(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-01-09
(45)【発行日】2024-01-17
(54)【発明の名称】送信装置、受信装置、通信システム
(51)【国際特許分類】
H04L 25/02 20060101AFI20240110BHJP
H04L 25/49 20060101ALI20240110BHJP
【FI】
H04L25/02 J
H04L25/49 K
(21)【出願番号】P 2021522686
(86)(22)【出願日】2020-04-09
(86)【国際出願番号】 JP2020016011
(87)【国際公開番号】W WO2020241085
(87)【国際公開日】2020-12-03
【審査請求日】2023-02-20
(31)【優先権主張番号】P 2019101705
(32)【優先日】2019-05-30
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】316005926
【氏名又は名称】ソニーセミコンダクタソリューションズ株式会社
(74)【代理人】
【識別番号】100103850
【氏名又は名称】田中 秀▲てつ▼
(74)【代理人】
【識別番号】100114177
【氏名又は名称】小林 龍
(74)【代理人】
【識別番号】100066980
【氏名又は名称】森 哲也
(72)【発明者】
【氏名】林 宏暁
【審査官】阿部 弘
(56)【参考文献】
【文献】特開2010-268180(JP,A)
【文献】国際公開第2017/149980(WO,A1)
【文献】米国特許出願公開第2007/0046389(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H04L 25/02
H04L 25/49
(57)【特許請求の範囲】
【請求項1】
複数のデータ信号を複数のシンボルに変換して送信する送信信号変換部と、
前記複数のシンボルのうち少なくとも1つの入力を受け、且つ3本以上の伝送路のそれぞれに対して個別に対応するドライバを制御するエンコード部と、を備え、
前記ドライバは、
第1のモードにおいて第1電圧状態又は前記第1電圧状態と電圧レベルが異なる第2電圧状態でドライブ
し、
前記第1のモードと異なる第2のモードにおいて、前記第1電圧状態、前記第2電圧状態、及び前記第1電圧状態及び前記第2電圧状態と電圧レベルが異なる第3電圧状態のうちいずれか一つの電圧状態でドライブし、
前記第1電圧状態と、前記第2電圧状態及び前記第3電圧状態は、それぞれ、単一の電圧レベルである送信装置。
【請求項2】
前記第2のモードにおいて、前記3本以上の伝送路の電圧状態が互いに異なる値である請求項
1に記載した送信装置。
【請求項3】
前記送信信号変換部又は前記エンコード部と前記ドライバとの間に配置され、且つ入力を受けた前記シンボルのパラレルデータをシリアルデータに変換するパラレルシリアル変換回路を備える請求項1に記載した送信装置。
【請求項4】
前記シンボルの状態は、6種類のワイヤ状態のうちいずれか一つの状態に遷移し、
前記ワイヤ状態が遷移する境界は、全てのシンボルの境界に存在し、
現在のワイヤ状態から前記シンボルの状態が次に遷移することが可能なワイヤ状態は、前記現在のワイヤ状態と異なる5種類が常に存在し、
前記シンボルの値は、現在の間隔から次の間隔への前記ワイヤ状態の変化によって定義される請求項1に記載した送信装置。
【請求項5】
前記ドライバが出力する値の組み合わせは、前記ワイヤ状態により決定される請求項
4に記載した送信装置。
【請求項6】
3本以上の伝送路のそれぞれに対して個別に対応し、且つデジタル値を出力する複数のレシーバと、
前記複数のレシーバからそれぞれ出力される複数のデジタル値の組み合わせからシンボルを出力するデコーダ部と、
前記デジタル値の組み合わせからクロックを生成するクロック生成部と、を備え、
前記複数のレシーバは、
第1のモードにおいて第1電圧状態又は前記第1電圧状態と電圧レベルが異なる第2電圧状態でドライブされたデータ信号を受信
し、
前記第1のモードと異なる第2のモードにおいて、前記第1電圧状態、前記第2電圧状態、及び前記第1電圧状態及び前記第2電圧状態と電圧レベルが異なる第3電圧状態のうちいずれか一つの電圧状態でドライブされた複数のデータ信号を受信し、前記受信した複数のデータ信号の電圧状態の差分から前記デジタル値を出力し、
前記第1電圧状態と、前記第2電圧状態及び前記第3電圧状態は、それぞれ、単一の電圧レベルである受信装置。
【請求項7】
複数のデータ信号を複数のシンボルに変換して送信する送信信号変換部と、前記複数のシンボルのうち少なくとも1つの入力を受け、且つ3本以上の伝送路のそれぞれに対して個別に対応するドライバを制御するエンコード部と、を備える送信装置と、
前記3本以上の伝送路のそれぞれに対して個別に対応し、且つデジタル値を出力する複数のレシーバと、前記複数のレシーバからそれぞれ出力される複数のデジタル値の組み合わせから前記シンボルを出力するデコーダ部と、前記デジタル値の組み合わせからクロックを生成するクロック生成部と、を備える受信装置と、を備える通信システムであって、
前記ドライバは、
第1のモードにおいて第1電圧状態又は前記第1電圧状態と電圧レベルが異なる第2電圧状態でドライブし、
前記第1のモードと異なる第2のモードにおいて、前記第1電圧状態、前記第2電圧状態、及び前記第1電圧状態及び前記第2電圧状態と電圧レベルが異なる第3電圧状態のうちいずれか一つの電圧状態でドライブし、
前記複数のレシーバは、
前記第1のモードにおいて前記第1電圧状態又は前記第2電圧状態でドライブされたデータ信号を受信
し、
前記第1のモードと異なる第2のモードにおいて、前記第1電圧状態、前記第2電圧状態、及び前記第1電圧状態及び前記第2電圧状態と電圧レベルが異なる第3電圧状態のうちいずれか一つの電圧状態でドライブされた複数のデータ信号を受信し、前記受信した複数のデータ信号の電圧状態の差分から前記デジタル値を出力し、
前記第1電圧状態と、前記第2電圧状態及び前記第3電圧状態は、それぞれ、単一の電圧レベルである通信システム。
【請求項8】
前記第2のモードにおいて、前記3本以上の伝送路の電圧状態が互いに異なる値である請求項
7に記載した通信システム。
【請求項9】
前記送信装置は、前記送信信号変換部又は前記エンコード部と前記ドライバとの間に配置され、且つ入力を受けた前記シンボルのパラレルデータをシリアルデータに変換するパラレルシリアル変換回路を備える請求項
7に記載した通信システム。
【請求項10】
前記シンボルの状態は、6種類のワイヤ状態のうちいずれか一つの状態に遷移し、
前記ワイヤ状態が遷移する境界は、全てのシンボルの境界に存在し、
現在のワイヤ状態から前記シンボルの状態が次に遷移することが可能なワイヤ状態は、前記現在のワイヤ状態と異なる5種類が常に存在し、
前記シンボルの値は、現在の間隔から次の間隔への前記ワイヤ状態の変化によって定義される請求項
7に記載した通信システム。
【請求項11】
前記ドライバが出力する値の組み合わせは、前記ワイヤ状態により決定される請求項
10に記載した通信システム。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、信号を送信する送信装置、信号を受信する受信装置と、送信装置及び受信装置を備えた通信システムに関する。
【背景技術】
【0002】
多機能携帯電話(スマートフォン)等の電子機器には、半導体チップ、センサ、表示デバイス等の様々なデバイスが搭載されており、デバイス間では、多くのデータを送受信する。デバイス間で送受信するデータ量は、電子機器の高機能化及び多機能化に応じて増加しているため、例えば、数Gbpsでデータを送受信可能な高速インターフェースを用いて、データの送受信を行う。
そこで、高速インターフェースにおける通信性能の向上を図るために、様々な技術が開示されている。例えば、特許文献1には、3本の伝送路を用いて3つの差動信号を伝送することで、高速インターフェースにおける通信性能の向上を図る通信システムが開示されている。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら、特許文献1に開示されている技術のように、複数の差動信号を用いて情報を伝送する技術では、差動信号を伝送する際の経過時間と、差動信号の電圧の変化量との比が大きくなり、差動信号の波形品質が悪化する。これにより、送信装置から受信装置へ伝送した信号に発生するジッタが増加するという問題点がある。
【0005】
本技術は、上記問題点を鑑み、送信装置から受信装置へ伝送した信号に発生するジッタを低減させることが可能な送信装置と、信号を受信する受信装置と、送信装置及び受信装置を備えた通信システムを提供することを目的とする。
【課題を解決するための手段】
【0006】
本技術の一態様に係る送信装置は、送信信号変換部と、エンコード部を備える送信装置である。送信信号変換部は、複数のデータ信号を複数のシンボルに変換して送信する。エンコード部は、複数のシンボルのうち少なくとも1つの入力を受け、且つ3本以上の伝送路のそれぞれに対して個別に対応するドライバを制御する。ドライバは、第1のモードにおいて第1電圧状態又は前記第1電圧状態と電圧レベルが異なる第2電圧状態でドライブする。
【0007】
本技術の一態様に係る受信装置は、複数のレシーバと、デコーダ部と、クロック生成部を備える受信装置である。複数のレシーバは、3本以上の伝送路のそれぞれに対して個別に対応し、且つデジタル値を出力する。デコーダ部は、複数のレシーバからそれぞれ出力される複数のデジタル値の組み合わせからシンボルを出力する。クロック生成部は、デジタル値の組み合わせからクロックを生成する。また、複数のレシーバは、第1のモードにおいて第1電圧状態又は前記第1電圧状態と電圧レベルが異なる第2電圧状態でドライブされたデータ信号を受信する。
【0008】
本技術の一態様に係る通信システムは、送信装置と、受信装置を備える通信システムである。送信装置は、複数のデータ信号を複数のシンボルに変換して送信する送信信号変換部と、複数のシンボルのうち少なくとも1つの入力を受け、且つ3本以上の伝送路のそれぞれに対して個別に対応するドライバを制御するエンコード部を備える。ドライバは、第1のモードにおいて第1電圧状態又は前記第1電圧状態と電圧レベルが異なる第2電圧状態でドライブする。受信装置は、複数のレシーバと、デコーダ部と、クロック生成部を備える受信装置である。複数のレシーバは、3本以上の伝送路のそれぞれに対して個別に対応し、且つデジタル値を出力する。デコーダ部は、複数のレシーバからそれぞれ出力される複数のデジタル値の組み合わせからシンボルを出力する。クロック生成部は、デジタル値の組み合わせからクロックを生成する。
【図面の簡単な説明】
【0009】
【
図2A】シングル送信モードにおいて通信システムが送受信する信号の電圧状態を表す説明図である。
【
図2B】差分送信モードにおいて通信システムが送受信する信号の電圧状態を表す説明図である。
【
図3】通信システムが送受信する送信シンボルの遷移を表す説明図である。
【
図12A】シングル送信モードにおいて受信部が行う動作の一例を示す説明図である。
【
図12B】差分送信モードにおいて受信部が行う動作の一例を示す説明図である。
【
図13】通信システムが送受信する信号の電圧状態を表す説明図である。
【
図15】受信部が行う動作の一例を示す説明図である。
【
図16】送信モードが差分送信モードである場合における、通信システムが有する特性の一例を模式的に示すアイダイアグラムである。
【
図18】送信モードがシングル送信モードである場合における、通信システムが有する特性の一例を模式的に示すアイダイアグラムである。
【
図19】通信システムが適用されたスマートフォンの外観構成を表す斜視図である。
【
図20】通信システムが適用されたアプリケーションプロセッサの一構成例を表すブロック図である。
【
図21】通信システムが適用されたイメージセンサの一構成例を表すブロック図である。
【
図22】通信システムが適用された車両制御システムの一構成例を表すブロック図である。
【発明を実施するための形態】
【0010】
以下、図面を参照して、本技術の実施形態を説明する。図面の記載において、同一又は類似の部分には同一又は類似の符号を付し、重複する説明を省略する。各図面は模式的なものであり、現実のものとは異なる場合が含まれる。以下に示す実施形態は、本技術の技術的思想を具体化するための装置や方法を例示するものであって、本技術の技術的思想は、下記の実施形態に例示した装置や方法に特定するものでない。本技術の技術的思想は、特許請求の範囲に記載された技術的範囲内において、種々の変更を加えることが可能である。
【0011】
(第1実施形態)
通信システム1は、
図1に示すように、送信装置10と、伝送路100と、受信装置30を備える。
【0012】
送信装置10は、3つの出力端子Tout(出力端子ToutA、出力端子ToutB、出力端子ToutC)を備える。伝送路100は、それぞれが3ビット以上の送信信号を1ビットずつ送信する、3つの線路110(線路110A、線路110B、線路110C)を備える。受信装置30は、3つの入力端子Tin(入力端子TinA、入力端子TinB、入力端子TinC)を備える。
出力端子ToutAと入力端子TinAは、線路110Aを介して互いに接続されている。出力端子ToutBと入力端子TinBは、線路110Bを介して互いに接続されている。出力端子ToutCと入力端子TinCは、線路110Cを介して互いに接続されている。線路110A、線路110B、線路110Cの特性インピーダンスは、例えば、約50[Ω]である。
また、送信装置10は、出力端子ToutAから送信信号である信号SIGAを出力し、出力端子ToutBから送信信号である信号SIGBを出力し、出力端子ToutCから送信信号である信号SIGCを出力する。
【0013】
伝送路100は、信号SIGAと、信号SIGBと、信号SIGCを用いて、6つの送信シンボル“+x”、“-x”、“+y”、“-y”、“+z”、“-z”のシーケンス(ワイヤ状態)を伝達する。すなわち、3つの線路(線路110A、線路110B、線路110C)は、6つの送信シンボルのシーケンスを伝達する1つのレーンとして機能する。
また、送信信号(信号SIGA、信号SIGB、信号SIGC)により形成されるデータを含むデータ信号は、送信シンボルのシーケンスを示す。
【0014】
受信装置30は、入力端子TinAを介して信号SIGAを受信し、入力端子TinBを介して信号SIGBを受信し、入力端子TinCを介して信号SIGCを受信する。
【0015】
以上により、送信装置10は、3本以上の伝送路100を用いて、送信シンボルのシーケンスを示すデータ信号を変換した3ビット以上の送信信号を同時に送信する。
また、通信システム1は、3本以上の伝送路100を用いて3ビット以上の送信信号を同時に送信する送信装置10と、伝送路100を介して送信装置10が送信した送信信号を受信する受信装置30を備える。
第1実施形態では、一例として、伝送路100が3本(線路110A、線路110B、線路110C)であり、送信信号が3ビット(信号SIGA、信号SIGB、信号SIGC)である構成について説明する。
【0016】
送信装置10が、伝送路100を用いて受信装置30へ送信信号を送信する送信モードは、シングル送信モード(第1のモード)と、差分送信モード(第2のモード)を含む。
【0017】
シングル送信モードでは、信号SIGA、信号SIGB、信号SIGCが、それぞれ、2つの電圧状態である電圧状態SH又は電圧状態SLのうちいずれかの電圧状態となる。電圧状態SHは、高レベル電圧VHに対応する状態(第1電圧状態)である。電圧状態SLは、電圧状態SHよりも低い電圧レベルである、低レベル電圧VLに対応する状態(第2電圧状態)である。
以下、シングル送信モードにおいて6つの送信シンボルを送信する際に行う処理を、
図2Aを用いて、それぞれの送信シンボル毎に説明する。
【0018】
送信シンボル“+x”を送信する場合、信号SIGAを電圧状態SHとし、信号SIGBを電圧状態SLとし、信号SIGCを電圧状態SLとする。送信シンボル“-x”を送信する場合、信号SIGAを電圧状態SLとし、信号SIGB及び信号SIGCを電圧状態SHとする。送信シンボル“+y”を送信する場合、信号SIGAを電圧状態SLとし、信号SIGBを電圧状態SHとし、信号SIGCを電圧状態SLとする。送信シンボル“-y”を送信する場合、信号SIGAを電圧状態SHとし、信号SIGBを電圧状態SLとし、信号SIGCを電圧状態SHとする。送信シンボル“+z”を送信する場合、信号SIGA及び信号SIGBを電圧状態SLとし、信号SIGCを電圧状態SHとする。送信シンボル“-z”を送信する場合、信号SIGA及び信号SIGBを電圧状態SHとし、信号SIGCを電圧状態SLとする。
また、
図2Aに示すように、送信シンボルの値は、現在の間隔から次の間隔へ移動する際に変化する。
【0019】
差分送信モードでは、信号SIGA、信号SIGB、信号SIGCが、それぞれ、3つの電圧状態である、電圧状態SH、電圧状態SM、電圧状態SLのうちいずれかの電圧状態となる。電圧状態SMは、中レベル電圧VMに対応する状態(第3電圧状態)であり、電圧状態SHよりも低い電圧レベルであるとともに、電圧状態SLよりも高い電圧レベルである。すなわち、差分送信モード(第2のモード)においては、3本以上の伝送路100の電圧状態が互いに異なる値である。
以下、差分送信モードにおいて6つの送信シンボルを送信する際に行う処理を、
図2Bを用いて、それぞれの送信シンボル毎に説明する。
【0020】
送信シンボル“+x”を送信する場合、信号SIGAを電圧状態SHとし、信号SIGBを電圧状態SLとし、信号SIGCを電圧状態SMとする。送信シンボル“-x”を送信する場合、信号SIGAを電圧状態SLとし、信号SIGBを電圧状態SHとし、信号SIGCを電圧状態SMとする。送信シンボル“+y”を送信する場合、信号SIGAを電圧状態SMとし、信号SIGBを電圧状態SHとし、信号SIGCを電圧状態SLとする。送信シンボル“-y”を送信する場合、信号SIGAを電圧状態SMとし、信号SIGBを電圧状態SLとし、信号SIGCを電圧状態SHとする。送信シンボル“+z”を送信する場合、信号SIGAを電圧状態SLとし、信号SIGBを電圧状態SMとし、信号SIGCを電圧状態SHとする。送信シンボル“-z”を送信する場合、信号SIGAを電圧状態SHとし、信号SIGBを電圧状態SMとし、信号SIGCを電圧状態SLとする。
また、
図2Bに示すように、送信シンボルの値は、現在の間隔から次の間隔へ移動する際に変化する。
【0021】
<送信装置の構成>
送信装置10は、送信側クロック生成部11と、送信側処理部12と、送信部20とを備えている。
【0022】
送信側クロック生成部11は、例えば、PLL(Phase Locked Loop)を用いて構成されており、クロック信号TxCKを生成する。クロック信号TxCKの周波数は、例えば、2.5[GHz]である。
なお、クロック信号TxCKの周波数は、2.5[GHz]に限定されるものではない。すなわち、例えば、送信装置10における回路を、いわゆるハーフレートアーキテクチャを用いて構成した場合には、クロック信号TxCKの周波数を、1.25[GHz]とすることが可能である。
また、送信側クロック生成部11は、例えば、送信装置10の外部から供給されるリファレンスクロック(図示せず)に基づいて、クロック信号TxCKを生成する。そして、送信側クロック生成部11は、生成したクロック信号TxCKを、送信側処理部12及び送信部20に供給する。
【0023】
送信側処理部12は、所定の処理を行うことにより、遷移信号TxF0~TxF6と、遷移信号TxR0~TxR6と、遷移信号TxP0~TxP6を生成する。ここで、1組の遷移信号TxF0、TxR0、TxP0は、送信装置10が送信する送信シンボルのシーケンスにおける、送信シンボルの遷移を示す。同様に、1組の遷移信号TxF1、TxR1、TxP1は送信シンボルの遷移を示し、1組の遷移信号TxF2、TxR2、TxP2は送信シンボルの遷移を示し、1組の遷移信号TxF3、TxR3、TxP3は送信シンボルの遷移を示す。さらに、1組の遷移信号TxF4、TxR4、TxP4は送信シンボルの遷移を示し、1組の遷移信号TxF5、TxR5、TxP5は送信シンボルの遷移を示し、1組の遷移信号TxF6、TxR6、TxP6は送信シンボルの遷移を示す。
すなわち、送信側処理部12は、7組の遷移信号を生成する。以降の説明では、7組の遷移信号のうち任意の一組を表すものとして、遷移信号TxF、TxR、TxPを適宜用いる。
【0024】
遷移信号TxF、TxR、TxPと送信シンボルの遷移との関係は、
図3に示す関係となる。なお、各遷移に付した3桁の数値は、遷移信号TxF、TxR、TxPの値を、この順で示したものである。
遷移信号TxF(Flip)は、“+x”と“-x”との間、“+y”と“-y”との間、“+z”と“-z”との間で、それぞれ、送信シンボルを遷移させる。具体的には、遷移信号TxFが“1”である場合には、送信シンボルの極性を変更するように(例えば“+x”から“-x”へ)遷移し、遷移信号TxFが“0”である場合には、このような遷移を行わないようになっている。
遷移信号TxR(Rotation)と遷移信号TxP(Polarity)は、遷移信号TxFが“0”である場合において、“+x”と“-x”以外との間、“+y”と“-y”以外との間、“+z”と“-z”以外との間で送信シンボルを遷移させる。具体的には、遷移信号TxR、TxPが“1”、“0”である場合には、送信シンボルの極性を保ったまま、
図3において右回りに(例えば“+x”から“+y”へ)遷移し、遷移信号TxR、TxPが“1”、“1”である場合には、送信シンボルの極性を変更するとともに、
図3において右回りに(例えば“+x”から“-y”へ)遷移する。また、遷移信号TxR、TxPが“0”、“0”である場合には、送信シンボルの極性を保ったまま、
図3において左回りに(例えば“+x”から“+z”へ)遷移し、遷移信号TxR、TxPが“0”、“1”である場合には、送信シンボルの極性を変更するとともに、
図3において左回りに(例えば“+x”から“-z”へ)遷移する。
送信側処理部12は、遷移信号TxF、TxR、TxPを7組生成する。そして、送信側処理部12は、生成した7組の遷移信号TxF、TxR、TxP(遷移信号TxF0~TxF6、TxR0~TxR6、TxP0~TxP6)を、送信部20に供給する。
【0025】
送信部20は、遷移信号TxF0~TxF6と、遷移信号TxR0~TxR6と、遷移信号TxP0~TxP6に基づいて、信号SIGAと、信号SIGBと、信号SIGCを生成する。
また、送信部20は、
図4に示すように、第一シリアライザ21Fと、第二シリアライザ21Rと、第三シリアライザ21Pと、送信シンボル生成部22と、出力部26とを備えている。
【0026】
第一シリアライザ21Fは、遷移信号TxF0~TxF6及びクロック信号TxCKに基づき、遷移信号TxF0~TxF6を数字の順番でシリアライズして、遷移信号TxF9を生成する。
第二シリアライザ21Rは、遷移信号TxR0~TxR6及びクロック信号TxCKに基づき、遷移信号TxR0~TxR6を数字の順番でシリアライズして、遷移信号TxR9を生成する。
第三シリアライザ21Pは、遷移信号TxP0~TxP6及びクロック信号TxCKに基づき、遷移信号TxP0~TxP6を数字の順番でシリアライズして、遷移信号TxP9を生成する。
【0027】
送信シンボル生成部22は、信号生成部23と、送信側フリップフロップ24とを備える。また、送信シンボル生成部22は、遷移信号TxF9と、遷移信号TxR9と、遷移信号TxP9と、クロック信号TxCKに基づいて、送信シンボル信号Tx1と、送信シンボル信号Tx2と、送信シンボル信号Tx3を生成する。
送信シンボル信号Tx1は、例えば、
図5に“D0”、“D3”、“D6”、“D9”、“D12”、“D15”、“D18”と示す、Aグループのパラレルデータ(パラレル配列のデータ)である。
送信シンボル信号Tx2は、例えば、
図5に“D1”、“D4”、“D7”、“D10”、“D13”、“D16”、“D19”と示す、Bグループのパラレルデータである。
送信シンボル信号Tx3は、例えば、
図5に“D2”、“D5”、“D8”、“D11”、“D14”、“D17”、“D20”と示す、Cグループのパラレルデータである。
【0028】
信号生成部23は、遷移信号TxF9と、遷移信号TxR9と、遷移信号TxP9と、送信シンボル信号D1と、送信シンボル信号D2と、送信シンボル信号D3に基づいて、送信シンボル信号Tx1と、送信シンボル信号Tx2と、送信シンボル信号Tx3を生成する。具体的に、信号生成部23は、送信シンボル信号D1、D2、D3が示す送信シンボル(遷移前の送信シンボルDS)と、遷移信号TxF9、TxR9、TxP9とに基づいて、
図3に示したように、遷移後の送信シンボルNSを検出する。さらに、信号生成部23は、検出した送信シンボルNSを、送信シンボル信号Tx1、Tx2、Tx3として、送信側フリップフロップ24と出力部26へ出力する。
したがって、送信シンボル信号Tx1、Tx2、Tx3は、エンコードされた送信信号である。
【0029】
送信側フリップフロップ24は、クロック信号TxCKに基づいて、送信シンボル信号Tx1、Tx2、Tx3をサンプリングする。そして、送信側フリップフロップ24は、サンプリング結果を、送信シンボル信号D1、D2、D3としてそれぞれ出力する。
送信シンボル信号D1、D2、D3が示す送信シンボルDSと、遷移信号TxF9、TxR9、TxP9とに基づいて生成される送信シンボルNSを、
図6に示す。
【0030】
図6に示すように、送信シンボルDSが“+x”である場合、遷移信号TxF9、TxR9、TxP9が“000”である場合には、送信シンボルNSは“+z”である。
遷移信号TxF9、TxR9、TxP9が“001”である場合には、送信シンボルNSは“-z”である。遷移信号TxF9、TxR9、TxP9が“010”である場合には、送信シンボルNSは“+y”である。遷移信号TxF9、TxR9、TxP9が“011”である場合には、送信シンボルNSは“-y”である。遷移信号TxF9、TxR9、TxP9が“1xx”である場合には、送信シンボルNSは“-x”である。
ここで、“x”は、“1”、“0”のどちらであってもよいことを示す。これは、送信シンボルDSが“-x”である場合、“+y”である場合、“-y”である場合、“+z”である場合、“-z”である場合についても、同様である。
以上により、シンボル(送信シンボル)の状態は、6種類のワイヤ状態(“+x”、“-x”、“+y”、“-y”、“+z”、“-z”)のうち、いずれか一つの状態に遷移する。また、ワイヤ状態が遷移する境界は、全てのシンボルの境界に存在する。さらに、現在のワイヤ状態からシンボルの状態が次に遷移することが可能なワイヤ状態は、現在のワイヤ状態(例えば、“+x”)と異なる5種類(例えば、“-x”、“+y”、“-y”、“+z”、“-z”)が常に存在する。また、シンボルの値は、現在の間隔から次の間隔へのワイヤ状態の変化によって定義される。
【0031】
出力部26は、送信シンボル信号Tx1と、送信シンボル信号Tx2と、送信シンボル信号Tx3と、クロック信号TxCKに基づいて、信号SIGAと、信号SIGBと、信号SIGCを生成する。
出力部26が、信号SIGA、信号SIGB、信号SIGCを生成する処理は、送信モードがシングル送信モードであるか差分送信モードであるかにより異なる。
【0032】
以下、送信モードがシングル送信モードである場合に、出力部26が、信号SIGA、信号SIGB、信号SIGCを生成する処理について、
図7を参照して説明する。
送信シンボル信号Tx1、Tx2、Tx3が“100”である場合には、信号SIGAを電圧状態SH(例えば、高レベル電圧VH)とし、信号SIGB及び信号SIGCを電圧状態SL(例えば、低レベル電圧VL)とする。すなわち、送信シンボル信号Tx1、Tx2、Tx3が“100”である場合、出力部26は、送信シンボル“+x”を生成する。
送信シンボル信号Tx1、Tx2、Tx3が“011”である場合には、信号SIGAを電圧状態SLとし、信号SIGB及び信号SIGCを電圧状態SHとする。すなわち、送信シンボル信号Tx1、Tx2、Tx3が“011”である場合、出力部26は、送信シンボル“-x”を生成する。
送信シンボル信号Tx1、Tx2、Tx3が“010”である場合には、信号SIGA及び信号SIGCを電圧状態SLとし、信号SIGBを電圧状態SHとする。すなわち、送信シンボル信号Tx1、Tx2、Tx3が“010”である場合、出力部26は、送信シンボル“+y”を生成する。
送信シンボル信号Tx1、Tx2、Tx3が“101”である場合には、信号SIGA及び信号SIGCを電圧状態SHとし、信号SIGBを電圧状態SLとする。すなわち、送信シンボル信号Tx1、Tx2、Tx3が“101”である場合、出力部26は、送信シンボル“-y”を生成する。
送信シンボル信号Tx1、Tx2、Tx3が“001”である場合には、信号SIGA及び信号SIGBを電圧状態SLとし、信号SIGCを電圧状態SHとする。すなわち、送信シンボル信号Tx1、Tx2、Tx3が“001”である場合、出力部26は、送信シンボル“+z”を生成する。
送信シンボル信号Tx1、Tx2、Tx3が“110”である場合には、信号SIGA及び信号SIGBを電圧状態SHとし、信号SIGCを電圧状態SLとする。すなわち、送信シンボル信号Tx1、Tx2、Tx3が“110”である場合、出力部26は、送信シンボル“-z”を生成する。
【0033】
次に、送信モードが差分送信モードである場合に、出力部26が、信号SIGA、信号SIGB、信号SIGCを生成する処理について、
図8を参照して説明する。
送信シンボル信号Tx1、Tx2、Tx3が“100”である場合には、信号SIGAを電圧状態SHとし、信号SIGBを電圧状態SLとし、信号SIGCを電圧状態SM(例えば、中レベル電圧VM)とすることで、送信シンボル“+x”を生成する。
送信シンボル信号Tx1、Tx2、Tx3が“011”である場合には、信号SIGAを電圧状態SLとし、信号SIGBを電圧状態SHとし、信号SIGCを電圧状態SMとすることで、送信シンボル“-x”を生成する。
送信シンボル信号Tx1、Tx2、Tx3が“010”である場合には、信号SIGAを電圧状態SMとし、信号SIGBを電圧状態SHとし、信号SIGCを電圧状態SLとすることで、送信シンボル“+y”を生成する。
送信シンボル信号Tx1、Tx2、Tx3が“101”である場合には、信号SIGAを電圧状態SMとし、信号SIGBを電圧状態SLとし、信号SIGCを電圧状態SHとすることで、送信シンボル“-y”を生成する。
送信シンボル信号Tx1、Tx2、Tx3が“001”である場合には、信号SIGAを電圧状態SLとし、信号SIGBを電圧状態SMとし、信号SIGCを電圧状態SHとすることで、送信シンボル“+z”を生成する。
送信シンボル信号Tx1、Tx2、Tx3が“110”である場合には、信号SIGAを電圧状態SHとし、信号SIGBを電圧状態SMとし、信号SIGCを電圧状態SLとすることで、送信シンボル“-z”を生成する。
【0034】
以下、出力部26の詳細な構成を説明する。
出力部26は、
図9に示すように、第一パラレルシリアル変換回路70Aと、第二パラレルシリアル変換回路70Bと、第三パラレルシリアル変換回路70Cを備える。さらに、出力部26は、第一シングルモードデータ生成部72Aと、第二シングルモードデータ生成部72Bと、第三シングルモードデータ生成部72Cと、第一差分モードデータ生成部74Aと、第二差分モードデータ生成部74Bと、第三差分モードデータ生成部74Cを備える。これに加え、出力部26は、第一モード選択部76Aと、第二モード選択部76Bと、第三モード選択部76Cと、第一ドライバ部78Aと、第二ドライバ部78Bと、第三ドライバ部78Cを備える。
【0035】
第一パラレルシリアル変換回路70Aは、パラレルデータ(TxF9)である送信シンボル信号Tx1を受信する。また、第一パラレルシリアル変換回路70Aは、受信した送信シンボル信号Tx1であるAグループのパラレルデータを、
図10に“D0”、“D3”、“D6”、“D9”、“D12”、“D15”、“D18”と示すシリアルデータ(シリアル配列のデータ)に変換する。そして、第一パラレルシリアル変換回路70Aは、シリアルデータに変換した送信シンボル信号Tx1を、第一シングルモードデータ生成部72Aと、第一差分モードデータ生成部74Aと、第二差分モードデータ生成部74Bに出力する。なお、
図10に示すように、シリアルデータは、PLLクロックに対応するタイミングで出力される。
第二パラレルシリアル変換回路70Bは、パラレルデータ(TxR9)である送信シンボル信号Tx2を受信する。また、第二パラレルシリアル変換回路70Bは、受信した送信シンボル信号Tx2であるBグループのパラレルデータを、
図10に“D1”、“D4”、“D7”、“D10”、“D13”、“D16”、“D19”と示すシリアルデータに変換する。そして、第二パラレルシリアル変換回路70Bは、シリアルデータに変換した送信シンボル信号Tx2を、第二シングルモードデータ生成部72Bと、第二差分モードデータ生成部74Bと、第三差分モードデータ生成部74Cに出力する。
第三パラレルシリアル変換回路70Cは、パラレルデータ(TxP9)である送信シンボル信号Tx3を受信する。また、第三パラレルシリアル変換回路70Cは、受信した送信シンボル信号Tx3であるCグループのパラレルデータを、
図10に“D2”、“D5”、“D8”、“D11”、“D14”、“D17”、“D20”と示すシリアルデータに変換する。そして、第三パラレルシリアル変換回路70Cは、シリアルデータに変換した送信シンボル信号Tx3を、第三シングルモードデータ生成部72Cと、第一差分モードデータ生成部74Aと、第三差分モードデータ生成部74Cに出力する。
【0036】
第一シングルモードデータ生成部72Aは、入力を受けた送信シンボル信号Tx1のシリアルデータが含む1ビットの送信信号に応じて、以下の処理を行い、対応する伝送路であり、信号SIGAの伝送路である線路110Aの電圧状態を制御する。
1ビットの送信信号が送信シンボル“+x”、“-y”、“-z”に対応する場合には、線路110Aを電圧状態SHとし、1ビットの送信信号が送信シンボル“-x”、“+y”、“+z”に対応する場合には、線路110Aを電圧状態SLとする。
【0037】
第二シングルモードデータ生成部72Bは、入力を受けた送信シンボル信号Tx2のシリアルデータが含む1ビットの送信信号に応じて、以下の処理を行い、対応する伝送路であり、信号SIGBの伝送路である線路110Bの電圧状態を制御する。
1ビットの送信信号が送信シンボル“-x”、“+y”、“-z”に対応する場合には、線路110Bを電圧状態SHとし、1ビットの送信信号が送信シンボル“+x”、“-y”、“+z”に対応する場合には、線路110Bを電圧状態SLとする。
【0038】
第三シングルモードデータ生成部72Cは、入力を受けた送信シンボル信号Tx3のシリアルデータが含む1ビットの送信信号に応じて、以下の処理を行い、対応する伝送路であり、信号SIGCの伝送路である線路110Cの電圧状態を制御する。
1ビットの送信信号が送信シンボル“-x”、“-y”、“+z”に対応する場合には、線路110Cを電圧状態SHとし、1ビットの送信信号が送信シンボル“+x”、“+y”、“-z”に対応する場合には、線路110Cを電圧状態SLとする。
【0039】
以上説明したように、3本以上の伝送路100のそれぞれに対して個別に対応した伝送路100と同数のシングルモードデータ生成部72は、自身に入力された1ビットの送信信号のみに応じて、対応する伝送路を、互いに電圧レベルが異なる第1電圧状態(例えば、電圧状態SH)又は第2電圧状態(例えば、電圧状態SL)とする。
【0040】
なお、伝送路と同数のシングルモードデータ生成部72とは、第1実施形態では、第一シングルモードデータ生成部72A、第二シングルモードデータ生成部72B、第三シングルモードデータ生成部72Cである。
第1実施形態では、伝送路と同数のシングルモードデータ生成部72が、3本の伝送路のうち2本を第1電圧状態とし、伝送路のうち残りの1本を第2電圧状態とする場合について説明する。
【0041】
また、第1実施形態では、シングルモードデータ生成部72が、パラレルデータとしてエンコードされた後にシリアルデータに変換されて自身に入力された1ビットの送信信号のみに応じて、対応する伝送路100を第1電圧状態又は第2電圧状態とする。
また、第1実施形態では、第1電圧状態及び第2電圧状態のうち一方(例えば、電圧状態SH)は、受信装置30の側で用いる比較電圧(Vcm)よりも高い電圧レベルである。なお、比較電圧(Vcm)の説明は、後述する。これに加え、第1電圧状態及び第2電圧状態のうち他方(例えば、電圧状態SL)は、比較電圧(Vcm)よりも低い電圧レベルである。
【0042】
第一差分モードデータ生成部74Aは、入力を受けた送信シンボル信号Tx1及び送信シンボル信号Tx3のシリアルデータが含む2ビットの送信信号に応じて、以下の処理を行い、対応する伝送路であり、信号SIGAの伝送路である線路110Aの電圧状態を制御する。
2ビットの送信信号が送信シンボル“+x”、“-z”に対応する場合には、線路110Aを電圧状態SHとし、2ビットの送信信号が送信シンボル“+y”、“-y”に対応する場合には、線路110Aを電圧状態SMとする。また、2ビットの送信信号が送信シンボル“-x”、“+z”に対応する場合には、線路110Aを電圧状態SLとする。
【0043】
第二差分モードデータ生成部74Bは、入力を受けた送信シンボル信号Tx1及び送信シンボル信号Tx2のシリアルデータが含む2ビットの送信信号に応じて、以下の処理を行い、対応する伝送路であり、信号SIGBの伝送路である線路110Bの電圧状態を制御する。
2ビットの送信信号が送信シンボル“-x”、“+y”に対応する場合には、線路110Bを電圧状態SHとし、シリアルデータが送信シンボル“+z”、“-z”に対応する場合には、線路110Bを電圧状態SMとする。また、2ビットの送信信号が送信シンボル“+x”、“-y”に対応する場合には、線路110Bを電圧状態SLとする。
【0044】
第三差分モードデータ生成部74Cは、入力を受けた送信シンボル信号Tx2及び送信シンボル信号Tx3のシリアルデータが含む2ビットの送信信号に応じて、以下の処理を行い、対応する伝送路であり、信号SIGCの伝送路である線路110Cの電圧状態を制御する。
2ビットの送信信号が送信シンボル“-y”、“+z”に対応する場合には、線路110Cを電圧状態SHとし、2ビットの送信信号が送信シンボル“+x”、“-x”に対応する場合には、線路110Cを電圧状態SMとする。また、2ビットの送信信号が送信シンボル“+y”、“-z”に対応する場合には、線路110Cを電圧状態SLとする。
【0045】
以上説明したように、伝送路100と同数の差分モードデータ生成部74は、自身に入力された2ビットの送信信号に応じて、対応する伝送路100を、それぞれの電圧レベルが異なる、第3電圧状態(例えば、電圧状態SH)、第4電圧状態(例えば、電圧状態SL)及び第5電圧状態(例えば、電圧状態SM)のうちいずれかとする。
なお、伝送路100と同数の差分モードデータ生成部74とは、第1実施形態では、第一差分モードデータ生成部74Aと、第二差分モードデータ生成部74Bと、第三差分モードデータ生成部74Cである。
【0046】
第一モード選択部76Aは、例えば、外部から入力される指令信号に応じて、シングル送信モードと差分送信モードから、線路110Aを用いて送信信号を送信する送信モードを選択する。送信モードとしてシングル送信モードを選択した場合には、第一シングルモードデータ生成部72Aが第1電圧状態又は第2電圧状態とした伝送路(線路110A)を用いて送信信号を送信することで、送信信号を第一ドライバ部78Aへ出力する。一方、送信モードとして差分送信モードを選択した場合には、第一差分モードデータ生成部74Aが第3電圧状態、第4電圧状態及び第5電圧状態のうちいずれかとした伝送路(線路110A)を用いて送信信号を送信することで、送信信号を第一ドライバ部78Aへ出力する。
第二モード選択部76Bは、例えば、外部から入力される指令信号に応じて、シングル送信モードと差分送信モードから、線路110Bを用いて送信信号を送信する送信モードを選択する。送信モードとしてシングル送信モードを選択した場合には、第二シングルモードデータ生成部72Bが第1電圧状態又は第2電圧状態とした伝送路(線路110B)を用いて送信信号を送信することで、送信信号を第二ドライバ部78Bへ出力する。一方、送信モードとして差分送信モードを選択した場合には、第二差分モードデータ生成部74Bが第3電圧状態、第4電圧状態及び第5電圧状態のうちいずれかとした伝送路(線路110B)を用いて送信信号を送信することで、送信信号を第二ドライバ部78Bへ出力する。
【0047】
第三モード選択部76Cは、例えば、外部から入力される指令信号に応じて、シングル送信モードと差分送信モードから、線路110Cを用いて送信信号を送信する送信モードを選択する。送信モードとしてシングル送信モードを選択した場合には、第三シングルモードデータ生成部72Cが第1電圧状態又は第2電圧状態とした伝送路(線路110C)を用いて送信信号を送信することで、送信信号を第三ドライバ部78Cへ出力する。一方、送信モードとして差分送信モードを選択した場合には、第三差分モードデータ生成部74Cが第3電圧状態、第4電圧状態及び第5電圧状態のうちいずれかとした伝送路(線路110C)を用いて送信信号を送信することで、送信信号を第三ドライバ部78Cへ出力する。
以上説明したように、モード選択部76は、シングルモードデータ生成部72が第1電圧状態又は第2電圧状態とした伝送路100を用いて送信信号を送信するシングル送信モードと、差分モードデータ生成部74が第3電圧状態、第4電圧状態及び第5電圧状態のうちいずれかとした伝送路100を用いて送信信号を送信する差分送信モードを選択する。
【0048】
第一ドライバ部78Aは、出力端子が出力端子ToutAに接続されており、第一モード選択部76Aが選択した送信モードで、信号SIGAを、出力端子ToutAから線路110Aを介して入力端子TinAへ出力する。
また、第一ドライバ部78Aは、例えば、トランジスタ(例えば、NチャネルMOS(Metal Oxide Semiconductor)型のFET(Field Effect Transistor)等)と、抵抗素子を備えて形成されている。この構成は、第二ドライバ部78Bと第三ドライバ部78Cについても同様である。
第二ドライバ部78Bは、出力端子が出力端子ToutBに接続されており、第二モード選択部76Bが選択した送信モードで、信号SIGBを、出力端子ToutBから線路110Bを介して入力端子TinBへ出力する。
第三ドライバ部78Cは、出力端子が出力端子ToutCに接続されており、第三モード選択部76Cが選択した送信モードで、信号SIGCを、出力端子ToutCから線路110Cを介して入力端子TinCへ出力する。
【0049】
<受信装置の構成>
受信装置30は、受信部40と、受信側処理部32とを備えている。
【0050】
受信部40は、信号SIGA、SIGB、SIGCを受信し、受信した信号SIGA、SIGB、SIGCに基づいて、遷移信号RxF、RxR、RxP及びクロック信号RxCKを生成する。
また、受信部40は、例えば、
図11及び
図12に示すように、抵抗素子41A、41B、41Cと、スイッチ42A、42B、42Cと、アンプ43A、43B、43Cと、受信側クロック生成部44を備えている。これに加え、受信部40は、受信側第一フリップフロップ45と、受信側第二フリップフロップ46と、信号生成部47を備えている。さらに、受信部40は、スイッチ48A~48Gと、比較電圧(Vcm)の入力端子49を備えている。
【0051】
受信部40の回路構成は、送信モードがシングル送信モードであるか差分送信モードであるかによって、スイッチ42A~42Cとスイッチ48A~48Gのオン状態とオフ状態を切り換えることで、異なる構成に切り替わる。
抵抗素子41A、41B、41Cの抵抗値は、例えば、50[Ω]程度である。
抵抗素子41Aの一端は、入力端子TinAに接続されており、信号SIGAが供給される。抵抗素子41Aの他端は、スイッチ42Aの一端に接続されている。抵抗素子41Bの一端は、入力端子TinBに接続されており、信号SIGBが供給される。抵抗素子41Bの他端は、スイッチ42Bの一端に接続されている。抵抗素子41Cの一端は、入力端子TinCに接続されており、信号SIGCが供給される。抵抗素子41Cの他端は、スイッチ42Cの一端に接続されている。
【0052】
スイッチ42Aの一端は、抵抗素子41Aの他端に接続されており、スイッチ42Aの他端は、スイッチ42B及びスイッチ42Cの他端と、スイッチ48Aの一端に接続されている。スイッチ42Bの一端は、抵抗素子41Bの他端に接続されており、スイッチ42Bの他端は、スイッチ42A及びスイッチ42Cの他端と、スイッチ48Aの一端に接続されている。スイッチ42Cの一端は、抵抗素子41Cの他端に接続されており、スイッチ42Cの他端は、スイッチ42A及びスイッチ42Bの他端と、スイッチ48Aの一端に接続されている。
上述した構成により、受信装置30では、送信モードが差分送信モードである場合、
図12Bに示すように、スイッチ42A、42B、42Cがオン状態に設定されるとともに、スイッチ48Aがオフ状態に設定される。これにより、抵抗素子41A~41Cが、通信システム1の終端抵抗として機能する。
【0053】
以下、送信モードがシングル送信モードである場合における、受信部40の回路構成と動作について説明する。
図12Aに示すように、アンプ43Aの正入力端子は、抵抗素子41Aの一端に接続されており、信号SIGAが供給される。アンプ43Aの負入力端子は、アンプ43Bの負入力端子及びアンプ43Cの負入力端子に接続されており、比較電圧Vcmが供給される。アンプ43Bの正入力端子は、抵抗素子41Bの一端に接続されており、信号SIGBが供給される。アンプ43Bの負入力端子は、アンプ43Aの負入力端子及びアンプ43Cの負入力端子に接続されており、比較電圧Vcmが供給される。アンプ43Cの正入力端子は、抵抗素子41Cの一端に接続されており、信号SIGCが供給される。アンプ43Cの負入力端子は、アンプ43Aの負入力端子及びアンプ43Bの負入力端子に接続されており、比較電圧Vcmが供給される。
上述した構成により、アンプ43Aは、信号SIGAに応じた信号を出力し、アンプ43Bは、信号SIGBに応じた信号を出力し、アンプ43Cは、信号SIGCに応じた信号を出力する。
送信モードがシングル送信モードである場合、受信部40が送信シンボル“+x”を受信する場合における、アンプ43A、43B、43Cの動作は、例えば、
図12Aに示す動作である。なお、スイッチ42A、42B、42Cは、オン状態であるため、図示を省略している。この例では、信号SIGAは高レベル電圧VHであり、信号SIGB及び信号SIGCは低レベル電圧VLである。そして、アンプ43Aの正入力端子には高レベル電圧VHが供給されるとともに負入力端子には比較電圧Vcmが供給されるため、アンプ43Aは“1”を出力する。また、アンプ43Bの正入力端子には低レベル電圧VLが供給されるとともに負入力端子には比較電圧Vcmが供給されるため、アンプ43Bは“0”を出力する。また、アンプ43Cの正入力端子には低レベル電圧VLが供給されるとともに負入力端子には比較電圧Vcmが供給されるため、アンプ43Cは“0”を出力する。
次に、送信モードが差分送信モードである場合における、受信部40の回路構成と動作について説明する。
図12Bに示すように、アンプ43Aの正入力端子は、アンプ43Cの負入力端子及び抵抗素子41Aの一端に接続されており、信号SIGAが供給される。アンプ43Aの負入力端子は、アンプ43Bの正入力端子及び抵抗素子41Bの一端に接続されており、信号SIGBが供給される。アンプ43Bの正入力端子は、アンプ43Aの負入力端子及び抵抗素子41Bの一端に接続されており、信号SIGBが供給される。アンプ43Bの負入力端子は、アンプ43Cの正入力端子及び抵抗素子41Cの一端に接続されており、信号SIGCが供給される。アンプ43Cの正入力端子は、アンプ43Bの負入力端子及び抵抗素子41Cの一端に接続されており、信号SIGCが供給される。アンプ43Cの負入力端子は、アンプ43Aの正入力端子及び抵抗素子41Aに接続されており、信号SIGAが供給される。
上述した構成により、アンプ43Aは、信号SIGAと信号SIGBとの差分AB(SIGA-SIGB)に応じた信号を出力し、アンプ43Bは、信号SIGBと信号SIGCとの差分BC(SIGB-SIGC)に応じた信号を出力する。同様に、アンプ43Cは、信号SIGCと信号SIGAとの差分CA(SIGC-SIGA)に応じた信号を出力する。
【0054】
送信モードが差分送信モードである場合、受信部40が送信シンボル“+x”を受信する場合における、アンプ43A、43B、43Cの動作は、例えば、
図12Bに示す動作である。なお、スイッチ42A、42B、42Cは、オン状態であるため、図示を省略している。この例では、信号SIGAは高レベル電圧VHであり、信号SIGBは低レベル電圧VLであり、信号SIGCは中レベル電圧VMである。この場合には、入力端子TinA、抵抗素子41A、抵抗素子41B、入力端子TinBの順に電流Iinが流れる。そして、アンプ43Aの正入力端子には高レベル電圧VHが供給されるとともに負入力端子には低レベル電圧VLが供給されるため、アンプ43Aは“Strong1”を出力する。また、アンプ43Bの正入力端子には低レベル電圧VLが供給されるとともに負入力端子には中レベル電圧VMが供給されるため、アンプ43Bは“Weak0”を出力する。また、アンプ43Cの正入力端子には中レベル電圧VMが供給されるとともに負入力端子には高レベル電圧VHが供給されるため、アンプ43Cは“Weak0”を出力する。
【0055】
受信側クロック生成部44は、アンプ43A、43B、43Cの出力信号に基づいて、クロック信号RxCKを生成する。
受信側第一フリップフロップ45は、アンプ43A、43B、43Cの出力信号を、クロック信号RxCKの1クロック分遅延させ、それぞれ出力するものである。受信側第二フリップフロップ46は、受信側第一フリップフロップ45の3つの出力信号を、クロック信号RxCKの1クロック分遅延させ、それぞれ出力する。
信号生成部47は、受信側第一フリップフロップ45の出力信号と、受信側第二フリップフロップ46の出力信号と、クロック信号RxCKに基づいて、遷移信号RxF、RxR、RxPを生成する。遷移信号RxF、RxR、RxPは、送信装置10における遷移信号TxF9、TxR9、TxP9にそれぞれ対応するものであり、送信シンボルの遷移を表す。信号生成部47は、受信側第一フリップフロップ45の出力信号が示す送信シンボルと、受信側第二フリップフロップ46の出力信号が示す送信シンボルに基づいて、送信シンボルの遷移を特定し、遷移信号RxF、RxR、RxPを生成する。
受信側処理部32は、遷移信号RxF、RxR、RxP及びクロック信号RxCKに基づいて、所定の処理を行う。
【0056】
<動作・作用>
以下、
図1から
図12を参照しつつ、
図13から
図18を用いて、送信装置10及び通信システム1が行う動作と、送信装置10及び通信システム1が行う動作による作用について説明する。
(全体動作概要)
【0057】
まず、通信システム1の全体動作概要を説明する。
送信装置10において、送信側クロック生成部11が、クロック信号TxCKを生成する。そして、送信側処理部12が所定の処理を行うことにより、遷移信号TxF0~TxF6、TxR0~TxR6、TxP0~TxP6を生成する。また、送信部20において、第一シリアライザ21Fが、遷移信号TxF0~TxF6及びクロック信号TxCKに基づいて、遷移信号TxF9を生成する。さらに、第二シリアライザ21Rが、遷移信号TxR0~TxR6及びクロック信号TxCKに基づいて、遷移信号TxR9を生成する。これに加え、第三シリアライザ21Pが、遷移信号TxP0~TxP6及びクロック信号TxCKに基づいて、遷移信号TxP9を生成する。そして、送信シンボル生成部22は、遷移信号TxF9、TxR9、TxP9及びクロック信号TxCKに基づいて、送信シンボル信号Tx1、Tx2、Tx3を生成する。
さらに、送信装置10では、出力部26が、信号SIGA、信号SIGB、信号SIGCを生成し、受信装置30へ出力する。
【0058】
受信装置30では、受信部40が、信号SIGA、SIGB、SIGCを受信するとともに、信号SIGA、SIGB、SIGCに基づいて、遷移信号RxF、RxR、RxP及びクロック信号RxCKを生成する。受信側処理部32は、遷移信号RxF、RxR、RxP及びクロック信号RxCKに基づいて、所定の処理を行う。
【0059】
ここで、信号生成部23は、本開示における「送信信号変換部」の一具体例に対応する。すなわち、信号生成部23は、複数のデータ信号を複数のシンボルに変換して送信する送信信号変換部の一具体例に対応する。
また、シングルモードデータ生成部72(72A、72B、72C)と、差分モードデータ生成部74(74A、74B、74C)は、本開示における「エンコード部」の一具体例に対応する。すなわち、シングルモードデータ生成部72と、差分モードデータ生成部74は、複数のシンボルのうち少なくとも1つの入力を受け、且つ3本以上の伝送路のそれぞれに対して個別に対応するドライバを制御するエンコード部の一具体例に対応する。
また、パラレルシリアル変換回路70(70A、70B、70C)は、本開示における「パラレルシリアル変換回路」の一具体例に対応する。すなわち、パラレルシリアル変換回路70は、送信信号変換部又はエンコード部とドライバとの間に配置され、且つ入力を受けたシンボルのパラレルデータをシリアルデータに変換するパラレルシリアル変換回路の一具体例に対応する。
また、シングルモードデータ生成部72(72A、72B、72C)と、ドライバ部78(78A、78B、78C)は、本開示における「ドライバ」の一具体例に対応する。すなわち、シングルモードデータ生成部72と、ドライバ部78は、第1のモードにおいて第1電圧状態又は第2電圧状態でドライブするドライバの一具体例に対応する。なお、「第1電圧状態又は第2電圧状態でドライブする」とは、「第1電圧状態又は第2電圧状態を用いてデータ信号をドライブする」とも換言される。
また、差分モードデータ生成部74(74A、74B、74C)と、ドライバ部78(78A、78B、78C)は、本開示における「ドライバ」の一具体例に対応する。すなわち、差分モードデータ生成部74と、ドライバ部78は、第2のモードにおいて、第1電圧状態、第2電圧状態、第3電圧状態のうちいずれか一つの電圧状態でドライブするドライバの一具体例に対応する。なお、「第1電圧状態、第2電圧状態、第3電圧状態のうちいずれか一つの電圧状態でドライブする」とは、「第1電圧状態、第2電圧状態、第3電圧状態のうちいずれか一つの電圧状態を用いてデータ信号をドライブする」とも換言される。
また、
図7及び
図8等に示すように、ドライバ(シングルモードデータ生成部72、差分モードデータ生成部74、ドライバ部78)が出力する値の組み合わせは、ワイヤ状態により決定される。
また、アンプ43(43A、43B、43C)は、本開示における「複数のレシーバ」の一具体例に対応する。すなわち、アンプ43A、43B、43Cは、3本以上の伝送路100のそれぞれに対して個別に対応し、且つデジタル値を出力する複数のレシーバの一具体例に対応する。これに加え、アンプ43A、43B、43Cは、第1のモードにおいて第1電圧状態又は第2電圧状態でドライブされたデータ信号を受信する複数のレシーバの一具体例に対応する。なお、「第1電圧状態又は第2電圧状態でドライブされた」とは、「第1電圧状態又は第2電圧状態を用いてドライブされた」とも換言される。
また、アンプ43(43A、43B、43C)は、本開示における「複数のレシーバ」の一具体例に対応する。すなわち、アンプ43A、43B、43Cは、第2のモードにおいて、第1電圧状態、第2電圧状態、第3電圧状態のうちいずれか一つの電圧状態でドライブされた複数のデータ信号を受信する。これに加え、アンプ43A、43B、43Cは、受信した複数のデータ信号の電圧状態の差分からデジタル値を出力する複数のレシーバの一具体例に対応する。なお、「第1電圧状態、第2電圧状態、第3電圧状態のうちいずれか一つの電圧状態でドライブされた」とは、「第1電圧状態、第2電圧状態、第3電圧状態のうちいずれか一つの電圧状態を用いてドライブされた」とも換言される。
また、信号生成部47は、本開示における「デコーダ部」の一具体例に対応する。すなわち、信号生成部47は、複数のレシーバからそれぞれ出力される複数のデジタル値の組み合わせからシンボルを出力するデコーダ部の一具体例に対応する。
また、受信側クロック生成部44は、本開示における「クロック生成部」の一具体例に対応する。すなわち、受信側クロック生成部44は、デジタル値の組み合わせからクロックを生成するクロック生成部の一具体例に対応する。
また、受信部40は、例えば、
図11及び
図12に示すように、抵抗素子41A、41B、41Cと、スイッチ42A、42B、42Cと、アンプ43A、43B、43Cと、受信側クロック生成部44を備えている。これに加え、受信部40は、受信側第一フリップフロップ45と、受信側第二フリップフロップ46と、信号生成部47を備えている。さらに、受信部40は、スイッチ48A~48Gと、比較電圧(Vcm)の入力端子49を備えている。
(詳細動作・作用)
【0060】
次に、送信装置10が行う動作と、送信装置10が行う動作による作用について、詳細に説明する。
【0061】
まず、送信モードが差分送信モードである場合に、送信装置10が行う動作について説明する。
第一差分モードデータ生成部74Aが線路110Aの電圧状態を制御し、第二差分モードデータ生成部74Bが線路110Bの電圧状態を制御し、第三差分モードデータ生成部74Cが線路110Cの電圧状態を制御する。
これにより、送信モードが差分送信モードである場合には、送信シンボルの遷移に応じて変化する、伝送路100の電圧状態が、電圧状態SL、電圧状態SM、電圧状態SHのいずれかとなる。
【0062】
差分送信モードでは、伝送路100の電圧状態が、電圧状態SL、電圧状態SM、電圧状態SHの三段階となる。これに加え、伝送路100の電圧状態を制御する際に、2ビットの送信シンボル信号(例えば、Tx1とTx2)の差動を用いる。
このため、
図13及び
図14に示すように、送信シンボルの遷移に応じて変化する、信号SIGA、SIGB、SIGCの電圧状態が、四つの電圧状態のうち、いずれかの電圧状態となる。四つの電圧状態は、電圧状態SLに対応する「Weak0」と「Strong0」と、電圧状態SHに対応する「Weak1」と「Strong1」である。
【0063】
これにより、送信モードが差分送信モードである場合には、受信部40が受信する信号SIGA~SIGCの電圧が、例えば、
図15に示すように、三段階で変化する。また、信号SIGA~SIGCの電圧が三段階で変化することに応じて、差分AB、BC、CAも変化する。なお、
図15に示す例では、受信部40が、6つの送信シンボル“+x”、“-y”、“-z”、“+z”、“+y”、“-x”をこの順に受信している状態における、信号SIGA~SIGCの電圧と、差分AB、BC、CAを示す。
このとき、信号SIGAの電圧は、VH、VM、VH、VL、VM、VLの順で変化し、信号SIGBの電圧は、VL、VL、VM、VM、VH、VHの順で変化し、信号SIGCの電圧は、VM、VH、VL、VH、VL、VMの順で変化する。また、差分ABは、+2ΔV、+ΔV、+ΔV、-ΔV、-ΔV、-2ΔVの順で変化し、差分BCは、-ΔV、-2ΔV、+ΔV、-ΔV、+2ΔV、+ΔVの順で変化し、差分CAは、-ΔV、+ΔV、-2ΔV、+2ΔV、-ΔV、+ΔVの順で変化する。なお、
図15に示すΔVは、3つの電圧(高レベル電圧VH、中レベル電圧VM、低レベル電圧VL)のうち、隣り合う2つの電圧の差である。
【0064】
したがって、送信モードが差分送信モードである場合には、信号SIGA、SIGB、SIGCが伝送路100を通過した後のアイダイアグラムが、
図16に示すように、遷移の時間差が大きく、品質の悪い波形となる。これにより、送信モードが差分送信モードである場合には、
図16に示すように、大きなジッタが発生する波形となる。なお、
図16では、送信モードが差分送信モードである場合に発生するジッタを、「ジッタD」と示す。
ジッタの大部分は、送信シンボルが遷移する際に発生するスイッチングジッタが占める。スイッチングジッタは、信号遷移時間の差により生じるジッタ成分であり、差分送信モードでは送信シンボル毎で信号遷移時間が異なるため、ジッタDが大きなものとなる。
【0065】
次に、送信モードがシングル送信モードである場合に、送信装置10が行う動作について説明する。
第一シングルモードデータ生成部72Aが線路110Aの電圧状態を制御し、第二シングルモードデータ生成部72Bが線路110Bの電圧状態を制御し、第三シングルモードデータ生成部72Cが線路110Cの電圧状態を制御する。
これにより、送信モードがシングル送信モードである場合には、
図2Aに示すように、送信シンボルの遷移に応じて変化する、信号SIGA、SIGB、SIGCの電圧状態が、電圧状態SL又は電圧状態SHのいずれかとなる。
【0066】
シングル送信モードでは、差分送信モードと異なり、信号SIGA、SIGB、SIGCの電圧状態が、電圧状態SLまたは電圧状態SHの二段階となる。これに加え、信号SIGA、SIGB、SIGCの電圧状態を制御する際に、一つの送信シンボル信号のみ(例えば、Tx1)を用いる。
このため、
図17に示すように、送信シンボルの種別に対応する信号SIGA、SIGB、SIGCの電圧状態は、電圧状態SLに対応する「0」又は電圧状態SHに対応する「1」の二つの電圧状態のうち、いずれかの電圧状態となる。
【0067】
したがって、送信モードがシングル送信モードである場合には、信号SIGA、SIGB、SIGCが伝送路100を通過した後のアイダイアグラムが、
図18に示すように、遷移の時間差が少ない波形となる。これにより、送信モードがシングル送信モードである場合には、
図18に示すように、送信モードが差分送信モードである場合と比較して、ジッタが小さい波形となる。なお、
図18では、送信モードがシングル送信モードである場合に発生するジッタを、「ジッタS」と示す。また、
図18には、比較のために、送信モードが差分送信モードである場合に発生するジッタDも示す。また、
図18に示すアイダイアグラムと、
図18に示すアイダイアグラムは、同じ伝送レートで信号SIGA、SIGB、SIGCを送受信した状態におけるアイダイアグラムである。
送信モードがシングル送信モードである場合、信号SIGA、SIGB、SIGCの電圧状態が、電圧状態SLまたは電圧状態SHの二段階であるため、送信モードが差分送信モードである場合よりも、Tr/Tfが小さくなり、波形の品質が良好となる。このため、ジッタSが、ジッタDよりも小さなものとなる。したがって、送信モードがシングル送信モードである場合、送信モードが差分送信モードである場合よりも、ジッタを低減させることが可能となる(ジッタS<ジッタD)。
【0068】
ここで、一例として、第1実施形態の構成における、送信装置10から受信装置30へ出力する信号SIGA、信号SIGB、信号SIGC(伝送信号)により伝送することが可能な情報量について説明する。
送信装置10と、伝送路100と、受信装置30を備える通信システム1としては、以下の関係式(1)を満足する必要がある。
【0069】
連続する送信シンボル(N)の組み合わせ
≧送信装置10から受信装置30へ伝送することが可能な情報量
=2M[bit] … (1)
【0070】
また、通信システム1として、1bitの伝送信号で伝送することが可能な情報量(1bit当たりの情報量)は、以下の関係式(2)で表される。
【0071】
1bit当たりの情報量=M/N … (2)
【0072】
送信モードが差分送信モードである場合、Nが7であり、Mが16であるため、N及びMは、関係式(1)及び(2)を満足する。
そして、N=7とM=16を関係式(2)に代入すると、以下の計算結果(3)が得られる。
【0073】
1bit当たりの情報量=16/7=2.2857[bit] … (3)
【0074】
一方、送信モードがシングル送信モードである場合であっても、Nが7であり、Mが16であるため、N及びMは、関係式(1)及び(2)を満足する。
したがって、送信モードがシングル送信モードである場合であっても、送信モードが差分送信モードである場合と同様、1bit当たりの情報量が2.2857[bit]となる。
【0075】
以上により、送信モードがシングル送信モードである場合、送信モードが差動送信モードである場合と比較して、ジッタを低減させることが可能である。これに加え、送信モードが差動送信モードである場合と同等の情報量を、送信装置10から受信装置30へ伝送することが可能である。
【0076】
したがって、本開示の送信装置10であれば、送信装置10から受信装置30へ伝送した信号に発生するジッタを低減させることが可能となる。
また、本開示の送信装置10と受信装置30を備えた通信システム1であれば、送信装置10から受信装置30へ伝送した信号に発生するジッタを低減させることが可能となる。同様に、本開示の送信方法であれば、送信装置10から受信装置30へ伝送した信号に発生するジッタを低減させることが可能となる。
【0077】
また、本開示の送信装置10であれば、送信装置10が受信装置30へ送信信号を送信する送信モードとして、シングル送信モードと差分送信モードを含む。このため、送信モードとしてシングル送信モードを含まない構成の送信装置10や受信装置30に対し、シングルモードデータ生成部72を追加することで、送信モードが差動送信モードである場合と比較して、ジッタを低減させることが可能であるとともに、送信モードが差動送信モードである場合と同等の情報量を、送信装置10から受信装置30へ伝送することが可能となる。これにより、送信モードとしてシングル送信モードを含まない構成の送信装置10や受信装置30に対し、構成の共通性を保持することが可能となる。これは、本開示の送信方法や通信システム1についても同様である。
【0078】
また、本開示の送信装置10であれば、シングル送信モードの伝送バンド幅と、差分送信モードの伝送バンド幅を同一とすることが可能となるため、送信信号の伝送モードを遷移させるタイミングも含め、互換性を有する伝送方式とすることが可能となる。
【0079】
<送信方法>
【0080】
第1実施形態の送信装置10を用いて行う送信方法は、伝送路100を3本以上用いて3つ以上の送信信号を送信する送信方法であり、送信信号変換工程と、シングルモードデータ生成工程を備える。
【0081】
送信信号変換工程では、送信シンボルのシーケンスを示すデータ信号を、3ビット以上の送信信号に変換する。また、送信信号変換工程では、複数のデータ信号を複数のシンボルに変換して送信する。
【0082】
シングルモードデータ生成工程では、1ビットの送信信号のみに応じて、3ビット以上の送信信号を1ビットずつ送信する3本以上の伝送路100のそれぞれに対し、互いに電圧レベルが異なる第1電圧状態又は第2電圧状態とする。
第1実施形態では、一例として、シングルモードデータ生成工程において、3本の伝送路のうち2本を第1電圧状態及び第2電圧状態のうち一方とし、3本の伝送路のうち残りの1本を第1電圧状態及び第2電圧状態のうち他方とする場合について説明する。
第1実施形態では、シングルモードデータ生成工程において、パラレルデータとしてエンコードされた後にシリアルデータに変換されて自身に入力された1ビットの送信信号のみに応じて、対応する伝送路100を第1電圧状態又は前記第2電圧状態とする。
また、シングルモードデータ生成工程では、第1電圧状態又は第2電圧状態を用いてデータ信号をドライブする。
【0083】
また、第1実施形態の送信装置10を用いて行う送信方法は、差分モードデータ生成工程と、モード選択工程を備える。
差分モードデータ生成工程では、2ビットの送信信号に応じて、3ビット以上の送信信号を1ビットずつ送信する3本以上の伝送路100のそれぞれに対し、それぞれの電圧レベルが異なる、第3電圧状態、第4電圧状態及び第5電圧状態のうちいずれかとする。
また、差分モードデータ生成工程では、第1電圧状態、第2電圧状態、第3電圧状態のうちいずれか一つの電圧状態を用いてデータ信号をドライブする。
【0084】
モード選択工程では、例えば、外部から入力された指令信号に応じて、シングル送信モードと差分送信モードを選択する。シングル送信モードは、シングルモードデータ生成工程で第1電圧状態又は第2電圧状態とした伝送路100を用いて送信信号を送信する送信モードである。また、差分送信モードは、差分モードデータ生成工程で第3電圧状態、第4電圧状態及び第5電圧状態のうちいずれかとした伝送路100を用いて送信信号を送信するモードである。
【0085】
<変形例>
【0086】
第1実施形態では、通信システム1の構成を、伝送路100が3本(線路110A、線路110B、線路110C)であり、送信信号が3ビット(信号SIGA、信号SIGB、信号SIGC)である構成としたが、これに限定するものではない。すなわち、通信システム1の構成を、伝送路100が4本以上であり、送信信号が4ビット以上である構成としてもよい。
同様に、送信装置10の構成を、4本以上の伝送路100を用いて、4ビット以上の送信信号を送信する構成としてもよい。
【0087】
<適用例>
【0088】
次に、上述した実施形態及び変形例で説明した通信システムの適用例について説明する。
<適用例1>
【0089】
本開示の通信システムは、
図19に示すように、スマートフォン300(多機能携帯電話)に適用することが可能である。
【0090】
スマートフォン300には、様々なデバイスが搭載されており、デバイス間でデータのやり取りを行う通信システムとして、本開示の通信システムを適用する。
スマートフォン300には、例えば、
図20に示すようなアプリケーションプロセッサ310が用いられる。
【0091】
アプリケーションプロセッサ310は、CPU(Central Processing Unit)311と、メモリ制御部312と、電源制御部313と、外部インターフェース314を備える。これに加え、アプリケーションプロセッサ310は、GPU(Graphics Processing Unit)315と、メディア処理部316と、ディスプレイ制御部317を備える。さらに、アプリケーションプロセッサ310は、MIPI(Mobile Industry Processor Interface)インターフェース318を備える。
CPU311、メモリ制御部312、電源制御部313、外部インターフェース314、GPU315、メディア処理部316、ディスプレイ制御部317は、システムバス319に接続されている。また、CPU311、メモリ制御部312、電源制御部313、外部インターフェース314、GPU315、メディア処理部316、ディスプレイ制御部317は、システムバス319を介して、互いにデータのやり取りが可能である。
【0092】
CPU311は、プログラムに従って、スマートフォン300で扱われる様々な情報を処理する。メモリ制御部312は、CPU311が情報処理を行う際に使用するメモリ501を制御する。電源制御部313は、スマートフォン300の電源を制御する。外部インターフェース314は、外部デバイスと通信するためのインターフェースであり、無線通信部502及びイメージセンサ410と接続されている。
無線通信部502は、携帯電話の基地局と無線通信をするものであり、例えば、ベースバンド部や、RF(Radio Frequency)フロントエンド部等を含んで構成される。イメージセンサ410は、画像を取得するものであり、例えば、CMOSセンサを含んで構成される。
GPU315は、画像処理を行う。メディア処理部316は、音声や、文字や、図形等の情報を処理する。ディスプレイ制御部317は、MIPIインターフェース318を介して、ディスプレイ504を制御する。MIPIインターフェース318は、画像信号をディスプレイ504に送信する。画像信号としては、例えば、YUV形式やRGB形式等の信号を用いることが可能である。MIPIインターフェース318は、例えば、水晶振動子を含む発振回路330から供給される基準クロックに基づいて動作する。MIPIインターフェース318とディスプレイ504との間の通信システムには、例えば、上述した構成の通信システムを適用する。
【0093】
イメージセンサ410は、
図21に示すように、センサ部411と、ISP(Image Signal Processor)412と、JPEG(Joint Photographic Experts Group)エンコーダ413を備える。さらに、イメージセンサ410は、CPU414と、RAM(Random ACess Memory)415と、ROM(Read Only Memory)416を備える。これに加え、イメージセンサ410は、電源制御部417と、I2C(Inter-Integrated Circuit)インターフェース418と、MIPIインターフェース419を備える。
【0094】
図21に示す各ブロックは、システムバス420に接続されており、システムバス420を介して、互いにデータのやり取りが可能である。
センサ部411は、例えば、CMOSセンサにより構成されており、画像を取得する。ISP412は、センサ部411が取得した画像に対して所定の処理を行う。JPEGエンコーダ413は、ISP412が処理した画像をエンコードして、JPEG形式の画像を生成する。CPU414は、プログラムに従ってイメージセンサ410の各ブロックを制御する。RAM415は、CPU414が情報処理を行う際に使用するメモリである。ROM416は、CPU414において実行されるプログラムや、キャリブレーションにより得られた設定値等を記憶する。電源制御部417は、イメージセンサ410の電源を制御する。I2Cインターフェース418は、アプリケーションプロセッサ310から制御信号を受信する。
また、図示を省略しているが、イメージセンサ410は、アプリケーションプロセッサ310から、制御信号に加えてクロック信号を受信する。具体的には、イメージセンサ410は、様々な周波数のクロック信号に基づいて動作が可能である。
【0095】
MIPIインターフェース419は、画像信号をアプリケーションプロセッサ310に送信する。画像信号としては、例えば、YUV形式やRGB形式等の信号を用いることが可能である。また、MIPIインターフェース419は、例えば、水晶振動子を含む発振回路430から供給される基準クロックに基づいて動作する。MIPIインターフェース419とアプリケーションプロセッサ310との間の通信システムには、例えば、上述した構成の通信システムを適用する。
【0096】
<適用例2>
【0097】
本開示の通信システムは、
図22に示すように、車両制御システム600に適用することが可能である。
車両制御システム600は、自動車、電気自動車、ハイブリッド電気自動車、自動二輪車等の動作を制御するものである。
【0098】
また、車両制御システム600は、
図22に示すように、駆動系制御ユニット610と、ボディ系制御ユニット620と、バッテリ制御ユニット630と、車外情報検出ユニット640と、車内情報検出ユニット650と、統合制御ユニット660を備える。
車両制御システム600が備える各ユニットは、通信ネットワーク690を介して互いに接続されている。通信ネットワーク690としては、例えば、CAN(Controller Area Network)、LIN(Local Interconnect Network)、LAN(Local Area Network)、FlexRay(登録商標)等、任意の規格に準拠したネットワークを用いることが可能である。また、車両制御システム600が備える各ユニットは、例えば、マイクロコンピュータ、記憶部、制御対象の装置を駆動する駆動回路、通信I/F等を含んで構成される。
【0099】
駆動系制御ユニット610は、車両の駆動系に関連する装置の動作を制御する。また、駆動系制御ユニット610には、車両状態検出部611が接続されている。車両状態検出部611は、車両の状態を検出するものであり、例えば、ジャイロセンサ、加速度センサ、アクセルペダルやブレーキペダルの操作量や操舵角等を検出するセンサ等を含んで構成される。さらに、駆動系制御ユニット610は、車両状態検出部611により検出された情報に基づいて、車両の駆動系に関連する装置の動作を制御する。駆動系制御ユニット610と車両状態検出部611との間の通信システムには、例えば、上述した構成の通信システムを適用する。
ボディ系制御ユニット620は、キーレスエントリシステム、パワーウィンドウ装置、各種ランプ等、車両に装備された各種装置の動作を制御する。
【0100】
バッテリ制御ユニット630は、バッテリ制御ユニット630に接続されているバッテリ631を制御する。バッテリ631は、駆動用モータへ電力を供給するものであり、例えば、2次電池や冷却装置等を含んで構成される。また、バッテリ制御ユニット630は、バッテリ631から、温度、出力電圧、バッテリ残量等の情報を取得し、取得した情報に基づいて、バッテリ631の冷却装置等を制御する。バッテリ制御ユニット630とバッテリ631との間の通信システムには、例えば、上述した構成の通信システムを適用する。
車外情報検出ユニット640は、車両の外部の情報を検出する。車外情報検出ユニット640には、撮像部641及び車外情報検出部642が接続されている。撮像部641は、車外の画像を撮像するものであり、例えば、ToF(Time Of Flight)カメラ、ステレオカメラ、単眼カメラ、赤外線カメラ等を含んで構成される。車外情報検出部642は、車外の情報を検出するものであり、例えば、天候や気象を検出するセンサや、車両の周囲の他の車両、障害物、歩行者等を検出するセンサ等を含んで構成される。車外情報検出ユニット640は、撮像部641により得られた画像や、車外情報検出部642により検出された情報に基づいて、例えば、天候や気象、路面状況等を認識し、車両の周囲の他の車両、障害物、歩行者、標識や路面上の文字等の物体を検出する。また、車外情報検出ユニット640は、検出した物体と車両との間の距離を検出する。車外情報検出ユニット640と、撮像部641及び車外情報検出部642との間の通信システムには、例えば、上述した構成の通信システムを適用する。
【0101】
車内情報検出ユニット650は、車両の内部の情報を検出する。車内情報検出ユニット650には、運転者状態検出部651が接続されている。運転者状態検出部651は、運転者の状態を検出するものであり、例えば、カメラ、生体センサ、マイク等を含んで構成される。車内情報検出ユニット650は、運転者状態検出部651により検出された情報に基づいて、例えば、運転者の疲労度合い、運転者の集中度合い、運転者が居眠りをしているか否か等を監視する。車内情報検出ユニット650と運転者状態検出部651との間の通信システムには、例えば、上述した構成の通信システムを適用する。
統合制御ユニット660は、車両制御システム600の動作を制御する。統合制御ユニット660には、操作部661、表示部662及びインストルメントパネル663が接続されている。操作部661は、搭乗者が操作するものであり、例えば、タッチパネル、各種ボタンやスイッチ等を含んで構成される。表示部662は、画像を表示するものであり、例えば液晶表示パネル等を用いて構成される。インストルメントパネル663は、車両の状態を表示するものであり、スピードメータ等のメータ類や各種警告ランプ等を含んで構成される。統合制御ユニット660と、操作部661、表示部662及びインストルメントパネル663との間の通信システムには、例えば、上述した構成の通信システムを適用する。
(その他の実施形態)
【0102】
上記のように、本技術の実施形態を記載したが、この開示の一部をなす論述及び図面は本技術を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなろう。その他、上記の実施形態において説明される各構成を任意に応用した構成等、本技術はここでは記載していない様々な実施形態等を含むことは勿論である。したがって、本技術の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。
また、本開示の送信装置、送信方法、通信システムでは、上記の実施形態等で説明した各構成要素を全て備える必要はなく、また逆に他の構成要素を備えていてもよい。なお、本明細書中に記載された効果はあくまで例示であって限定されるものでは無く、また他の効果があってもよい。
【0103】
なお、本技術は、以下のような構成を取ることが可能である。
(1)
複数のデータ信号を複数のシンボルに変換して送信する送信信号変換部と、
前記複数のシンボルのうち少なくとも1つの入力を受け、且つ3本以上の伝送路のそれぞれに対して個別に対応するドライバを制御するエンコード部と、を備え、
前記ドライバは、第1のモードにおいて第1電圧状態又は前記第1電圧状態と電圧レベルが異なる第2電圧状態でドライブする送信装置。
(2)
前記ドライバは、前記第1のモードと異なる第2のモードにおいて、前記第1電圧状態、前記第2電圧状態、及び前記第1電圧状態及び前記第2電圧状態と電圧レベルが異なる第3電圧状態のうちいずれか一つの電圧状態でドライブする前記(1)に記載した送信装置。
(3)
前記第2のモードにおいて、前記3本以上の伝送路の電圧状態が互いに異なる値である前記(2)に記載した送信装置。
(4)
前記送信信号変換部又は前記エンコード部と前記ドライバとの間に配置され、且つ入力を受けた前記シンボルのパラレルデータをシリアルデータに変換するパラレルシリアル変換回路を備える前記(1)から(3)のうちいずれかに記載した送信装置。
(5)
前記シンボルの状態は、6種類のワイヤ状態のうちいずれか一つの状態に遷移し、
前記ワイヤ状態が遷移する境界は、全てのシンボルの境界に存在し、
現在のワイヤ状態から前記シンボルの状態が次に遷移することが可能なワイヤ状態は、前記現在のワイヤ状態と異なる5種類が常に存在し、
前記シンボルの値は、現在の間隔から次の間隔への前記ワイヤ状態の変化によって定義される前記(1)から(4)のうちいずれかに記載した送信装置。
(6)
前記ドライバが出力する値の組み合わせは、前記ワイヤ状態により決定される前記(5)に記載した送信装置。
(7)
前記3ビット以上の送信信号を1ビットずつ送信する3本以上の伝送路のそれぞれに対して個別に対応した前記伝送路と同数のシングルモードデータ生成部を備え、
前記シングルモードデータ生成部は、自身に入力された1ビットの前記送信信号のみに応じて、対応する前記伝送路を前記第1電圧状態又は前記第2電圧状態とする前記(1)から(6)のうちいずれかに記載した送信装置。
(8)
前記伝送路は3本であり、
前記送信信号は3ビットであり、
前記シングルモードデータ生成部は、前記3本の伝送路のうち2本を前記第1電圧状態及び前記第2電圧状態のうち一方とし、前記3本の伝送路のうち残りの1本を前記第1電圧状態及び前記第2電圧状態のうち他方とする前記(7)に記載した送信装置。
(9)
前記3ビット以上の送信信号を1ビットずつ送信する3本以上の伝送路のそれぞれに対して個別に対応した前記伝送路と同数の差分モードデータ生成部と、
前記伝送路を用いて前記送信信号を送信する送信モードを選択するモード選択部と、を備え、
前記差分モードデータ生成部は、自身に入力された2ビットの前記送信信号に応じて、対応する前記伝送路を、それぞれの電圧レベルが異なる、第3電圧状態、第4電圧状態及び第5電圧状態のうちいずれかとし、
前記モード選択部は、前記シングルモードデータ生成部が前記第1電圧状態又は前記第2電圧状態とした前記伝送路を用いて前記送信信号を送信するシングル送信モードと、前記差分モードデータ生成部が前記第3電圧状態、前記第4電圧状態及び前記第5電圧状態のうちいずれかとした前記伝送路を用いて前記送信信号を送信する差分送信モードと、を選択する前記(1)から(8)のうちいずれかに記載した送信装置。
(10)
前記シングルモードデータ生成部は、パラレルデータとしてエンコードされた後にシリアルデータに変換されて自身に入力された1ビットの前記送信信号のみに応じて、対応する前記伝送路を前記第1電圧状態又は前記第2電圧状態とする前記(7)から(9)のうちいずれかに記載した送信装置。
(11)
前記第1電圧状態及び前記第2電圧状態のうち一方は、基準電圧よりも高いレベルであり、
前記第1電圧状態及び前記第2電圧状態のうち他方は、基準電圧よりも低いレベルである前記(1)から(10)のうちいずれかに記載した送信装置。
(12)
3本以上の伝送路のそれぞれに対して個別に対応し、且つデジタル値を出力する複数のレシーバと、
前記複数のレシーバからそれぞれ出力される複数のデジタル値の組み合わせからシンボルを出力するデコーダ部と、
前記デジタル値の組み合わせからクロックを生成するクロック生成部と、を備え、
前記複数のレシーバは、第1のモードにおいて第1電圧状態又は前記第1電圧状態と電圧レベルが異なる第2電圧状態でドライブされたデータ信号を受信する受信装置。
(13)
前記複数のレシーバは、前記第1のモードと異なる第2のモードにおいて、前記第1電圧状態、前記第2電圧状態、及び前記第1電圧状態及び前記第2電圧状態と電圧レベルが異なる第3電圧状態のうちいずれか一つの電圧状態でドライブされた複数のデータ信号を受信し、前記受信した複数のデータ信号の電圧状態の差分から前記デジタル値を出力する前記(12)に記載した受信装置。
(14)
複数のデータ信号を複数のシンボルに変換して送信する送信信号変換部と、前記複数のシンボルのうち少なくとも1つの入力を受け、且つ3本以上の伝送路のそれぞれに対して個別に対応するドライバを制御するエンコード部と、を備える送信装置と、
前記3本以上の伝送路のそれぞれに対して個別に対応し、且つデジタル値を出力する複数のレシーバと、前記複数のレシーバからそれぞれ出力される複数のデジタル値の組み合わせから前記シンボルを出力するデコーダ部と、前記デジタル値の組み合わせからクロックを生成するクロック生成部と、を備える受信装置と、を備える通信システムであって、
前記ドライバは、第1のモードにおいて第1電圧状態又は前記第1電圧状態と電圧レベルが異なる第2電圧状態でドライブし、
前記複数のレシーバは、前記第1のモードにおいて前記第1電圧状態又は前記第2電圧状態でドライブされたデータ信号を受信する通信システム。
(15)
前記ドライバは、前記第1のモードと異なる第2のモードにおいて、前記第1電圧状態、前記第2電圧状態、及び前記第1電圧状態及び前記第2電圧状態と電圧レベルが異なる第3電圧状態のうちいずれか一つの電圧状態でドライブする前記(14)に記載した通信システム。
(16)
前記第2のモードにおいて、前記3本以上の伝送路の電圧状態が互いに異なる値である前記(15)に記載した通信システム。
(17)
前記送信装置は、前記送信信号変換部又は前記エンコード部と前記ドライバとの間に配置され、且つ入力を受けた前記シンボルのパラレルデータをシリアルデータに変換するパラレルシリアル変換回路を備える前記(14)から(16)のうちいずれかに記載した通信システム。
(18)
前記シンボルの状態は、6種類のワイヤ状態のうちいずれか一つの状態に遷移し、
前記ワイヤ状態が遷移する境界は、全てのシンボルの境界に存在し、
現在のワイヤ状態から前記シンボルの状態が次に遷移することが可能なワイヤ状態は、前記現在のワイヤ状態と異なる5種類が常に存在し、
前記シンボルの値は、現在の間隔から次の間隔への前記ワイヤ状態の変化によって定義される前記(14)から(17)のうちいずれかに記載した通信システム。
(19)
前記ドライバが出力する値の組み合わせは、前記ワイヤ状態により決定される前記(18)に記載した通信システム。
(20)
前記複数のレシーバは、前記第1のモードと異なる第2のモードにおいて、前記第1電圧状態、前記第2電圧状態、及び前記第1電圧状態及び前記第2電圧状態と電圧レベルが異なる第3電圧状態のうちいずれか一つの電圧状態でドライブされた複数のデータ信号を受信し、前記受信した複数のデータ信号の電圧状態の差分から前記デジタル値を出力する前記(14)から(19)のうちいずれかに記載した通信システム。
(21)
前記送信装置は、
前記3ビット以上の送信信号を1ビットずつ送信する3本以上の伝送路のそれぞれに対して個別に対応した前記伝送路と同数のシングルモードデータ生成部を備え、
前記シングルモードデータ生成部は、自身に入力された1ビットの前記送信信号のみに応じて、対応する前記伝送路を前記第1電圧状態又は前記第2電圧状態とする前記(14)から(20)のうちいずれかに記載した通信システム。
(22)
前記伝送路は3本であり、
前記送信信号は3ビットであり、
前記シングルモードデータ生成部は、前記3本の伝送路のうち2本を前記第1電圧状態及び前記第2電圧状態のうち一方とし、前記3本の伝送路のうち残りの1本を前記第1電圧状態及び前記第2電圧状態のうち他方とする前記(21)に記載した通信システム。
(23)
前記送信装置は、
前記3ビット以上の送信信号を1ビットずつ送信する3本以上の伝送路のそれぞれに対して個別に対応した前記伝送路と同数の差分モードデータ生成部と、
前記伝送路を用いて前記送信信号を送信する送信モードを選択するモード選択部と、を備え、
前記差分モードデータ生成部は、自身に入力された2ビットの前記送信信号に応じて、対応する前記伝送路を、それぞれの電圧レベルが異なる、第3電圧状態、第4電圧状態及び第5電圧状態のうちいずれかとし、
前記モード選択部は、前記シングルモードデータ生成部が前記第1電圧状態又は前記第2電圧状態とした前記伝送路を用いて前記送信信号を送信するシングル送信モードと、前記差分モードデータ生成部が前記第3電圧状態、前記第4電圧状態及び前記第5電圧状態のうちいずれかとした前記伝送路を用いて前記送信信号を送信する差分送信モードと、を選択する前記(14)から(22)のうちいずれかに記載した通信システム。
(24)
前記シングルモードデータ生成部は、パラレルデータとしてエンコードされた後にシリアルデータに変換されて自身に入力された1ビットの前記送信信号のみに応じて、対応する前記伝送路を前記第1電圧状態又は前記第2電圧状態とする前記(21)から(23)のうちいずれかに記載した通信システム。
(25)
前記第1電圧状態及び前記第2電圧状態のうち一方は、基準電圧よりも高いレベルであり、
前記第1電圧状態及び前記第2電圧状態のうち他方は、基準電圧よりも低いレベルである前記(14)又は(24)に記載した通信システム。
(26)
送信シンボルのシーケンスを示すデータ信号を3ビット以上の送信信号に変換する送信信号変換工程と、
1ビットの前記送信信号のみに応じて、前記3ビット以上の送信信号を1ビットずつ送信する3本以上の伝送路のそれぞれに対し、前記第1電圧状態又は前記第2電圧状態とするシングルモードデータ生成工程と、を備える送信方法。
(27)
前記伝送路を3本とし、
前記送信信号を3ビットとし、
前記シングルモードデータ生成工程では、前記3本の伝送路のうち2本を前記第1電圧状態及び前記第2電圧状態のうち一方とし、前記3本の伝送路のうち残りの1本を前記第1電圧状態及び前記第2電圧状態のうち他方とする前記(26)に記載した送信方法。
(28)
2ビットの前記送信信号に応じて、前記3ビット以上の送信信号を1ビットずつ送信する3本以上の伝送路のそれぞれに対し、それぞれの電圧レベルが異なる、第3電圧状態、第4電圧状態及び第5電圧状態のうちいずれかとする差分モードデータ生成工程と、
前記シングルモードデータ生成工程で前記第1電圧状態又は前記第2電圧状態とした前記伝送路を用いて前記送信信号を送信するシングル送信モードと、前記差分モードデータ生成工程で前記第3電圧状態、前記第4電圧状態及び前記第5電圧状態のうちいずれかとした前記伝送路を用いて前記送信信号を送信する差分送信モードと、を選択するモード選択工程と、を備える前記(26)又は(27)に記載した送信方法。
(29)
前記シングルモードデータ生成工程では、パラレルデータとしてエンコードされた後にシリアルデータに変換されて自身に入力された1ビットの前記送信信号のみに応じて、対応する前記伝送路を前記第1電圧状態又は前記第2電圧状態とする前記(26)から(28)のうちいずれかに記載した送信方法。
(30)
前記第1電圧状態及び前記第2電圧状態のうち一方を、基準電圧よりも高いレベルとし、
前記第1電圧状態及び前記第2電圧状態のうち他方を、基準電圧よりも低いレベルとする前記(26)から(29)のうちいずれかに記載した送信方法。
【符号の説明】
【0104】
1…通信システム、10…送信装置、11…送信側クロック生成部、12…送信側処理部、20…送信部、21F…第一シリアライザ、21R…第二シリアライザ、21P…第三シリアライザ、22…送信シンボル生成部、23…信号生成部、24…送信側フリップフロップ、26…出力部、30…受信装置、32…受信側処理部、40…受信部、41A…抵抗素子、41B…抵抗素子、41C…抵抗素子、42A…スイッチ、42B…スイッチ、42C…スイッチ、43A…アンプ、43B…アンプ、43C…アンプ、44…受信側クロック生成部、45…受信側第一フリップフロップ、46…受信側第二フリップフロップ、47…信号生成部、48A…スイッチ、48B…スイッチ、48C…スイッチ、48D…スイッチ、48E…スイッチ、48F…スイッチ、48G…スイッチ、49…比較電圧の入力端子、70A…第一パラレルシリアル変換回路、70B…第二パラレルシリアル変換回路、70C…第三パラレルシリアル変換回路、72A…第一シングルモードデータ生成部、72B…第二シングルモードデータ生成部、72C…第三シングルモードデータ生成部、74A…第一差分モードデータ生成部、74B…第二差分モードデータ生成部、74C…第三差分モードデータ生成部、76A…第一モード選択部、76B…第二モード選択部、76C…第三モード選択部、78A…第一ドライバ部、78B…第二ドライバ部、78C…第三ドライバ部、100…伝送路、110A…線路、110B…線路、110C…線路、300…スマートフォン、310…アプリケーションプロセッサ、311…CPU、312…メモリ制御部、313…電源制御部、314…外部インターフェース、315…GPU、316…メディア処理部、317…ディスプレイ制御部、318…MIPIインターフェース、319…システムバス、330…発振回路、410…イメージセンサ、411…センサ部、412…ISP、413…JPEGエンコーダ、414…CPU、415…RAM、416…ROM、417…電源制御部、418…I2Cインターフェース、419…MIPIインターフェース、420…システムバス、501…メモリ、502…無線通信部、504…ディスプレイ、600…車両制御システム、610…駆動系制御ユニット、611…車両状態検出部、620…ボディ系制御ユニット、630…バッテリ制御ユニット、631…バッテリ、640…車外情報検出ユニット、641…撮像部、642…車外情報検出部、650…車内情報検出ユニット、651…運転者状態検出部、660…統合制御ユニット、661…操作部、662…表示部、663…インストルメントパネル、690…通信ネットワーク、ToutA…出力端子、ToutB…出力端子、ToutC…出力端子、TinA…入力端子、TinB…入力端子、TinC…入力端子