(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-01-10
(45)【発行日】2024-01-18
(54)【発明の名称】制御目標生成装置及び操船制御装置
(51)【国際特許分類】
B63B 49/00 20060101AFI20240111BHJP
G08G 3/00 20060101ALI20240111BHJP
【FI】
B63B49/00 Z
G08G3/00 A
(21)【出願番号】P 2020557729
(86)(22)【出願日】2019-11-26
(86)【国際出願番号】 JP2019046110
(87)【国際公開番号】W WO2020111044
(87)【国際公開日】2020-06-04
【審査請求日】2022-02-25
(31)【優先権主張番号】P 2018221182
(32)【優先日】2018-11-27
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000006781
【氏名又は名称】ヤンマーパワーテクノロジー株式会社
(74)【代理人】
【識別番号】100118784
【氏名又は名称】桂川 直己
(72)【発明者】
【氏名】原 直裕
(72)【発明者】
【氏名】福川 智哉
(72)【発明者】
【氏名】嵩 裕一郎
【審査官】結城 健太郎
(56)【参考文献】
【文献】特開平11-2534(JP,A)
【文献】特開2007-230455(JP,A)
【文献】韓国公開特許第10-2012-0128741(KR,A)
【文献】特開2004-355105(JP,A)
【文献】特開2017-154734(JP,A)
【文献】特開2006-136962(JP,A)
【文献】岡崎忠胤,大津皓平,福田人意,最短時間制御を目指した自動定点停止操船に関する研究,日本航海学会論文集,日本,日本航海学会,2002年03月25日,106号,pp.105-112,DOI:10.9749/jin.106.105,ISSN 2187-3275(online),0388-7405(print)
【文献】LEE, Sin-Der, TZENG, Ching-Yaw, SHU, Kai-Yu,Design and experiment of a small boat auto-berthing control system,2012 12th International Conference on ITS Telecommunications,TW,IEEE,2012年,pp.397-401,DOI:10.1109/ITST.2012.6425206,ISBN 978-1-4673-3069-5(online), 987-1-4673-3070-1(electronic), 978-1-4673-3071-8(print), 978-1-4673-3068-8(CD)
【文献】XU, Hai-jun, LIU, Yong, ZHA, Zhi-qiang,Design of Trajectory Tracking control of underactuated Ship,2017 4th International Conference on Information, Cybernetics and Computational Social Systems,中国,IEEE,2017年,pp.367-371,DOI:10.1109/ICCSS.2017.8091441,ISBN 978-1-5386-3257-4(electronic), 978-1-5386-3258-1(PoD)
【文献】NGUYEN, Phung-Hung,A Study on the Automatic Ship Control Based on Adaptive Neural Networks,KR,Korea Maritime University,2007年,特にpp.57-79「Chapter 5 ANNAI-based Berthing Control System」
(58)【調査した分野】(Int.Cl.,DB名)
B63B 49/00,
G08G 3/00
(57)【特許請求の範囲】
【請求項1】
船舶の位置及び方位を制御する制御目標を経路に従って生成する制御目標生成装置であって、
前記経路は、複数の制御点を有し、
前記制御点のそれぞれは、前記船舶の目標位置及び目標方位に関する情報を有し、
前記経路は、前記制御点の前記目標位置を順番に繋ぐ複数の部分経路により構成され、
前記部分経路の途中部に、前記船舶の目標位置及び目標方位に関する情報を有する経過目標点を前記制御目標として生成可能な経過目標点生成部と、
前記船舶の現在位置及び現在方位に基づいて、前記経過目標点に前記船舶が到達したか否かを判定する到達判定部と、
を備え、
前記経過目標点生成部は、前記船舶の現在方位と前記経過目標点の前記目標方位との差が所定以内であることを条件として当該経過目標点の更新を行
い、
前記経過目標点に前記船舶が到達したと前記到達判定部が判定すると、前記経過目標点生成部は、当該経過目標点を更新し、
前記経過目標点が更新されるとき、当該経過目標点の前記目標位置及び前記目標方位は、前記部分経路の終端の前記制御点の前記目標位置及び前記目標方位にそれぞれ近づくように変化することを特徴とする制御目標生成装置。
【請求項2】
請求項
1に記載の制御目標生成装置であって、
前記経路の少なくとも一部において、前記経過目標点の1回の更新毎の前記目標位置及び前記目標方位の変化の大きさが一定であることを特徴とする制御目標生成装置。
【請求項3】
請求項
1に記載の制御目標生成装置であって、
前記経路の終端は、前記船舶を着岸させる着岸位置であり、
前記経過目標点の1回の更新毎の前記目標位置及び前記目標方位の変化が、前記着岸位置に近くなるに従って小さくなることを特徴とする制御目標生成装置。
【請求項4】
請求項
1又は
2に記載の制御目標生成装置であって、
前記部分経路の終端における前記経路の向きの変化の大きさが所定以上である場合は、前記経過目標点の1回の更新毎の前記目標位置及び前記目標方位の変化が、前記経過目標点が当該部分経路の終端に近いときに小さくなることを特徴とする制御目標生成装置。
【請求項5】
請求項1から
4までの何れか一項に記載の制御目標生成装置であって、
前記到達判定部は、前記部分経路と、前記船舶の現在位置と、の間の距離を考慮して、前記経過目標点に前記船舶が到達したか否かを判定することを特徴とする制御目標生成装置。
【請求項6】
請求項1から
5までの何れか一項に記載の制御目標生成装置であって、
前記経路の終点は、前記船舶を着岸させる着岸位置であり、
前記経過目標点に前記船舶が到達したか否かに関する前記到達判定部の判定は、前記着岸位置に近くなるに従って厳しくなることを特徴とする制御目標生成装置。
【請求項7】
請求項1から
6までの何れか一項に記載の制御目標生成装置であって、
前記部分経路の終端における前記経路の向きの変化の大きさが所定以上である場合であって、前記経過目標点が当該終端に近いときは、前記船舶が到達したか否かに関する前記到達判定部の判定が厳しくなることを特徴とする制御目標生成装置。
【請求項8】
請求項1から
7までの何れか一項に記載の制御目標生成装置であって、
前記到達判定部は、前記部分経路において前記船舶の現在位置が前記経過目標点の前記目標位置よりも先行しているか否かを判定可能であり、
前記船舶の現在位置が先行していると前記到達判定部が判定すると、前記経過目標点生成部は、前記目標位置及び前記目標方位を変化させるように当該経過目標点を更新することを特徴とする制御目標生成装置。
【請求項9】
請求項
8に記載の制御目標生成装置であって、
前記船舶の現在位置が先行していると前記到達判定部が判定した場合に、前記経過目標点生成部は、前記船舶の現在方位と前記経過目標点の前記目標方位との差が所定以内であることを条件として当該経過目標点の更新を行うことを特徴とする制御目標生成装置。
【請求項10】
請求項1から
9までの何れか一項に記載の制御目標生成装置であって、
前記経過目標点における目標位置及び目標方位を図形によって表示するための表示データを生成する表示データ生成部を備えることを特徴とする制御目標生成装置。
【請求項11】
請求項1から
10までの何れか一項に記載の制御目標生成装置と、
前記船舶の現在位置を前記制御目標の前記目標位置に近づけ、前記船舶の現在方位を前記制御目標の前記目標方位に近づけるように、前記船舶の推進装置を制御する推進制御装置と、
を備えることを特徴とする操船制御装置。
【請求項12】
請求項
11に記載の操船制御装置であって、
前記推進制御装置は、前記制御目標生成装置から入力される前記目標位置と、前記船舶の現在位置と、の偏差である位置偏差に基づいて、前記船舶の目標速度を定め、
前記推進制御装置は、前記船舶の現在速度を前記船舶の前記目標速度に近づけるように、前記船舶の推進装置を制御し、
前記推進制御装置は、前記船舶の前記目標速度の大きさを前記位置偏差に基づいて定めるための目標速度算出モデルを有し、
前記到達判定部は、前記目標位置と、前記船舶の現在位置と、の間の距離が閾値以下である場合に、前記目標位置に前記船舶が到達したと判定し、
前記到達判定部は、前記目標速度算出モデルの逆モデルを有し、
前記到達判定部は、目標巡航速度の大きさに相当する前記位置偏差を前記逆モデルにより求め、得られた前記位置偏差に基づいて、前記目標位置と、前記船舶の現在位置と、の間の距離に関する前記閾値を定めることを特徴とする操船制御装置。
【請求項13】
請求項
11に記載の操船制御装置であって、
前記推進制御装置は、
前記船舶の現在位置を前記制御目標の前記目標位置に近づけ、前記船舶の現在方位を前記制御目標の前記目標方位に近づけるために前記船舶に付与する推力を計算により求める第1推力計算部と、
目標巡航速度と、前記船舶が進むべき方向での当該船舶の現在速度と、の偏差に応じて、前記船舶の現在速度を前記目標巡航速度に近づけるために前記船舶に付与する推力を計算により求める第2推力計算部と、
前記第1推力計算部が求めた推力と、前記第2推力計算部が求めた推力と、を合成可能であり、合成割合を変更可能な合成推力計算部と、
を備え、
前記合成推力計算部が出力する合成後の推力に基づいて、前記船舶の推進装置を制御することを特徴とする操船制御装置。
【請求項14】
請求項
13に記載の操船制御装置であって、
前記合成推力計算部は、前記合成割合を、
前記制御目標における前記目標位置を基準にした前記船舶の相対的な現在位置、及び、前記制御目標における前記目標方位と前記船舶の現在方位との差のうち、少なくとも何れかに基づいて定めることを特徴とする操船制御装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、主として、船舶の位置及び方位に関する制御目標を生成する制御目標生成装置に関する。
【背景技術】
【0002】
従来から、船舶を自動航行させることができる操船装置が知られている。特許文献1及び2は、この種の操船装置を備える船舶を開示する。
【0003】
特許文献1の小型船舶は、コントローラを備える。コントローラは、目標位置に船体を着岸させるよう推進装置を制御する指令信号を生成する。コントローラは、目標位置と現在位置、目標方位と現在方位とから、相対誤差を算出し、相対誤差に基づいて目標速度・角速度を決定する。コントローラは、相対誤差の減少に応じて、目標速度・角速度を減少させる。即ち、コントローラは、船体の現在位置が目標位置に近づくと、目標速度を減少させる。また、コントローラは、船体の現在方位が目標方位に近づくと、目標角速度を減少させる。そして、船体の現在位置と目標位置との間の距離が0を含む所定範囲となると、コントローラは、目標速度を0にする。また、船体の現在方位と目標方位との差が0を含む所定範囲となると、コントローラは、目標角速度を0にする。
【0004】
特許文献2の船舶は、操船制御装置を備える。操船制御装置は、GPS装置からの情報に基づいて自らの位置と設定された目的地とから航路を算出して自動で操船を行うことができる。この操船制御装置は、船舶の現在座標P(n)と船舶の目標座標Ptとの差を算出し、目標座標Ptを現在座標P(n)からの距離L(n)と移動方向θ(n)とで表す目標極座標Po(n)に変換する。そして、操船制御装置は、現在座標P(n)を取得すると船舶を移動制御により移動方向θ(n)として現在座標P(n)から現在座標P(n+1)に移動させるとともに、回頭制御により現在方位Az(n)から現在方位Az(n+1)まで回頭させる。
【0005】
この際、船舶は、回頭制御の影響をうけて現在座標P(n)における移動方向θ(n)が目標座標Ptの方向からズレようとする。ここで、操船制御装置は、回頭補正制御により船舶が現在方位Az(n+1)に移動したときの現在方位Az(n+1)を考慮して船舶を目標移動方向θt(n)に移動させる。この結果、操船制御装置は、回頭制御による移動方向θ(n)のズレの影響を補正することで、船舶が現在座標P(n)と目標座標Ptとをつなぐ略直線状の軌跡を描くように制御することができる。
【先行技術文献】
【特許文献】
【0006】
【文献】国際公開第2018/100748号
【文献】特開2016-83974号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
上記特許文献1の構成は、船舶の現在位置から目標位置までの間で、船舶を精度良く自動航行させることができない場合があり、この点で改善の余地があった。
【0008】
上記特許文献2の構成は、回頭制御補正を行うので、現在座標から目標座標に船舶が向かう際に、略直線状の軌跡を描くように制御することができる。これにより、目標位置まで移動するときの船舶の軌跡の膨らみが抑制されていると考えられる。しかしながら、特許文献2の構成は、斜航と回頭を同時に行わせる場合に、船周りに発生する横流体力(例えば、クロスフロー等)の作用によって船舶の移動軌跡のズレが生じ、船舶を精度良く自動航行させることができない場合があった。
【0009】
本発明は以上の事情に鑑みてされたものであり、その目的は、船舶を経路に従って精度良く航行させる制御目標生成装置を提供することにある。
【課題を解決するための手段及び効果】
【0010】
本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段とその効果を説明する。
【0011】
本発明の第1の観点によれば、以下の構成の制御目標生成装置が提供される。即ち、この制御目標生成装置は、船舶の位置及び方位を制御する制御目標を経路に従って生成する。前記経路は、複数の制御点を有する。前記制御点のそれぞれは、前記船舶の目標位置及び目標方位に関する情報を有する。前記経路は、前記制御点の前記目標位置を順番に繋ぐ複数の部分経路により構成される。前記制御目標生成装置は、経過目標点生成部と、到達判定部と、を備える。前記経過目標点生成部は、前記部分経路の途中部に、前記船舶の目標位置及び目標方位に関する情報を有する経過目標点を前記制御目標として生成可能である。前記到達判定部は、前記船舶の現在位置及び現在方位に基づいて、前記経過目標点に前記船舶が到達したか否かを判定する。前記経過目標点生成部は、前記船舶の現在方位と前記経過目標点の前記目標方位との差が所定以内であることを条件として当該経過目標点の更新を行う。前記経過目標点に前記船舶が到達したと前記到達判定部が判定すると、前記経過目標点生成部は、当該経過目標点を更新する。前記経過目標点が更新されるとき、当該経過目標点の前記目標位置及び前記目標方位は、前記部分経路の終端の前記制御点の前記目標位置及び前記目標方位にそれぞれ近づくように変化する。
【0012】
これにより、経路の各制御点の間に、船舶の位置及び方位に関する中間的な制御目標を経過目標点として生成し、当該経過目標点への到達を判定することができる。これにより、制御点と制御点の間で、経路に従って船舶を精度良く航行させることができる。経過目標点への船舶の到達を条件として当該経過目標点を更新するので、制御点と制御点の間を分割した段階ごとに順を追って、船舶の位置及び方位を確実に制御することができる。
【0015】
前記の制御目標生成装置においては、前記経路の少なくとも一部において、前記経過目標点の1回の更新毎の前記目標位置及び前記目標方位の変化の大きさが一定であることが好ましい。
【0016】
これにより、船舶の安定した航行を実現することができる。
【0017】
前記の制御目標生成装置においては、以下の構成とすることが好ましい。即ち、前記経路の終点は、前記船舶を着岸させる着岸位置である。前記経過目標点の1回の更新毎の前記目標位置及び前記目標方位の変化が、前記着岸位置に近くなるに従って小さくなる。
【0018】
これにより、着岸位置に近づくにつれて、船舶の位置等に関する制御をきめ細かくすることができる。この結果、着岸のための航行の終盤の段階で、特に精密な制御を実現できる。
【0019】
前記の制御目標生成装置においては、前記部分経路の終端における前記経路の向きの変化の大きさが所定以上である場合は、前記経過目標点の1回の更新毎の前記目標位置及び前記目標方位の変化が、前記経過目標点が当該部分経路の終端に近いときに小さくなることが好ましい。
【0020】
これにより、ある制御点において経路の向きが大きく変化する場合に、当該制御点に近づいたときにきめ細かい制御を行うことで、船舶の実際の移動軌跡が経路から外れるのを抑制することができる。
【0021】
前記の制御目標生成装置においては、前記到達判定部は、前記部分経路と、前記船舶の現在位置と、の間の距離を考慮して、前記経過目標点に前記船舶が到達したか否かを判定することが好ましい。
【0022】
これにより、到達判定を、船舶の現在位置が部分経路に対して十分に近いか否かを考慮して行うことができる。これにより、船舶を確実に部分経路に沿って移動させるように制御することができる。
【0023】
前記の制御目標生成装置においては、以下の構成とすることが好ましい。即ち、前記経路の終点は、前記船舶を着岸させる着岸位置である。前記経過目標点に前記船舶が到達したか否かに関する前記到達判定部の判定は、前記着岸位置に近くなるに従って厳しくなる。
【0024】
これにより、着岸のための航行の終盤の段階で、船舶の位置及び方位に関する特に正確な制御を実現できる。
【0025】
前記の制御目標生成装置においては、前記部分経路の終端における前記経路の向きの変化の大きさが所定以上である場合であって、前記経過目標点が当該終端に近いときは、前記船舶が到達したか否かに関する前記到達判定部の判定が厳しくなることが好ましい。
【0026】
これにより、ある制御点において経路の向きが大きく変化する場合に、当該制御点に近づいたときに、船舶の位置及び方位に関して特に正確な制御を行うことで、船舶の実際の移動軌跡が経路から外れるのを抑制することができる。
【0027】
前記の制御目標生成装置においては、以下の構成とすることが好ましい。即ち、前記到達判定部は、前記部分経路において前記船舶の現在位置が前記経過目標点の前記目標位置よりも先行しているか否かを判定可能である。前記船舶の現在位置が先行していると前記到達判定部が判定すると、前記経過目標点生成部は、前記目標位置及び前記目標方位を変化させるように当該経過目標点を更新する。
【0028】
これにより、船舶の逆向きの航行を減らすことができる。
【0029】
前記の制御目標生成装置においては、前記船舶の現在位置が先行していると前記到達判定部が判定した場合に、前記経過目標点生成部は、前記船舶の現在方位と前記経過目標点の前記目標方位との差が所定以内であることを条件として当該経過目標点の更新を行うことが好ましい。
【0030】
これにより、船舶の方位制御の正確さを確保することができる。
【0031】
前記の制御目標生成装置においては、前記経過目標点における目標位置及び目標方位を図形によって表示するための表示データを生成する表示データ生成部を備えることが好ましい。
【0032】
これにより、ユーザは、表示を見ることで、制御点と制御点の間で船舶の位置及び方位が当面どのように制御されるのかを容易に把握することができる。
【0033】
本発明の第2の観点によれば、以下の構成の操船制御装置が提供される。即ち、この操船制御装置は、前記の制御目標生成装置と、推進制御装置と、を備える。前記推進制御装置は、前記船舶の現在位置を前記制御目標の前記目標位置に近づけ、前記船舶の現在方位を前記制御目標の前記目標方位に近づけるように、前記船舶の推進装置を制御する。
【0034】
これにより、制御点と制御点の間で、経路に従って船舶を精度良く自動航行させることができる。
【0035】
前記の操船制御装置においては、以下の構成とすることができる。即ち、前記推進制御装置は、前記制御目標生成装置から入力される前記目標位置と、前記船舶の現在位置と、の偏差である位置偏差に基づいて、前記船舶の目標速度を定める。前記推進制御装置は、前記船舶の現在速度を前記船舶の前記目標速度に近づけるように、前記船舶の推進装置を制御する。前記推進制御装置は、前記船舶の前記目標速度の大きさを前記位置偏差に基づいて定めるための目標速度算出モデルを有する。前記到達判定部は、前記目標位置と、前記船舶の現在位置と、の間の距離が閾値以下である場合に、前記目標位置に前記船舶が到達したと判定する。前記到達判定部は、前記目標速度算出モデルの逆モデルを有する。前記到達判定部は、目標巡航速度の大きさに相当する前記位置偏差を前記逆モデルにより求め、得られた前記位置偏差に基づいて、前記目標位置と、前記船舶の現在位置と、の間の距離に関する前記閾値を定める。
【0036】
これにより、目標巡航速度を大きく設定することで、高速での自動航行を実現することができる。
【0037】
前記の操船制御装置においては、以下の構成とすることが好ましい。即ち、前記推進制御装置は、第1推力計算部と、第2推力計算部と、合成推力計算部と、を備える。前記第1推力計算部は、前記船舶の現在位置を前記制御目標の前記目標位置に近づけ、前記船舶の現在方位を前記制御目標の前記目標方位に近づけるために前記船舶に付与する推力を計算により求める。前記第2推力計算部は、目標巡航速度と、前記船舶が進むべき方向での当該船舶の現在速度と、の偏差に応じて、前記船舶の現在速度を前記目標巡航速度に近づけるために前記船舶に付与する推力を計算により求める。前記合成推力計算部は、前記第1推力計算部が求めた推力と、前記第2推力計算部が求めた推力と、を合成可能であり、合成割合を変更可能である。前記合成推力計算部が出力する合成後の推力に基づいて、前記船舶の推進装置を制御する。
【0038】
これにより、船舶の位置精度を重視する度合いと、船舶の速度を重視する度合いと、を状況に応じて柔軟に変更しながら、自動航行を行うことができる。
【0039】
前記の操船制御装置においては、以下の構成とすることが好ましい。即ち、前記合成推力計算部は、前記合成割合を、前記制御目標における前記目標位置を基準にした前記船舶の相対的な現在位置、及び、前記制御目標における前記目標方位と前記船舶の現在方位との差のうち、少なくとも何れかに基づいて定める。
【0040】
これにより、船舶の現在位置及び現在方位と、制御目標の目標位置及び目標方位と、の関係に基づいて、船舶の位置精度を重視した自動航行を行ったり、速度を重視した自動航行を行ったりすることができる。
【図面の簡単な説明】
【0041】
【
図1】本発明の第1実施形態に係る操船制御装置の電気的な構成を示すブロック図。
【
図2】ローカル地図生成部が生成する環境地図と、着岸点設定部が検出した直線と、の一例を示す図。
【
図3】船舶が経路の経由点を辿りながら方位を変化させる様子を示す模式図。
【
図4】制御目標を生成するために制御目標コントローラが行う処理を示すフローチャート。
【
図6】船舶の位置が経過目標点の目標位置に先行する場合を説明する模式図。
【
図7】表示データに基づくディスプレイの表示内容の例を示す図。
【
図8】第2実施形態の操船制御装置の電気的な構成の一部を示すブロック図。
【
図9】第3実施形態の操船制御装置の電気的な構成の一部を示すブロック図。
【
図10】第3実施形態で用いられる内分率基礎値マップを説明する模式図。
【発明を実施するための形態】
【0042】
次に、図面を参照して本発明の実施の形態を説明する。
図1は、本発明の第1実施形態に係る操船制御装置1の電気的な構成を示すブロック図である。
【0043】
図1に示す操船制御装置1は、船舶95に搭載して使用される。操船制御装置1は、船舶95を自動航行させることができる。自動航行には、船舶95を自動着岸させることが含まれる。
【0044】
本明細書でいう「着岸」には、船舶95を接岸施設に着ける場合が含まれる。「接岸施設」は、船舶を着けることが可能な場所を意味し、自然物、人工物を問わない。接岸施設には、岸壁、物揚場、桟橋及び浮桟橋等が含まれる。
【0045】
操船制御装置1が適用される船舶95の構成は特に限定されず、例えば、プレジャーボート、漁船、ウォータジェット船、電気推進船、ハイブリッド船等とすることができる。
【0046】
船舶95は、推進装置5を備える。
【0047】
推進装置5は、1対のスクリュー6L,6Rを備える。スクリュー6L,6Rは、船舶95の船尾の左右両側に配置されている。推進装置5は、駆動源(エンジンや電動モータ)の駆動力によりスクリュー6L,6Rを回転させることができる。それぞれのスクリュー6L,6Rの回転軸の向きは、上下方向の軸を中心として変更可能である。各スクリュー6L,6Rの回転軸の向き、停止/正転/逆転、及び回転速度は、互いに独立して変更することができる。それぞれのスクリュー6L,6Rを制御することによって、船舶95の前進/後進に加えて、横方向の平行移動、その場旋回等を含めた様々な操船を実現することができる。
【0048】
このスクリュー6L,6Rは、スターンドライブ又は船外機のスクリューとして構成することができる。スクリュー6L,6Rに代えて、水を噴出する向き及び速度を互いに独立して変更可能な左右1対のウォータジェットを配置しても良い。
【0049】
操船制御装置1は、経路コントローラ(経路生成装置)2と、制御目標コントローラ(制御目標生成装置)4と、制御コントローラ(推進制御装置)3と、を備える。
【0050】
経路コントローラ2は、船舶95を自動航行させるための経路を生成することができる。経路コントローラ2は、環境情報入力部21と、位置方位情報入力部22と、地図生成部31と、着岸点設定部41と、経路生成部51と、表示データ生成部71と、インタフェース部81と、を備える。
【0051】
具体的には、経路コントローラ2は、CPU、ROM及びRAMを備えるコンピュータとして構成されている。ROMには、経路コントローラ2を動作させるためのプログラムが記憶される。上記のハードウェアとソフトウェアとの協働により、経路コントローラ2を、環境情報入力部21、位置方位情報入力部22、地図生成部31、着岸点設定部41、経路生成部51、表示データ生成部71及びインタフェース部81として機能させることができる。
【0052】
環境情報入力部21には、船舶95が備えるLiDAR11が取得した周囲の環境データが入力される。LiDAR11は、例えば船首の近くに設置することができる。
【0053】
LiDAR11は、パルス光を照射することで、周囲の物体の有無を反射光により検出する。物体がある場合は、LiDAR11は、反射光を受光したときのパルス光の向きと、受光までの時間と、に基づいて、当該物体の方位と距離を検出する。LiDAR11は、この検出結果に基づいて、周囲に存在する物体を表す点群データを取得する。
【0054】
位置方位情報入力部22には、船舶95が備えるGNSS装置12が取得した船舶95の位置データが入力される。また、位置方位情報入力部22には、船舶95が備える方位センサ13が取得した船舶95の方位データが入力される。
【0055】
GNSS装置12は、衛星からGNSS電波を受信し、公知の測位計算を行うことによって、船舶95の現在の位置を取得する。GNSS測位は単独測位でも良いが、公知のDGNSS測位やRTK(リアルタイムキネマティック)測位を用いると、船舶95の位置を高精度で取得できる点で好ましい。
【0056】
方位センサ13は、船舶95の船首の向きを取得する。方位センサ13は、例えば磁気方位センサ又はサテライトコンパス等とすることができる。
【0057】
地図生成部31は、環境地図を生成する。環境地図は、経路の立案に利用する地図である。地図生成部31は、ローカル地図生成部32と、広域地図生成部33と、を備える。
【0058】
ローカル地図生成部32は、着岸位置が含まれている局所的な範囲の環境地図を生成する。言い換えれば、ローカル地図生成部32は、接岸施設近傍の環境地図を生成する。以下の説明では、ローカル地図生成部32が生成する環境地図をローカル地図と呼ぶことがある。
【0059】
図2には、ローカル地
図36の例が示されている。
図2には、説明の便宜のために、現在の船舶95の位置及び向きが併せて描かれている。
【0060】
図2に示すように、ローカル地
図36には、LiDAR11により物体が検知されず、船舶95が航行することができると判断された領域(つまり、フリースペース37)が含まれている。また、ローカル地
図36には、LiDAR11により検知された物体を示す点群が含まれる。船舶95から見て、LiDAR11により検知された物体の向こう側の領域は、物体の有無が不明であるオクルージョン領域38となる。
【0061】
広域地図生成部33は、ローカル地
図36の範囲外も含まれる環境地図を生成する。以下の説明では、広域地図生成部33が生成する環境地図を広域地図と呼ぶことがある。
【0062】
広域地図は図示しないが、当該広域地図には、ローカル地
図36と同様に、LiDAR11により物体が検知されず、船舶95が航行することができると判断された領域が含まれている。
【0063】
図1の着岸点設定部41は、ローカル地
図36から、船舶95を自動着岸させる候補となる位置を検出する。
図2に示すように、ローカル地
図36には、接岸施設を示していると考えられる点群が、オクルージョン領域38の手前側で一方向に並ぶように現れている。そこで、着岸点設定部41は、適宜の計算アルゴリズムを利用して、当該点群に沿った直線39を検出する。この直線39は、接岸施設の方向を表している。
【0064】
ユーザは、後述するインタフェース部81を介して、着岸点設定部41が検出した直線39の近傍の位置に、船舶95を実際に自動着岸させる目標となる点(以下の説明では、着岸点B1と呼ぶことがある)を設定することができる。ユーザは、船舶95の全長を考慮して、着岸可能と考えられる接岸施設(具体的には、直線39)の近くに着岸点B1を設定する。
図3には、
図2の例とは違う地形であるが、着岸点B1の例が示されている。船舶95は、接岸施設の向き(直線39の向き)に沿う向きで着岸する。ユーザは、着岸するときに船首を何れに向けるか、言い換えれば、左舷を接岸するか右舷を接岸するかを選択する。
【0065】
着岸点B1には、着岸位置での船舶95の目標位置及び目標方位に関する情報が与えられる。従って、着岸点B1は、実質的に、船舶95の着岸位置に対応する。
【0066】
ここで、目標位置は、自動航行する船舶95が目標とする位置である。目標方位は、自動航行する船舶95が目標とする方位である。目標とは、最終的な目標(着岸点B1)だけでなく、その手前の中間的な目標も含む。
【0067】
経路生成部51は、適宜の経路探索アルゴリズムに基づいて、船舶95の現在位置から着岸点B1までの船舶95の経路を計算する。この経路の計算には、ローカル地図生成部32が生成したローカル地
図36と、広域地図生成部33が生成した広域地図と、の両方が利用される。経路の計算が完了すると、経路生成部51は、
図3に示すように、経路56を定義する経由点A1,A2,・・・を複数生成する。経路生成部51は、それぞれの経由点A1,A2,・・・について、目標位置と、目標方位と、に関する情報を定める。経路56の始点に位置する経由点A1の目標位置及び目標方位は、経路56の生成が指示された時点における船舶95の位置及び方位と一致している。経路56の終点は、着岸点B1である。
【0068】
以下の説明では、経由点A1,A2,・・・及び着岸点B1等、当該点における目標位置及び目標方位を実現するように船舶95が制御される点を、制御点と呼ぶことがある。経由点A1,A2,・・・は中間的な制御点であり、着岸点B1は最終の制御点である。経路56は、複数の制御点の目標位置を順番に結ぶように折れ線状に定められる。
【0069】
それぞれの制御点は、目標位置と、目標方位と、に関する情報を含む。自動着岸にあたっては、経路56における制御点の順番に従って、各制御点における目標位置及び目標方位を船舶95が順次実現するように制御が行われる。
【0070】
図1の表示データ生成部71は、船舶95の現在位置、環境地図、着岸位置等を表示するための表示データを生成することができる。なお、表示データ生成部71による表示例については後述する。
【0071】
インタフェース部81は、操船制御装置1に対するユーザインタフェース機能を有している。インタフェース部81は、例えば、ディスプレイと、入力装置と、を備える構成とすることができる。この場合、ユーザは、ディスプレイの表示内容を参照し、入力装置を操作することによって、指示を入力することができる。入力装置は、キーボード、マウス、又はタッチパネル等とすることができる。
【0072】
制御目標コントローラ4は、経路コントローラ2が生成した経路56に沿って船舶95を自動航行(自動着岸)させるにあたって、船舶95を制御する当面の制御目標を生成する。なお、制御目標コントローラ4の詳細な構成は後述する。
【0073】
制御コントローラ3は、CPU、ROM及びRAMを備えるコンピュータである。ROMには、推進装置5の動作(本実施形態では、左右それぞれのスクリュー6L,6Rの動作)を制御するためのプログラムが記憶される。制御コントローラ3は、このプログラムに従って、推進装置5を制御する。
【0074】
船舶95は、当該船舶95を操作するための操作装置91を備える。ユーザが操作装置91を操作した場合、当該操作装置91への操作内容が、制御コントローラ3に出力される。制御コントローラ3は、入力された操作内容に応じて推進装置5の動作を制御する。従って、ユーザは、操作装置91を操作することによって、船舶95を手動航行させることができる。操作装置91は、例えば、ハンドル、コントロールレバー、ジョイスティック等とすることができる。
【0075】
経路コントローラ2が経路56を生成した場合、制御コントローラ3は、制御目標コントローラ4が生成した制御目標(即ち、さしあたって船舶95が実現すべき目標位置及び目標方位)を実現するように、船舶95の推進装置5を制御する。
【0076】
制御コントローラ3は、公知の装置である自動船位保持装置(DPS)として構成されている。DPSとは、潮流、波、風等の外力に対して推進装置を自動的に制御することにより、船舶を所定位置に自動的に保持するシステムである。具体的に説明すると、制御コントローラ3は、制御目標コントローラ4が出力する目標位置と、船舶95の現在位置と、の差をなくすために必要な船舶95の推力を算出する。また、制御コントローラ3は、制御目標コントローラ4が出力する目標方位と、船舶95の現在方位と、の差をなくすために必要な船舶95の回頭モーメントを算出する。そして、制御コントローラ3は、求めた推力及び回頭モーメントを実現する指示を推進装置5に与える。制御コントローラ3は、以上の処理を繰り返す。
【0077】
詳細は後述するが、制御目標コントローラ4が出力する目標位置及び目標方位を船舶95が実現する毎に、制御目標コントローラ4は、制御コントローラ3に出力する目標位置及び目標方位を経路56に従って更新していく。これにより、船舶95を自動航行させることができる。
【0078】
次に、制御目標コントローラ4の構成について詳細に説明する。制御目標コントローラ4は、経過目標点生成部61と、到達判定部62と、表示データ生成部63と、を備える。
【0079】
具体的には、制御目標コントローラ4は、CPU、ROM及びRAMを備えるコンピュータとして構成されている。ROMには、制御目標コントローラ4を動作させるためのプログラムが記憶される。上記のハードウェアとソフトウェアとの協働により、制御目標コントローラ4を、経過目標点生成部61、到達判定部62及び表示データ生成部63として機能させることができる。
【0080】
経過目標点生成部61は、経路コントローラ2(経路生成部51)が生成した経路56上に経過目標点65を生成する。
図3には、経過目標点65の例が示されている。経過目標点65は、経由点A1,A2,・・・及び着岸点B1の場合と同様に、目標位置及び目標方位の情報を有している。
【0081】
ここで、経路56は、複数の制御点(経由点A1,A2,・・・及び着岸点B1)の目標位置を順番に結ぶように折れ線状に定められる。経路56を、それぞれの制御点の目標位置(即ち、折れ線の頂点)で分割すると、複数の部分経路56sになる。複数の部分経路56sは、制御点の目標位置を順番に繋ぐように配置される。
【0082】
経過目標点生成部61は、経過目標点65の目標位置を、複数の部分経路56sのうち1つの部分経路56sの、始端、終端、又は途中に位置するように定める。部分経路56sを内分するように経過目標点65の目標位置を定めた場合、当該経過目標点65の目標方位は、その内分率に応じて、部分経路56sの始端の制御点の目標方位と、部分経路56sの終端の制御点の目標方位と、の間の方位となるように定められる。
【0083】
制御目標コントローラ4は、経過目標点生成部61が生成した経過目標点65の目標位置及び目標方位を、制御目標として
図1の制御コントローラ3に出力する。また、経過目標点生成部61は、生成した経過目標点65の目標位置及び目標方位を、到達判定部62及び表示データ生成部63に出力する。
【0084】
到達判定部62は、経過目標点65の目標位置及び目標方位を船舶95が実現しているか否かを、船舶95の現在位置及び現在方位に基づいて判定する。船舶95の現在位置は、GNSS装置12から取得することができる。船舶95の現在方位は、方位センサ13から取得することができる。到達判定部62は、上記の判定結果を経過目標点生成部61に出力する。
【0085】
表示データ生成部63は、経過目標点65の目標位置及び目標方位を表示するための表示データを生成することができる。なお、表示データ生成部63による表示例については後述する。
【0086】
次に、制御目標コントローラ4の処理について説明する。
図4は、制御目標コントローラ4が制御目標を生成する処理を示すフローチャートである。
【0087】
ユーザが、インタフェース部81を介して自動着岸を開始させる指示を入力した場合、制御目標コントローラ4は
図4の処理を開始する。
【0088】
制御目標コントローラ4は、先ず、経路コントローラ2(経路生成部51)が出力した船舶95の経路56を取得する(ステップS101)。
【0089】
次に、制御目標コントローラ4は、制御点の一種である出発点C0を経路56に追加する(ステップS102)。この出発点C0における目標位置は、船舶95の現在位置とし、目標方位は、船舶95の現在方位とする。これにより、初期の部分経路56sが実質的に生成される。
図3等には、出発点C0を始端とし、経由点A1を終端とする部分経路56sが破線で示されている。
【0090】
即ち、経路生成部51が経路56を生成した時点と、自動着岸を開始する時点と、の間には多少の時間差があり、潮流等の影響で船舶95の位置及び方位にズレが生じている場合がある。この場合でも、出発点C0を経路56に追加する処理により、当初の経路56の始点(経由点A1)まで船舶95を円滑に移動させることができる。
【0091】
次に、経過目標点生成部61は、ステップS102で追加した制御点(出発点C0)を始端とする部分経路56sを、注目する部分経路56sとする(
図4のステップS103)。
【0092】
続いて、経過目標点生成部61は、経過目標点65を生成する(ステップS104)。このときの経過目標点65の目標位置は、注目する部分経路56sの始端の制御点の目標位置に一致させ、経過目標点65の目標方位は、当該始端の制御点の目標方位に一致させる。
【0093】
次に、到達判定部62が、所定の条件に基づいて、経過目標点65に船舶95が到達しているか否かについて判定する(ステップS105)。この条件の詳細は後述するが、基本的には、
図5に示す船舶95の現在位置及び現在方位が、経過目標点65の目標位置及び目標方位と実質的に一致しているか否かに基づいて行われる。制御目標コントローラ4は、経過目標点65に船舶95が到達したと到達判定部62が判定するまで、
図4のステップS105の判断を繰り返す。
【0094】
ステップS105の判断で、経過目標点65に船舶95が到達したと到達判定部62が判定した場合、経過目標点生成部61は、経過目標点65が、注目する部分経路56sの終端と一致しているか否かを判断する(ステップS106)。
【0095】
経過目標点65が、注目する部分経路56sの終端と一致している場合には、制御目標コントローラ4は、注目する部分経路56sが経路56の最終端であるか否かについて判定する(ステップS107)。注目する部分経路56sが経路56の最終端であった場合は、経路56を全て消化して船舶95を着岸点B1にて着岸できたことを意味する。この場合、経過目標点65の目標位置及び目標方位は、着岸点B1における目標位置及び目標方位と一致した状態となるように維持される(ステップS108)。従って、船舶95は、ユーザが設定した着岸点B1での位置及び方位を保持する。
【0096】
ステップS107の判断で、注目する部分経路56sが経路56の最終端でなかった場合は、注目する部分経路56sを、当該部分経路56sよりも経路56の終点(着岸点B1)に近い側で隣接する部分経路56sに変更する(ステップS109)。その後、処理はステップS104に戻る。
【0097】
ステップS106の判断で、経過目標点65が、注目する部分経路56sの終端と一致していない場合には、経過目標点生成部61は、経過目標点65を、当該部分経路56sの消化割合を高めるように更新する(ステップS110)。言い換えれば、経過目標点65の目標位置を、部分経路56sの終端の制御点の目標位置に近づけるように変更するとともに、目標方位を、当該終端の制御点の目標方位に近づけるように変更する。この更新処理の詳細については後述する。その後、処理はステップS105に戻る。
【0098】
次に、ステップS105で行う経過目標点65への船舶95の到達判定について詳しく説明する。「到達」とは、少なくとも位置及び方位の観点から、経過目標点65によって示される目標を船舶95が実現していることを意味する。
【0099】
本実施形態では、到達判定部62は、以下に示す3つの条件が全て満たされた場合に、経過目標点65に船舶95が到達していると判定する。1つ目の条件は、経過目標点65の目標位置と船舶95の現在位置との偏差(
図5の距離D1)が所定の閾値以下であることである。2つ目の条件は、経過目標点65の目標方位と船舶95の現在方位との偏差(角度θ)が所定の閾値以下であることである。3つ目の条件は、注目する部分経路56sと、船舶95の現在位置と、の距離D2が所定の閾値以下であることである。
【0100】
このように、本実施形態では、船舶95の現在位置が経過目標点65の目標位置と近いか否かに加えて、部分経路56sに近いか否かを考慮して、到達判定が行われる。これにより、船舶95が部分経路56sに沿って確実に移動するように制御することができる。
【0101】
本実施形態では、上記の3つの条件のそれぞれに関して、3段階の閾値(緩い閾値、中間の閾値、厳しい閾値)が用意されている。そして、到達判定部62が行う判定にあたっては、経路56の終点である着岸点B1から遠い場合に緩い閾値が採用され、着岸点B1に近い場合に厳しい閾値が採用される。着岸点B1からの距離が遠くも近くもない場合には、中間の閾値が採用される。従って、着岸点B1から遠い場合、経過目標点65への船舶95の到達が緩く判定され、着岸点B1に近い場合は、経過目標点65への船舶95の到達が厳しく判定される。これにより、着岸点B1に近づいた自動着岸の終盤において、船舶95を特に正確に制御することができる。本実施形態では、閾値を選択する基準となる着岸点B1からの距離として、着岸点B1から当該経路56を辿って経過目標点65に至るまでに必要な距離(以下、経路距離と呼ぶことがある。)が用いられる。ただし、着岸点B1からの直線距離に応じて閾値が選択されても良い。
【0102】
また、
図3の経由点A3と経由点A4の間の部分経路56sのように、部分経路56sの終端で経路56の向きが大きく変化する場合がある。このような場合であって、経過目標点65の目標位置が当該終端に近いとき、到達判定部62は、着岸点B1からの距離に関係なく、3段階の閾値のうち厳しい閾値を用いて到達判定を行う。経過目標点65の目標位置が部分経路56sの終端に近いか否かは、両者の距離が閾値以下であるか否かで判定しても良いし、当該距離を部分経路56sの距離で除算した割合(距離の観点での未消化率)が閾値以下であるか否かで判定しても良い。これにより、向きが大きく変化する制御点の直前において厳格な制御が行われるので、船舶95が慣性等によって経路56から外れるのを効果的に抑制することができる。
【0103】
次に、ステップS110で行う経過目標点65の更新処理について詳しく説明する。
【0104】
経過目標点65に船舶95が到達していると到達判定部62が判定すると、経過目標点生成部61は、経過目標点65の目標位置及び目標方位を更新する。1回の更新で目標位置及び目標方位をどの程度変化させるかに関しては、目標位置及び目標方位のそれぞれについて、3段階の更新変化量(粗い更新変化量、中間の更新変化量、細かい更新変化量)が用意されている。本実施形態では、ステップS104~S110のループの周期が一定となるように
図4のフローが実行されるので、これらの更新変化量は、単位時間あたりの更新変化量(言い換えれば、変化速度)を実質的に意味している。目標位置及び目標方位の更新のタイミングから、更新後の目標位置及び目標方位の実現までの時間が一定であることを仮定すれば、更新変化量の切換がない限り、目標位置及び目標方位の変化速度は一定になる。
【0105】
経過目標点65の更新にあたっては、経路56の終点である着岸点B1から遠い場合に粗い更新変化量が採用され、着岸点B1に近い場合に細かい更新変化量が採用される。着岸点B1からの距離が遠くも近くもない場合には、中間の更新変化量が採用される。従って、着岸点B1から遠い場合は、経過目標点65が大まかに更新され、着岸点B1に近い場合は、経過目標点65が細かく更新される。経過目標点65が細かく更新されるということは、到達判定部62による到達判定が細かく行われることを意味する。これにより、着岸点B1に近づいた自動着岸の終盤において、船舶95を特に精密に制御することができる。本実施形態では、閾値を選択する基準となる着岸点B1からの距離として、経路距離が用いられる。ただし、着岸点B1からの直線距離に応じて閾値が選択されても良い。
【0106】
また、部分経路56sの終端で経路56の向きが大きく変化する場合であって、経過目標点65の目標位置が当該終端に近いとき、経過目標点生成部61は、着岸点B1からの距離に関係なく、3段階の更新変化量のうち細かい更新変化量で経過目標点65を更新する。経過目標点65の目標位置が部分経路56sの終端に近いか否かは、両者の距離が閾値以下であるか否かで判定しても良いし、上述の未消化率が閾値以下であるか否かで判定しても良い。これにより、向きが大きく変化する制御点の直前において経過目標点65がきめ細かく変更されるので、船舶95が慣性等によって経路56から外れるのを効果的に抑制することができる。
【0107】
なお、経路56において始点(出発点C0又は経由点A1)に近い側の一部では、経過目標点65の1回の更新による目標位置及び目標方位の変化量は、上述の粗い更新変化量で一定に保たれる。従って、船舶95の安定した航行を実現することができる。
【0108】
経過目標点生成部61は、経過目標点65の目標位置及び目標方位を計算するにあたり、内分率を用いる。
図5の例で、注目する部分経路56sが経由点A1から経由点A2までの線分である場合、内分率は、注目する部分経路56sの始端から経過目標点65までの長さL1と、始端から終端までの長さL2と、の比である。内分率は、0以上1以下の値をとる。
図5の例では、内分率は約0.55である。なお、上述の未消化率は、1から内分率を減じたものである。
【0109】
経過目標点生成部61は、経過目標点65の目標位置及び目標方位を更新するにあたり、今回の更新で内分率をどれだけ増加させるかを計算する。
【0110】
目標位置の観点で、内分率を1回の更新でどれだけ増加させるかは、位置の更新変化量を、注目する部分経路56sの端部に位置する2つの制御点の目標位置の差(言い換えれば、注目する部分経路56sの長さL1)で除算することで得ることができる。例えば、経由点A1の目標位置と経由点A2の目標位置との間の距離が5メートルであり、位置の更新変化量が1回あたり1メートルであれば、内分率の増加量は0.2である。
【0111】
目標方位の観点で、内分率を1回の更新でどれだけ増加させるかは、方位の更新変化量を、注目する部分経路56sの端部に位置する2つの制御点の目標方位の差で除算することで得ることができる。例えば、経由点A1での目標方位と経由点A2の目標方位との差が15°であり、方位の更新変化量が1回あたり1.5°であれば、内分率の増加量は0.1である。
【0112】
経過目標点生成部61は、2つの観点からの内分率増加量を計算により取得すると、2つのうち値の小さい方を用いて、内分率を加算する。値の小さい方を用いるのは、位置及び方位の変化のアンバランスを避けるためである。加算後の内分率が1を上回る場合は、1となるように補正される。上述の例に従えば、加算後の内分率は0.65になる。
【0113】
新しい内分率が得られると、経過目標点生成部61は、注目する部分経路56sの端部に位置する2つの制御点(
図5の例では、経由点A1と経由点A2)の目標位置の間で、加算後の内分率に応じた位置となるように、目標位置を更新する。同様に、経過目標点生成部61は、注目する部分経路56sの端部に位置する2つの制御点(経由点A1と経由点A2)の目標方位の間で、加算後の内分率に応じた方位となるように、目標方位を更新する。
【0114】
内分率が1の場合、更新後の経過目標点65の目標位置及び目標方位は、注目する部分経路56sの終端に位置する制御点の目標位置及び目標方位と一致する。
【0115】
制御目標コントローラ4と制御コントローラ3の連携した動作により、船舶95は原則として、部分経路56sにおいて先行して移動する経過目標点65を追い掛けるように移動する。ただし、例えば船舶95が何らかの理由で経路56をいったん外れた後に戻る場合では、経過目標点65の目標位置に対して実際の船舶95の位置が先行することも考えられる。以下、このような場合を「追い越し」と呼ぶことがある。
【0116】
到達判定部62は、このように船舶95の位置が経過目標点65の目標位置に対して先行しているか否かを判定することができる。具体的には、到達判定部62は、
図6に示すように、注目する部分経路56sと、当該部分経路56sに船舶95の現在位置から引いた垂直線分と、が交わる交点95aを求める。この交点95aは、注目する部分経路56sにおいて、船舶95の現在位置に最も近い点に相当する。次に、到達判定部62は、得られた交点95aと、経過目標点65の目標位置と、を比較する。上記の交点95aが、経過目標点65の目標位置よりも、注目する部分経路56sの終端に近い場合には、追い越しが生じていると判定する。
【0117】
図4のフローでは示していないが、到達判定部62は、ステップS105で到達判定を行った結果、船舶95が経過目標点65に到達していない場合に、上記の追い越しが生じているか否かの判定を行う。そして、制御目標コントローラ4は、追い越しが生じていると到達判定部62が判定した場合は、船舶95が経過目標点65に到達したものとみなして、ステップS106及びステップS110等の処理を行う。これにより、経過目標点生成部61は、追い越しの状態が解消されるまで、船舶95の現在位置を追い掛けるように経過目標点65の目標位置及び目標方位を繰り返し更新する。従って、船舶95の逆向きの航行を防止して、円滑な自動着岸を実現することができる。
【0118】
ただし、船舶95の現在位置が経過目標点65の目標位置に対して先行していても、船舶95の現在方位と当該経過目標点65の目標方位とが所定の閾値以上異なる場合は、到達判定部62は、船舶95が経過目標点65に到達したものとみなさない。この場合は、制御目標コントローラ4において経過目標点65の更新処理は行われず、制御コントローラ3は、経過目標点65に戻るように船舶95を航行させる。船舶95が経過目標点65に到達することにより、追い越しが実質的に解消される。これにより、船舶95の方位に関する制御の精度を確保することができる。
【0119】
次に、経過目標点65等の表示について説明する。
【0120】
図1の経路コントローラ2が備える表示データ生成部71は、船舶95の周辺の状況を示す表示データを生成することができる。制御目標コントローラ4が備える表示データ生成部63は、船舶95の経過目標点65に関する表示データを生成することができる。この表示データによって、例えば、インタフェース部81が備えるディスプレイに、様々な情報を表示することができる。
【0121】
図7には、表示データ生成部71の表示データ75によって表示される画面の例が示されている。表示データ75は、例えば、現在位置の船舶95をシンボル図形で示し、経路56を折れ線で示すとともに、各経由点A1,A2,・・・及び着岸点B1において船舶が実現すべき位置及び向きを図形で示すためのデータとすることができる。
【0122】
表示データ生成部63が生成する表示データ64には、
図7に示すように、経過目標点65において船舶95が実現すべき位置及び向きを図形65aで表示するためのデータが含まれている。これにより、ユーザは、ディスプレイの画像を見て、船舶95が当面どのように制御されるのかを事前に容易に把握することができる。
【0123】
以上に説明したように、本実施形態の制御目標コントローラ4は、船舶95の位置及び方位を制御する制御目標を経路56に従って生成する。経路56は、複数の制御点(経由点A1,A2,・・・及び着岸点B1)を有する。制御点のそれぞれは、船舶95の目標位置及び目標方位に関する情報を有する。経路56は、制御点の目標位置を順番に繋ぐ複数の部分経路56sにより構成される。制御目標コントローラ4は、経過目標点生成部61と、到達判定部62と、を備える。経過目標点生成部61は、部分経路56sの途中部に、船舶95の目標位置及び目標方位に関する情報を有する経過目標点65を制御目標として生成可能である。到達判定部62は、船舶95の現在位置及び現在方位に基づいて、経過目標点65に船舶95が到達したか否かを判定する。
【0124】
これにより、経路56の各制御点の間に、船舶95の位置及び方位に関する中間的な制御目標を経過目標点65として生成し、当該経過目標点65への到達を判定することができる。これにより、制御点と制御点の間で、経路56に従って船舶95を精度良く航行させることができる。
【0125】
また、本実施形態の制御目標コントローラ4において、経過目標点65に船舶95が到達したと到達判定部62が判定すると、経過目標点生成部61は、経過目標点65を更新する。経過目標点65が更新されるとき、経過目標点65の目標位置及び目標方位は、部分経路56sの終端の制御点の目標位置及び目標方位にそれぞれ近づくように変化する。
【0126】
これにより、経過目標点65への船舶95の到達を条件として当該経過目標点65を更新するので、制御点と制御点の間を分割した段階ごとに順を追って、船舶95の位置及び方位を確実に制御することができる。
【0127】
また、本実施形態では、経路56の始点側の一部において、経過目標点65の1回の更新毎の目標位置及び目標方位の変化の大きさが一定である。
【0128】
これにより、船舶95の安定した航行を実現することができる。
【0129】
また、本実施形態の制御目標コントローラ4において、経路56の終点は、船舶95を着岸させる着岸点B1である。経過目標点65の1回の更新毎の目標位置及び目標位置の変化が、着岸点B1に近くなるに従って小さくなる。
【0130】
これにより、着岸点B1に近づくにつれて、船舶95の位置等に関する制御をきめ細かくすることができる。この結果、自動着岸の終盤の段階で、特に精密な制御を実現できる。
【0131】
また、本実施形態の制御目標コントローラ4において、部分経路56sの終端における経路56の向きの変化の大きさが所定以上である場合は、経過目標点65の1回の更新毎の目標位置及び目標方位の変化が、経過目標点65が部分経路56sの終端に近いときに小さくなる。
【0132】
これにより、ある制御点において経路56の向きが大きく変化する場合に、当該制御点に近づいたときにきめ細かい制御を行うことで、船舶95の実際の移動軌跡が経路56から外れるのを抑制することができる。
【0133】
また、本実施形態の制御目標コントローラ4において、到達判定部62は、部分経路56sと、船舶95の現在位置と、の間の距離D2を考慮して、経過目標点65に船舶95が到達したか否かを判定する。
【0134】
これにより、到達判定を、船舶95の現在位置が部分経路56sに対して十分に近いか否かを考慮して行うことができる。これにより、船舶95を確実に部分経路56sに沿って移動させるように制御することができる。
【0135】
また、本実施形態の制御目標コントローラ4において、経路56の終点は、船舶95を着岸させる着岸点B1である。経過目標点65に船舶95が到達したか否かに関する到達判定部62の判定は、着岸点B1に近くなるに従って厳しくなる。
【0136】
これにより、自動着岸の終盤の段階で、船舶95の位置及び方位に関する特に正確な制御を実現できる。
【0137】
また、本実施形態の制御目標コントローラ4において、部分経路56sの終端における経路56の向きの変化の大きさが所定以上である場合であって、経過目標点65が当該終端に近いときは、船舶95が到達したか否かに関する到達判定部62の判定が厳しくなる。
【0138】
これにより、ある制御点において経路56の向きが大きく変化する場合に、当該制御点に近づいたときに、船舶95の位置及び方位に関して特に正確な制御を行うことで、船舶95の実際の移動軌跡が経路56から外れるのを抑制することができる。
【0139】
また、本実施形態の制御目標コントローラ4において、到達判定部62は、部分経路56sにおいて船舶95の現在位置が経過目標点65の目標位置よりも先行しているか否かを判定可能である。船舶95の現在位置が先行していると到達判定部62が判定すると、経過目標点生成部61は、目標位置及び目標方位を変化させるように経過目標点65を更新する。
【0140】
これにより、船舶95の逆向きの航行を減らすことができる。
【0141】
また、本実施形態の制御目標コントローラ4において、船舶95の現在船舶95が先行していると到達判定部62が判定した場合に、経過目標点生成部61は、船舶95の現在船舶95と経過目標点65の目標方位との差が所定以内であることを条件として、経過目標点65の更新を行う。
【0142】
これにより、船舶95の方位制御の正確さを確保することができる。
【0143】
本実施形態の制御目標コントローラ4は、経過目標点65における目標位置及び目標方位を図形によって表示するための表示データ64を生成する表示データ生成部63を備える。
【0144】
これにより、ユーザは、表示を見ることで、制御点と制御点の間で船舶95が当面どのように制御されるのかを容易に把握することができる。
【0145】
また、本実施形態の操船制御装置1は、制御目標コントローラ4と、制御コントローラ3と、を備える。制御コントローラ3は、船舶95の現在位置を制御目標の目標位置に近づけ、船舶95の現在方位を制御目標の目標方位に近づけるように、船舶95の推進装置5を制御する。
【0146】
これにより、制御点と制御点の間で、経路に従って船舶95を精度良く自動航行させることができる。
【0147】
次に、第2実施形態を説明する。
図8は、第2実施形態の操船制御装置1の電気的な構成の一部を示すブロック図である。第2実施形態以降の説明で、上記第1実施形態と同一又は類似の構成については、第1実施形態と同一の符号を付して説明を省略する場合がある。
【0148】
前述の第1実施形態において、制御コントローラ3は、制御目標コントローラ4が出力する目標位置と、船舶95の現在位置と、の差をなくすために必要な船舶95の推力を算出する。第1実施形態は、船舶95の速度を目標速度に近づける制御を行わない(しいて言えば、目標位置に到達したときの船舶の目標速度はゼロである)。従って、船舶95の速度を適切に制御しながら経路56に沿って航行させることは困難であり、高速で自動航行するニーズに応えることが難しい。
【0149】
この点、
図8に示す本実施形態の操船制御装置1では、制御コントローラ3は、制御目標コントローラ4から入力される目標位置と、船舶95の現在位置と、の偏差(以下、位置偏差と呼ぶことがある。)に応じて、船舶95の目標速度を適宜設定する。この目標速度の向きは、現在位置から目標位置へ向かうように定められる。また、目標速度は、位置偏差が大きくなるのに従って大きくなるように、例えば関数の形で定められる。そして、制御コントローラ3は、上記のようにして定めた船舶95の目標速度と、船舶95の現在速度と、の差をなくすために必要な船舶95の推力を算出する。また、制御コントローラ3は、前述の第1実施形態と同様の方法によって、船舶95の現在の方位を目標方位に近づけるための回頭モーメントを算出する。そして、制御コントローラ3は、求めた推力及び回頭モーメントを実現する指示を推進装置5に与える。
【0150】
制御コントローラ3は、目標速度算出モデル86を有している。この目標速度算出モデル86は、上述の位置偏差から、船舶95の目標速度の大きさを定めるために用いられる。この算出モデルを関数fで表現する場合、位置偏差の大きさをL、目標速度をVtとして、以下の式(1)が成り立つ。
Vt=f(L) ・・・(1)
【0151】
また、本実施形態において到達判定部62は、前述の目標速度算出モデル86の逆モデル87を有している。この逆モデル87に関しては、前述の関数fの逆関数を用いて、以下の式(2)が成り立つ。
L=f-1(Vt) ・・・(2)
【0152】
到達判定部62には、適宜の方法で設定された目標巡航速度が入力される。目標巡航速度は、例えば、インタフェース部81を介してユーザにより設定される。到達判定部62は、目標巡航速度の大きさを上述の逆モデル87に入力して、当該目標巡航速度に相当する位置偏差を得る。
【0153】
本実施形態では、到達判定部62は、以下に示す2つの条件が何れも満たされた場合に、経過目標点65に船舶95が到達していると判定する。1つ目の条件は、経過目標点65の目標位置と船舶95の現在位置との偏差(
図5の距離D1)が所定の閾値以下であることである。2つ目の条件は、経過目標点65の目標方位と船舶95の現在方位との偏差(角度θ)が所定の閾値以下であることである。そして、上記の1つ目の条件に関する閾値として、逆モデル87が出力した位置偏差が用いられる。
【0154】
この構成により、目標巡航速度が大きい場合は、小さい場合と比較して、到達判定の位置的な条件が緩くなる。従って、速度を適切にコントロールしつつ、船舶95の位置及び方位をきめ細かく制御しながら、経路56に沿って船舶95を航行させることができる。
【0155】
上記の1つ目の条件は、船舶95の現在位置が、経過目標点65の目標位置を中心とする所定の大きさの円上にあるか円の内側に入っていることと同じ意味である。以下、この円を到達範囲円と呼ぶことがある。上述の逆モデル87は、到達範囲円の大きさを実質的に求めている。
【0156】
以上に説明したように、本実施形態の操船制御装置1において、制御コントローラ3は、制御目標コントローラ4から入力される目標位置と、船舶95の現在位置と、の偏差である位置偏差に基づいて、船舶95の目標速度を定める。制御コントローラ3は、船舶95の現在速度を船舶95の目標速度に近づけるように、船舶95の推進装置5を制御する。制御コントローラ3は、船舶95の目標速度の大きさを前記位置偏差に基づいて定めるための目標速度算出モデル86を有する。到達判定部62は、目標位置と、船舶95の現在位置と、の間の距離D1が閾値以下である場合に、前記目標位置に船舶95が到達したと判定する。到達判定部62は、目標速度算出モデル86の逆モデル87を有する。到達判定部62は、目標巡航速度の大きさに相当する位置偏差を逆モデル87により求め、得られた位置偏差に基づいて、目標位置と、船舶95の現在位置と、の間の距離に関する前記閾値を定める。
【0157】
これにより、目標巡航速度を大きく設定することで、高速での自動航行を実現することができる。
【0158】
次に、第3実施形態を説明する。
図9は、第3実施形態の操船制御装置1の電気的な構成の一部を示すブロック図である。
図10は、第3実施形態で用いられる内分率基礎値マップを説明する模式図である。
【0159】
図9に示す本実施形態において、制御コントローラ3は、第1推力計算部3aと、第2推力計算部3bと、合成推力計算部3cと、を備える。
【0160】
第1推力計算部3aは、前述の第1実施形態の制御コントローラ3と同様の構成であり、DPS部として機能する。第1推力計算部3aは、制御目標コントローラ4が出力する目標位置と、船舶95の現在位置と、の差をなくすために必要な船舶95の推力を算出する。また、制御コントローラ3は、制御目標コントローラ4が出力する目標方位と、船舶95の現在方位と、の差をなくすために必要な船舶95の回頭モーメントを算出する。そして、第1推力計算部3aは、求めた推力及び回頭モーメントを実現する指示を、合成推力計算部3cに出力する。
【0161】
第2推力計算部3bは、速度制御部として機能する。第2推力計算部3bには、例えばインタフェース部81を介して設定された目標巡航速度が入力される。更に、第2推力計算部3bには、船舶95の現在速度が入力される。現在速度は、例えば、船舶95の現在位置と、少し前の時点における位置と、により得ることができる。第2推力計算部3bは、目標巡航速度と、現在速度と、の偏差に基づいて、船舶95が進むべき方向での推力の大きさを求める。船舶95が進むべき方向は、本実施形態では部分経路56sの方向としているが、現在位置から目標位置へ向かう方向であっても良い。
【0162】
合成推力計算部3cは、第1推力計算部3aから得られた推力と、第2推力計算部3bから得られた推力と、のうち何れかを選択し、制御コントローラ3からの出力とする。ただし、合成推力計算部3cは、2つの推力計算部3a,3bから得られた推力を合成することにより、中間的な推力を計算して出力することもできる。
【0163】
合成推力計算部3cにおいては、2つの推力のうち何れを選択するか、又は、2つの推力を合成する際に何れを支配的にするかを定めるパラメータとして、合成割合を示す内分率が求められる。
【0164】
以下、内分率について説明する。原点をOとするXY座標系を考え、それぞれの推力計算部3a,3bからの出力を2つの推力ベクトルOA,OBで表す。2つの推力ベクトルを適宜の割合で合成したベクトルは、線分ABを適宜の比で内分する点Pを考えた場合に、ベクトルOPで表すことができる。内分率は上記の比を意味する。本実施形態において、内分率は0以上1以下の値である。内分率の値が0であれば、第1推力計算部3aの出力だけが用いられることを意味し、1であれば、第2推力計算部3bの出力だけが用いられることを意味する。
【0165】
ただし、X軸を船舶95が進むべき方向とし、Y軸をそれに垂直な方向としたXY座標系を考えた場合に、合成推力計算部3cにおいて上記の内分率に基づいて2つの推力ベクトルが合成されるのは、X軸方向の成分においてのみである。Y軸方向の成分については、常時、第1推力計算部3aからの出力だけが用いられる(第2推力計算部3bの出力は考慮されない)。
【0166】
具体的に説明する。合成推力計算部3cにおいて、第1推力計算部3aの出力である推力ベクトルは、X軸成分とY軸成分とに分解される。第2推力計算部3bの出力である推力ベクトルは、当初からX軸成分のみを有し、Y軸成分は有しない。合成推力計算部3cは、第1推力計算部3aにおける推力ベクトルのX軸成分と、第2推力計算部3bにおける推力ベクトルとに基づき、上述の内分率を用いて合成したベクトルを求める。その後、合成推力計算部3cは、得られたX軸成分の合成ベクトルに、第1推力計算部3aの出力ベクトルのY軸成分を加算する。この結果、最終的な合成ベクトルが得られる。
【0167】
従って、Y軸に沿う方向の偏差(言い換えれば、航路ズレ方向での偏差)をきめ細かく抑制しながら、船舶95の速度を適切に制御することができる。
【0168】
上記の内分率の値は、状況に応じて様々に変化する。以下、内分率の決定について説明する。本実施形態の合成推力計算部3cは、内分率を、目標点における目標位置を基準にした船舶95の現在位置(相対位置)、及び、目標点における目標方位と船舶95の現在方位との差によって決定する。
【0169】
内分率の具体的な決定方法は、以下のとおりである。最初に、合成推力計算部3cは、目標点における目標方位と、船舶95の現在方位と、の偏差(以下、方位偏差という)を計算し、方位偏差に応じて内分率の上限値を決定する。本実施形態では、内分率が0から1に近づくに従って第2推力計算部3bによる制御が優勢になる。従って、内分率の上限値とは、第2推力計算部3bによる制御の割合がこれ以上支配的にならない限界を意味する。方位偏差が大きい場合は、船舶95を意図どおりの向きに制御できていないことを意味するから、船舶95の速度のコントロールよりも、船舶95の位置を精度良くコントロールすることを優先すべきである。合成推力計算部3cは、この場合に内分率の上限値を小さい値(例えば、0.05)とすることにより、第1推力計算部3aによる制御が少なくとも大部分を占めるように調整することができる。
【0170】
次に、合成推力計算部3cは、内分率基礎値を、
図10のようなマップを用いて決定する。内分率基礎値とは、内分率を決定するにあたって基礎となる値を意味する。このマップは、目標点(例えば、経過目標点65)における目標位置を基準とした船舶95の現在位置(相対的な位置)と、内分率基礎値と、の対応関係を表すものである。本実施形態において、内分率基礎値のマップは、目標点における目標位置を原点とし、X軸を船舶95が進むべき方向とし、Y軸をそれに垂直な方向としたXY座標系で定義される。X軸の座標Xeは、位置偏差のうち、船舶95の進むべき航路に沿った方向の成分であり、Y軸の座標Yeは、航路ズレ方向での成分である。通常、目標点の目標位置は船舶95の現在位置に対して先行する。従って、X軸の座標Xeは原則としてマイナスの値となる。合成推力計算部3cは、マップに位置偏差(Xe,Ye)を当てはめることにより得られた内分率基礎値と、前述の上限値と、のうち小さいほうの値を、内分率として決定する。
【0171】
図10に示すように、内分率基礎値のマップは、位置偏差が小さい場合は内分率基礎値が大きくなり、位置偏差が大きい場合は内分率基礎値が小さくなるように定められる。位置偏差が大きい場合は、船舶95を意図どおりの位置に制御できていないことを意味するから、船舶95の速度のコントロールよりも、船舶95の位置を精度良くコントロールすることを優先すべきである。合成推力計算部3cは、位置偏差が大きい場合に内分率基礎値を小さい値とすることにより、第1推力計算部3aによる制御が支配的となるように調整することができる。
【0172】
図10に示すマップで、内分率基礎値が大きくなる領域は、X軸方向に長く、Y軸方向に短い形状となっている。これにより、第1推力計算部3aによる制御が支配的になる感度が、X軸方向の位置偏差XeよりもY軸方向の位置偏差Yeに敏感となるようにすることができる。これにより、船舶95の航路ズレを確実に抑制することができる。
【0173】
図10に示すように、原点Oを基準とすると、X軸方向の位置偏差Xeがプラスになる領域においては、マイナスになる領域と比較して、内分率基礎値が大きい領域が狭くなっている。X軸方向の位置偏差Xeがプラスになる状況は、前述の追い越しに相当する。追い越しのような不規則的な状況では、船舶95の速度のコントロールよりも、船舶95の位置を精度良くコントロールすることを優先すべきである。合成推力計算部3cは、マップにおける追い越しの領域では内分率基礎値を小さい値とすることにより、第1推力計算部3aによる制御が支配的となるように調整することができる。
【0174】
図8に示す上述の第2実施形態では、目標巡航速度を大きく設定した場合は、到達判定部62の判定の基準となる到達範囲円が大きくなる。このため、経過目標点65の更新が、船舶95の実際の移動に対してより先行的となる傾向が生じる。その結果、船舶95の位置偏差が大きくなるため、制御コントローラ3で算出される目標速度が大きくなって、結果として船舶95の高速航行を実現できる。しかし、第2実施形態の構成は、制御コントローラ3で算出される目標速度の値が必ずしも安定しているとは限らず、状況によっては船舶95の実際の速度が目標巡航速度と大きく乖離してしまうおそれがある。この点、本実施形態では、第2推力計算部3bによって速度を直接コントロールしているため、速度制御の確実性に優れる。
【0175】
以上に説明したように、本実施形態の操船制御装置1において、制御コントローラ3は、第1推力計算部3aと、第2推力計算部3bと、合成推力計算部3cと、を備える。第1推力計算部3aは、船舶95の現在位置を制御目標の目標位置に近づけ、船舶95の現在方位を制御目標の目標方位に近づけるために船舶95に付与する推力を計算により求める。第2推力計算部3bは、目標巡航速度と、船舶95が進むべき方向での当該船舶95の現在速度と、の偏差に応じて、船舶95の現在速度を目標巡航速度に近づけるために船舶95に付与する推力を計算により求める。合成推力計算部3cは、第1推力計算部3aが求めた推力と、第2推力計算部3bが求めた推力と、を合成可能であり、合成割合である内分率を変更可能である。制御コントローラ3は、合成推力計算部3cが出力する合成後の推力に基づいて、船舶95の推進装置5を制御する。
【0176】
これにより、船舶95の位置精度を重視する度合いと、船舶95の速度を重視する度合いと、を状況に応じて柔軟に変更しながら、自動航行を行うことができる。
【0177】
また、本実施形態の操船制御装置1において、合成推力計算部3cは、前記内分率を、制御目標における目標位置を基準にした船舶95の相対的な現在位置、及び、制御目標における目標方位と船舶95の現在方位との差に基づいて定める。
【0178】
これにより、船舶95の現在位置及び現在方位と、制御目標の目標位置及び目標方位と、の関係に基づいて、船舶95の位置精度を重視した自動航行を行ったり、速度を重視した自動航行を行ったりすることができる。
【0179】
以上に本発明の好適な実施の形態を説明したが、上記の構成は例えば以下のように変更することができる。
【0180】
更新変化量は、上述のように3段階で変更することに限定されず、2段階又は4段階以上で変更しても良い。また、更新変化量が無段階で変更されても良い。
【0181】
到達判定の条件は、上述のように3段階で変更することに限定されず、2段階又は4段階以上で変更しても良い。また、到達判定の条件が無段階で変更されても良い。
【0182】
経路56の始点から終点までを通じて、更新変化量を常に一定としても良い。また、経路56の始点から終点までを通じて、到達判定の条件の厳しさを常に一定としても良い。
【0183】
到達判定部62が行う到達判定の条件において、船舶95の現在位置と部分経路56sの距離D2に基づく条件を省略しても良い。
【0184】
図3に示す例において、経由点A2,A3では、2つの目標方位が重ねて描かれている。これは、船舶95を停止した状態で旋回させることを表している(その場旋回)。経路56のデータでその場旋回を表現する手法は様々であるが、例えば、2つの制御点における目標位置を同一とし、目標方位だけを変化させることで実現することができる。この場合、2つの制御点を結ぶ部分経路56sの長さは、実質的にゼロになる。
【0185】
図4のステップS102の処理は、制御目標コントローラ4でなく経路コントローラ2によって行われても良い。この場合、経路コントローラ2によって出発点C0が追加された状態の経路56が、ステップS101において制御目標コントローラ4に入力される。
【0186】
制御目標コントローラ4にディスプレイを設け、当該ディスプレイに、表示データ生成部63が生成した表示データ64を表示するように構成しても良い。表示データ64は、操船制御装置1に接続されるディスプレイに表示されても良い。
【0187】
制御目標コントローラ4は、経路コントローラ2のコンピュータと同一のハードウェアにより実現しても良いし、制御コントローラ3のコンピュータと同一のハードウェアにより実現しても良い。
【0188】
操船制御装置1は、例えば、船舶95に適宜に設置されるIMUから姿勢データを取得し、当該姿勢データを利用して船舶95の動作を制御しても良い。
【0189】
位置方位情報入力部22には、GNSS装置12及びIMUから求められる船舶95の現在方位に関するデータが入力されても良い。
【0190】
ローカル地図生成部32は、例えばガウシアンフィルタを利用して、領域の途切れやノイズの軽減を図ったローカル地
図36を生成しても良い。
【0191】
広域地図生成部33は、ローカル地
図36を取得し、当該ローカル地
図36のデータを利用して、広域地図を生成しても良い。また、広域地図は、ローカル地
図36を利用して、適宜に更新しても良い。
【0192】
地図生成部31は、適宜の手法に基づいて座標変換した環境地図を生成しても良い。例えば、ローカル地図生成部32は、LiDARの設置位置と方位情報を利用して、LiDAR座標系からGNSS座標系に座標変換したローカル地
図36を生成しても良い。また、ローカル地図生成部32は、GNSSの緯度及び経度のデータを利用して、GNSS座標系からNEU直交座標系に座標変換したローカル地
図36を生成しても良い。
【0193】
上記の実施形態では、スクリュー6L,6Rの回転軸の向きをそれぞれ独立して変更可能に構成されている。しかしながら、推進装置5の方式としては船舶95の横方向の平行移動及びその場旋回等を実質的に実現できれば良く、他の方式に変更することができる。例えば、推進装置5を、回転軸の向きを変更不能な左右1対のスクリューと、舵と、船首側に設けたサイドスラスタと、により構成することが考えられる。また、推進装置5を、回転軸の向きを変更不能な1つのスクリューと、舵と、船首側及び船尾側のそれぞれに設けたサイドスラスタと、により構成することもできる。
【0194】
第3実施形態において、内分率は、制御目標における目標位置を基準にした船舶95の相対的な現在位置、及び、制御目標における目標方位と船舶95の現在方位との差のうち、一方だけに基づいて定められても良い。
【符号の説明】
【0195】
3 制御コントローラ(推進制御装置)
4 制御目標コントローラ(制御目標生成装置)
56 経路
56s 部分経路
61 経過目標点生成部
62 到達判定部
63 表示データ生成部
65 経過目標点
95 船舶