(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-01-10
(45)【発行日】2024-01-18
(54)【発明の名称】除電装置
(51)【国際特許分類】
H05F 3/04 20060101AFI20240111BHJP
H01T 19/04 20060101ALI20240111BHJP
H01T 23/00 20060101ALI20240111BHJP
【FI】
H05F3/04 J
H01T19/04
H01T23/00
(21)【出願番号】P 2020044960
(22)【出願日】2020-03-16
【審査請求日】2023-02-21
(73)【特許権者】
【識別番号】000183738
【氏名又は名称】春日電機株式会社
(74)【代理人】
【識別番号】110002446
【氏名又は名称】弁理士法人アイリンク国際特許商標事務所
(74)【代理人】
【識別番号】100076163
【氏名又は名称】嶋 宣之
(72)【発明者】
【氏名】鈴木 輝夫
(72)【発明者】
【氏名】山田 文男
(72)【発明者】
【氏名】田中 宏
(72)【発明者】
【氏名】小木曽 智
【審査官】関 信之
(56)【参考文献】
【文献】特開平11-273893(JP,A)
【文献】特開平4-370697(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H05F 3/04
H01T 19/04
H01T 23/00
(57)【特許請求の範囲】
【請求項1】
帯電物体と対向する尖端を有し、接地された除電電極と、
電源に接続され、上記除電電極の尖端との間でトリガー放電を発生させる電圧印加電極と
を備え、
上記電圧印加電極と上記除電電極の尖端との間のトリガー放電をきっかけとして帯電物体と上記除電電極の尖端との間で自己放電を発生させ、上記自己放電で生成されたイオンによって上記帯電物体の電荷を中和する除電装置であって、
上記帯電物体と上記除電電極の尖端との間を、上記帯電物体の表面電位が設定値以上のとき、上記帯電物体から上記除電電極への自己放電が可能な距離に保って、その間での自己放電で生成されたイオンによって上記帯電物体の表面電位を少なくとも上記設定値まで下げる一方、
上記帯電物体から上記電圧印加電極までの距離を、上記帯電物体から上記除電電極の尖端までの距離よりも大きくした除電装置。
【請求項2】
帯電物体と対向する尖端を有し、接地された除電電極と、
電源に接続された電圧印加電極と、
上記電圧印加電極との間でトリガー放電を発生させる尖端を有し、上記除電電極とは別の接地されたトリガー電極と
を備え、
上記電圧印加電極と上記トリガー電極の尖端との間のトリガー放電をきっかけとして帯電物体と上記除電電極の尖端との間で自己放電を発生させて、
上記自己放電で生成されたイオンによって上記帯電物体の電荷を中和する除電装置であって、
上記帯電物体と上記除電電極の尖端との間を、上記帯電物体の表面電位が設定値以上のとき、上記帯電物体から上記除電電極への自己放電が可能な距離に保って、その間での自己放電で生成されたイオンによって上記帯電物体の表面電位を少なくとも上記設定値まで下げる一方、
上記帯電物体から上記電圧印加電極までの距離を、上記帯電物体から上記除電電極の尖端までの距離よりも大きくした除電装置。
【請求項3】
上記除電電極を上記電圧印加電極の両側に備えた請求項1に記載の除電装置。
【請求項4】
上記除電電極及びトリガー電極を、上記電圧印加電極の両側に備えた請求項2に記載の除電装置。
【請求項5】
上記電源が交流電源であって、
上記電圧印加電極が誘電体の被覆部材で覆われた請求項1~4のいずれか1に記載の除電装置。
【請求項6】
上記除電電極と上記接地体との間に直列に接続された高抵抗素子と、
上記高抵抗素子から上記除電電極の尖端までの長さの範囲で対向し、その対向長さに応じた大きさの浮遊容量を生成する浮遊容量生成手段と
を備え、
上記浮遊容量の大きさは、
上記帯電物体から上記除電電極への上記自己放電が発生したとき、この自己放電による放電エネルギーが、上記帯電物体が存在する雰囲気における可燃性物質の最小着火エネルギーに達する前に、上記帯電物体からの電荷による蓄電量が最大となって上記自己放電が停止するように設定された請求項1~5のいずれか1に記載の除電装置。
【発明の詳細な説明】
【技術分野】
【0001】
この発明は、帯電物体の表面をイオンによって除電する除電装置に関する。
【背景技術】
【0002】
従来から接地された針状の除電電極と帯電物体との間で発生する自己放電で生成されるイオンによって帯電物体の表面を除電することが知られていた。このように接地された除電電極との間の自己放電を利用するのは、次の理由からである。例えば、連続的に搬送されるフィルムの場合には、フィルムの場所に応じて表面電位が相違する。これに対して上記除電電極は常時接地電位で安定している。したがって、除電電極と帯電物体との間では、帯電物体の表面電位に応じた電界が生成される。この電界によって自己放電が発生すれば、帯電物体の表面電位に応じたイオンの生成が見込める。また、単体である帯電物体を定置させて除電する場合にも、その除電過程で表面電位が変化する。この場合にも、上記したように除電電極は接地電位を維持するので、帯電物体の表面電位に応じたイオンの生成が見込める。
【0003】
つまり、除電装置における対向する除電電極の尖端と帯電物体とのうち、除電電極の尖端の電位は常に接地電位で一定であるのに対して変化するのは帯電物体の表面電位のみである。そして、接地された除電電極の尖端と帯電物体との間の電位差は、帯電電位の極性にかかわりなく、その絶対値で決まる。したがって、除電電極の尖端と帯電物体との間で生成される電界の強度は、帯電物体の表面電位の高さのみに依存することになる。なお、以下の説明において、表面電位の絶対値が大きいことを電位が高い、絶対値が小さいとき電位が低い、ということにする。
【0004】
このように帯電物体の表面電位に依存する除電装置では、帯電物体の表面電位が高ければそれに応じた強い電界が生成され、その表面電位が低ければそれに応じた弱い電界が生成される。このように、上記除電電極と帯電物体との間には、帯電物体の表面電位の極性に係らず、常に帯電物体の表面電位の高さに応じた電界が生成される。
そのため、帯電物体に対してイオンが常に過不足なく生成されて適切な除電ができる。
【0005】
また、除電電極の尖端が帯電物体の表面に接近しすぎると、除電電極の尖端と帯電物体との間に生成される電界が集中する。電界が集中すると、自己放電が起こる範囲が狭くなるとともにイオンの生成範囲も狭くなってしまうので、スポット的な除電になって除電効率が落ちてしまう。
さらにまた、除電電極を帯電物体に近づけすぎた場合には、何らかの原因で帯電物体が除電電極側にわずかでも移動したとき、除電電極の尖端との間にエネルギーの大きな放電が発生したり、除電電極の尖端が帯電物体に接触して帯電物体を傷つけてしまったりすることもある。
【0006】
一方、除電電極の尖端と帯電物体との距離が大きすぎると、それら両者間に生成される電界強度が小さくなり、自己放電が発生しにくくなる。
そのため、除電電極の尖端と帯電物体との距離は、除電効率を考慮して電界の生成範囲を広く保つとともに、低い電位まで自己放電が可能な大きさに設定するようにしている。
【0007】
上記のように除電電極の尖端と帯電物体との距離を設定したとしても、帯電物体の表面電位が低い場合には、自己放電が発生しなくて除電ができないという問題があった。
そこで、接地された除電電極とは別に電圧印加電極を備え、この電圧印加電極を利用してトリガー放電を発生させ、自己放電のきっかけとなる電子やイオンを生成することが考えられている。
【0008】
上記のようなきっかけとなる電子やイオンを生成するための電圧印加電極を備えたものとして特許文献1に記載された除電装置が従来から知られている。
この従来の装置は、
図6に示すように接地された針状の除電電極1,2と、これら除電電極1,2と間隔を保った電圧印加電極3とを備えている。この電圧印加電極3は交流電源4に接続され、電圧印加電極3と上記除電電極1,2との間でコロナ放電を可能にしている。このコロナ放電によって自己放電のきっかけとなる電子やイオンを生成し、除電電極1,2と帯電物体5との間の自己放電を促すようにしていた。
【0009】
また、帯電物体5と除電電極1,2との間で自己放電を発生させるために、帯電物体5と除電電極1,2は自己放電が可能な程度に近づける必要がある。
このような条件のなかで、従来は除電電極1,2と電圧印加電極3とを全て同一レベルに保っていた。つまり、帯電物体5から、上記除電電極1,2までの距離L、電圧印加電極3までの距離Lを全て等しくしていた。
【0010】
上記のようにした除電装置では、除電電極1,2と電圧印加電極3との間で発生したコロナ放電で生成された電子やイオンが電界で加速されて空気分子に衝突し、空気分子を電離させることをきっかけとして上記自己放電が促される。そして、この自己放電で生成されたイオンが帯電物体5の表面電荷を中和し、帯電物体が除電される。
【先行技術文献】
【特許文献】
【0011】
【発明の概要】
【発明が解決しようとする課題】
【0012】
上記従来の除電装置では、除電電極1,2あるいは電圧印加電極3と、帯電物体5との間の距離は、除電電極1,2を優先して決められる。なぜなら、この従来の除電装置は、除電電極1,2と帯電物体5との間の自己放電を利用して除電することが目的だからである。したがって、除電電極1,2とレベルを同じにした電圧印加電極3と帯電物体5との間にも自己放電可能な電界E2が生成される。(
図6参照)
【0013】
そして、上記電界E2は電源電圧に応じで変動する不安定なものである。
例えば、交流電源4を用いた場合には、電圧印加電極3の電位が交流電圧の周波数に応じて変動するので、その変動に伴って電界E2の強度は変動してしまう。
【0014】
一方、直流電源を用いた場合でも、帯電物体5の表面電位の極性によって、電圧印加電極3との間に形成される電界の強度は大きくなったり小さくなったりする。例えば、帯電物体の帯電電位の大きさ(絶対値)が同じでもその極性が電圧印加電極3と異極性の場合には、同極性の場合と比べて電位差が大きくなり上記電界E2の強度は大きくなる。
このように、電圧印加電極3に直流電圧を印加した場合でも、電界E2が帯電物体5の表面電位によって変動するが、特に電圧印加電極3と表面電位とが異極性の場合に電界E2の強度が電界E1よりも大きくなって、電界E1への影響が大きくなってしまう。
【0015】
いずれにしても、変動する電界E2が、隣接している電界E1に対して影響を及ぼす。このように、電界E2が電界E1に影響を与えてしまえば、電界E1でのイオン生成にも電界E2が影響を及ぼすことになり、帯電物体5の表面電位のみに依存したイオン生成ができるという、自己放電を利用した除電のメリットが損なわれてしまう。
【0016】
この発明の目的は、帯電物体の表面電位に応じた除電機能を安定して発揮できる除電装置を提供することである。
【課題を解決するための手段】
【0017】
第1の発明は、帯電物体と対向する尖端を有し、接地された除電電極と、電源に接続され、上記除電電極の尖端との間でトリガー放電を発生させる電圧印加電極とを備え、上記電圧印加電極と上記除電電極の尖端との間のトリガー放電をきっかけとして帯電物体と上記除電電極の尖端との間で自己放電を発生させ、上記自己放電で生成されたイオンによって上記帯電物体の電荷を中和する除電装置である。
そして、上記帯電物体と上記除電電極の尖端との間を、上記帯電物体の表面電位が設定値以上のとき、上記帯電物体から上記除電電極への自己放電が可能な距離に保って、その間での自己放電で生成されたイオンによって上記帯電物体の表面電位を少なくとも上記設定値まで下げる一方、上記帯電物体から上記電圧印加電極までの距離を、上記帯電物体から上記除電電極の尖端までの距離よりも大きくしている。
【0018】
第2の発明は、帯電物体と対向する尖端を有し、接地された除電電極と、電源に接続された電圧印加電極と、上記電圧印加電極との間でトリガー放電を発生させる尖端を有し、上記除電電極とは別の接地されたトリガー電極とを備え、上記電圧印加電極と上記トリガー電極の尖端との間のトリガー放電をきっかけとして帯電物体と上記除電電極の尖端との間で自己放電を発生させて、上記自己放電で生成されたイオンによって上記帯電物体の電荷を中和する除電装置である。
そして、上記帯電物体と上記除電電極の尖端との間を、上記帯電物体の表面電位が設定値以上のとき、上記帯電物体から上記除電電極への自己放電が可能な距離に保って、その間での自己放電で生成されたイオンによって上記帯電物体の表面電位を少なくとも上記設定値まで下げる一方、上記帯電物体から上記電圧印加電極までの距離を、上記帯電物体から上記除電電極の尖端までの距離よりも大きくしている。
なお、上記除電電極と別のトリガー電極は、その基端側を除電電極に結合して一体的にしても良いし、全く別に設けても良い。
【0019】
なお、上記表面電位の設定値は、目的の除電レベルによって予め人為的に決められるものであり、自己放電で生成されるイオンによって達成したい表面電位を基準にしている。したがって、完璧に除電したいというように目的の除電レベルが高く、高い除電能力が求められるときには上記設定値を小さくし、目的の除電レベルが低く、低い除電能力で足りるときには上記設定値を大きくする。
そして、帯電物体と除電電極との間の距離は上記設定値に応じて決められる。
【0020】
例えば、高い除電レベルが求められる設定値のときには、除電電極の尖端を帯電物体に近づけて自己放電しやすくする必要があるため、帯電物体から除電電極の尖端までの距離はなるべく小さく設定される。一方、低い除電レベルで足りる設定値のときには、帯電物体と除電電極の尖端との距離を大きくしても除電目的を達成することができるので、上記距離は大きくできる。
上記のように帯電物体と除電電極との距離を保ち、自己放電で生成されたイオンによって帯電物体の表面電荷を中和し、表面電位を少なくとも上記設定値まで下げることができるようにしている。
【0021】
また、上記帯電物体と電圧印加電極とは、その間に生成される電界強度が帯電物体と除電電極の尖端との間の電界に与える影響を無視できる程度に、それらの距離を大きくすることが好ましい。例えば、帯電物体と電圧印加電極との距離を放電が発生しない大きさに保てば、その間の電界が帯電物体と除電電極間の電界と比べて十分に小さくなり、その影響は小さくなる。
【0022】
さらに、電圧印加電極や除電電極、トリガー電極は、トリガー放電を可能にする位置関係を保つ必要がある。トリガー放電を可能にする位置関係とは、電圧印加電極と除電電極またはトリガー電極の尖端との間で安定した放電が可能であるとともに、この放電によって生成された電子やイオンが、除電電極と帯電物体との間の自己放電のきっかけとしての機能を発揮するような位置関係である。例えば、電圧印加電極と除電電極またはトリガー電極との距離が放電可能な距離であっても、放電の発生位置が帯電物体から離れすぎていた場合には、生成された電子やイオンが自己放電のきっかけとして機能しないことがある。このような位置関係は、トリガー放電を可能にする位置関係とは言わない。
【0023】
第3,4の発明は、上記除電電極やトリガー電極を上記電圧印加電極の両側に備えている。
第5の発明は、上記電源が交流電源であって、上記電圧印加電極が誘電体の被覆部材で覆われている。
【0024】
第6の発明は、上記除電電極と接地体との間に直列に接続された高抵抗素子と、上記高抵抗素子から除電電極の尖端までの長さの範囲で対向し、その対向長さに応じた大きさの浮遊容量を生成する浮遊容量生成手段とを備え、上記浮遊容量の大きさが、上記帯電物体から上記除電電極への上記自己放電が発生したとき、この自己放電による放電エネルギーが、上記帯電物体が存在する雰囲気における可燃性物質の最小着火エネルギーに達する前に、上記帯電物体からの電荷による蓄電量が最大となって上記自己放電が停止するように設定されている。
【発明の効果】
【0025】
この発明によれば、帯電物体と電圧印加電極との間の変動する電界の強度を相対的に小さくして、その分、帯電物体と除電電極との間の電界に与える影響を小さくできる。
結果として、帯電物体と除電電極との間の自己放電で、帯電物体の表面電位の高さのみに依存するイオン生成ができ、帯電物体の表面電位に応じた除電機能を安定させることができる。
特に、第1の発明のように、除電電極にトリガー放電を発生させる機能を備えた場合には、除電電極とトリガー電極とを別々に設ける必要がなく、その分構造が単純化し小型化も可能である。
【0026】
一方、第2の発明のように、除電電極とは別のトリガー電極を備えることによって、トリガー電極の尖端の位置を、除電電極の尖端の位置に関係なく決めることができる。
例えば、トリガー電極の尖端を電圧印加電極に近づければ、その分、電圧印加電極に印加する電圧を小さくしてもトリガー放電が可能になるので、帯電物体と電圧印加電極との間の電界の強度を小さくして自己放電への影響をより小さくすることができる。
また、帯電物体と除電電極の尖端との間の自己放電を可能にする距離にかかわりなく、電圧印加電極から帯電物体までの距離を大きくして、その間の電界の強度を小さくすることもできる。
その結果、帯電物体の表面電位に対応した自己放電による除電機能をより安定して発揮させることができる。
【0027】
第3,4の発明によれば、電圧印加電極の両側でトリガー放電が発生し、自己放電のきっかけとなる電子を生成するエリアを、除電電極の数分だけ大きくすることができる。トリガー放電のエリアが大きくなれば、それをきっかけとする自己放電の発生エリアも大きくなるので、自己放電でイオンが生成されるエリアも大きくなって除電効率が向上する。
【0028】
第5の発明によれば、電圧印加電極を誘電体で被覆したので、電圧印加電極と除電電極との間隔を厳密に管理しなくても、両電極間のトリガー放電が安定化して自己放電のきっかけとなる電子を効率的に生成することができる。金属電極同士を対向させた場合には、その間隔がわずかでも狂うと放電状態が変化してしまうことがあるが、電圧印加電極を誘電体で被覆することで放電状態を安定化できる。
さらに、被覆部材を設けることで、電圧印加電極に接触した場合の感電の危険も低減できる。
【0029】
第6の発明によれば、除電電極側の浮遊容量が最大蓄電量になるたびに、帯電物体から除電電極への自己放電が停止するとともに、1回の自己放電による放電エネルギーを雰囲気中の可燃性物質の最小着火エネルギー未満に保つことができる。したがって、帯電物体の表面電位が高くても、帯電物体からの自己放電が着火性放電になることがなく、この発明の除電装置が火災や爆発などの原因になることがない。
【図面の簡単な説明】
【0030】
【
図1】第1実施形態の除電装置の構造の概略図である。
【
図2】第2実施形態の除電装置の構造の概略図である。
【発明を実施するための形態】
【0031】
図1は、処理対象となる帯電物体5から除電電極6,7への自己放電を利用して帯電物体5の表面を除電するための第1実施形態の除電装置の概略図である。
この除電装置は接地されたケーシングAを備え、このケーシングA内には、この発明の接地体となるケーシングAに接続して尖端を接地電位に保った除電電極6,7を備えている。これら除電電極6,7は導体である金属製の針電極である。
【0032】
また、除電電極6,7との間には、これら除電電極6,7との間でトリガー放電となるコロナ放電を発生させるための電圧印加電極8を設け、この電圧印加電極8に、交流電源4を接続している。
そして、
図1において、帯電物体5と除電電極6,7間との間の電界をE1、帯電物体5と電圧印加電極8との間の電界をE2としている。
上記電圧印加電極8は軸線方向に長さを有する棒状の電極で、交流電源4に接続された金属電極8aを誘電体の被覆部材8bで覆って形成されている。
【0033】
上記電圧印加電極8に交流電源4を接続したのは、上記被覆部材8bで覆われた電圧印加電極8と上記除電電極6,7との間でコロナ放電を持続的に発生させるためである。
もし、電圧印加電極8の金属電極8aに直流電圧を印加した場合には、被覆部材8bの表面にはコロナ放電で生成されたイオンのうち印加電圧と逆極性のイオンが引き付けられ、その電荷によって表面が帯電してしまう。表面に付着したイオンと印加電圧とが相殺しあって被覆部材8bの見かけの電位が低くなってしまうと、除電電極6,7との間の電位差が小さくなってしまうのでコロナ放電が停止してしまう。しかし、電圧印加電極8に、極性が変化する交流電圧を印加することで、被覆部材8b表面の帯電を防止でき除電電極6,7との間の安定した放電を維持できる。
【0034】
また、電圧印加電極8の両側に対向配置された除電電極6,7は、それぞれ電圧印加電極8の軸線方向に所定の間隔を保って複数本配置されている。このように、除電電極6,7を電圧印加電極8の両側に設けたのは、上記コロナ放電が発生するエリアを大きくするためである。
【0035】
さらに、上記電圧印加電極8の軸線方向に沿って配置された各除電電極6,7は、その尖端をケーシングAの開口に臨ませるとともに、帯電物体5からの距離をL1に設定している。この距離L1は帯電物体5の表面電位が設定値以上のとき、帯電物体5から除電電極6,7への自己放電が発生する距離である。そして、この距離L1は、自己放電で生成されたイオンで、帯電物体5の表面電位を少なくとも上記設定値まで下げることができ、しかも除電効率を考慮して電界がある程度広がる距離に設定されている。
【0036】
なお、上記表面電位の設定値は、自己放電で生成されたイオンを利用した除電によって達成したい目的の表面電位に応じて予め人為的に設定される値である。ただし、上記設定値がそのまま除電の最終目的の電位になるとは限らない。上記設定値は、上記自己放電で生成されたイオンによって、少なくともそこまでは下げられるという表面電位の値である。
そして、この表面電位の設定値に応じて上記距離L1を設定している。例えば、帯電物体5の表面電位をほぼゼロにするような高い除電能力が要求される場合には表面電位の設定値はほぼゼロに設定され、要求される除電能力が低い場合には上記設定値は大きく設定される。そして、上記表面電位の設定値が低ければ低いほど、上記距離L1を小さくしなければならない。
【0037】
一方、上記帯電物体5から上記電圧印加電極8までの距離をL2とし、この距離L2を上記帯電物体5から上記除電電極6,7の尖端までの距離L1よりも大きく、上記電界E2の影響が電界E1へ与える影響を無視できる大きさにしている。例えば、距離L2を、帯電物体5と電圧印加電極8との間の自己放電が起こらない距離に設定すれば、電界E1に対する電界E2の影響は十分小さくなると考えられる。
【0038】
また、電圧印加電極8と除電電極6,7の尖端との距離L3は、電圧印加電極8に所定の電圧を印加したとき、電圧印加電極8と除電電極6,7の尖端との間でコロナ放電が発生する距離に設定されている。この距離L3の適正値は、電圧印加電極8の形状や印加電圧によっても変わる。
そして、上記コロナ放電は帯電物体5と除電電極6,7の尖端との間の自己放電のきっかけとなる電子を生成することが主な目的である。
したがって、この第1実施形態の除電装置では、上記距離L1,L2,L3に基づいて、上記コロナ放電で生成された電子やイオンが自己放電のきっかけとなるような除電電極6,7の尖端及び電圧印加電極8の配置が設定されている。
【0039】
さらに、上記除電電極6,7の尖端以外の部分と電圧印加電極8との間に短絡回路が形成される心配がある場合には、電圧印加電極8と除電電極6,7との最短距離についても考慮して、短絡回路が形成されないようにする必要がある。もし、除電電極6,7の尖端以外の部分に短絡回路が形成されると、上記尖端と電圧印加電極8との間のコロナ放電が不安定になってしまうからである。
【0040】
上記のようにした除電装置において、電圧印加電極8に電圧が印加されると、電圧印加電極8と除電電極6,7との間にコロナ放電が発生し、このコロナ放電がきっかけとなって帯電物体5から除電電極6,7へ自己放電が発生する。自己放電を促すメカニズムは上記した従来装置の場合とほぼ同じである。すなわち、コロナ放電によって電子やイオンが生成されると、生成された電子やイオンが周囲の電界によって加速されて空気分子や除電電極6,7に衝突する。加速して空気分子に衝突した電子やイオンは、その空気分子を電離させる。また、電子やイオンが衝突した除電電極6,7は表面からは二次電子を放出し、この二次電子も空気分子を電離させる。これらの電離がきっかけとなって帯電物体5と除電電極6,7との間の自己放電が促される。
そして、上記自己放電でイオンが生成され、このイオンが帯電物体5の表面電荷を中和して帯電物体5が除電される。
【0041】
上記のように、この第1実施形態では、帯電物体5と電圧印加電極8との距離L2を、帯電物体5と除電電極6,7との距離L1より大きく設定して、帯電物体5と電圧印加電極8との間に生成される電界E2の強度を積極的に小さくしている。したがって、帯電物体と除電電極6,7の尖端との間に生成される電界E1に対する、上記電界E2の影響を小さくできる。
特に、上記電界E2は電圧印加電極8に印加される交流電圧によって強度が変動するが、電界E1は上記電界E2の変動の影響を受けずに安定したものになる。
【0042】
なお、上記自己放電の強さは帯電物体5と接地電位を維持した除電電極6,7の尖端との電位差によって生成される電界E1の強度に依存し、イオンの生成量は上記自己放電の強さに依存する。
したがって、この第1実施形態では、帯電物体5の表面電位のみに依存したイオン生成ができる。つまり、帯電物体5の表面電位が高い場合には、多くのイオンが生成され、表面電位が低い場合には生成されるイオン量が少なくなって、帯電物体5の表面電位に応じた除電ができる。
【0043】
また、電圧印加電極8は、上記ケーシングA内において除電電極6,7よりケーシングAの開口から離れた位置に設けられている。したがって、帯電物体5や作業者が、電圧が印加された電圧印加電極8に接触する危険性も低く、また、電圧印加電極8と帯電物体5との間に強い放電が発生することもなく、安全である。
【0044】
さらに、この第1実施形態では、上記のように電圧印加電極8と除電電極6,7との間のコロナ放電をきっかけとして自己放電が発生するようにしているため、きっかけとなるコロナ放電を発生させない場合と比べて、低い表面電位の帯電物体5からの自己放電を可能にして除電ができる。または、自己放電を可能にする距離L1を大きく設定できる。帯電物体5と除電電極6,7との距離L1を相対的に大きくできれば、電界E1によるイオン生成範囲が広くでき、除電効率を高くできる。また、例えば帯電物体5が振動するようなことがあっても、除電電極6,7に帯電物体5が接触することも防止できる。
【0045】
また、この装置では、
図1に示すように各除電電極6,7の基端とこの発明の接地体となるケーシングAとの間に高抵抗素子Rが直列に接続され、この高抵抗素子Rから除電電極6,7の尖端までの長さの範囲S(
図1参照)と、接地されたケーシングAとの間に浮遊容量SCが生成されるようにしている。この第1実施形態においては、ケーシングAにおいて上記高抵抗素子Rから上記尖端までの長さの範囲Sと対向する部分を浮遊容量生成手段としているが、除電電極6,7の尖端までの長さの範囲Sと対向する浮遊容量生成手段としては接地電位を保った部材や床面などでもよく、上記ケーシングAには限らない。
【0046】
上記浮遊容量SCの静電容量Cは、高抵抗素子Rから上記尖端までの長さの範囲SとケーシングAとの対向長さに依存するが、この対向長さは除電電極6,7を含む導体の断面形状に応じて変化する。例えば、断面が平板状の導体あるいは大径の導線など、ケーシングAとの対向面積が大きな導体であれば、同じ静電容量を生成する対向長さが相対的に短くなる。
そして、この容量Cは、上記長さの範囲SとケーシングAとの対向長さによって決まるが、後で説明するように微小値に設定することが望ましい。
【0047】
また、上記高抵抗素子Rは、帯電物体5からの自己放電が起こったとき、除電電極6,7の尖端から接地へ流れる放電電流を瞬間的に止めて浮遊容量SCに電荷を蓄電させるように機能するものである。高抵抗素子Rは、自己放電によって除電電極6,7を流れる放電電流を瞬間的に止めるためにはその抵抗値が大きいほど好ましい。
しかし、浮遊容量SCに電荷を蓄積した後には浮遊容量SCに蓄電された電荷を接地へ流す必要がある。放電電流をせき止めたままでは除電が完了しないからである。したがって、帯電物体5の表面電位にもよるが、高抵抗素子Rの抵抗値としては100[MΩ]~500[MΩ]程度が適当である。
【0048】
一方、上記浮遊容量SCの容量Cは、帯電物体5から除電電極6,7へのエネルギーの大きな自己放電が発生してその放電電流が流れ込んだとき、瞬間的に最大蓄電量に達して、除電電極6,7が表面電位と同電位に達するような微小容量に設定されている。例えば、スパークのような高エネルギーの自己放電が発生したとき、浮遊容量SCに電荷が蓄電される過程では除電電極6,7の電位が接地電位から上昇して上記電界E1の強度は小さくなる。そして、浮遊容量SCが帯電物体5の表面電位と同電位になるまで電荷を蓄積したとき、除電電極6,7の電位が帯電物体5の表面電位と同じになって自己放電が停止する。
【0049】
その後、浮遊容量SCの蓄電荷が高抵抗素子Rを介して接地へ放電されれば、除電電極6,7の電位が接地電位まで下がる。このとき、帯電物体5の表面電位が上記設定値まで下がっていなければ再度自己放電が発生する。このように、エネルギーの小さな自己放電が繰り返され、その過程で生成されたイオンで帯電物体5が除電される。
【0050】
上記のように、帯電物体5の除電過程で除電電極6,7へ向かう瞬間的な自己放電が複数回繰り返されるが、この第1実施形態では、自己放電が着火性放電にならないように1回の自己放電の放電エネルギーが小さくなるようにしている。
上記したように、1回の自己放電は浮遊容量SCが満杯になって除電電極6,7が帯電物体5の表面電位とほぼ同電位になるまで続く。したがって、その放電エネルギーは、帯電物体5の表面電位に応じて浮遊容量SCに蓄積された電荷量、すなわち浮遊容量SCの容量Cと表面電位の積に比例する。そのため、浮遊容量SCの容量Cを微小値に設定すれば、帯電物体5の表面電位がどんなに高くても、1回の自己放電の放電エネルギーは小さくなって着火性放電を防止できる。
【0051】
上記したように着火性放電を防止するためには、上記容量Cを小さく設定しなければならないが、浮遊容量SCにおいて帯電物体5の表面電位で決まる最大蓄電量に対応する放電エネルギーが、帯電物体5が存在する雰囲気中の可燃性物質の最小着火エネルギー未満になるように上記容量Cを設定することが最低条件となる。
例えば、容量Cが3[pF]に設定されていて帯電物体5の表面電位Vが10[kV]のときの自己放電の放電エネルギーWは、W=1/2×C×V2から約0.15[mJ]である。一方、一般的な溶剤蒸気の最小着火エネルギーは約0.20[mJ]以上である。したがって、容量Cが3[pF]なら、一般的な溶剤蒸気が存在する雰囲気でも、上記自己放電が着火性放電になることはない。
【0052】
上記のように放電エネルギーは容量Cだけでなく帯電物体5の表面電位にも依存する。また、可燃性物質には溶剤蒸気や可燃性ガス、可燃性粉塵などが含まれる。
いずれにしても、この発明における浮遊容量SCの容量Cは、雰囲気中の想定できる可燃性物質の最小着火エネルギーや、帯電物体5の想定される最大表面電位などに基づいて設定する必要がある。
もし、上記浮遊容量SCの容量Cを上記のように設定しない場合には、表面電位が高い帯電物体5から発生する自己放電の放電エネルギーが、雰囲気中の可燃性物質の最小着火エネルギーを超えて火災や爆発の原因になってしまう可能性がある。
【0053】
上記のように、この第1実施形態では、帯電物体5と電圧印加電極8との距離L2を、自己放電可能な帯電物体5と除電電極6,7との距離L1より大きくしている。
このように距離L2を大きくして、帯電物体5と電圧印加電極8との間の電界E2の強度を相対的に小さくなるようにしたので、帯電物体5と除電電極6,7との間の電界E1に対する不安定な電界E2の影響を小さくできる。
その結果、帯電物体5と除電電極6,7との間には、帯電物体5の表面電位のみで強度が決まる電界E1が生成され、帯電物体5の表面電位のみに依存するイオン生成によって帯電物体5の表面電位に応じた除電ができる。
【0054】
しかも、この第1実施形態では、高抵抗素子Rを所定の位置に接続することによって、多数の自己放電が断続的に発生するようにしている。そのうえで、1回の自己放電の放電エネルギーが雰囲気中の可燃性物質の最小着火エネルギー未満になるように浮遊容量SCの容量Cを設定している。そのため、この第1実施形態の除電装置は、可燃性物質が含まれるような環境でも使用することができる。
【0055】
図2に示す第2実施形態は、電圧印加電極8に対する除電電極6,7の方向が、
図1に示す第1実施形態と異なるが、その他の構成は第1実施形態と同じである。なお、第2実施形態において第1実施形態と同様の構成要素には
図1と同じ符号を用いている。
この第2実施形態においても、帯電物体5から電圧印加電極8までの距離L2を、帯電物体5から除電電極6,7の尖端までの距離L1より大きく設定して、帯電物体5と電圧印加電極8との間の電界E2の強度を積極的に小さくしている。
【0056】
このように、電界E2の強度を小さくすることで、電界E1の強度が相対的に大きくなるとともに、電界E1に対する電界E2の変動の影響も小さくなる。そのため、帯電物体5から除電電極6,7への自己放電で帯電物体5の表面電位のみに依存したイオンを生成でき、安定した除電機能を発揮できる点は第1実施形態と同じである。
【0057】
ただし、この第2実施形態では第1実施形態と異なり、除電電極6,7を、電圧印加電極8から帯電物体5へ向かう垂線に対して斜めに配置して、これら除電電極6,7の尖端同士を近づけている。
このような構成では、電圧印加電極8が除電電極6,7で囲まれるので、帯電物体5から電圧印加電極8へ向かう電気力線が、電圧印加電極8ではなく除電電極6,7の尖端に集中しやすくなる。そのため、相対的に上記電界E1の強度が大きくなる一方で、電界E2の強度の方はより小さくなる。したがって、電界E1に対する電界E2の影響がより小さくなり、帯電物体5から除電電極6,7への自己放電によるイオン生成がさらに安定したものになる。
【0058】
また、この第2実施形態でも、第1実施形態と同様に除電電極6,7と接地体との間に高抵抗素子Rを接続し、浮遊容量SCの容量Cを、着火性放電を防止できるように微小値に設定している。そのため、帯電物体5からの自己放電が火災や爆発の原因になることはない。
【0059】
図3に示す第3実施形態は、
図1に示す第1実施形態の除電電極6,7にトリガー電極9,10を設けた構成である。
上記トリガー電極9,10は尖端を有する、例えば金属針で構成され、その尖端を電極印加電極8と対向させている。上記トリガー電極9,10と電圧印加電極8との距離L3は、トリガー放電となるコロナ放電が可能な距離である。
その他の構成は第1実施形態と同様であり、第3実施形態において第1実施形態と同様の構成要素には
図1と同じ符号を用いている。
【0060】
この第3実施形態においても、帯電物体5から除電電極6,7までの距離L1より、帯電物体5から電圧印加電極8までの距離L2を大きくしている。したがって、この第3実施形態においても、第1実施形態と同様に自己放電による安定した除電機能が発揮される。
また、この第3実施形態でも、第1実施形態と同様に除電電極6,7と接地体との間に高抵抗素子Rを接続し、浮遊容量SCの容量Cを、着火性放電を防止できるように微小値に設定している。そのため、帯電物体5からの自己放電が火災や爆発の原因になることはない。
【0061】
図4に示す第4実施形態は、
図2に示す第2実施形態の除電電極6,7に、上記第3実施形態と同様に、尖端を有するトリガー電極9,10を設けた構成である。
その他の構成は第2実施形態と同様であり、第4実施形態において第2,3実施形態と同様の構成要素には
図2,3と同じ符号を用いている。
したがって、この第4実施形態においても、上記第2実施形態と同様の効果が得られる。
【0062】
さらに、上記第3,4実施形態では、トリガー電極9,10と除電電極6,7とを別にしているので、これら除電電極6,7の機能とトリガー電極9,10の機能とを明確に分離することができ、トリガー電極9,10の尖端の位置を、除電電極6,7の尖端の位置に関係なく決めることができる。
例えば、トリガー電極6,7の尖端を電圧印加電極8に近づけて、第1実施形態や第2実施形態よりも距離L3を小さくすることができる。距離L3が小さくなれば、その分、電圧印加電極8に印加する電圧を小さくしてもトリガー放電が可能になるので、電界E2の強度を小さくして電界E1への影響をより小さくすることができる。
【0063】
一方、電圧印加電極8への印加電圧や上記距離L3を一定にした場合には、電圧印加電極8を図中の上方へずらして、帯電物体5までの距離L2を大きくすることもできる。この場合にも、電界E2の強度が小さくなるので、電界E2の電界E1に対する影響をさらに小さくできる。
その結果、帯電物体5の表面電位に対応した自己放電によるより安定した除電機能を発揮させることができる。
なお、上記第3,4実施形態では、除電電極6,7にトリガー電極9,10の基端を結合しているが、トリガー電極9,10は除電電極と全く別個に接地体と接続してもよい。このように、除電電極とは全く別個にしたものだけでなく、上記のように基端側を除電電極6,7と連結したものも、この発明の除電電極と別にしたトリガー電極に含まれる。
【0064】
なお、帯電物体5が存在する雰囲気が可燃性物質を含まずに火災や爆発の心配がないのであれば、上記第1~4実施形態のように高抵抗素子Rを接続して上記浮遊容量SCを微小値に設定する必要はない。高抵抗素子Rを接続しない場合には、帯電物体5と除電電極6,7との間の自己放電の放電電流が、除電電極6,7の尖端から接地へ一気に流れることになる。そのため、上記実施形態のように、小さな自己放電が繰り返される場合と異なり、1回の放電エネルギーが大きくなってしまうことがある。
しかし、雰囲気中に可燃性物質が含まれていなければ、雰囲気の最小着火エネルギーは非常に大きな値となるので、自己放電の放電エネルギーがそれに達する可能性はほぼない。
【0065】
また、上記第1~4実施形態では、電圧印加電極8を誘電体の被覆部材8bで覆って、電圧印加電極8の長さに沿って対向する複数の除電電極6,7やトリガー電極9,10との間でのコロナ放電が安定化するようにしている。金属電極同士を対向させた場合には、対向間隔にわずかな誤差があっただけでも、最短部分に短絡回路が形成されてコロナ放電が不安定になってしまうことがある。しかし、上記のように電圧印加電極8を誘電体の被覆部材8bで覆うことで、寸法管理がラフであっても安定したコロナ放電を実現できる。
【0066】
したがって、電圧印加電極8と除電電極6,7との対向間隔、または電圧印加電極8とトリガー電極9,10との対向間隔などの寸法管理を厳密にできる場合には、上記被覆部材8bを設けなくても問題はない。
なお、上記実施形態において除電電極6,7の尖端を誘電体で覆っていないのは、除電電極6,7の尖端に帯電物体5からの電気力線を集中させて上記自己放電を起こりやすくするためである。
【0067】
また、上記第1~4実施形態では、電圧印加電極8の両側に除電電極6,7及びトリガー電極9,10を設けて、トリガー放電となるコロナ放電が発生するエリアを大きくしている。コロナ放電の発生エリアが大きくなれば、自己放電が誘発されるエリアも大きくなり、それだけイオン生成エリアが大きくなるので除電効率を上げることができる。ただし、イオン生成エリアは、帯電物体の形状や大きさによって選択すればよい。そして、必要なイオン生成エリアに応じて、除電電極6,7、トリガー電極9,10、電圧印加電極8の数や配置を設定することができる。例えば、除電電極6,7やトリガー電極9,10を、電圧印加電極8のいずれか一方のみに設けても良いし、電圧印加電極8と除電電極6,7やトリガー電極9,10との組を、複数マトリックス状に配置してもよい。
【0068】
さらに、電圧印加電極の形状は上記実施形態のものに限らず、どのような形状でもよい。例えば、
図1~4の上方から帯電物体5に向かって伸びる棒状の電圧印加電極を設けて、その先端と帯電物体5との距離L2を上記距離L1より大きくしてもよい。この場合にも、電圧印加電極の先端部分を誘電体の被覆部材で覆ってもよいし、覆わなくてもよい。また、電圧印加電極の先端形状を、除電電極6,7の尖端またはトリガー電極9,10の尖端との間でコロナ放電が発生し易い形状にすることもできる。
ただし、電圧印加電極を誘電体の被覆部材で覆った場合には、上記したように印加電圧は交流にしなければならない。
【0069】
また、第1~4実施形態のいずれの除電装置においても、帯電物体5の表面電位が低くなって自己放電で生成されるイオン量が少なくなったときには、コロナ放電で生成されるイオンを除電に利用することもできる。
上記電圧印加電極8と除電電極6,7またはトリガー電極9,10との間のコロナ放電は自己放電のきっかけであって、除電に寄与する多くのイオンを生成するように設定する必要はないが、電極間の距離L3と印加電圧とによってイオン生成量はほぼ一定に保たれる。
そのため、自己放電で生成されるイオン量が少なくなるとコロナ放電で生成されるイオン量が相対的に多くなり、このイオンを除電に利用することもできる。
【0070】
また、上記実施形態における、接地された除電電極6,7及びトリガー電極9,10は、尖端を有する電極であればよく、針電極に限定されない。
例えば、
図5に示すように、刃のような尖端を有する板状部材で構成してもよい。
図5は板状の電極の例で、除電電極6とトリガー電極9とが板状部材で一体的に形成されている。
このように除電電極6,7は、尖端を備えていれば他の部分の形態は特に限定されないが、上記高抵抗素子Rから尖端までの浮遊容量SCの容量を微小に保つためには、その断面積が小さい形状が好ましい。
図5のように除電電極6,7にトリガー電極9,10を結合した場合には、トリガー電極9,10の部分も上記浮遊容量SCの容量に含まれるので、その大きさを考慮する必要がある。
【0071】
さらに、上記第1~4実施形態では、電圧印加電極8に交流電源4を接続しているが、電源は直流電源でもかまわない。直流電源を用いた場合にも、帯電物体5の表面電位の極性によっては、帯電物体5と電圧印加電極8との間に生成される電界E2が変動する可能性がある。しかし、上記実施形態のように、上記距離L2を距離L1より大きくして電界E2の強度を相対的に小さくすれば、電界E1に対する電界E2の影響を排除できるので、電源の種類にかかわらず、帯電物体5の表面電位のみに依存したイオン生成による安定した除電が可能である。
【産業上の利用可能性】
【0072】
この発明は、様々な電位の帯電物体を確実にかつ効率的に除電することができる。
【符号の説明】
【0073】
4 交流電源
5 帯電物体
6,7 除電電極
8 電圧印加電極
8b (誘電体の)被覆部材
9,10 トリガー電極
L1 帯電物体から除電電極までの距離
L2 帯電物体から電圧印加電極までの距離
R 高抵抗素子
SC 浮遊容量
S 高抵抗素子から除電電極の尖端までの長さ