IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ モルガン スタンレー サービシーズ グループ,インコーポレイテッドの特許一覧

特許7417614人工知能の方法、人工知能システム、コンピュータ実装方法、システム
<>
  • 特許-人工知能の方法、人工知能システム、コンピュータ実装方法、システム 図1
  • 特許-人工知能の方法、人工知能システム、コンピュータ実装方法、システム 図2
  • 特許-人工知能の方法、人工知能システム、コンピュータ実装方法、システム 図3
  • 特許-人工知能の方法、人工知能システム、コンピュータ実装方法、システム 図4
  • 特許-人工知能の方法、人工知能システム、コンピュータ実装方法、システム 図5
  • 特許-人工知能の方法、人工知能システム、コンピュータ実装方法、システム 図6
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-01-10
(45)【発行日】2024-01-18
(54)【発明の名称】人工知能の方法、人工知能システム、コンピュータ実装方法、システム
(51)【国際特許分類】
   G08G 1/01 20060101AFI20240111BHJP
   G08G 1/07 20060101ALI20240111BHJP
   G08G 1/16 20060101ALI20240111BHJP
   G08B 25/04 20060101ALI20240111BHJP
【FI】
G08G1/01 A
G08G1/07 A
G08G1/16 A
G08B25/04 E
【請求項の数】 19
(21)【出願番号】P 2021544794
(86)(22)【出願日】2020-01-30
(65)【公表番号】
(43)【公表日】2022-04-22
(86)【国際出願番号】 US2020015932
(87)【国際公開番号】W WO2020160301
(87)【国際公開日】2020-08-06
【審査請求日】2023-01-30
(31)【優先権主張番号】16/264,671
(32)【優先日】2019-01-31
(33)【優先権主張国・地域又は機関】US
【早期審査対象出願】
(73)【特許権者】
【識別番号】517336027
【氏名又は名称】モルガン スタンレー サービシーズ グループ,インコーポレイテッド
【氏名又は名称原語表記】MORGAN STANLEY SERVICES GROUP,INC.
(74)【代理人】
【識別番号】110001519
【氏名又は名称】弁理士法人太陽国際特許事務所
(72)【発明者】
【氏名】ムラリーダラ,ケサバナンド
(72)【発明者】
【氏名】ジェッダ,アフメド
(72)【発明者】
【氏名】ピント,パウロ
【審査官】増子 真
(56)【参考文献】
【文献】特開2019-056691(JP,A)
【文献】米国特許出願公開第2016/0054443(US,A1)
【文献】中国特許第101957602(CN,B)
(58)【調査した分野】(Int.Cl.,DB名)
G08G 1/00 - 99/00
(57)【特許請求の範囲】
【請求項1】
混沌とした環境における異常を検出して対応するための人工知能の方法であって:
第1のタイムウィンドウの間に、1つ又は複数のリモート電子センサから、前記混沌とした環境における1つ又は複数の変数の疑似ブラウン運動による変化を記録したセンサ読取値の第1のセットを受信するステップと;
前記センサ読取値の第1のセットに基づいて、前記第1のタイムウィンドウの後の第2のタイムウィンドウの間、前記1つ又は複数の変数の予想範囲を決定するステップであって、前記予想範囲を決定することは、少なくとも部分的には、前記混沌とした環境においてアクティブな干渉のない場合には、センサ読取値が少なくとも所定の確率で前記予想範囲内に収まるような前記所定の確率に基づ、及び、前記予想範囲を決定することは、少なくとも部分的には、前記第1のタイムウィンドウ内の時間の一部におけるセンサ読取値から計算されたバイパワーバリエーションに基づく、前記決定するステップと;
前記第2のタイムウィンドウの間に、前記1つ又は複数のリモート電子センサから、前記1つ又は複数の変数の変化を記録したセンサ読取値の第2のセットを受信するステップと;
前記センサ読取値の第2のセットに基づいて、前記1つ又は複数の変数のうちの1つの変数が前記予想範囲内にないことを判定するステップと;
1つ又は複数の自律エージェントデバイスに、前記1つの変数が予想範囲外にあることによって示される異常を軽減するように試行させるステップと;を備える、
方法。
【請求項2】
前記1つ又は複数の自律エージェントデバイスは、ネットワークメッセージがネットワークを介して送信されないようにすることによって、前記異常を軽減するように試行する、
請求項1に記載の方法。
【請求項3】
前記1つ又は複数の自律エージェントデバイスは、前記混沌とした環境に作用する物理アプライアンスをアクティブ化することによって、前記異常を軽減するように試行する、
請求項1に記載の方法。
【請求項4】
前記1つ又は複数の自律エージェントデバイスは、自律車両を特定の場所へ移動させることによって、前記異常を軽減するように試行する、
請求項1に記載の方法。
【請求項5】
前記1つ又は複数の自律エージェントデバイスは、ヒューマンユーザが受信するためのメッセージを生成することによって、前記異常を軽減するように試行する、
請求項1に記載の方法。
【請求項6】
前記1つ又は複数の自律エージェントデバイスは、ヒューマンユーザに可視又は可聴であるアラームのアクティブ化によって、前記異常を軽減するように試行する、
請求項1に記載の方法。
【請求項7】
前記予想範囲内にない前記1つ又は複数の変数に少なくとも部分的に基づいて前記予想範囲を拡大するステップを更に備える、
請求項1に記載の方法。
【請求項8】
前記1つ又は複数の変数が前記予想範囲内にあることを示すセンサ読取値の第3のセットに少なくとも部分的に基づいて、前記予想範囲を狭めるステップを更に備える、
請求項1に記載の方法。
【請求項9】
混沌とした環境における常を検出して対応するための人工知能システムであって:
1つ又は複数の自律エージェントデバイスと;
プロセッサと、命令を格納する非一時的なメモリと、を備える中央サーバと;を備え、
前記命令が前記プロセッサによって実行されたときに、前記プロセッサは:
請求項1~請求項8の何れか1項に記載の方法を実行する、
システム。
【請求項10】
混沌とした環境における異常に事前対応的に対応するためのコンピュータ実装方法であって:
前記混沌とした環境の第1の状態の間に電子センサのセットから前記混沌とした環境における1つ又は複数の値のセンサ読取値の第1のセットを受信するステップであって、前記1つ又は複数の値は、前記混沌とした環境の前記第1の状態の間に疑似ブラウン運動による変化をする、及び、前記混沌とした環境の第2の状態の間に疑似ブラウン運動による変化をしない、前記受信するステップと;
センサ読取値の前記第1のセットに基づいて、将来のタイムウィンドウの間前記1つ又は複数の値の予想範囲を確立するステップと;
前記予想範囲の範囲外の値を備えるセンサ読取値の第2のセットを受信するステップと;
前記混沌とした環境が、前記第2の状態に入ったと判定するステップと;
前記混沌とした環境と対話する1つ又は複数のリモートデバイスに、前記混沌とした環境が前記第1の状態に再び入ったことをセンサ読取値が示すまで、前記混沌とした環境に作用する物理アプライアンスをアクティブ化する命令を送信するステップと;を備える、
方法。
【請求項11】
前記予想範囲は、センサ読取値の前記第1のセットから計算されたバイパワーバリエーションに少なくとも部分的に基づいて決定される、
請求項10に記載の方法。
【請求項12】
前記予想範囲は、前記混沌とした環境においてアクティブな干渉のない場合には、前記1つ又は複数の値の将来のセンサ読取値が少なくとも所定の確率で前記予想範囲内に収まるように、前記所定の確率に少なくとも部分的に基づいて決定される、
請求項11に記載の方法。
【請求項13】
前記1つ又は複数のリモートデバイスは、ネットワークメッセージがネットワークを介して送信されるのを防止する、
請求項10に記載の方法。
【請求項14】
前記1つ又は複数のリモートデバイスは、ヒューマンユーザが受信するためのメッセージを生成することによって機能する、
請求項10に記載の方法。
【請求項15】
前記1つ又は複数のリモートデバイスは、ヒューマンユーザに可視又は可聴であるアラームのアクティブ化によって機能する、
請求項10に記載の方法。
【請求項16】
前記予想範囲の範囲外の値に少なくとも部分的に基づいて前記予想範囲を拡大するステップを更に備える、
請求項10に記載の方法。
【請求項17】
前記1つ又は複数の値が前記予想範囲内にあることを示すセンサ読取値の第3のセットに少なくとも部分的に基づいて、前記予想範囲を狭めるステップを更に備える、
請求項10に記載の方法。
【請求項18】
前記混沌とした環境は、前記混沌とした環境内の前記1つ又は複数の値に影響を与えるメッセージを送信するコンピュータの異常に応答して前記第2の状態に入る、
請求項10に記載の方法。
【請求項19】
混沌とした環境における異常に事前対応的に対応するためのシステムであって:
電子センサのセットと通信するコンピューティングデバイスを備え、
前記電子センサは、前記混沌とした環境の第1の状態の間に疑似ブラウン運動による変化をする、及び、前記混沌とした環境の第2の状態の間に疑似ブラウン運動による変化をしない、前記混沌とした環境における1つ又は複数の値を通知するように構成され、
前記コンピューティングデバイスは、プロセッサと、命令を格納する非一時的なメモリと、を備え、
前記命令が前記プロセッサによって実行されたときに、前記プロセッサは:
請求項10~請求項18の何れか1項に記載の方法を実行する、
システム。
【発明の詳細な説明】
【技術分野】
【0001】
本願は、人工知能の方法及びシステムに関し、より具体的には、混沌とした環境からのセンサデータを分析し、その環境に影響を与える、人工知能のための方法及びシステムに関する。
【背景技術】
【0002】
1827年、ロバート・ブラウンは、水中の花粉粒子が、目に見えない水分子同士の跳ね返り衝撃により、予測できないやり方でどのようにして前後に押し出されるかを観察することで、物質の分子理論の最初の証拠のいくらかを発見した。観察装置の品質向上とともに、すべての流体は、他の分子との衝突による妨げが無ければ直線で移動する個々の分子で構成されているものの、それら分子の運動量を絶えず変化させる無数の衝突の存在により、非常に混沌としていることが発見された。
【0003】
この混沌とした流体システム(カオス流体系)における個々の粒子の動きの本質であるブラウン運動は、統計物理、応用物理、及びトポロジの数学的分野で広く分析されてきた。更にいくつかの非流体システムは、銀河系内の星々の動きや、市場における投資資産の価値の変化など、まるでブラウン運動にさらされているかのようにモデル化できることが分かってきている、又はモデル化を説明できるようになってきている。
【発明の概要】
【0004】
本開示は、混沌とした環境(カオス環境)における異常を検出して対応するための人工知能システムであり、1つ又は複数の自律エージェントデバイスと、プロセッサと非一時的なメモリとを備える中央サーバと、を備える。メモリは命令を格納し、その命令は、前記プロセッサによって実行されたときに、前記プロセッサが、第1のタイムウィンドウの間に、1つ又は複数のリモート電子センサからセンサ読取値の第1のセットを受信し、センサ読取値は前記混沌とした環境における1つ又は複数の変数の疑似ブラウン変化を記録しており;前記センサ読取値の第1のセットに基づいて、前記第1のタイムウィンドウの後の第2のタイムウィンドウの間に、前記1つ又は複数の変数の予想範囲を決定し;前記第2のタイムウィンドウの間に、前記1つ又は複数のリモート電子センサから、前記1つ又は複数の変数の変化を記録したセンサ読取値の第2のセットを受信し;前記センサ読取値の第2のセットに基づいて、前記1つ又は複数の変数のうちの1つの変数が前記予想範囲内にないことを判定し(したがって、疑似ブラウン運動の結果である可能性が非常に低い代わりに非ブラウン運動である可能性が高いと推定されるかどうか);前記1つ又は複数の自律エージェントデバイスに、前記1つの変数が予想範囲外にあることによって示される潜在的な害を軽減するように試行させる;ようにする。
【0005】
更なる開示は、混沌とした環境における異常を検出して対応するための人工知能の方法であって:第1のタイムウィンドウの間に、1つ又は複数のリモート電子センサから、前記混沌とした環境における1つ又は複数の変数の疑似ブラウン変化を記録したセンサ読取値の第1のセットを受信するステップと;前記センサ読取値の第1のセットに基づいて、前記第1のタイムウィンドウの後の第2のタイムウィンドウの間に、前記1つ又は複数の変数の予想範囲を決定するステップと;前記第2のタイムウィンドウの間に、前記1つ又は複数のリモート電子センサから、前記1つ又は複数の変数の変化を記録したセンサ読取値の第2のセットを受信するステップと;前記センサ読取値の第2のセットに基づいて、前記1つ又は複数の変数のうちの1つの変数が前記予想範囲内にないことを判定するステップと;前記1つ又は複数の自律エージェントデバイスに、前記1つの変数が予想範囲外にあることによって示される潜在的な害を軽減するように試行させるステップと;を備える。
【図面の簡単な説明】
【0006】
図1】混沌とした環境の分散センサ読取値を受信し、混沌とした環境の変化に応じてエージェントを指示するためのコンピューティングシステムの図である。
【0007】
図2】疑似ブラウン運動を伴う混沌としたシステムにおける予想される挙動の予測可能性を示す図である。
【0008】
図3】人工知能システムが着信センサデータを処理して混沌とした環境におけるエージェントを指示するための方法を示す図である。
【0009】
図4】新しいタイムウィンドウの終了後に予想範囲が繰り返し再計算されるときの一定の期間にわたるセンサ読取値及び予想範囲の変化を示す実際のグラフである。
【0010】
図5】変数が急減してから正常状態に戻るときの、ある期間にわたるセンサ読取値を示す実際のグラフである。
【0011】
図6】上述のいくつかの特徴を実行するための概略のコンピューティングデバイスを示す図である。
【発明を実施するための形態】
【0012】
図1は、混沌とした環境(カオス環境)の分散センサ読取値を受信し、混沌とした環境の変化に応じてエージェントを指示するためのコンピューティングシステムを示す。
【0013】
相互に影響を与える、又は、システム内の「パッシブ」エンティティに影響を与える、いくつかの個別の「アクティブ」エンティティを含む混沌としたシステムは、これらのアクティブエンティティ又はパッシブエンティティの疑似ブラウン運動を呈するとして説明できる。説明されているエンティティの挙動が単純であるほど、その環境におけるエンティティの全体的な挙動が真のブラウン運動の環境における挙動と同じである可能性は高くなり、そして、気流又は水流の挙動は、群れの中での鳥の挙動(これは、群衆の中での人の挙動よりも良好に近似できる)よりも良好に近似できる。動きは、数値とは違って物理物な事物の動きである必要もない。例えば、ネットワークデバイスによって維持されるデータ接続の数は、ユーザの非依存的挙動(接続を開始するための各ユーザの選択)及びユーザの依存的挙動(ネットワークの混雑によりネットワークが役に立たなくなったので、接続を断つという各ユーザの選択)に応じて変化してもよい。この例では、何度もネットワークに出入りするせっかちなユーザと忍耐強いユーザとが、あたかも高速分子と低速分子とが流体内で互いに押し合うように抽象化されるので、ネットワークの混雑レベル自体が疑似ブラウン運動を経験することになる。
【0014】
ここで、図1の要素に転ずると、中央サーバ100は、ネットワーク110を介して、混沌とした環境におけるいくつかのリモート電子センサ105からセンサデータを受信し、ネットワーク110を介して、いくつかの電子コンピューティングデバイスエージェント115に命令を送信する。
【0015】
ネットワーク110は、例えば、インターネット一般、ローカル無線ネットワーク、イーサネット(登録商標)ネットワーク若しくは他の有線ネットワーク、衛星通信システム、又はデータ送信を可能にするためにセンサ105を中央サーバ100に接続すると共に中央サーバをエージェント115に接続する他の任意の手段であってもよい。さらに、ネットワーク110は、図のように、単一のネットワークでなくいくつかの別個のネットワークであってもよい。例えば、中央サーバ100は、有線接続で接続されたいくつかの近位置センサ105、Wi-Fiネットワークを介して接続されたいくつかの近傍センサ105、及び衛星経由で接続されたいくつかの極めて遠隔にあるセンサ105を有することができる。接続は、ネットワークの使用を完全に回避し、直接的な有線又は無線送信を用いて、中央サーバ100との間でデータを送受信することとしてもよい。図1に示すように、矢印は、ネットワークとの間のデータフローの予想される方向を示す。
【0016】
センサ105は、中央サーバ100の外部の混沌とした環境からのデータを登録する任意のタイプの電子センサであってもよい。特定の実施の形態のセンサタイプの例は、カメラ、サーモメータ、GPS追跡デバイス若しくは他の測位(地理的位置)デバイス、動き/距離/加速度/向きの(検出を行う)センサ、又はソース(発信元)から電子データ通信を受信する通信モジュール、を含むことができるが、これらに限定されない。
【0017】
エージェント115は、混沌とした環境の中に変化を引き起こすことができる、又は混沌とした環境によって影響を受ける別の「実世界」システムに変化を引き起こすことができる、任意の形式のコンピューティングデバイスであってもよい。例えば、エージェント115は、物理アラームをトリガ(起動)する、ドローン飛行機又は自律車両を操縦する、ネットワークトラフィックをルーティング(経路選択)する、人ユーザに関連付けられた物理デバイスに表示するメッセージを生成する、又は「スマート家電」若しくは他の自動システムに関連付けられた他のアクションを実行する、コンピューティングデバイスとしてもよい。
【0018】
特定の目的を達成するためのセンサ105及びエージェント115のいくつかの可能な組み合わせを以下に説明する。
【0019】
実施の形態の一例では、センサ105は、コンピュータ内又はサーバルーム内の様々な場所にサーモメータを含むことができ、エージェント115は、温度制御ファン又はエアコンとすることができる。システムは、センサデータを用いて、観察された温度の上昇傾向が、ランダム変動でありそうか、又はファン格子の詰まり又は構成部品の過熱などの本質的問題でありそうか、を判定することによって、コンピュータへの物理的損傷を防いでコンピュータのパフォーマンスを向上させることができる。問題に応じて、追加の冷却システムを作動させたり出力を増加させたりすることができ、自動アラームをトリガさせたり、システムの操作担当者に予想外の温度変化を通知するようにしてもよい。
【0020】
別の例示の実施の形態では、センサ105は、市街地全体の温度を測定する屋外サーモメータであってもよい。システムは、サーモメータからのデータを用いて、観察された温度の変化が気象に関連するのではなく、人為的なもの(サーモメータ近くの加熱された空気用の排気ファンの運転、又はサーモメータ近くの焚き火の存在など)であると特定することによって、不正確な天気予報データを防ぐことができ、特定のセンサからのデータを除外すべきか、注意して処理すべきかを気象予報機関へ自動的に通知できる。
【0021】
別の例示の実施の形態では、センサ105は、一群の動物に付けたGPSトラッカ(追跡装置)、又は自然保護区内の動物の位置を記録するカメラを含むことができる。動物の動きの異常な挙動は、放牧の通常パターン及び群れの中での動きとは異なるやり方で動物を動かす自然保護区において、密猟者、環境上の危険、又は好まざる肉食動物、の存在を示している可能性がある。エージェント115は、状況を観察してデータを公園管理機関に報告するために送り出される空中ドローンであってもよく、状況を調査する人を送るべきである旨を警告するために公園管理機関が用いる個人用デバイス又はアラームであってもよい。
【0022】
別の例示の実施の形態では、センサ105は、何台かの自動車に設けたGPSトラッカを含むことができる。交通の流れは、「ドリフト」変数を含めて、すべての計算中に交通の流れの平均速度を減算して計算を正規化すると、自動車が互いに近づきすぎたときにブレーキをかけて互いに「跳ね返る」疑似ブラウン運動としてモデル化することができる。エージェント115は、交通を管理するための自動化されたシステム(信号機、又は開放若しくは閉鎖が可能な追加の車線など)、自律車両自体、或いは運転手、警察、若しくは他の最初の対応者によって用いられる個人用デバイス又は警報を含むことができる。交通渋滞、道路の危険、予想外の交通量、又は交通の自然な流れに影響を与えるその他の問題に応じて、様々な自動化システムに、交通障害(交通インピーダンス)を低減する方法で挙動を変化させるように指示することができ、実行担当者に、問題について警報を出して選択を通知することもできる。
【0023】
別の例示の実施の形態では、センサ105は、ショッピングセンタのような公共スペース内の何人かの人々の位置を追跡する1台又は複数台のカメラを含むことができる。エージェント115は、火災警報又は他の警報システム、掃除ロボット、或いは作業担当者に指示するメッセージを生成できるコンピュータシステムを含むことができる。他の人々との接触を避けながら、「動き回ること」から又は一般通路から、大幅に逸脱して進む人々の挙動は、危険を避けるために遠回りをするように人々に影響を及ぼしている液体のこぼれ又は悪臭などの受動的な危険(パッシブな危険)、或いは、人々が逃れるようにさせる火事や武器の所持者などの能動的な危険(アクティブな危険)、を示すことがある。それに応じて、システムは、自動的に危険の原因を特定するよう試みて、必要に応じてアラームをトリガし、自動化されたリソース(資源、財産)又は人的リソースに、危険への対処を指示してもよい。
【0024】
別の例示の実施の形態では、センサ105は、コンピュータネットワークのエッジにファイアウォール又はルータを含み、ネットワークパケットの着信数を報告することができる一方、エージェント115は、サーバクラスタ内のサーバ、ルータ、又はファイアウォールを含むことができる。システムは、ネットワークトラフィックの増加を着信トラフィックの自然変動と区別することにより、サービス拒否(DDOS)攻撃の開始を検出し、攻撃を処理するためにより多くのサーバをアクティブ化する、又は、攻撃が停止するまでネットワークトラフィックの流入を遮断することができる。
【0025】
同様に、センサ105は、CPU(中央処理装置)、ネットワークカード、又はメモリ、の負荷など、デバイス上のリソースの総使用量を報告できる。エージェント115は、リソースの使用量の上昇傾向が、ソフトウェアの意図された使用中の自然変動ではなく、プログラムのバグ又は悪意あるソフトウェア設計を示している、と判定することによって、システムリソースの過剰な割合又は増加しつつある割合を用いているソフトウェアをシャットダウン又は抑えるためのカーネル又はオペレーティングシステムプロセスを含むことができる。次に、オペレーティングシステムプロセスは、ソフトウェアを自動的に終了する、ソフトウェアで利用可能なリソースを抑える、ソフトウェアをサンドボックス化して他のシステムコンポーネントから分離する、又は、ソフトウェアの人ユーザに警告を生成する、ことによって対応可能としてもよい。
【0026】
別の例示の実施の形態では、センサ105は、ストリーミングサービス上の特定の映画のページ又はeコマースサイト上の特定の製品のページなど、特定のリソースへのネットワークトラフィックフローのトラッカを含むことができる。一方、エージェント115は、ストリーミングサービス内のサーバ又はeコマースウェブサイトに関連付けられた自動化倉庫保管要素を含むことができる。システムは、所定のリソース又はアイテム(有名人のお墨付き又は他の予想しない文化的若しくは経済的変化によって引き起こされるものなど)の人気の急増の始まりを検出して、コンテンツ配信ネットワークに電子リソースをより広く配信するように指示し始めることもでき、自動化倉庫保管要素に、アイテムの保管場所を移動して倉庫からより効率的に出荷するように指示することもできる。
【0027】
別の例示の実施の形態では、センサ105は、証券取引所又は他の市場にある、1つ又は複数の資産の現在の売買価格を報告するデバイス(装置)を含むことができる。エージェント115は、売買注文を市場へ送信できるコンピューティングデバイス、又はそのようなコンピューティングデバイスが売買注文を市場へ首尾よく送信するのを防ぐことができるファイアウォールデバイス、を含むことができる。市場の異常に応じて、トレーダが取引できることをコンピューティングデバイス自体が自動的に停止でき、又は、トレーダに異常を通知できるのでトレーダはより慎重に事を進めることができる。
【0028】
観察されたセンサ値の変動がエージェント115の1つによって対処されなければならない問題を示す、という決定は、(図3に示し、以下で更に説明するように)過去及び現在のセンサ値の人工知能分析によって決定された、(図2に示すような)予想範囲外のセンサ値の観察に少なくとも部分的に基づいて行われる。
【0029】
図2は、疑似ブラウン運動を伴う混沌としたシステムにおいて感知された値の予想される挙動の予測可能性を示す。
【0030】
図2の簡略グラフは、観察された過去のセンサ値205及び予測される将来のセンサ値210を示す。上限範囲216及び下限範囲217を含む予想範囲215は、予測される将来のセンサ値210の境界を設定し、センサ値のランダムな又は疑似ランダムな変化を利用できる更なる時間に起因して不確実性が増加するにつれて、時間(軸220)にわたって拡大する。
【0031】
予想範囲215は信頼区間を表し、それは、センサ値への変化がアクティブな干渉(能動的な干渉)がなく疑似ブラウン運動によって動作し続けている場合に、将来観察されるセンサ値が、ある閾値よりもその区間を超える可能性が低いような区間である。例えば、一の実施の形態では、センサ105によって感知される基本的な混沌とした環境に影響を与える何らかの原因不明の要因がない場合には、センサ値が予想範囲215を外れない確率は95%で予想できる。別の実施の形態では、予想範囲215は更に広くてもよく、アクティブな干渉がない場合には、センサ値が予想範囲を外れない確率は99%、又は99.9%、又は更に高い確率を表すことができる。これらの変化する信頼区間の例を図4に示す。
【0032】
図2に示すように、観察されたセンサ値205及び予測されたセンサ値210は単一のスカラ値であるため、予想範囲215の時間軸220に沿うあらゆる点に垂直な断面は垂直線であり、予想範囲215は、本質的に、現在の点を含む2次元のくさび形状である。他の実施の形態では、センサ値205、210は多次元であってもよい。例えば、2つのセンサ値がタンデムで(相前後して)測定される場合、予想範囲215は、現在の点を含む3次元のピラミッド形状又は円錐形状であり、時間軸220に関して2次元断面を有し、2つのセンサ値の可能なペアの予想範囲を表す。同じ原理に基づいて、複数のセンサ値のその値に対する高次元の予想範囲を(簡単には図示できないが)外挿できるはずである。
【0033】
予想範囲215の境界216、217は、ここでは直線として示されているが、曲線又は他の非線形境界(又は高次元の実施の形態では非平面/非超平面境界)が、混沌とした環境の特性又は異常に対するシステムの感度に依っては、予想範囲215の境界を設定してもよい。
【0034】
図3は、人工知能システムが、着信センサデータを処理し、図2のグラフを生成し、予想範囲を出る後続のセンサ読取値に応じて混沌とした環境においてエージェントを指示する、ための方法を示す。
【0035】
一連のタイムウィンドウ(ある測定が行われている時間帯)のそれぞれの開始時に、1つ又は複数のセンサ読取値を、中央サーバ100がセンサ105から受信する(ステップ300)。タイムウィンドウは、特定の実施の形態に合わせて調整でき、動物の動きを測定するときの数分から、システムの温度又は人の動きを測定するときの数秒まで、及び車両の動き、ネットワークフロー、リソースの使用状況又は資産価格の変動を監視するときのほんの一瞬まで、の任意の時間を表すことができる。
【0036】
検出された任意のドリフト項(すなわち、実施の形態によっては発生することがある、すべてのセンサ読取値が一方向へ系統的シフトの状況にある項)は、データから除かれる(ステップ305)。例えば、前述のように、交通渋滞中の車両の位置は、相互に及び危険に応じて変化することがあるだけでなく、交通の流れのおよそ平均速度で絶えず変化している。その結果、平均交通速度であるドリフト項を減算することによって、車両の全体にわたる速度を含むセンサ読取値が正規化されるはずである。正規化後、コンテナ内の流体粒子の所定の方向における正及び負の速度を見ることから予想できるかも知れないが、流れに関して負の速度を持つ車両があり、正の速度を持つ車両もある。同様に、良い経済ニュースに続く上昇傾向の市場では、特定の資産価格の変化が異常であるか、又は、市場の傾向に沿っているか、を判定するために、ドリフト項を分離してこれを除く必要があろう。
【0037】
異なるタイプのセンサ読取値からのデータを正規化するために、又は、所定の実施の形態で必要とされる場合には、他のアクションをとることとしてもよい。
【0038】
次に、先のタイムウィンドウからの正規化されたセンサ読取値を見て、次の式に従ってバイパワーバリエーションが計算される(ステップ310)。
【数1】

ここで、s(t)はタイムウィンドウtでのセンサ読取値である。小文字のシグマは、ボラティリティ推定量、すなわち、バイパワーバリエーションによって計算されたセンサデータにおける標準偏差の類似形を表す。
【0039】
計算された標準偏差と特定のアプリケーションの望ましいリスク許容度とに基づいて、変数が疑似ブラウン運動をしていると仮定して、来るべき1つ又は複数のタイムウィンドウに対して予想範囲が計算される(ステップ315)。例えば、変数が疑似ブラウン運動をしているという90%の信頼区間は、通常、平均センサ値からおよそプラス又はマイナス4シグマ(σ)の範囲を決定することによって計算される。一方、99.9%の信頼区間は、センサの平均値からおよそプラス又はマイナス6シグマ(σ)に対応する可能性がある。
【0040】
より具体的には、変数の変化が非ブラウンではなく疑似ブラウンである信頼区間は、Lを選択することによって構築できる。Lは、センサ読取値のシグマに対する比であり、P(異常)=exp(-exp((C(n)-L)/S(n)))のように起こりそうな異常と考えるべきである。ここで、C(n)は、((2log n)1.5/c)-((log pi+log log n)/2c(2log n)0.5)に等しい関数であり、nはウィンドウの総数であり、したがって、現在のウィンドウの指標でもある。cは定数sqrt(2/pi)であり、S(n)は、1/c(2 log n)0.5に等しい関数である。
【0041】
各着信センサ読取値が信頼区間内にある場合(ステップ320)、次のタイムウィンドウにおいて新しいセンサ読取値を受信して、予想範囲の再計算をすること(ステップ300からステップ315を繰り返す)へ戻る以外、アクションは実行されない。異常なセンサ読取値が検出された場合、中央サーバ100は、1つ以上の自律エージェント115へ送信するためのメッセージを生成できる(ステップ325)。自律エージェントは、次に、異常検出システムのアプリケーションに従って、害を最小化するために構成されるように更に動作できる(ステップ330)。自律エージェント115の動作に関係なく、中央サーバ100は、センサデータを引き続き検討して、図4に示すように、追加の異常が存在するかどうか、又は更なるセンサデータが混沌としたシステムにおける変動率及び後続の予想範囲の調整に対して「新しい常態」を示すように見えるかどうか、を判定する。
【0042】
図4は、新しいタイムウィンドウの終了後に予想範囲が繰り返し再計算されるときの、一定の期間にわたるセンサ読取値及び予想範囲の変化を示す実際のグラフを示す。
【0043】
予想される最大値216及び最小値217は、99.9%の信頼区間を表し、図4全体の400、401、402及び他の場所にドットでプロットされているセンサ読取値は、外部の、非ブラウン運動の影響ではなく、疑似ブラウン運動によってのみ影響を受けた場合には(信頼区間内に)収まるだろう。
【0044】
予想される最大値216及び最小値217は、図2に示すような線形ではなく、過去及び現在のデータの再計算に基づいて時間にわたって変化する。そのため、図4は、予測において、現在時刻の直後に発生する一つ一つの予測のごく一部を取る様子を効果的に表している。センサ読取値400の変動がタイムウィンドウの間に増加又は減少するにつれて、それらの時点で予想される最大値と最小値との間の範囲は、それに応じて拡大及び縮小した。
【0045】
2つの時点(センサ読取値401、402付近)で、センサ読取値400のボラティリティ(変動率)は著しく増加したため、センサ読取値401、402が216と217の信頼区間の上方にあり、ほぼ同時刻に追加の3つの読取値が216と217の信頼区間の下方にある。これらの外れ値のデータ点は、混沌とした環境の正規関数においてある種のアクティブな干渉を強く示しており、自律エージェント115によるアクションの基礎となろう。
【0046】
外れ値は、可能性は低いのであるが、システムの異常による影響を受けていないセンサ読取値である可能性があるので、及び、他のその後のセンサ読取値は、やはり干渉された混沌としたシステムの影響を受ける可能性があるので、信頼区間は、外れ値401、402の後に大幅に拡大し、システムのそのような外乱の後の正常な混沌とした挙動を表すかもしれない後続のセンサ読取値からの誤警報を防ぐ。
【0047】
図5は、変数が急減してから正常状態に戻るときの、ある期間にわたるセンサ読取値を示す実際のグラフである。
【0048】
3つの変数500が変化している期間のほとんどを通して、変数500はノイズが多いが、任意の小さなタイムウィンドウ内で劇的に変化しないので、L比はほとんど常に4未満のままである。しかし、時刻501では、3つの変数の1つが突然急激に低下し、L比が約10まで急上昇する。これは、その変化は、変数の変化におけるランダムノイズ又は疑似ブラウン運動の別の例ではなかった可能性が非常に高いことを示す。その結果、これらの変数の変化を監視するシステムは、必要に応じて、自動化されたアクションをトリガ(起動)し、実行すべきである。
【0049】
時刻502では、別の突然の変化が発生し、L比が更に増加して約14に達する。しかし、この場合、信じられないほど高いL値にもかかわらず、システムは必ずしもアクションを実行する必要はない。というのは、このL値は、より低く、より安定した測定変数500の期間によって歪められているからである。時刻502でのジャンプは、平均への回帰を表している可能性があり、変数500に対する異常な影響の終了を表している可能性があり、新しい二次的な影響が変数500を更に歪めているわけではない。
【0050】
自動化されたアクションを実行するか控えるかのシステムによる判定は、短いタイムウィンドウでの着信センサデータの統計分析だけに影響を受ける可能性があるのでなく、長いウィンドウにわたるセンサデータ、若しくは追加のセンサデータ、又は情報フィードにも影響を受ける可能性があり、この情報フィードは、変数500の値を直接報告しないが、その変数に影響を与える可能性があり、変数の値の第2の外乱が平均への回帰であるかどうかの分析に役立つ可能性がある情報を報告する。データ分析のために、より長いタイムウィンドウを選択すると、システムが突然の変更及び復帰/自己修正に対して過剰反応することを回避するのに役立つことがあるが、自己修正しない変更に対するシステムの応答性が低下するリスクもある。所定の実施の形態を用いた実証的テストは、不要なアクションと望ましくない不作為との間のトレードオフを最適化するために用いるウィンドウサイズ及び連続するウィンドウの数を決定するのに役立つかもしれない。
【0051】
図6は、本明細書に記載される様々な特徴及びプロセス、例えば、中央サーバ100、センサ105、又は自律エージェント115の機能、を実施するために利用され得る代表的なコンピューティングデバイスの概略ブロック図である。該コンピューティングデバイスは、コンピュータシステムによって実行される、プログラムモジュールといった、コンピュータシステムの実行可能な命令の一般的状況で記載されているかもしれない。一般に、プログラムモジュールは、特定のタスクを実行する、又は特定の抽象データ型を実装する、ルーチン、プログラム、オブジェクト、コンポーネント、ロジック、データ構造、及びその他を含み得る。
【0052】
図6に示すように、コンピューティングデバイスは、専用コンピュータシステムの形態で例示されている。コンピューティングデバイスの構成要素は、1つ又は複数のプロセッサ又は処理ユニット900、システムメモリ910、並びにメモリ910を含む様々なシステム構成要素をプロセッサ900に結合するバス915を含んでもよい(しかし、これらに限定されない)。
【0053】
バス915は、メモリバス又はメモリコントローラ、ペリフェラルバス、アクセラレイテッド・グラフィックス・ポート、及び様々なバスアーキテクチャのいずれかを使用するプロセッサバス又はローカルバスを含む、いくつかのタイプのバス構造の任意のうちの1つ又は複数を表す。例示として、限定ではなく、そのようなアーキテクチャには、業界標準アーキテクチャ(ISA)バス、マイクロ・チャネル・アーキテクチャ(MCA)バス、拡張ISA(EISA)バス、ベサ(VESA)ローカルバス、及びペリフェラル・コンポーネント・インターコネクト(PCI)バスを含む。
【0054】
処理ユニット900は、メモリ910に格納されたコンピュータプログラムを実行することができる。任意の適切なプログラミング言語を用いて、C、C++、Java(登録商標)、アセンブリ言語、等を含む特定の実施の形態のルーチンを実施することができる。手続き型又はオブジェクト指向といった異なるプログラミング技法を実施することができる。該ルーチンは、単一のコンピューティングデバイス又は複数のコンピューティングデバイス上で動作することができる。さらに、複数のプロセッサ900を使用してもよい。
【0055】
コンピューティングデバイスは、典型的には、様々なコンピュータシステム読み取り可能媒体を含む。そのような媒体は、コンピューティングデバイスによってアクセス可能な任意の利用可能な媒体であってもよく、揮発性及び不揮発性の媒体の両方、取外し可能(リムーバブル)及び取外し不可能な(ノンリムーバブル)媒体の両方を含む。
【0056】
システムメモリ910は、ランダムアクセスメモリ(RAM)920及び/又はキャッシュメモリ930といった揮発性メモリの形態でのコンピュータシステム読み取り可能媒体を含むことができる。コンピューティングデバイスは、さらに、他の取り外し可能/取り外し不可能な、揮発性/不揮発性のコンピュータシステム記憶媒体を含み得る。ほんの一例として、記憶システム940を、取り外し不可能な不揮発性磁気媒体(図示せず、典型的には「ハードドライブ」と呼ばれる)からの読み取り及び該媒体への書き込みのために設けることができる。図示しないが、取り外し可能な不揮発性の磁気ディスク(例えば、「フロッピー(登録商標)ディスク」)からの読み取り及び該ディスクへの書き込みのための磁気ディスクドライブ、及びCD-ROM、DVD-ROM又は他の光学媒体といった取り外し可能な不揮発性の光ディスクからの読み取り又は該ディスクへの書き込みのための光ディスクドライブを設けることができる。このような場合、それぞれを、1つ又は複数のデータメディアインターフェースによってバス915に接することができる。以下でさらに図示し及び説明するように、メモリ910は、本開示において説明された実施の形態の機能を実行するように構成された一組(例えば、少なくとも1つ)のプログラムモジュールを有する少なくとも1つのプログラム製品を含むことができる。
【0057】
一組(少なくとも1つ)のプログラムモジュール955を有するプログラム/ユーティリティ950を、メモリ910に格納することができ、例示として、限定ではなく、オペレーティングシステム、1つ又は複数のアプリケーションソフトウェア、他のプログラムモジュール、及びプログラムデータも同様である。オペレーティングシステム、1つ又は複数のアプリケーションプログラム、他のプログラムモジュール、及びプログラムデータの各々、又はこれらの組み合わせは、ネットワーク環境の実装を含むことができる。
【0058】
また、コンピューティングデバイスは、キーボード、ポインティングデバイス、ディスプレイ、等といった1つ又は複数の外部デバイス970、ユーザがコンピューティングデバイスとやりとりすることを可能にする1つ又は複数のデバイス、及び/又は、コンピューティングデバイスが1つ又は複数の他のコンピューティングデバイスと通信することを可能にする任意のデバイス(例えば、ネットワークカード、モデム、等)と通信することができる。このような通信は、入力/出力(I/O)インターフェース960を介して発生し得る。
【0059】
加えて、上述したように、コンピューティングデバイスは、ネットワークアダプタ980を介して、ローカルエリアネットワーク(LAN)、汎用のワイドエリアネットワーク(WAN)及び/又は公衆ネットワーク(例えば、インターネット)といった1つ又は複数のネットワークと通信することができる。図示のように、ネットワークアダプタ980は、バス915を介してコンピューティングデバイスの他の構成要素と通信する。図示はしないが、他のハードウェアコンポーネント及び/又はソフトウェアコンポーネントを用いて、該コンピューティングデバイスと接続できることが理解されるはずである。例は、マイクロコード、デバイスドライバ、冗長処理ユニット、外部ディスクドライブアレイ、RAIDシステム、テープドライブ、及びデータアーカイブ記憶システム、等を含む(しかし、これらに限定されない)。
【0060】
本発明の様々な実施の形態の記述が、説明の目的で提示されてきたが、開示された実施の形態に網羅的で又は限定することを意図していない。多くの変更及び変形が、記載された実施の形態の範囲及び精神から逸脱することなく、当業者には明らかであろう。本明細書で使用される用語は、実施の形態の原理、実用的な用途、又は市場で見出される技術に対する技術的改善を最もよく説明するために、又は当該分野で通常の知識の他者が本明細書で開示される実施の形態を理解することを可能にするために、選択された。
【0061】
本発明は、任意の可能な技術的な1つ1つのレベルの統合における、システム、方法、及び/又はコンピュータプログラム製品であってもよい。コンピュータプログラム製品は、コンピュータ読み取り可能な単一(又は複数)の記憶媒体を含むことができ、該記憶媒体は、プロセッサに本発明の態様を実行させるためのコンピュータ読み取り可能なプログラム命令を該記憶媒体に有する。
【0062】
コンピュータ読み取り可能な記憶媒体は、命令実行デバイスによる使用のための命令を保持し記憶することができる有形のデバイスであってもよい。コンピュータ読み取り可能な記憶媒体は、例えば、電子記憶デバイス、磁気記憶デバイス、光記憶デバイス、電磁記憶デバイス、半導体記憶デバイス、又は前述の任意の適切な組合せ、であってもよいが、これらに限定されない。コンピュータ読み取り可能な記憶媒体のより具体的な例の、完全に網羅しているわけではないリストは、次のものを含む。つまり、ポータブルコンピュータディスケット、ハードディスク、ランダムアクセスメモリ(RAM)、読出し専用メモリ(ROM)、消去可能なプログラマブル読出し専用メモリ(EPROM又はフラッシュメモリ)、スタティックランダムアクセスメモリ(SRAM)、ポータブルコンパクトディスク読出し専用メモリ(CD-ROM)、ディジタル多用途ディスク(DVD)、メモリスティック、フロッピー(登録商標)ディスク、パンチカード又は命令を記録させた溝を有する隆起構造などの機械的に符号化されたデバイス、及び上記の任意の適切な組み合わせである。本明細書で使用されるコンピュータにより読み取り可能な記憶媒体は、電波又は他の自由に伝播する電磁波、導波管若しくは他の伝送媒体(例えば、光ファイバケーブルを通過する光パルス)を通って伝播する電磁波、又はワイヤを通って伝送される電気信号といった、それ自体が一時的な信号であると解釈されるべきではない。
【0063】
本明細書に記載されたコンピュータ読み取り可能なプログラム命令は、コンピュータ読み取り可能な記憶媒体からそれぞれの演算/処理デバイスに、又はネットワークを介して外部コンピュータ又は外部記憶デバイスに、ダウンロードすることができ、ネットワークは、例えば、インターネット、ローカルエリアネットワーク、ワイドエリアネットワーク及び/又は無線ネットワークである。ネットワークは、銅線伝送ケーブル、光伝送ファイバ、無線伝送、ルータ、ファイアウォール、スイッチ、ゲートウェイコンピュータ、及び/又はエッジサーバを備えることができる。各演算/処理デバイスにおけるネットワークアダプタカード又はネットワークインターフェースは、コンピュータ読み取り可能なプログラム命令をネットワークから受信し、それぞれの演算/処理デバイス内におけるコンピュータ読み取り可能な記憶媒体に格納のために、コンピュータ読み取り可能なプログラム命令を転送する。
【0064】
本発明の動作を実行するためのコンピュータ読み取り可能なプログラム命令は、アセンブラ命令、命令セットアーキテクチャ(ISA)命令、機械命令、機械依存命令、マイクロコード、ファームウェア命令、状態設定データ、集積回路類のためのコンフィギュレーションデータ、又は1つ又は複数のプログラミング言語の任意の組み合わせで書かれたソースコード若しくはオブジェクトコードのいずれかであってもよく、該1つ又は複数のプログラミング言語は、Smalltalk言語、C++、等といったオブジェクト指向プログラミング言語、及び「C」プログラミング言語又は類似のプログラミング言語といった手続き型プログラミング言語を含む。コンピュータ読み取り可能なプログラム命令は、ユーザのコンピュータ上で全体的に実行してもよく、ユーザのコンピュータ上で部分的に実行してもよく、スタンドアロンソフトウェアパッケージとして実行してもよく、ユーザのコンピュータ上で部分的に実行しつつリモートコンピュータ上で部分的に実行してもよく、又はリモートコンピュータ若しくはサーバ上で全体的に実行してもよい。後者の状況では、リモートコンピュータは、ローカルエリアネットワーク(LAN)若しくは広域ネットワーク(WAN)を含む任意のタイプのネットワークを介してユーザのコンピュータに接続されていてもよく、又は該接続は、(例えば、インターネットサービスプロバイダを使用するインターネットを介して)外部コンピュータに接続されていてもよい。実施の形態によっては、例えば、プログラマブル論理回路、フィールドプログラマブルゲートアレイ(FPGA)、又はプログラマブル論理アレイ(PLA)を含む電子回路類は、本発明の態様を実行するために、コンピュータ読み取り可能なプログラム命令の状態情報を利用して該電子回路類を個々向けに変更する(パーソナル化する)ことによってコンピュータ読み取り可能なプログラム命令を実行することができる。
【0065】
本発明の態様は、本発明の実施の形態に係る方法、装置(システム)、及びコンピュータプログラム製品のフローチャート図及び/又はブロック図を参照して説明されている。フローチャート図及び/又はブロック図の各ブロック、並びにフローチャート図及び/又はブロック図におけるブロックの組合せは、コンピュータ読み取り可能なプログラム命令によって実施され得ることを理解されたい。
【0066】
これらのコンピュータ読み取り可能なプログラム命令は、汎用コンピュータ、特定用途コンピュータ、又はマシンを作り出す他のプログラマブルデータ処理装置に提供することができ、それは、コンピュータ又は他のプログラマブルデータ処理装置のプロセッサを介して実行される命令が、フローチャート及び/又はブロック図の1つ又は複数のブロックにおいて指定された機能/動作を実現するための手段を生成するものである。これらのコンピュータ読み取り可能なプログラム命令は、特定の様式で機能するように、コンピュータ、プログラマブルデータ処理装置、及び/又は他のデバイスに指示することができるコンピュータ読み取り可能な記憶媒体に格納されていてもよく、それは、格納された命令を有するコンピュータ読み取り可能な記憶媒体は、フローチャート及び/又はブロック図の1つ又は複数のブロックにおいて指定された機能/動作の態様を実施する命令を含む製造品を含む。
【0067】
コンピュータ読み取り可能な命令は、また、コンピュータ、他のプログラマブルデータ処理装置、又は他のデバイス上にロードされ、コンピュータにより実施されるプロセスを生成するために、一連の動作ステップを、コンピュータ、他のプログラマブル装置、又はコンピュータにより実施されるプロセスを生成する他のデバイス上で実行させることができ、この結果、コンピュータ、他のプログラマブル装置、又は他のデバイス上で実行する命令が、フローチャート及び/又はブロック図の1つ又は複数のブロックにおいて指定された機能/動作を実現する。
【0068】
図中のフローチャート及びブロック図は、本発明の様々な実施の形態に従う、システム、方法、及びコンピュータプログラム製品の可能な実施のアーキテクチャ、機能、及び動作を図示する。この点に関して、フローチャート又はブロック図における各ブロックは、モジュール、セグメント、又は命令の部分を表すことができ、これらは、指定された論理機能を実現するための1つ又は複数の実行可能な命令を備える。いくつかの代替の実施では、ブロックにおいて記された機能は、図面に記された順序から外れて生じてもよい。例えば、連続して示される2つのブロックは、実際には、実質的に同時に実行されてもよく、又は、ブロックは、伴われる機能によって、時には、逆順で実行されてもよい。また、ブロック図及び/又はフローチャート図の各ブロック、並びにブロック図及び/又はフローチャート図のブロックの組み合わせは、指定された機能又は動作を実行する、又は特定目的のハードウェア及びコンピュータ命令の組み合わせを実行する、特定目的ハードウェアベースのシステムによって実現され得ることにも留意されたい。
[第1の局面]
混沌とした環境における異常を検出して対応するための人工知能システムであって:
1つ又は複数の自律エージェントデバイスと;
プロセッサと、命令を格納する非一時的なメモリと、を備える中央サーバと;を備え、
前記命令は、前記プロセッサによって実行されたときに、前記プロセッサが:
第1のタイムウィンドウの間に、1つ又は複数のリモート電子センサから、前記混沌とした環境における1つ又は複数の変数の疑似ブラウン変化を記録したセンサ読取値の第1のセットを受信し;
前記センサ読取値の第1のセットに基づいて、前記第1のタイムウィンドウの後の第2のタイムウィンドウの間に、前記1つ又は複数の変数の予想範囲を決定し;
前記第2のタイムウィンドウの間に、前記1つ又は複数のリモート電子センサから、前記1つ又は複数の変数の変化を記録したセンサ読取値の第2のセットを受信し;
前記センサ読取値の第2のセットに基づいて、前記1つ又は複数の変数のうちの1つの変数が前記予想範囲内にないことを判定し;
前記1つ又は複数の自律エージェントデバイスに、前記1つの変数が予想範囲外にあることによって示される潜在的な害を軽減するように試行させる;ようにする、
システム。
[第2の局面]
前記予想範囲を決定することは、少なくとも部分的には、前記第1のタイムウィンドウ内の時間の一部におけるセンサ読取値から計算されたバイパワーバリエーションに基づく、
第1の局面に記載のシステム。
[第3の局面]
前記予想範囲を決定することは、少なくとも部分的には、前記混沌とした環境においてアクティブな干渉のない場合には、センサ読取値が少なくとも所定の確率で前記予想範囲内に収まるような前記所定の確率に基づく、
第1の局面に記載のシステム。
[第4の局面]
前記1つ又は複数の自律エージェントデバイスは、ネットワークメッセージがネットワークを介して送信されないようにすることによって、前記潜在的な害を軽減するように試行する、
第1の局面に記載のシステム。
[第5の局面]
前記1つ又は複数の自律エージェントデバイスは、前記混沌とした環境に作用する物理アプライアンスをアクティブ化することによって、前記潜在的な害を軽減するように試行する、
第1の局面に記載のシステム。
[第6の局面]
前記1つ又は複数の自律エージェントデバイスは、自律車両を特定の場所へ移動させることによって、前記潜在的な害を軽減するように試行する、
第1の局面に記載のシステム。
[第7の局面]
前記1つ又は複数の自律エージェントデバイスは、ヒューマンユーザが受信するためのメッセージを生成することによって、前記潜在的な害を軽減するように試行する、
第1の局面に記載のシステム。
[第8の局面]
前記1つ又は複数の自律エージェントデバイスは、ヒューマンユーザに可視又は可聴であるアラームのアクティブ化によって、前記潜在的な害を軽減するように試行する、
第1の局面に記載のシステム。
[第9の局面]
前記命令は、前記プロセッサによって実行されたときに、前記プロセッサが、更に:前記予想範囲内にない前記1つ又は複数の変数に少なくとも部分的に基づいて前記予想範囲を拡大する;ようにする、
第1の局面に記載のシステム。
[第10の局面]
前記命令は、前記プロセッサによって実行されたときに、前記プロセッサが、更に:前記1つ又は複数の変数が前記予想範囲内にあることを示すセンサ読取値の第3のセットに少なくとも部分的に基づいて、前記予想範囲を狭める;ようにする、
第1の局面に記載のシステム。
[第11の局面]
混沌とした環境における異常を検出して対応するための人工知能の方法であって:
第1のタイムウィンドウの間に、1つ又は複数のリモート電子センサから、前記混沌とした環境における1つ又は複数の変数の疑似ブラウン変化を記録したセンサ読取値の第1のセットを受信するステップと;
前記センサ読取値の第1のセットに基づいて、前記第1のタイムウィンドウの後の第2のタイムウィンドウの間に、前記1つ又は複数の変数の予想範囲を決定するステップと;
前記第2のタイムウィンドウの間に、前記1つ又は複数のリモート電子センサから、前記1つ又は複数の変数の変化を記録したセンサ読取値の第2のセットを受信するステップと;
前記センサ読取値の第2のセットに基づいて、前記1つ又は複数の変数のうちの1つの変数が前記予想範囲内にないことを判定するステップと;
前記1つ又は複数の自律エージェントデバイスに、前記1つの変数が予想範囲外にあることによって示される潜在的な害を軽減するように試行させるステップと;を備える、
方法。
[第12の局面]
前記予想範囲を決定することは、少なくとも部分的には、前記第1のタイムウィンドウ内の時間の一部におけるセンサ読取値から計算されたバイパワーバリエーションに基づく、
第11の局面に記載の方法。
[第13の局面]
前記予想範囲を決定することは、少なくとも部分的には、前記混沌とした環境においてアクティブな干渉のない場合には、センサ読取値が少なくとも所定の確率で前記予想範囲内に収まるような前記所定の確率に基づく、
第11の局面に記載の方法。
[第14の局面]
前記1つ又は複数の自律エージェントデバイスは、ネットワークメッセージがネットワークを介して送信されないようにすることによって、前記潜在的な害を軽減するように試行する、
第11の局面に記載の方法。
[第15の局面]
前記1つ又は複数の自律エージェントデバイスは、前記混沌とした環境に作用する物理アプライアンスをアクティブ化することによって、前記潜在的な害を軽減するように試行する、
第11の局面に記載の方法。
[第16の局面]
前記1つ又は複数の自律エージェントデバイスは、自律車両を特定の場所へ移動させることによって、前記潜在的な害を軽減するように試行する、
第11の局面に記載の方法。
[第17の局面]
前記1つ又は複数の自律エージェントデバイスは、ヒューマンユーザが受信するためのメッセージを生成することによって、前記潜在的な害を軽減するように試行する、
第11の局面に記載の方法。
[第18の局面]
前記1つ又は複数の自律エージェントデバイスは、ヒューマンユーザに可視又は可聴であるアラームのアクティブ化によって、前記潜在的な害を軽減するように試行する、
第11の局面に記載の方法。
[第19の局面]
前記予想範囲内にない前記1つ又は複数の変数に少なくとも部分的に基づいて前記予想範囲を拡大するステップを更に備える、
第11の局面に記載の方法。
[第20の局面]
前記1つ又は複数の変数が前記予想範囲内にあることを示すセンサ読取値の第3のセットに少なくとも部分的に基づいて、前記予想範囲を狭めるステップを更に備える、
第11の局面に記載の方法。
図1
図2
図3
図4
図5
図6