半外車室32aの外車室フランジ32afと上半外車室32bの外車室フランジ32bfとを締結する。下半外車室32aの外車室フランジ32af中で上半外車室32bの外車室フランジ32bfと対向する面は、フランジ面32asを成す。また、上半外車室32bの外車室フランジ32bf中で下半外車室32aの外車室フランジ32afと対向する面は、フランジ面32bsを成す。下半外車室32aの周方向Dcの両端部の一部には、
図5に示すように、フランジ面32asから凹むと共に、外車室本体32abの内周面から外周面に向かって凹む支持溝32agが形成されている。
【0028】
内車室35は、
図4及び
図5に示すように、軸線Arよりも下側の部分を構成する下半内車室36aと、軸線Arよりも上側の部分を構成する上半内車室36bと、下半内車室36aに対して上半内車室36bを締結するための複数のボルト37と、を有する。下半内車室36a及び上半内車室36bは、いずれも、周方向Dcに延びる内車室本体36ab,36bbと、内車室本体36ab,36bbの周方向Dcの両端部から径方向外側Droに突出する内車室フランジ36af,36bfと、を有する。下半内車室36aの内車室フランジ36afと上半内車室36bの内車室フランジ36bfとは、上下方向で互いに対向している。複数のボルト37は、下半内車室36aの内車室フランジ36af及び上半内車室36bの内車室フランジ36bfを貫通して、下半内車室36aの内車室フランジ36afと上半内車室36bの内車室フランジ36bfとを締結する。下半内車室36aの内車室フランジ36af中で上半内車室36bの内車室フランジ36bfと対向する面は、フランジ面36asを成す。また、上半内車室36bの内車室フランジ36bf中で下半内車室36aの内車室フランジ36afと対向する面は、フランジ面36bsを成す。下半内車室36aは、さらに、
図5に示すように、内車室本体36abの軸線方向Daの一部であってこの内車室本体36abの周方向Dcの両端から、径方向外側Droに突出する被支持部36agを有する。下半内車室36aは、その被支持部36agが下半外車室32aの支持溝32ag内に収まることで、下半外車室32aに支持されている。
【0029】
なお、下半外車室32a及び上半外車室32bは、外車室31の車室部品を構成する。また、下半内車室36a及び上半内車室36bは、内車室35の車室部品を構成する。
【0030】
複数のダイヤフラム20は、内車室35内で軸線方向Daに並んでいる。複数のダイヤフラム20は、
図4に示すように、いずれも、軸線Arよりも下側の部分を構成する下半ダイヤフラム21aと、軸線Arよりも上側の部分を構成する上半ダイヤフラム21bと、を有する。下半ダイヤフラム21a及び上半ダイヤフラム21bは、いずれも、周方向Dcに並ぶ複数の静翼22と、複数の静翼22の径方向内側Driの部分を相互に連結するダイヤフラム内輪23と、複数の静翼22の径方向外側Droの部分を相互に連結するダイヤフラム外輪24と、を有する。下半ダイヤフラム21aは、下半内車室36aの内周側に取り付けられ、上半ダイヤフラム21bは、上半内車室36bの内周側に取り付けられている。ダイヤフラム内輪23の内周側には、ロータ軸16との間の隙間をシールするシール装置25が設けられている。
【0031】
複数のダイヤフラム20毎の下半ダイヤフラム21a及び上半ダイヤフラム21b、さらに、前述の車室部品は、いずれも、静止体を構成する部品である静止体部品を構成する。
【0032】
外車室31の内周面及び内車室35の内周面は、蒸気タービン10の運転により、高温の蒸気に晒される。このため、外車室31及び内車室35は、蒸気タービン10の運転により、クリープ変形等の非弾性変形する。この変形の結果、下半外車室32aに対して上半外車室32bが締結されていない状態では、
図6に示すように、外車室フランジ32af,32bfが、軸線方向Daの位置に応じて上下方向の位置が変わる。さらに、
図7に示すよう、下半外車室32a及び上半外車室32bの上下方向の寸法Lvが長くなり、軸線Arに対して垂直な横方向の寸法Lhが短くなる。さらに、下半外車室32aのフランジ面32asは、径方向外側Droの部分が径方向内側Driの部分よりも上に位置するよう傾斜し、上半外車室32bのフランジ面32bsは、径方向外側Droの部分が径方向内側Driの部分よりも下に位置するよう傾斜する。
【0033】
なお、
図7に示す蒸気タービン10の断面は、軸線方向Daのある位置での断面である。このため、軸線方向Daの他の位置での断面では、前述の場合とは逆に、下半外車室32aのフランジ面32asが、径方向外側Droの部分が径方向内側Driの部分よりも下に位置するよう傾斜し、上半外車室32bのフランジ面32bsは、径方向外側Droの部分が径方向内側Driの部分よりも上に位置するよう傾斜する場合もある。
【0034】
以上のように変形した下半外車室32aに、以上のように変形した上半外車室32bを締結すると、
図8に示すように、締結前に比べて、下半外車室32a及び上半外車室32bの上下方向の寸法が短くなり、軸線Arに対して垂直な横方向の寸法が長くなる。また、下半外車室32aのフランジ面32as及び上半外車室32bのフランジ面32bsは、ほぼ水平方向に広がるようになる。この結果、下半外車室32aに支持されている下半内車室36a、及び、この下半内車室36aに締結されている上半内車室36bは、軸線Arに対して相対的に上側移動してしまう。このため、下半内車室36aの内周面中の最下点36apとロータ軸16との間の径方向Drの間隔Saが許容範囲よりも小さくなり、上半内車室36bの内周面中の最上点36bpとロータ軸16との間の径方向Drの間隔Sbが許容範囲よりも小さくなる。
【0035】
そこで、背景技術の欄で説明した特許文献1で従来技術として開示されている方法では、一次仮組付けを行い、車室部品を相互に締結した際の車室の変形に伴う静止体と回転体との間の隙間を実測する。そして、この実測結果に基づいて、回転体に対する静止体の相対位置を調整している。
【0036】
「タービンの組立支援装置の実施形態」
本実施形態におけるタービンの組立支援装置について、
図9を参照して説明する。
【0037】
組立支援装置50は、コンピュータである。この組立支援装置50は、各種演算を行うCPU(Central Processing Unit)60と、CPU60のワークエリア等になるメモリ57と、ハードディスクドライブ装置等の補助記憶装置58と、キーボードやマウス等の手入力装置(入力装置)51と、表示装置(出力装置)52と、手入力装置51及び表示装置52の入出力インタフェース53と、三次元レーザ計測器等の三次元形状測定装置75との間でデータの受送信を行うための装置インタフェース(入力装置)54と、ネットワークNを介して外部と通信するための通信インタフェース(入出力装置)55と、ディスク型記憶媒体Dに対してデータの記憶処理や再生処理を行う記憶・再生装置(入出力装置)56と、を備えている。
【0038】
補助記憶装置58には、組立支援プログラム58pや、蒸気タービン10を構成する複数の部品毎の設計データである基準形状データ58dが予め格納されている。組立支援プログラム58pは、例えば、記憶・再生装置56を介して、ディスク型記憶媒体Dから補助記憶装置58に取り込まれる。なお、これらの組立支援プログラム58pは、通信インタフェース55を介して外部の装置から補助記憶装置58に取り込まれてもよい。
【0039】
CPU60は、機能的に、基準形状モデル作成部61と、実測形状データ取得部62と、自重付与時形状データ作成部63と、モデル修正量演算部64と、修正形状モデル作成部65と、間隔算出部66と、を有する。実測形状データ取得部62は、ポリゴンデータ作成部62aと、データ抽出部62bと、実測形状データ作成部62cと、を有する。実測形状データ作成部62cは、準備部62caと、代表点設定部62cbと、補完面データ作成部62ccと、を有する。これらの各機能部61~66は、いずれも、CPU60が補助記憶装置58に格納されている組立支援プログラム58pを実行することで機能する。
【0040】
組立支援装置50は、ネットワークNを介して、締結時形状データ推定装置70と接続されている。この締結時形状データ推定装置70もコンピュータである。なお、この組立支援装置50の各機能部61~66における動作、及び締結時形状データ推定装置70の動作については、後述する。
【0041】
「タービンの組立方法の実施形態」
本実施形態におけるタービンの組立方法について、
図10及び
図11に示すフローチャートに従って説明する。なお、
図10及び
図11のフローチャート中で、実線で囲まれた工程は、作業員による作業工程であり、破線で囲まれた工程は、組立支援装置50又は締結時形状データ推定装置70が実行する工程である。
【0042】
蒸気タービン10は、点検等を行う毎に、分解、組立が行われる。蒸気タービン10は、分解が完了した時点では、上半外車室32bが下半外車室32aから外され、上半内車室36bが下半内車室36aから外され、ロータ15は車室30外に配置され、複数のダイヤフラム20は、内車室35からは外されている。各ダイヤフラム20は、下半ダイヤフラム21aと上半ダイヤフラム21bとに分離されている。なお、蒸気タービン10の分解が完了した時点で、下半外車室32aが架台11から外されていてもよいが、ここでは、下半外車室32aが架台11に支持されているとする。
【0043】
タービンの組立方法では、まず、
図10のフローチャートに示すように、組立支援装置50の基準形状モデル作成部61が基準形状モデルを作成する(S10:基準形状モデル作成工程)。基準形状モデル作成部61は、蒸気タービン10を構成する複数の部品毎の設計データである基準形状データ58dを補助記憶装置58から読み込む。次に、複数の部品毎の基準形状データ58dに基づき、複数の部品毎の基準形状モデルを作成する。
図12に示すように、基準形状モデル80は、部品の変形等を有限要素法等でシミュレートするために、部品をメッシュで複数の微小要素に分割したモデルある。基準形状モデル作成部61は、基準形状モデル80を作成した後、この基準形状モデル80を補助記憶装置58に格納する。
【0044】
本実施形態では、以上のように、基準形状モデル80を作成する際、基準形状データ58dとして設計データを用いる。しかしながら、製造工場から蒸気タービン10が出荷される前の部品の形状に関するデータであれば、実際に部品を計測して得られた形状データを基準形状データとして用いてもよい。また、本実施形態では、蒸気タービン10の分解完了後に、この基準形状モデル作成工程(S10)を実行する。しかしながら、この基準形状モデル作成工程(S10)を蒸気タービン10の分解前、例えば、蒸気タービン10の運転中に実行してもよい。
【0045】
次に、分解完了後の車室部品38(下半外車室32a、上半外車室32b、下半内車室36a、上半内車室36b)毎に予め定められた実測対象部の形状を計測して、複数の車室部品38毎の実測形状データを取得する(S20:実測形状データ取得工程)。下半外車室32a及び上半外車室32bの実測対象部は、それぞれのフランジ面38s(フランジ面32as,32bs)である。また、下半内車室36a及び上半内車室36bの実測対象部は、それぞれのフランジ面38s(フランジ面36as,36bs)である。実測形状データ取得工程(S20)は、計測工程(S21)、ポリゴンデータ作成工程(S22)、データ抽出工程(S23)、実測計測データ作成工程(S24)を含む。
【0046】
計測工程(S21)では、作業者が、三次元レーザ計測器等の三次元形状測定装置75を用いて、複数の車室部品38毎に、実測対象部を含む領域中の複数の点の三次元位置データを計測する。この際、複数の車室部品38毎に予め定められている基準点を基準にて、計測対象になる複数の点での三次元位置データを計測する。
【0047】
複数の車室部品38を相互に締結する前に対して、複数の車室部品38を相互に締結した後の各車室部品38毎の変形は、複数の車室部品38毎のフランジ面38sの変形に支配的である。このため、本実施形態では、計測工程(S21)で、車室部品38中で実際に形状を計測する領域をフランジ面38sに限定している。よって、本実施形態では、計測工程(S21)で、車室部品38中で実際に形状を計測する領域を小さくすることができ、車室部品38の形状を実際に計測する手間を少なくすることできる。さらに、後述のモデル修正量演算工程(S40)及び修正形状モデル作成工程(S50)でのコンピュータの負荷を軽減することができる。
【0048】
ポリゴンデータ作成工程(S22)では、組立支援装置50のポリゴンデータ作成部62aが、
図12に示すように、計測工程(S21)で計測された複数の車室部品38毎の複数の点の三次元位置データを取得する。なお、
図12は、車室部品38の基準形状モデル80中における実測対象部であるフランジ面81と、実際のフランジ面38sを含む領域中の実際に計測した複数の点85との相対位置関係を示すイメージ図である。続いて、ポリゴンデータ作成部62aは、複数の車室部品38毎に、
図13に示すように、複数の点85の三次元位置データを用いて、複数のポリゴンデータを作成する。ポリゴンデータとは、多角形の平面を規定するデータである。ポリゴンデータ作成部62aは、複数の点85のうち、互に近接する複数の点85を線分で結び、これらの線分で囲まれた多角形平面をポリゴン86とする。
【0049】
データ抽出工程(S23)では、組立支援装置50のデータ抽出部62bが、複数の車室部品38毎に、
図14に示すように、ポリゴンデータ作成工程(S22)で作成された複数のポリゴンデータのうちから、ある条件を満たす複数のポリゴンデータを抽出する。なお、
図14では、抽出するポリゴンデータで特定されるポリゴン86aに模様を施し、抽出しないポリゴンデータで特定されるポリゴン86bには模様を施していない。また、
図14中のXY平面は、基準形状モデル80中のフランジ面81に平行な面である。ここで、前述の条件とは、基準形状モデル80中のフランジ面81に対する、ポリゴンデータで特定されるポリゴン86の傾きが所定の傾き以内である、である。データ抽出部62bは、まず、複数のポリゴン86毎に、ポリゴン86の法線nを求める。次に、データ抽出部62bは、複数のポリゴン86毎に、基準形状モデル80中のフランジ面81に対する垂線pとポリゴン86の法線nとの角度αを求める。そして、データ抽出部62bは、複数のポリゴンデータのうちから、フランジ面81に対する垂線pとポリゴン86との角度αが所定の角度(所定の傾き)以内の複数のポリゴンデータを抽出する。
【0050】
このデータ抽出工程(S23)は、計測工程(S21)で得た複数の点85の三次元位置データから、フランジ面38sの縁の壁中の点や、フランジ面38sを貫通するボルト33,37孔の内周面中の点の三次元位置データを除くために実行される。このため、このデータ抽出工程(S23)後の点85の数は、
図15に示すように、その前の点85の数より少なくなる。特に、基準形状モデル80中で、フランジ面81に対して傾斜している面82に関して、抽出工程(S23)後の点85の数は、その前の点85の数より著しく少なくなる。
【0051】
実測計測データ作成工程(S24)では、組立支援装置50の実測形状データ作成部62cが、データ抽出工程(S23)で抽出された複数のポリゴンデータを用いて、複数の車室部品38毎の実測形状データを作成する。この実測計測データ作成工程(S24)は、
図11のフローチャートに示すように、準備工程(S24a)、代表点設定作成工程(S24b)、補完面データ作成工程(S24c)を含む。
【0052】
準備工程(S24a)では、実測形状データ作成部62cの準備部62caが、
図16に示すように、複数の車室部品38毎に実測対象部であるフランジ面81を含む仮想三次元空間を複数の三次元ブロック83に分割する。
【0053】
代表点設定作成工程(S24b)では、実測形状データ作成部62cの代表点設定部62cbが、複数の三次元ブロック83毎に、対象とする三次元ブロック83中の代表点87を定める。具体的に、代表点設定部62cbは、データ抽出工程(S23)で抽出された複数のポリゴンデータで特定されるポリゴンに含まれる複数の点85のうち、対象とする三次元ブロック83中に含まれる複数の点85の三次元位置データの中央値となる点を、対象とする三次元ブロック83中の代表点87とする。なお、
図16では、この図中の複数の点85のうち、黒塗りの点が代表点87を示す。
【0054】
補完面データ作成工程(S24c)では、実測形状データ作成部62cの補完面データ作成部62ccが、複数の三次元ブロック83毎の代表点87を相互に補完面88としての平面又は曲面で接続して、複数の三次元ブロック83毎の代表点87を含む補完面88のデータを作成する。この補完面88のデータが、実測形状データ作成部62cが作成する実測形状データである。
【0055】
三次元形状測定装置75で得られる点85に関する三次元位置データには、誤差が含まれる。例えば、三次元形状測定装置75が三次元レーザ計測器である場合、計測対象と三次元レーザ計測器との間に、微小な浮遊物が存在すると、この三次元レーザ計測器で計測された三次元位置データには誤差が含まれることになる。そこで、本実施形態では、三次元ブロック83中に含まれる複数の点85の三次元位置データの中央値となる点を、この三次元ブロック83中の代表点87にすることで、三次元形状測定装置75で得られる点85に関する三次元位置データの誤差範囲を狭めている。なお、三次元ブロック83中に含まれる複数の点85が極端に少ない場合には、この三次元ブロック83中から代表点87を定めない。これは、点85の数が極端に少ない場合、複数の点85のうちから代表点87を定めても、この代表点87の三次元位置データの誤差範囲が狭まっているとは限らないからである。
【0056】
また、本実施形態では、複数の三次元ブロック83毎の代表点87を相互に平面又は曲面で接続して、複数の三次元ブロック83毎の代表点87を含む補完面88のデータを作成し、この補完面88のデータを実測形状データとする。このため、本実施形態では、基準形状モデル80上のフランジ面81全体に渡って連続し、且つ、誤差範囲の狭いフランジ面38sに関する実測形状データを得ることができる。
【0057】
本実施形態では、データ抽出工程(S23)後に、実測形状データ作成工程(S24)中の準備工程(S24a)を実行する。しかしながら、この準備工程(S24a)は、基準形状モデル作成工程(S10)の後であって、実測形状データ作成工程(S24)中の代表点設定工程(S24b)の前であれば、どの段階で行ってもよい。このため、例えば、基準形状モデル作成工程(S10)で基準形状モデル80を作成した直後に、この準備工程(S24a)を実行してもよい。
【0058】
次に、組立支援装置50の自重付与時形状データ作成部63が、複数の車室部品38毎に、複数の車室部品38毎の基準形状モデル80を用いて、
図17に示すように、複数の車室部品38毎に自重がかかった際の形状データである自重付与時形状データ89を作成する(S30:自重付与時形状データ作成工程)。なお、この自重付与時形状データ89は、車室部品38の姿勢が、実測対象部の形状を実際に計測した際の車室部品38の姿勢と同じであるときに、車室部品38に自重がかかった際の形状データである。このため、本実施形態では、実測形状データ取得工程(S20)後に、この自重付与時形状データ作成工程(S30)を実行する。但し、実測形状データ取得工程(S20)で、実測対象部の形状を実際に計測する際の車室部品38の姿勢が予め定まっている場合には、この自重付与時形状データ作成工程(S30)を、実測形状データ取得工程(S20)前であって、基準形状モデル作成工程(S10)後に実行してもよい。
【0059】
次に、組立支援装置50のモデル修正量演算部64が、
図17に示すように、複数の車室部品38毎に、実測対象部の実測形状データ88と、実測対象部の自重付与時形状データ89との差dから、基準形状モデルのモデル修正量を求める(S40:モデル修正量演算工程)。
【0060】
次に、組立支援装置50の修正形状モデル作成部65が、
図18に示すように、複数の車室部品38毎のモデル修正量を用いて、複数の車室部品38毎の基準形状モデル80を修正して、修正形状モデル80aを作成する(S50:修正形状モデル作成工程)。具体的に、ここでは、基準形状モデル80中のフランジ面81に含まれるグリッド84をモデル修正量分だけ移動する。
【0061】
次に、締結時形状データ推定装置70が、組立支援装置50から複数の車室部品38毎の修正形状モデル80aを受け取り、複数の車室部品38毎の修正形状モデル80aを用いて、複数の車室部品38相互が締結された状態での複数の車室部品38毎の形状データである締結時形状データを推定する(S60:締結時形状データ推定工程)。この際、締結時形状データ推定装置70は、複数の車室部品38毎の材質、蒸気タービン10の運転による複数の車室部品38毎の材質の変質の程度、ボルト33,37による複数の車室部品38相互の締結力、複数の車室部品38毎にかかる自重等を考慮して、締結時形状データを推定する。すなわち、締結時形状データ推定装置70は、複数の車室部品38相互が締結されていない状態から、複数の車室部品38相互が締結された状態での複数の車室部品38毎の形状変形をシミュレートする。
【0062】
次に、組立支援装置50の間隔算出部66は、締結時形状データ推定装置70から複数の車室部品38毎の締結時形状データを受け取る。そして、この間隔算出部66は、複数の車室部品38相互が締結され且つ複数の静止体部品及び回転体が相互に組み付けられた状態での静止体と回転体との間の間隔のうち予め定められた部分の間隔を、複数の車室部品38毎の締結時形状データと回転体の基準形状データ58dとを用いて求める(S70:間隔算出工程)。静止体と回転体との間の間隔のうち予め定められた部分の間隔は、例えば、
図8に示すように、下半内車室36aの内周面中の最下点36apとロータ軸16との間の径方向Drの間隔Saや、上半内車室36bの内周面中の最上点36bpとロータ軸16との間の径方向Drの間隔Sb等である。
【0063】
なお、締結時形状データ推定工程(S60)で、複数の車室部品38相互の締結前の状態から締結後の状態における、静止体と回転体との間の間隔のうち予め定められた部分の間隔の変化量を推定してもよい。この場合、間隔算出工程(S70)では、締結前に実際に計測した静止体と回転体との間の間隔のうち予め定められた部分の間隔に、前述の変化量を加え、この値を締結後の間隔としてもよい。以上の場合でも、結局、締結時形状データ推定工程(S60)で、複数の車室部品38相互が締結された状態での複数の車室部品38毎の形状データである締結時形状データを推定し、間隔算出工程(S70)で、複数の車室部品38毎の締結時形状データを用いて、予め定められた部分の間隔を求めることになる。
【0064】
次に、作業者が仮組付け工程(S80)を実行する。この仮組付け工程(S80)では、まず、架台11に支持されている下半外車室32a内に下半内車室36aを配置する。次に、この下半内車室36aに、複数のダイヤフラム20毎の下半ダイヤフラム21aを取り付ける。次に、架台11に対して、軸受12及びロータ15を組み付ける。この際、ロータ15のセンタリングを行う。具体的に、架台11に対する軸受12の相対位置、及び軸受12の対するロータ15の相対位置を調節する。次に、下半ダイヤフラム21aに上半ダイヤフラム21bを取り付ける。次に、下半内車室36aに上半内車室36bを締結する。次に、下半外車室32aに上半外車室32bを締結する。
【0065】
この仮組付け工程(S80)では、以上の作業の他に、調整工程(S81)及び鉛部材配置工程(S82)を実行する。
【0066】
調整工程(S81)では、複数の静止体部品のうち、ある静止体部品を他の静止体部品に取り付ける部分にシムを配置する。例えば、下半内車室36aの被支持部36agが収まる下半外車室32aの支持溝32ag内、下半内車室36aと下半ダイヤフラム21aとの間、上半内車室36bと上半ダイヤフラム21bとの間等に、にシムを配置する。この際、間隔算出工程(S70)で求めた、静止体と回転体との間の間隔のうち予め定められた部分の間隔が予め定められた許容範囲に収まるよう、シムの厚さやシムの枚数等を定める。具体的に、例えば、締結時形状データ推定工程(S60)で車室部品38毎の締結時形状データを推定した結果、
図8に示すように、下半内車室36aの内周面中の最下点36apとロータ軸16との間の径方向Drの間隔Saが許容範囲よりも小さくなり、上半内車室36bの内周面中の最上点36bpとロータ軸16との間の径方向Drの間隔Sbが許容範囲よりも大きくなったとする。この場合、間隔算出工程(S70)で求めたこれらの間隔Sa,Sbが許容範囲に収まるよう、下半外車室32aの支持溝32ag内に配置するシムの厚さやシムの枚数等を定める。そして、
図19に示すように、この調整工程(S81)で、下半外車室32aの支持溝32ag内に、先に定めた厚さのシム39、又は先に定めた枚数のシム39を配置する。この結果、下半内車室36aの内周面中の最下点36apとロータ軸16との間の径方向Drの間隔Saが許容範囲内に収まり、且つ、上半内車室36bの内周面中の最上点36bpとロータ軸16との間の径方向Drの間隔Sbが許容範囲内に収まるようになる。
【0067】
鉛部材配置工程(S82)では、ある部品を他の部品を組み付ける際に、回転体と静止体との間であって、シール装置が配置される位置に、鉛部材を配置する。この鉛部材は、この仮組付け工程(S80)が終了した時点で、回転体と静止部材とに挟まれて、つぶされる。
【0068】
次に、以上のように仮組付けされた蒸気タービン10を分解する(S90:分解工程)。この分解過程で、仮組付け工程(S80)中に蒸気タービン10内に配置した鉛部材を回収し、この鉛部材の厚みを計測する(S100:微小間隔計測工程)。
【0069】
次に、本組付けを実行する(S110:本組付け工程)。この本組付け工程(S110)でも、先に仮組付け工程(S80)で実行した各種組付け作業と同様の各種組付け作業を行う。さらに、この本組付け工程(S110)では、各種組付け作業の他に、調整工程(S111)及び微調整工程(S112)を実行する。
【0070】
調整工程(S111)では、仮組付け工程(S80)中の調整工程(S81)と同様に、ある静止体部品を他の静止体部品に取り付ける部分にシムを配置する。但し、この調整工程(S111)では、ある静止体部品を他の静止体部品に取り付ける部分に、仮組付け工程(S80)中の調整工程(S81)で定めた、厚さのシム又は枚数のシムを配置する。
【0071】
微調整工程(S112)では、微小間隔計測工程(S100)で計測された鉛部材の厚さに基づき、シール装置の高さ(径方向Drの寸法)を調節する。シール装置がシール装置本体とシムとを有する場合、シール装置本体とシムとを合わせた高さが許容範囲内に収まるよう、シムの厚さ又はシムの枚数を調節する。なお、このシムは、シール装置本体がある部品に取り付けられる場合、シール装置本体とある部品とに間に配置される。また、シール装置がシムを有さない場合、高さが許容範囲内の新たなシール装置を用いる。また、
図4を用いて先に説明したダイヤフラム内輪23とロータ軸16との間に配置するシール装置25は、静止体部品であるダイヤフラム内輪23側に取り付けられる。しかしながら、シール装置は、ロータ(回転体)15m側に取り付けられ場合もある。また、例えば、ラビリンスシールのように、シール装置の一部がロータ(回転体)15m側に取り付けられ、このシール装置の残りの一部が静止体部品側に取り付けられることもある。
【0072】
以上で、蒸気タービン10の組立が終了する。
【0073】
以上、本実施形態では、模擬的に、複数の車室部品38相互が締結された状態での複数の車室部品38毎の形状データである締結時形状データを推定する。そして、本実施形態では、この締結時形状データに基づき、複数の車室部品38相互が締結され且つ複数の静止体部品及び回転体が相互に組み付けられた状態での静止体と回転体との間の間隔を求める。よって、本実施形態では、複数の車室部品38相互が締結され且つ複数の静止体部品及び回転体が相互に組み付けられた状態での静止体と回転体との間の間隔を取得するための仮組付け工程を省くことができる。
【0074】
本実施形態では、車室部品38の締結時形状データを推定する際に、車室部品38の修正形状モデル80aを用いる。この修正形状モデル80aは、実測形状データと自重付与時形状データ89とを用いて、基準形状モデル80を修正したモデルである。実測形状データは、車室部品38中の実測対象部の形状を実際に計測したデータに基づく形状データである。また、自重付与時形状データ89は、車室部品38の姿勢が、実測対象部の形状を実際に計測した際の車室部品38の姿勢と同じであるときに、車室部品38に自重がかかった際の形状に関するデータを、基準形状モデル80に基づき求めたデータである。このため、本実施形態では、単に、実測形状データのみを用いて基準形状データ58dを修正して修正形状モデルを作成する場合よりも、実際の車室部品38の形状に近い修正形状モデル80aを得ることができる。
【0075】
よって、本実施形態では、この修正形状モデル80aを用いて、締結時形状データを推定することで、複数の車室部品38相互が締結され且つ複数の静止体部品及び回転体が相互に組み付けられた状態での静止体と回転体との間の間隔をより正確に求めることできる。このため、本実施形態では、この間隔に基づいて調整工程(S81)を実行することにより、回転体に対する静止体の相対位置が高精度で許容範囲内に収めることができる。
【0076】
「変形例」
以上の実施形態では、フランジ面38sのみを実測対象部にしている。しかしながら、フランジ面38s及びフランジ面38s以外の部分を実測対象部にする場合、さらに、計測工程(S21)で、実測対象部であるフランジ面38sの形状のみを正確に計測できる場合には、計測工程(S21)後に、ポリゴンデータ作成工程(S22)及びデータ抽出工程(S23)を実行せず、実測形状データ作成工程(S24)を実行してもよい。
【0077】
以上の実施形態では、タービンの組立を支援する装置として、組立支援装置50と、締結時形状データを推定する締結時形状データ推定装置70と、を有する。しかしながら、
図20に示すように、組立支援装置50aが、その機能として、締結時形状データを推定する締結時形状データ推定部67を有してもよい。この場合、この組立支援装置50aであるコンピュータに実行させる組立支援プログラム58paには、このコンピュータに、締結時形状データを推定させる工程が含まれる。
【0078】
「付記」
以上の実施形態におけるタービンの組立方法は、例えば、以下のように把握される。
(1)第一態様におけるタービンの組立方法は、
軸線Arを中心として回転可能な回転体15と、前記回転体15の外周を覆う車室30を含む静止体と、を備え、前記車室30は、前記軸線Arに対する周方向Dcに並ぶ複数の車室部品38と、前記複数の車室部品38相互を締結する複数のボルト33,37と、を有するタービン10の組立方法において、前記タービン10を工場から出荷する前に得られた、前記静止体を構成する複数の静止体部品毎の基準形状データ58dに基づき、前記複数の静止体部品毎の基準形状モデル80を作成する基準形状モデル作成工程S10と、前記タービン10を分解した後で、前記複数の車室部品38相互が前記複数のボルト33,37で締結されていない開放状態で、前記複数の車室部品38毎に予め定められた実測対象部の形状を計測して、前記複数の車室部品38毎の実測形状データを取得する実測形状データ取得工程S20と、前記複数の車室部品38毎に、前記複数の車室部品38毎の前記基準形状モデル80を用いて、前記複数の車室部品38毎に自重がかかった際の形状データである自重付与時形状データ89を作成する自重付与時形状データ作成工程S30と、前記複数の車室部品38毎に、前記実測対象部の前記実測形状データと、前記実測対象部の前記自重付与時形状データ89との差から、前記基準形状モデル80のモデル修正量を求めるモデル修正量演算工程S40と、前記複数の車室部品38毎の前記モデル修正量を用いて、前記複数の車室部品38毎の前記基準形状モデル80を修正して、修正形状モデル80aを作成する修正形状モデル作成工程S50と、前記修正形状モデル80aを用いて、前記複数の車室部品38相互が締結された状態での前記複数の車室部品38毎の形状データである締結時形状データを推定する締結時形状データ推定工程S60と、前記複数の車室部品38相互が締結され且つ前記複数の静止体部品及び前記回転体15が相互に組み付けられた状態での前記静止体と前記回転体15との間の間隔のうち予め定められた部分の間隔を、前記複数の車室部品38毎の前記締結時形状データを用いて求める間隔算出工程S70と、前記複数の静止体部品及び前記回転体15を相互に組み付ける組付け工程S80,S110と、を実行する。前記自重付与時形状データ89は、前記車室部品38の姿勢が、前記実測対象部の形状を実際に計測した際の前記車室部品38の姿勢と同じであるときに、前記車室部品38に自重がかかった際の形状データである。前記組付け工程S80,S110は、前記間隔算出工程S70で求めた前記予め定められた部分の間隔が予め定められた許容範囲内に収まるよう調整する調整工程S81,S111を含む。
【0079】
本態様では、模擬的に、複数の車室部品38相互が締結された状態での複数の車室部品38毎の形状データである締結時形状データを推定する。そして、本態様では、この締結時形状データに基づき、複数の車室部品38相互が締結され且つ複数の静止体部品及び回転体15が相互に組み付けられた状態での静止体と回転体15との間の間隔を求める。よって、本態様では、複数の車室部品38相互が締結され且つ複数の静止体部品及び回転体15が相互に組み付けられた状態での静止体と回転体15との間の間隔を取得するための仮組付け工程を省くことができる。
【0080】
本態様では、車室部品38の締結時形状データを推定する際に車室部品38の修正形状モデル80aを用いる。この修正形状モデル80aは、実測形状データと自重付与時形状データ89とを用いて、基準形状モデル80を修正したモデルである。実測形状データは、車室部品38中の実測対象部の形状を実際に計測したデータに基づく形状データである。また、自重付与時形状データ89は、車室部品38の姿勢が、実測対象部の形状を実際に計測した際の車室部品38の姿勢と同じであるときに、車室部品38に自重がかかった際の形状に関するデータを、基準形状モデル80に基づき求めたデータである。このため、本態様では、単に、実測形状データのみを用いて基準形状データ58dを修正して修正形状モデル80aを作成する場合よりも、実際の車室部品38の形状に近い修正形状モデル80aを得ることができる。
【0081】
よって、本態様では、この修正形状モデル80aを用いて、締結時形状データを推定することで、複数の車室部品38相互が締結され且つ複数の静止体部品及び回転体15が相互に組み付けられた状態での静止体と回転体15との間の間隔をより正確に求めることできる。このため、本態様では、この間隔に基づいて調整工程S81,S111を実行することにより、回転体15に対する静止体の相対位置が高精度で許容範囲内に収めることができる。
【0082】
(2)第二態様におけるタービンの組立方法は、
前記第一態様のタービン10の組立方法において、前記複数の車室部品38は、それぞれ、前記周方向Dcに延びる本体と、前記本体における前記周方向Dcの端から前記軸線Arに対する径方向外側Droに延びるフランジと、を有する。前記複数のボルト33,37は、前記複数の車室部品38毎の前記フランジ相互を締結可能である。前記複数の車室部品38毎の前記実測対象部は、前記複数の車室部品38毎の前記フランジのうち、前記周方向Dcで隣接する車室部品38のフランジと対向するフランジ面38sである。
【0083】
複数の車室部品38が互いに締結されていない状態から、複数の車室部品38が互いに締結された状態になったときの複数の車室部品38毎の変形は、複数の車室部品38毎のフランジ面38sの変形に支配的である。このため、本態様では、実測形状データ取得工程S20で、車室部品38中で実際に形状を計測する領域をフランジ面38sに限定している。よって、本態様では、実測形状データ取得工程S20で、車室部品38中で実際に形状を計測する領域を小さくすることができ、車室部品38の形状を実際に計測する手間を少なくすることできる。
【0084】
(3)第三態様におけるタービンの組立方法は、
前記第二態様のタービン10の組立方法において、前記実測形状データ取得工程S20は、前記複数の車室部品38毎に前記実測対象部を含む領域中の複数の点85での三次元位置データを計測する計測工程S21と、前記複数の車室部品38毎に、前記複数の点85での前記三次元位置データを用いて、複数のポリゴンデータを作成するポリゴンデータ作成工程S22と、前記複数のポリゴンデータのうちから、前記フランジ面38sに対する複数のポリゴンデータで特定される多角形平面86の傾きが所定の傾き以内の複数のポリゴンデータを抽出するデータ抽出工程S23と、
前記データ抽出工程S23で抽出された前記複数のポリゴンデータを用いて、前記複数の車室部品38毎の前記実測形状データを作成する実測形状データ作成工程S24と、を含む。
【0085】
本態様では、計測工程S21で計測した複数の点85での三次元位置データのうちから、フランジ面38s中の点85での三次元位置データを効率的に抽出することができる。
【0086】
(4)第四態様におけるタービンの組立方法は、
前記第三態様のタービン10の組立方法において、前記実測形状データ作成工程S24は、前記複数の車室部品38毎に前記実測対象部を含む仮想三次元空間を複数の三次元ブロック83に分割する準備工程S24aと、前記複数の三次元ブロック83毎に、対象とする三次元ブロック83中の代表点87を定める代表点設定工程S24bと、前記複数の三次元ブロック83毎の前記代表点87を相互に補完面88としての平面又は曲面で接続して、前記複数の三次元ブロック83毎の前記代表点87を含む補完面88のデータを作成する補完面データ作成工程S24cと、を含む。前記代表点設定工程S24bでは、前記データ抽出工程S23で抽出された前記複数のポリゴンデータで特定される多角形平面86に含まれる複数の点85のうち、前記対象とする三次元ブロック83中に含まれる複数の点85毎の三次元位置データの中央値となる点85を、前記対象とする三次元ブロック83中の前記代表点87とする。前記モデル修正量演算工程S40では、前記複数の車室部品38毎の前記実測対象部の前記実測形状データとして、前記補完面88のデータを用いる。
【0087】
三次元形状測定装置75で得られる点85に関する三次元位置データには、誤差が含まれる。例えば、三次元形状測定装置75が三次元レーザ計測器である場合、計測対象と三次元レーザ計測器との間に、微小な浮遊物が存在すると、この三次元レーザ計測器で計測された三次元位置データには誤差が含まれることになる。よって、本態様では、三次元ブロック83中に含まれる複数の点85の三次元位置データの中央値となる点85を、この三次元ブロック83中の代表点87にすることで、三次元形状測定装置75で得られる点85に関する三次元位置データの誤差範囲を狭めることができる。
【0088】
また、本態様では、複数の三次元ブロック83毎の代表点87を相互に補完面88としての平面又は曲面で接続して、複数の三次元ブロック83毎の代表点87を含む補完面88のデータを作成し、この補完面88のデータを実測形状データとする。このため、本態様では、基準形状モデル80上のフランジ面81全体に渡って連続し、且つ、誤差範囲の狭い実測形状データを得ることができる。
【0089】
(5)第五態様におけるタービンの組立方法は、
前記第二態様から前記第四態様のいずれか一態様のタービン10の組立方法において、前記複数の車室部品38毎の前記実測対象部は、前記フランジ面38sのみである。
【0090】
本態様では、実測対象部がフランジ面38sのみであるため、実測形状データ取得工程S20で、車室部品38中で実際に形状を計測する領域を小さくすることができ、車室部品38の形状を実際に計測する手間を少なくすることできる。
【0091】
(6)第六態様におけるタービンの組立方法は、
前記第一態様の組立方法において、前記実測形状データ取得工程S20は、前記複数の車室部品38毎に前記実測対象部を含む領域中の複数の点85で三次元位置データを計測する計測工程S21と、前記複数の車室部品38毎に前記実測対象部を含む仮想三次元空間を複数の三次元ブロック83に分割する準備工程S24aと、前記複数の三次元ブロック83毎に、対象とする三次元ブロック83中の代表点87を定める代表点設定工程S24bと、前記複数の三次元ブロック83毎の前記代表点87を相互に補完面88としての平面又は曲面で接続して、前記複数の三次元ブロック83毎の前記代表点87を含む前記補完面88のデータを作成する補完面データ作成工程S24cと、を含む。前記代表点設定工程S24bでは、前記計測工程S21で計測された複数の点85のうち、前記対象とする三次元ブロック83中に含まれる複数の点85毎の三次元位置データの中央値となる点85を、前記対象とする三次元ブロック83中の前記代表点87とする。前記モデル修正量演算工程S40では、前記複数の車室部品38毎の前記実測対象部の前記実測形状データとして、前記補完面88のデータを用いる。
【0092】
本態様では、三次元ブロック83中に含まれる複数の点85の三次元位置データの中央値となる点85を、この三次元ブロック83中の代表点87にすることで、三次元形状測定装置75で得られる点85に関する三次元位置データの誤差範囲を狭めることができる。また、本態様では、複数の三次元ブロック83毎の代表点87を相互に平面又は曲面で接続して、複数の三次元ブロック83毎の前記代表点87を含む補完面88のデータを作成し、この補完面88のデータを実測形状データとする。このため、本態様では、実測対象部の全体に渡って連続し、且つ、誤差範囲の狭い実測形状データを得ることができる。
【0093】
(7)第七態様におけるタービンの組立方法は、
前記第一態様から前記第六態様のいずれか一態様のタービン10の組立方法において、
前記タービン10を出荷する前に得られた、前記静止体を構成する複数の静止体部品毎の前記基準形状データ58dは、前記静止体を構成する複数の静止体部品毎の設計データ、又は、前記静止体を構成する複数の静止体部品毎に、実際に計測して得られた実測データである。
【0094】
以上の実施形態におけるタービンの組立支援プログラムは、例えば、以下のように把握される。
(8)第八態様におけるタービンの組立支援プログラムは、
軸線Arを中心として回転可能な回転体15と、前記回転体15の外周を覆う車室30を含む静止体と、を備え、前記車室30は、前記軸線Arに対する周方向Dcに並ぶ複数の車室部品38と、前記複数の車室部品38相互を締結する複数のボルト33,37と、を有するタービン10の組立支援プログラム58p,58paにおいて、前記タービン10を工場から出荷する前に得られた、前記静止体を構成する複数の静止体部品毎の基準形状データ58dに基づき、前記複数の静止体部品毎の基準形状モデル80を作成する基準形状モデル作成工程S10と、前記タービン10を分解した後で、前記複数の車室部品38相互が前記複数のボルト33,37で締結されていない開放状態で、前記複数の車室部品38毎に予め定められた実測対象部の形状が計測された結果に基づき、前記複数の車室部品38毎の実測形状データを取得する実測形状データ取得工程S20と、前記複数の車室部品38毎に、前記複数の車室部品38毎の前記基準形状モデル80を用いて、前記複数の車室部品38毎に自重がかかった際の形状データである自重付与時形状データ89を作成する自重付与時形状データ作成工程S30と、前記複数の車室部品38毎に、前記実測対象部の前記実測形状データと、前記実測対象部の前記自重付与時形状データ89との差から、前記基準形状モデル80のモデル修正量を求めるモデル修正量演算工程S40と、前記複数の車室部品38毎の前記モデル修正量を用いて、前記複数の車室部品38毎の前記基準形状モデル80を修正して、修正形状モデル80aを作成する修正形状モデル作成工程S50と、前記複数の車室部品38相互が締結され且つ前記複数の静止体部品及び前記回転体15が相互に組み付けられた状態での前記静止体と前記回転体15との間の間隔のうち予め定められた部分の間隔を、前記複数の車室部品38毎の締結時形状データを用いて求める間隔算出工程S70と、をコンピュータに実行させる。前記自重付与時形状データ89は、前記車室部品38の姿勢が、前記実測対象部の形状を実際に計測した際の前記車室部品38の姿勢と同じであるときに、前記車室部品38に自重がかかった際の形状データである。前記複数の車室部品38毎の前記締結時形状データは、前記修正形状モデル80aを用いて、推定された前記複数の車室部品38相互が締結された状態での前記複数の車室部品38毎の形状データである。
【0095】
本態様の組立支援プログラム58p,58paを実行することにより、第一態様のタービン10の組立方法と同様、複数の車室部品38相互が締結され且つ複数の静止体部品及び回転体15が相互に組み付けられた状態での静止体と前記回転体15との間の間隔を取得するための仮組付け工程S80,S110を省くことができる。さらに、本態様の組立支援プログラム58p,58paを実行することにより、第一態様のタービン10の組立方法と同様、複数の車室部品38相互が締結され且つ複数の静止体部品及び回転体15が相互に組み付けられた状態での静止体と回転体15との間の間隔をより正確に求めることできる。
【0096】
(9)第九態様におけるタービンの組立支援プログラムは、
前記第八態様のタービン10の組立支援プログラム58p,58paにおいて、前記複数の車室部品38は、それぞれ、前記周方向Dcに延びる本体と、前記本体における前記周方向Dcの端から前記軸線Arに対する径方向外側Droに延びるフランジと、を有する。前記複数のボルト33,37は、前記複数の車室部品38毎の前記フランジ相互を締結可能である。前記複数の車室部品38毎の前記実測対象部は、前記複数の車室部品38毎の前記フランジのうち、前記周方向Dcで隣接する車室部品38のフランジと対向するフランジ面38sである。
【0097】
本態様では、第二態様のタービン10の組立方法と同様に、車室部品38の形状を実際に計測する手間を少なくすることできる。
【0098】
(10)第十態様におけるタービンの組立支援プログラムは、
前記第九態様のタービン10の組立支援プログラム58p,58paにおいて、前記実測形状データ取得工程S20は、前記複数の車室部品38毎に前記実測対象部を含む領域中の複数の点85で計測された三次元位置データを取得し、前記複数の車室部品38毎に、前記複数の点85での前記三次元位置データを用いて、複数のポリゴンデータを作成するポリゴンデータ作成工程S22と、前記複数のポリゴンデータのうちから、前記フランジ面38sに対する複数のポリゴンデータで特定される多角形平面86の傾きが所定の傾き以内の複数のポリゴンデータを抽出するデータ抽出工程S23と、前記データ抽出工程S23で抽出された前記複数のポリゴンデータを用いて、前記複数の車室部品38毎の前記実測形状データを作成する実測形状データ作成工程S24と、を含む。
【0099】
本態様の組立支援プログラム58p,58paを実行することにより、第三態様のタービン10の組立方法と同様、実測対象部を含む領域中の複数の点85で計測された三次元位置データのうちから、フランジ面38s中の点85での三次元位置データを効率的に抽出することができる。
【0100】
(11)第十一態様におけるタービンの組立支援プログラムは、
前記第十態様のタービン10の組立支援プログラム58p,58paにおいて、前記実測形状データ作成工程S24は、前記複数の車室部品38毎に前記実測対象部を含む仮想三次元空間を複数の三次元ブロック83に分割する準備工程S24aと、前記複数の三次元ブロック83毎に、対象とする三次元ブロック83中の代表点87を定める代表点設定工程S24bと、前記複数の三次元ブロック83毎の前記代表点87を相互に補完面88としての平面又は曲面で接続して、前記複数の三次元ブロック83毎の前記代表点87を含む前記補完面88のデータを作成する補完面データ作成工程S24cと、を含む。前記代表点設定工程S24bでは、前記データ抽出工程S23で抽出された前記複数のポリゴンデータで特定される多角形平面86に含まれる複数の点85のうち、前記対象とする三次元ブロック83中に含まれる複数の点85毎の三次元位置データの中央値となる点85を、前記対象とする三次元ブロック83中の前記代表点87とする。前記モデル修正量演算工程S40では、前記複数の車室部品38毎の前記実測対象部の前記実測形状データとして、前記補完面88のデータを用いる。
【0101】
本態様の組立支援プログラム58p,58paを実行することにより、第四態様のタービン10の組立方法と同様、基準形状モデル80上のフランジ面38s全体に渡って連続し、且つ、誤差範囲の狭い実測形状データを得ることができる。
【0102】
(12)第十二態様におけるタービンの組立支援プログラムは、
前記第九態様から前記第十一態様のいずれか一態様のタービン10の組立支援プログラム58p,58paにおいて、前記複数の車室部品38毎の前記実測対象部は、前記フランジ面38sのみである。
【0103】
本態様では、第五態様のタービン10の組立方法と同様、車室部品38の形状を実際に計測する手間を少なくすることできる。
【0104】
(13)第十三態様におけるタービンの組立支援プログラムは、
前記第八態様のタービン10の組立支援プログラム58p,58paにおいて、前記実測形状データ取得工程S20は、前記複数の車室部品38毎に前記実測対象部を含む仮想三次元空間を複数の三次元ブロック83に分割する準備工程S24aと、前記複数の三次元ブロック83毎に、対象とする三次元ブロック83中の代表点87を定める代表点設定工程S24bと、前記複数の三次元ブロック83毎の前記代表点87を相互に平面又は曲面で接続して、前記複数の三次元ブロック83毎の前記代表点87を含む補完面88のデータを作成する補完面データ作成工程S24cと、を含む。前記代表点設定工程S24bでは、前記複数の車室部品38毎に前記実測対象部を含む領域中の複数の点85で計測された三次元位置データを取得し、前記複数の車室部品38毎の前記複数の点85のうち、前記対象とする三次元ブロック83中に含まれる複数の点85毎の三次元位置データの中央値となる点85を、前記対象とする三次元ブロック83中の前記代表点87とする。前記モデル修正量演算工程S40では、前記複数の車室部品38毎の前記実測対象部の前記実測形状データとして、前記補完面88のデータを用いる。
【0105】
本態様の組立支援プログラム58p,58paを実行することにより、第六態様のタービン10の組立方法と同様、実測対象部の全体に渡って連続し、且つ、誤差範囲の狭い実測形状データを得ることができる。
【0106】
(14)第十四態様におけるタービンの組立支援プログラムは、
前記第八態様から前記第十三態様のいずれか一態様のタービン10の組立支援プログラム58paにおいて、前記修正形状モデル80aを用いて、前記複数の車室部品38相互が締結された状態での前記複数の車室部品38毎の前記締結時形状データを推定する締結時形状データ推定工程S60を、前記コンピュータにさらに実行させる。
【0107】
以上の実施形態におけるタービンの組立支援装置は、例えば、以下のように把握される。
(15)第十五態様におけるタービンの組立支援装置は、
軸線Arを中心として回転可能な回転体15と、前記回転体15の外周を覆う車室30を含む静止体と、を備え、前記車室30は、前記軸線Arに対する周方向Dcに並ぶ複数の車室部品38と、前記複数の車室部品38相互を締結する複数のボルト33,37と、を有するタービン10の組立支援装置50,50aにおいて、前記タービン10を工場から出荷する前に得られた、前記静止体を構成する複数の静止体部品毎の基準形状データ58dに基づき、前記複数の静止体部品毎の基準形状モデル80を作成する基準形状モデル作成部61と、前記タービン10を分解した後で、前記複数の車室部品38相互が前記複数のボルト33,37で締結されていない開放状態で、前記複数の車室部品38毎に予め定められた実測対象部の形状が計測された結果に基づき、前記複数の車室部品38毎の実測形状データを取得する実測形状データ取得部62と、前記複数の車室部品38毎に、前記複数の車室部品38毎の前記基準形状モデル80を用いて、前記複数の車室部品38毎に自重がかかった際の形状データである自重付与時形状データ89を作成する自重付与時形状データ作成部63と、前記複数の車室部品38毎に、前記実測対象部の前記実測形状データと、前記実測対象部の前記自重付与時形状データ89との差から、前記基準形状モデル80のモデル修正量を求めるモデル修正量演算部64と、前記複数の車室部品38毎の前記モデル修正量を用いて、前記複数の車室部品38毎の前記基準形状モデル80を修正して、修正形状モデル80aを作成する修正形状モデル作成部65と、前記複数の車室部品38相互が締結され且つ前記複数の静止体部品及び前記回転体15が相互に組み付けられた状態での前記静止体と前記回転体15との間の間隔のうち予め定められた部分の間隔を、前記複数の車室部品38毎の締結時形状データを用いて求める間隔算出部66と、を有する。前記自重付与時形状データ89は、前記車室部品38の姿勢が、前記実測対象部の形状を実際に計測した際の前記車室部品38の姿勢と同じであるときに、前記車室部品38に自重がかかった際の形状データである。前記複数の車室部品38毎の前記締結時形状データは、前記修正形状モデル80aを用いて、推定された前記複数の車室部品38相互が締結された状態での前記複数の車室部品38毎の形状データである。
【0108】
本態様の組立支援装置50,50aを動作させることにより、第一態様のタービン10の組立方法と同様、複数の車室部品38相互が締結され且つ複数の静止体部品及び回転体15が相互に組み付けられた状態での静止体と前記回転体15との間の間隔を取得するための仮組付け工程S80,S110を省くことができる。さらに、本態様の組立支援プログラム58p,58paを実行することにより、第一態様のタービン10の組立方法と同様、複数の車室部品38相互が締結され且つ複数の静止体部品及び回転体15が相互に組み付けられた状態での静止体と回転体15との間の間隔をより正確に求めることできる。
【0109】
(16)第十六態様におけるタービンの組立支援装置は、
前記第十五態様のタービン10の組立支援装置50,50aにおいて、前記複数の車室部品38は、それぞれ、前記周方向Dcに延びる本体と、前記本体における前記周方向Dcの端から前記軸線Arに対する径方向外側Droに延びるフランジと、を有する。前記複数のボルト33,37は、前記複数の車室部品38毎の前記フランジ相互を締結可能である。前記複数の車室部品38毎の前記実測対象部は、前記複数の車室部品38毎の前記フランジのうち、前記周方向Dcで隣接する車室部品38のフランジと対向するフランジ面38sである。
【0110】
本態様では、第二態様のタービン10の組立方法と同様に、車室部品38の形状を実際に計測する手間を少なくすることできる。
【0111】
(17)第十七態様におけるタービンの組立支援装置は、
前記第十六態様のタービン10の組立支援装置50,50aにおいて、前記実測形状データ取得部62は、前記複数の車室部品38毎に前記実測対象部を含む領域中の複数の点85で計測された三次元位置データを取得し、前記複数の車室部品38毎に、前記複数の点85での前記三次元位置データを用いて、複数のポリゴンデータを作成するポリゴンデータ作成部62aと、前記複数のポリゴンデータのうちから、前記フランジ面38sに対する複数のポリゴンデータで特定される多角形平面86の傾きが所定の傾き以内の複数のポリゴンデータを抽出するデータ抽出部62bと、前記データ抽出部62bで抽出された前記複数のポリゴンデータを用いて、前記複数の車室部品38毎の前記実測形状データを作成する実測形状データ作成部62cと、を含む。
【0112】
本態様の組立支援装置50,50aを動作させることにより、第三態様のタービン10の組立方法と同様、実測対象部を含む領域中の複数の点85で計測された三次元位置データのうちから、フランジ面38s中の点85での三次元位置データを効率的に抽出することができる。
【0113】
(18)第十八態様におけるタービンの組立支援装置は、
前記第十七態様のタービン10の組立支援装置50,50aにおいて、前記実測形状データ作成部62cは、前記複数の車室部品38毎に前記実測対象部を含む仮想三次元空間を複数の三次元ブロック83に分割する準備部62caと、前記複数の三次元ブロック83毎に、対象とする三次元ブロック83中の代表点87を定める代表点設定部62cbと、前記複数の三次元ブロック83毎の前記代表点87を相互に補完面88としての平面又は曲面で接続して、前記複数の三次元ブロック83毎の前記代表点87を含む前記補完面88のデータを作成する補完面データ作成部62ccと、を含む。前記代表点設定部62cbは、前記データ抽出部62bで抽出された前記複数のポリゴンデータで特定される多角形平面86に含まれる複数の点85のうち、前記対象とする三次元ブロック83中に含まれる複数の点85毎の三次元位置データの中央値となる点85を、前記対象とする三次元ブロック83中の前記代表点87とする。前記モデル修正量演算部64は、前記複数の車室部品38毎の前記実測対象部の前記実測形状データとして、前記補完面88のデータを用いる。
【0114】
本態様の組立支援装置50,50aを動作させることにより、第四態様のタービン10の組立方法と同様、基準形状モデル80上のフランジ面38s全体に渡って連続し、且つ、誤差範囲の狭い実測形状データを得ることができる。
【0115】
(17)第十九態様におけるタービンの組立支援装置は、
前記第十五態様から前記第十八態様のいずれか一態様のタービン10の組立支援装置50,50aにおいて、前記複数の車室部品38毎の前記実測対象部は、前記フランジ面38sのみである。
【0116】
本態様では、第五態様のタービン10の組立方法と同様、車室部品38の形状を実際に計測する手間を少なくすることできる。
【0117】
(20)第二十態様におけるタービンの組立支援装置は、
前記十五態様のタービン10の組立支援装置50,50aにおいて、前記実測形状データ取得部62は、前記複数の車室部品38毎に前記実測対象部を含む仮想三次元空間を複数の三次元ブロック83に分割する準備部62caと、前記複数の三次元ブロック83毎に、対象とする三次元ブロック83中の代表点87を定める代表点設定部62cbと、前記複数の三次元ブロック83毎の前記代表点87を相互に補完面88としての平面又は曲面で接続して、前記複数の三次元ブロック83毎の前記代表点87を含む補完面88のデータを作成する補完面データ作成部62ccと、を含む。前記代表点設定部62cbは、前記複数の車室部品38毎に前記実測対象部を含む領域中の複数の点85で計測された三次元位置データを取得し、前記複数の車室部品38毎の前記複数の点85のうち、前記対象とする三次元ブロック83中に含まれる複数の点85毎の三次元位置データの中央値となる点85を、前記対象とする三次元ブロック83中の前記代表点87とする。前記モデル修正量演算部64は、前記複数の車室部品38毎の前記実測対象部の前記実測形状データとして、前記補完面88のデータを用いる。
【0118】
本態様の組立支援装置50,50aを動作させることにより、第六態様のタービン10の組立方法と同様、実測対象部の全体に渡って連続し、且つ、誤差範囲の狭い実測形状データを得ることができる。
【0119】
(21)第二一態様におけるタービンの組立支援装置は、
前記第十五態様から前記第二十態様のいずれか一態様のタービン10の組立支援装置50aにおいて、前記修正形状モデル80aを用いて、前記複数の車室部品38相互が締結された状態での前記複数の車室部品38毎の前記締結時形状データを推定する締結時形状データ推定部67を、さらに有する。
【符号の説明】
【0120】
10:蒸気タービン(タービン)
11:架台
12:軸受
15:ロータ(回転体)
16:ロータ軸
17:動翼列
20:ダイヤフラム
21a:下半ダイヤフラム(静止体部品)
21b:上半ダイヤフラム(静止体部品)
22:静翼
23:ダイヤフラム内輪
24:ダイヤフラム外輪
25:シール装置
30:車室
31:外車室
32a:下半外車室(車室部品又は静止体部品)
32ab:外車室本体
32af:外車室フランジ
32as:フランジ面(実測対象部)
32ag:支持溝
32b:上半外車室(車室部品又は静止体部品)
32bb:外車室本体
32bf:外車室フランジ
32bs:フランジ面(実測対象部)
33:ボルト
35:内車室
36a:下半内車室(車室部品又は静止体部品)
36ab:内車室本体
36af:内車室フランジ
36as:フランジ面(実測対象部)
36ag:被支持部
36b:上半内車室(車室部品又は静止体部品)
36bb:内車室本体
36bf:内車室フランジ
36bs:フランジ面(実測対象部)
37:ボルト
38:車室部品
38s:フランジ面(実測対象部)
39:シム
50,50a:組立支援装置
51:手入力装置
52:表示装置
53:入出力インタフェース
54:装置インタフェース
55:通信インタフェース
56:記憶・再生装置
57:メモリ
58:補助記憶装置
58d:基準形状データ
58p,58pa:組立支援プログラム
60:CPU
61:基準形状モデル作成部
62:実測形状データ取得部
62a:ポリゴンデータ作成部
62b:データ抽出部
62c:実測形状データ作成部
62ca:準備部
62cb:代表点設定部
62cc:補完面データ作成部
63:自重付与時形状データ作成部
64:モデル修正量演算部
65:修正形状モデル作成部
66:間隔算出部
67:締結時形状データ推定部
70:締結時形状データ推定装置
75:三次元形状測定装置
80:基準形状モデル
80a:修正形状モデル
81:基準形状モデル中のフランジ面(実測対象部)
82:基準形状モデル中でフランジ面に対して傾斜している面
83:三次元ブロック
84:グリッド
85:点
86,86a,86b:ポリゴン(多角形平面)
87:代表点
88:補完面
89:自重付与時形状データ
Ar:軸線
Da:軸線方向
Dc:周方向
Dr:径方向
Dri:径方向内側
Dro:径方向外側