IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ アズビル株式会社の特許一覧

特許7417698圧力センサ用ダイアフラムの撓みを抑制する方法および圧力センサ用ダイアフラム
<>
  • 特許-圧力センサ用ダイアフラムの撓みを抑制する方法および圧力センサ用ダイアフラム 図1
  • 特許-圧力センサ用ダイアフラムの撓みを抑制する方法および圧力センサ用ダイアフラム 図2
  • 特許-圧力センサ用ダイアフラムの撓みを抑制する方法および圧力センサ用ダイアフラム 図3
  • 特許-圧力センサ用ダイアフラムの撓みを抑制する方法および圧力センサ用ダイアフラム 図4
  • 特許-圧力センサ用ダイアフラムの撓みを抑制する方法および圧力センサ用ダイアフラム 図5
  • 特許-圧力センサ用ダイアフラムの撓みを抑制する方法および圧力センサ用ダイアフラム 図6
  • 特許-圧力センサ用ダイアフラムの撓みを抑制する方法および圧力センサ用ダイアフラム 図7
  • 特許-圧力センサ用ダイアフラムの撓みを抑制する方法および圧力センサ用ダイアフラム 図8
  • 特許-圧力センサ用ダイアフラムの撓みを抑制する方法および圧力センサ用ダイアフラム 図9
  • 特許-圧力センサ用ダイアフラムの撓みを抑制する方法および圧力センサ用ダイアフラム 図10
  • 特許-圧力センサ用ダイアフラムの撓みを抑制する方法および圧力センサ用ダイアフラム 図11
  • 特許-圧力センサ用ダイアフラムの撓みを抑制する方法および圧力センサ用ダイアフラム 図12
  • 特許-圧力センサ用ダイアフラムの撓みを抑制する方法および圧力センサ用ダイアフラム 図13
  • 特許-圧力センサ用ダイアフラムの撓みを抑制する方法および圧力センサ用ダイアフラム 図14
  • 特許-圧力センサ用ダイアフラムの撓みを抑制する方法および圧力センサ用ダイアフラム 図15
  • 特許-圧力センサ用ダイアフラムの撓みを抑制する方法および圧力センサ用ダイアフラム 図16
  • 特許-圧力センサ用ダイアフラムの撓みを抑制する方法および圧力センサ用ダイアフラム 図17
  • 特許-圧力センサ用ダイアフラムの撓みを抑制する方法および圧力センサ用ダイアフラム 図18
  • 特許-圧力センサ用ダイアフラムの撓みを抑制する方法および圧力センサ用ダイアフラム 図19
  • 特許-圧力センサ用ダイアフラムの撓みを抑制する方法および圧力センサ用ダイアフラム 図20
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-01-10
(45)【発行日】2024-01-18
(54)【発明の名称】圧力センサ用ダイアフラムの撓みを抑制する方法および圧力センサ用ダイアフラム
(51)【国際特許分類】
   G01L 7/08 20060101AFI20240111BHJP
   G01L 9/12 20060101ALI20240111BHJP
   G01L 19/06 20060101ALI20240111BHJP
【FI】
G01L7/08
G01L9/12
G01L19/06 A
【請求項の数】 2
(21)【出願番号】P 2022194073
(22)【出願日】2022-12-05
(62)【分割の表示】P 2018154479の分割
【原出願日】2018-08-21
(65)【公開番号】P2023014372
(43)【公開日】2023-01-26
【審査請求日】2022-12-05
(73)【特許権者】
【識別番号】000006666
【氏名又は名称】アズビル株式会社
(74)【代理人】
【識別番号】100098394
【弁理士】
【氏名又は名称】山川 茂樹
(74)【代理人】
【識別番号】100064621
【弁理士】
【氏名又は名称】山川 政樹
(72)【発明者】
【氏名】石原 卓也
(72)【発明者】
【氏名】添田 将
(72)【発明者】
【氏名】関根 正志
【審査官】公文代 康祐
(56)【参考文献】
【文献】特開2016-118494(JP,A)
【文献】特開2016-180651(JP,A)
【文献】特表2009-524024(JP,A)
【文献】米国特許出願公開第2018/0024021(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G01L 7/00-23/32
G01L 27/00-27/02
H01L 29/84
(57)【特許請求の範囲】
【請求項1】
壁の一部がダイアフラムによって形成された圧力センサの圧力室に成膜用の被測定流体が導入されて前記ダイアフラムに堆積膜が生成され、前記堆積膜が収縮したときの膜応力による圧力センサ用ダイアフラムの撓みを抑制する方法であって、
前記ダイアフラムにおける前記被測定流体と接触する一方の面に複数の傾斜面を有する複数個の突出部を用いて凹凸構造を構成し、
前記傾斜面は、角錐状の突出部の側面であり、
前記突出部の底辺となる各辺は、互いに隣り合う突出部の対向する辺どうしが密着するように、隣接する突出部にそれぞれ密着し、
前記傾斜面に堆積膜が形成され、前記堆積膜による膜応力が生じたときに、前記傾斜面に前記ダイアフラムに対して垂直に近くなる方向に曲げモーメントが作用し、前記傾斜面に作用する前記曲げモーメントと、隣接する傾斜面に作用する曲げモーメントとを相殺させることを特徴とする圧力センサ用ダイアフラムの撓みを抑制する方法。
【請求項2】
請求項1記載の圧力センサ用ダイアフラムの撓みを抑制する方法に使用する圧力センサ用ダイアフラムであって、
前記ダイアフラムは、堆積膜を形成し得る被測定流体が導入される圧力室の壁の一部を構成するものであり、
前記ダイアフラムにおける前記被測定流体と接触する一方の面は、前記ダイアフラムに対して垂直に近くなる方向に前記堆積膜による曲げモーメントが作用するように、前記ダイアフラムの厚み方向に対して傾斜しかつ圧力室の内方を指向する複数の傾斜面を有する複数個の突出部を用いて凹凸構造が構成され
前記傾斜面は、前記一方の面に突設された角錐状の突出部の側面であり、
前記突出部の底辺となる各辺は、互いに隣り合う突出部の対向する辺どうしが密着するように、隣接する突出部にそれぞれ密着していることを特徴とする圧力センサ用ダイアフラム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、被測定流体に接触する圧力センサ用ダイアフラムの撓みを抑制する方法および圧力センサ用ダイアフラムに関する。
【背景技術】
【0002】
静電容量式の隔膜真空計を利用する代表的な装置として半導体製造装置がある。半導体製造装置で隔膜真空計が用いられる主な理由は、熱式の真空計であるピラニーゲージや電離真空計等と異なり、ガス種に依存しないからであり、腐食性のあるプロセスガスに対して耐食性があるからであり、センサを加熱することにより原料ガスの吸着や副生成物等の堆積を抑制できるからである。
【0003】
隔膜真空計は、半導体製造装置で行われる各種の工程のうち、成膜工程の他にSi等のウエハをエッチングする工程でも使用されている。成膜工程で実施される成膜手法としては、スパッタ、CVD(chemical vapor deposition), ALD(atomic layer deposition)などがある。
成膜工程でプロセスのガス圧力を計測・制御する隔膜真空計のセンサチップに上記物質が堆積すると、この堆積膜の収縮が原因でセンサダイアフラムが不必要に変形してしまい、零点のシフトや圧力感度の変化をもたらし、成膜やエッチングの品質に大きな影響を与えてしまうことが知られている。
【0004】
上述したような隔膜真空計への副生成物の堆積を防ぐために、センサチップを高温に保持したり、プロセスガスがセンサダイアフラムに至るまでの経路にバッフルを設けたり経路を迷路状に複雑に形成し、付着し易いガスをなるべく途中で捉えてしまう方法(特許文献1~3)が考案・実施されている。また、このようなバッフルと合わせてガスの流入経路を制御するために、センサダイアフラムにプロセスガスを導く気体導入口の位置を堆積の影響が大きなダイアフラム中心付近を避け、やや外周部に設ける構造も提案されている(特許文献1、2、4、5)。
【0005】
さらに、ALDの様に表面の物理的・化学的吸着に基づく一様な膜が成膜されるプロセスに対しては、特許文献6および特許文献7に記載されているように、モーメントを調整してセンサダイアフラムの撓みそのものを抑制するようなダイアフラム構造が提案されている。
一方、隔膜真空計のダイアフラムの構造物で堆積膜の影響を抑制しようとする試みとして特許文献8および特許文献9に示すような構造が提案されている。これらの特許文献8,9には、ダイアフラム上にテーブル型、逆テーパー型、あるいは方形波状の構造物やハニカム形状になるよう梁構造を設けることで堆積膜を分断し、膜応力がダイアフラムに与える影響を抑制する手法が記述されている。
【先行技術文献】
【特許文献】
【0006】
【文献】特開2011-149946号公報
【文献】特許第6096380号公報
【文献】特開2015-34786号公報
【文献】特開2014-126504号公報
【文献】特開2014-109484号公報
【文献】特開2010-236949号公報
【文献】特開2009-265041号公報
【文献】特表2009-524024号公報
【文献】特開2008-107214号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
特許文献8や特許文献9に開示されているようにセンサダイアフラム上の堆積膜を分断してその影響を排除する技術は、効果が大きいが実現することが難しいという問題があった。この技術の具体的な検証例として数値シミュレーションを実施した結果を以下に示す。
図18は膜分断の効果を計算したモデルの1つである。センサダイアフラムは、通常は周辺が固定された円板であるが、数値シミュレーションを簡単に実施するために、両側が固定された平板1の2次元モデルを用いて計算を実施した。計算結果を図19図20とに示す。
【0008】
図18(A)は平板全体を示す斜視図、図18(B)は平板の一部を拡大して示す斜視図である。平板1の上には多数のスリット2が形成されている。これらのスリット2によって分割された平板1の表面に膜3が設けられている。数値シミュレーションは、この膜3を収縮させて膜応力を発生させて行った。この実施の形態においては、センサダイアフラムに堆積した膜が成膜時に収縮あるいは膨脹することが原因で膜中に生じる応力を「膜応力」という。
この膜応力のために平板1は曲げモーメントを受けて例えば収縮の場合には下側に凸に撓むことになり、これが円形のセンサダイアフラムを用いた隔膜真空計の場合の膜堆積による零点シフトに対応する。
【0009】
図19に計算結果となる模式図を示す。変形スケールは統一されており、平板1の分割数(スリット2の数)を増やせば増やすほどその変形は小さくなるので効果が高いことがわかる。図19(A)は、スリット2が設けられていない場合を示し、図19(B)は、膜3がスリット2により2分割された場合を示す。図19(C)は、膜3がスリット2により20分割された場合を示し、図19(D)は、膜3がスリット2により200分割された場合を示す。図19は、ドットの密度が高いほど変位が大きいことを示している。
【0010】
図20は、膜の分割数を横軸に、分断していない均一膜を基準(100%)とした場合の平板中央部の変位の絶対値をプロットしたものである。これらの結果からすると、膜を細かく分断すればするほど変位は小さくなり、センサダイアフラムに膜が成膜された時の効果が大きいことがわかる。
ところが、実際に膜を分断しようとして引用文献8や引用文献9に開示されているような構造を適用しようとすると、現実的な問題としてセンサ製造上、困難なことに直面する。図18から図20に示した計算モデルの平板1のスパン(両端の固定部間の間隔)は5000μmであるが、仮に均一膜の5%以下まで変位を小さくしようとすると、膜3の分割数は500~1000程度まで小さくしなければならない。
【0011】
したがって、膜分断のための構造は、横方向の寸法が数μmになる。しかし、通常、MEMSセンサの製造に用いられるコンタクトマスクアライナーおよびドライエッチング加工の技術では、数μm以下の寸法で前述の構造を再現良く形成することは甚だ困難であり、しかも、ステッパーなどの高価な設備を必要とし現実的ではない。また、膜分断のための構造を過度に細かく形成すると、形成された構造そのものが堆積膜に埋もれてしまい、効果が見込めなくなることも容易に想像される。このため、現実的な加工寸法である数10μmでも効果が得られるような構造が求められている。
【0012】
本発明の目的は、膜応力低減のための構造を現実的な加工寸法で実現し、センサダイアフラムの堆積膜が原因で生じる零点シフトが可及的小さくなる圧力センサ用ダイアフラムの撓みを抑制する方法および圧力センサ用ダイアフラムを提供することである。
【課題を解決するための手段】
【0013】
この目的を達成するために、本発明に係る圧力センサ用ダイアフラムの撓みを抑制する方法は、壁の一部がダイアフラムによって形成された圧力センサの圧力室に成膜用の被測定流体が導入されて前記ダイアフラムに堆積膜が生成され、前記堆積膜が収縮したときの膜応力による圧力センサ用ダイアフラムの撓みを抑制する方法であって、前記ダイアフラムにおける前記被測定流体と接触する一方の面に多数の傾斜面を用いて凹凸構造を構成し、前記傾斜面に堆積膜が形成され、前記堆積膜による膜応力が生じたときに、前記傾斜面に前記ダイアフラムに対して垂直に近くなる方向に曲げモーメントが作用し、前記傾斜面に作用する前記曲げモーメントと、隣接する傾斜面に作用する曲げモーメントとを相殺させる方法である。
【0014】
本発明は、前記圧力センサ用ダイアフラムの撓みを抑制する方法において、前記傾斜面は、前記一方の面に突設され互いに対向する傾斜面で生じる前記曲げモーメントが打ち消し合う錘状あるいは断面台形状の突出部の側面、あるいは互いに対向する丸みを帯びた傾斜面で生じる前記曲げモーメントが打ち消し合う半球状の突出部の球面であってもよい。
【0015】
本発明に係る圧力センサ用ダイアフラムは、前記圧力センサ用ダイアフラムの撓みを抑制する方法に使用する圧力センサ用ダイアフラムであって、前記ダイアフラムは、堆積膜を形成し得る被測定流体が導入される圧力室の壁の一部を構成するものであり、前記ダイアフラムにおける前記被測定流体と接触する一方の面は、前記ダイアフラムに対して垂直に近くなる方向に前記堆積膜による曲げモーメントが作用するように、前記ダイアフラムの厚み方向に対して傾斜しかつ圧力室の内方を指向する複数の傾斜面を用いて凹凸構造が構成されていてもよい。
【0016】
本発明は、前記圧力センサ用ダイアフラムにおいて、前記傾斜面は、前記一方の面に突設された錘状の突出部の側面であってもよい。
【0017】
本発明は、前記圧力センサ用ダイアフラムにおいて、前記錘状の突出部は、多数の四角錐によって形成されているとともに、互いに隣り合う四角錐どうしが密着するように形成されていてもよい。
【0018】
本発明は、前記圧力センサ用ダイアフラムにおいて、前記傾斜面は、前記一方の面に突設された断面台形状の突出部の傾斜した側面であってもよい。
【0019】
本発明は、前記圧力センサ用ダイアフラムにおいて、前記傾斜面は、前記一方の面に突設された半球状の突出部の球面であってもよい。
【0020】
本発明は、前記圧力センサ用ダイアフラムにおいて、前記突出部の高さは、前記ダイアフラム全体の厚みに対して25%以上かつ75%以下であり、前記突出部の突出端を含みかつ前記側面と交差する断面において一方の側面に相当する辺と前記ダイアフラムに平行な面および他方の側面に相当する辺と前記ダイアフラムに平行な面とのなす角度がそれぞれ45°以上かつ80°以下であり、前記突出部どうしの間隔は、前記堆積膜の原因となる物質の粒子径の少なくとも100倍以上であってもよい。
【発明の効果】
【0021】
本発明に係る圧力センサを副生成物が堆積する環境で使用することによって、ダイアフラムの傾斜面に堆積膜が形成される。この堆積膜がダイアフラムに対して収縮することにより、ダイアフラムに応力(膜応力)が生じる。この結果、ダイアフラムに曲げモーメントが作用し、複数の傾斜面が個々に撓むようになる。個々の傾斜面に作用する曲げモーメントの方向は、傾斜面に沿う方向になる。すなわち、平坦なダイアフラムに堆積膜が形成された場合とは異なり、ダイアフラムの面方向に対して傾斜した方向に、言い換えればダイアフラムに対して垂直に近くなる方向に曲げモーメントが作用する。
【0022】
また、傾斜面に作用する曲げモーメントが隣接する傾斜面に作用する曲げモーメントと相殺されるようになるから、曲げモーメントの大きさを小さくすることができる。
この結果、ダイアフラムを曲げる力が小さくなり、ダイアフラムが撓み難くなるから、零点シフトを小さく抑えることができる。
傾斜面は、ダイアフラムに多数の溝を形成する場合とは異なり、現実的な加工寸法で実現することができる。
したがって、本発明によれば、膜応力低減のための構造を現実的な加工寸法で実現し、センサダイアフラムの堆積膜が原因で生じる零点シフトが可及的小さくなる圧力センサ用ダイアフラムの撓みを抑制する方法および圧力センサ用ダイアフラムを提供することができる。
【図面の簡単な説明】
【0023】
図1】本発明に係る圧力センサを備えた隔膜真空計の断面図である。
図2】センサチップの断面図である。
図3】山形構造のシミュレーションの計算モデルを示す模式図である。
図4】山形構造のシミュレーションの結果を示す斜視図である。
図5】山形構造のシミュレーションの結果を示すグラフである。
図6】山形構造のシミュレーションの結果を示すグラフである。
図7】傾斜面の角度を説明するための模式図である。
図8】山と山との間にスリットが形成されている構造を示す断面図である。
図9】山形以外の形状を示す断面図である。
図10】膜による曲げモーメントを説明するための断面図である。
図11】四角錘状の突出部を示す斜視図である。
図12】円錐状の突出部を示す斜視図である。
図13】角錐台状の突出部を示す斜視図である。
図14】円錐台状の突出部を示す斜視図である。
図15】半球状の突出部を示す斜視図である。
図16】3次元構造のシミュレーションの計算モデルを示す斜視図である。
図17】3次元構造のシミュレーション結果を示す模式図である。
図18】膜分割シミュレーションの計算モデルを示す斜視図である。
図19】膜分割シミュレーションの結果を示す斜視図である。
図20】膜分割シミュレーションの結果を示すグラフである。
【発明を実施するための形態】
【0024】
以下、本発明に係る圧力センサ用ダイアフラムの撓みを抑制する方法および圧力センサ用ダイアフラムの一実施の形態を図1図17を参照して詳細に説明する。
図1に示す静電容量型隔膜真空計11は、図1において最も外側に位置するパッケージ12と、このパッケージ12の中に収容されたセンサチップ13などを備えている。この実施の形態においては、センサチップ13が本発明でいう「圧力センサ」に相当する。
【0025】
パッケージ12は、複数の部材を互いに溶接して有底円筒状に形成されている。パッケージ12を構成する複数の部材は、図1において最も下に位置する小径部14を有するロアパッケージ15と、このロアパッケージ15の大径部16に後述する支持ダイアフラム17を介して接続された円筒状のアッパパッケージ18と、このアッパパッケージ18の開口端を閉塞する円板状のカバー19である。
【0026】
支持ダイアフラム17は、耐食性を有する金属材料によって円環板状に形成されており、外縁部がロアパッケージ15とアッパパッケージ18とにそれぞれ溶接されてこれらの部材に支持されている。支持ダイアフラム17の開口部は、支持ダイアフラム17の厚み方向から見て円形に形成されており、支持ダイアフラム17に第1の台座プレート21を介してセンサチップ13が接合された状態でセンサチップ13によって閉塞されている。このため、支持ダイアフラム17は、センサチップ13と協働してパッケージ12内を導入部22と基準真空室23とに分けている。導入部22内にはバッフル24が設けられている。
【0027】
基準真空室23は、所定の真空度に保たれている。
第1の台座プレート21は、支持ダイアフラム17を第2の台座プレート25と協働して挟んでいる。第1および第2の台座プレート21,25は、それぞれサファイアによって円板状に形成されており、それぞれ支持ダイアフラム17に接合されている。第1および第2の台座プレート21,25には、被測定流体を通すための連通孔26~28が穿設されている。
【0028】
カバー19にはハーメチックシール31を介して複数の電極リード部32が埋め込まれている。電極リード部32は、電極リードピン33と金属製のシールド34とを備えている。電極リードピン33は、シールド34の中にハーメチックシール35を介して支持されている。電極リードピン33の一端は、パッケージ12の外に露出し、図示していない配線を介して外部の信号処理部に接続されている。電極リードピン33の他端は、導電性を有するコンタクトばね36を介して後述するセンサチップ13のコンタクトパッド37に接続されている。
【0029】
センサチップ13は、パッケージ12内の導入部22の圧力を静電容量に基づいて検出するもので、支持ダイアフラム17と第1および第2の台座プレート21,25とによってパッケージ12内で支持されている。センサチップ13は、図2に示すように、図2において下側に位置するセンサダイアフラム41と、このセンサダイアフラム41に接合されたセンサ台座42とを備えている。センサダイアフラム41は、サファイアによって円板状に形成されており、図1に示すように、スペーサ43を介して第1の台座プレート21に取付けられている。このセンサダイアフラム41と第1の台座プレート21との間には被測定流体が導入される圧力室44が形成されている。このため、センサダイアフラム41は、圧力室44の壁の一部を構成している。この実施の形態においては、このセンサダイアフラム41が本発明でいう「ダイアフラム」に相当する。
【0030】
センサ台座42は、サファイアによって円筒の窪みを有する角形状に形成されている。センサ台座42の窪みの開口部はセンサダイアフラム41によって閉塞されている。センサ台座42には、図2に示すように、センサ台座42の内部の容量室45とセンサ台座42の外の基準真空室23とを連通する連通孔46が穿設されている。容量室45と基準真空室23とは同一の真空度を保っている。
センサ台座42の内側底面42aと、センサダイアフラム41におけるセンサ台座42の内側底面42aと対向する一方の面41aとには、それぞれ2種類の電極47~50が設けられている。センサダイアフラム41の中央部とセンサ台座42の内側底面42aの中央部とには、一対の感圧電極47,48が設けられている。センサダイアフラム41の外周部とセンサ台座42の内側底面42aの外周部とには、一対の参照電極が49,50が設けられている。センサチップ13は、感圧電極47,48からなる感圧キャパシタの静電容量と、参照電極49,50からなる参照キャパシタの静電容量とに基づいて、センサダイアフラム41に加えられている圧力を検出する。
【0031】
センサダイアフラム41における、センサ台座42とは反対側に位置して被測定流体と接触する他方の面41b(図1においては下側の面)には、成膜用の被測定流体が圧力室44に導入されることによって膜(図示せず)が形成される。この実施の形態によるセンサダイアフラム41は、詳細は後述するが、膜が堆積して生じる膜応力による曲げモーメントが無視できるほど小さくなるような構成が採られている。
【0032】
センサダイアフラム41に平坦な面が存在すれば、それを如何に細かく分断しても、それぞれに対して膜応力による曲げモーメントが働き、ダイアフラム全体として影響を完全に排除することが現実的には困難である。
発明者は、センサダイアフラム41の膜が堆積する面を分割するのではなく、この面を傾斜させて曲げモーメントの作用する方向をセンサダイアフラムに対して垂直な方向に近付けることにより、センサダイアフラム41が撓み難くなると考えた。
すなわち、センサダイアフラム41の表面にセンサダイアフラム41の厚み方向とは垂直な平坦部分がなるべく少なくなるように、傾斜面を用いて凹凸構造を構成し、膜応力による撓みを抑制する。
【0033】
ここでは先ず、発明者が本発明の圧力センサに想到するにあたって行ったシミュレーションについて図3図6を参照して説明する。
図3(A)は、山形構造のシミュレーションの計算モデルを示す断面図、図3(B)は、山形構造の一部を拡大して示す断面図、図3(C)は、山形構造の一部を拡大して示す斜視図である。
図3に示す平板51の一方の面には、多数の断面山形状の突出部52が並べて形成されている。図3の示す突出部52は、平板51の厚み方向とは垂直な方向に延びる突条である。このため、平板51の一方の面は、突出部52の側面、言い換えれば平板51の厚み方向(平板51の平坦な他方の面51aとは垂直な方向)に対して傾斜する複数の傾斜面53,54によって形成されている。この実施の形態においては、平板51の平坦な他方の面51aが請求項8に記載した発明でいう「ダイアフラムに平行な面」に相当する。
これらの傾斜面53,54は、図3において上方、すなわち平板51の外を指向している。この平板51をセンサダイアフラム41とすると、傾斜面53,54は圧力室44の内方を指向することになる。このような突出部52は、例えばドライエッチング法によって形成することができる。傾斜面53,54に堆積膜55が形成されている。
【0034】
このシミュレーションを実施するにあたっては、膜分割の計算と同様に、5000μmのスパンの平板51に山形の構造を配置し、全体の厚みTが200μmとなるように山(突出部52)の高さHと幅Wを設定して計算を行った。堆積膜55の厚みは10μmとした。
シミュレーションを行ったところ、図4および図5に示すような結果が得られた。図4(A)は、山形構造を採用したダイアフラムモデルの結果を示し、図4(B)は、平坦なダイアフラムモデルの結果を示す。図4(A)と図4(B)は、変形スケールを合わせて表示してある。図4においては、変位の度合いをドットの密度で表現している。山形構造の山(突出部52)の幅は100μm、高さも100μmで、分割数は50であるが、殆ど撓んでいないことが分かる。
【0035】
図5は、山の構造の幅W、高さHを変えて計算してセンサダイアフラムの中心部の変位を示したグラフである。図3においては、横軸に分割数、縦軸に200μmのフラットな平板のシフトを100%とした時の変位値をとっている。構造を変化させると膜を変化させた場合だけでなく、圧力を受けたときの撓みも変化するので、一定圧力を受けた時の最大変位値で規格化している。山の高さHが高い程効果も高く、分割数が50で十分な効果が得られることがわかる。分割数50は、100μmに相当するので、加工工程上極めて現実的である。
【0036】
山の高さは、ダイアフラム厚みの25%(図5においては50μm)以下となる斜面角度を確保するためにはパターンも小さくせねばならず、加工困難となる上にプロセス中の堆積により山形構造が埋まってしまう可能性がある。山の高さが75%(図5においては150μm)を超えると大気圧等の過大圧を受けたときに強度的な問題を生じる可能性がある。このため、突出部52の高さは、ダイアフラム全体の厚みに対して25%~75%であることが望ましい。
【0037】
図6は、図5のグラフに関し、斜面角度を横軸に取り直してプロットしたものである。各線の%はダイアフラムに対する山の高さを表す。図5によれば、シフト値は斜面角度が45°以上の時にフラットな構造に対して凡そ20%以下、20°以上の時に50%以下となる。角度がきつければその方が有利ではあるが、80°を超えると山の幅小さくなり過ぎて、コンタクト露光装置によるフォトリソパターニング及びドライエッチ等による加工が困難になる。このため、突出部の斜面角度が20°~90°であれば効果が得られる。望ましい斜面角度は、45°~80°である。
【0038】
ここでいう「斜面角度」とは、図7中に符号αで示す角度である。図7は、山形状の突出部52の断面形状を示す模式図である。この図7に示す断面は、突出部52の突出端52aを含みかつ突出部52の傾斜面53,54と交差する断面である。この断面において、一方の傾斜面53に相当する辺および他方の傾斜面54に相当する辺とセンサダイアフラム41に平行な平面(面51a)とのなす角度αがそれぞれ少なくとも20°~90°で、45°~80°であることが望ましい。図7においては、角度αを理解し易いように、仮想の面51aを傾斜面53,54と交差する位置に二点鎖線で描いてある。
【0039】
この計算過程で判明したことは、膜が一体の場合や山の頂点にスリットを入れた場合に効果は全くなく、スリットを谷の部位に入れると効果が表れるということである。山の頂点に溝を設けて膜を分断する構造は、供給された原料ガスが最も衝突しやすい箇所であるから溝が膜で埋められ易く、効果を得難い。それに対して谷間は元々頂点に比べれば原料ガスが到達し難く、膜厚は薄くなる傾向にあるので、大きな効果が得られる。
さらに、山形構造を採る場合は、図8に示すように、互いに隣接する二つの山(突出部52)の間で谷になる部分に断面矩形状のスリット(溝)56を形成することができる。スリット56の幅Wは、成膜に関与する原料ガスの平均自由行程以下の幅である。このようにスリット56を形成することにより、谷の部分に到達しうる原料ガスの分子は激減することが予想され、大きな効果が得られる。
スリット56を設ける場合、互いに隣合う突出部52どうしの間が堆積膜で埋められることがないように、スリット56の溝幅Wを10~50μmとすることが望ましく、スリット深さDを溝幅より大きくすることが望ましい。
【0040】
突出部52は、図9(A)~図9(C)に示すように構成することができる。図9(A)に示す突出部52は、頂部52bが凸曲面になるように形成されている。このように山の頂点が丸みを帯びて凸曲面となるように形成されている場合であっても、突出部52の側面が傾斜面53,54であるから、山の頂点が尖る場合と同等の効果が得られる。
図9(B)に示す突出部52は、断面形状が半球状を呈するように形成されている。このように断面半球状の突出部52であっても、突出部52の側面が丸みを帯びた傾斜面(断面円弧状の凸曲面57)であるから、突出部52が山形状である場合と同等の効果が得られる。
図9(C)に示す突出部52は、断面形状が台形状を呈するように形成されている。台形は、上辺58が突出部52の先端面に含まれる形状である。このように断面台形状の突出部52であっても、突出部52の側面が傾斜面53,54であるから、突出部52が山形状である場合と同等の効果が得られる。
【0041】
次に、センサダイアフラムに複数の傾斜面が形成されることによりセンサダイアフラムの撓みが抑制される原理を図10を参照して説明する。
図10(A)は、従来の構造の断面図を示し、図10(B)は、本発明の構造の断面図を示す。
図10(A)に示すセンサダイアフラム61は、断面矩形状の複数の突出部62を有している。堆積膜55は、突出部62の平坦な突出端面63と、突出部62どうしの間で露出するセンサダイアフラム61の平坦なダイアフラム表面61aとに形成されている。
このようにセンサダイアフラム61に対して平行な部分(突出端面63とダイアフラム表面61a)がセンサダイアフラム61に形成されていると、センサダイアフラム61に働く膜応力モーメントMは、個々の部分で分断されていても全体で合成されるとそれなりの値となってしまう。
【0042】
ところが、図10(B)に示す山形構造のように、センサダイアフラム41の表面を複数の傾斜面53,54で形成すると、個々の膜応力モーメントMの向きが変化し、センサダイアフラム41に対して水平方向ではなくなる。すなわち、平坦なセンサダイアフラム41に堆積膜が形成された場合とは異なり、センサダイアフラム41の面方向に対して傾斜した方向に、言い換えればセンサダイアフラム41に対して垂直に近くなる方向に曲げモーメントMが作用する。
また、個々の膜応力モーメントMが山(突出部52)の対向側の斜面で生じている膜応力モーメントMと打ち消し合うので、センサダイアフラム41の全体として膜応力モーメントMが低減される。
この結果、センサダイアフラム41を曲げる力が小さくなり、センサダイアフラム41が撓み難くなると推察される。
【0043】
図3図10に示した形態において、個々の突出部52は突条によって形成されている。しかし、本発明は、このような限定にとらわれることはなく、個々の突出部52を図11図15に示すように、センサダイアフラム41に突設された角錐状、円錐状、角錐台状、円錐台状、半球状など様々な形状に形成することができる。これらの角錐、円錐、角錐台および円錐台などが本発明でいう「錘状の突出部」に相当する。角錐は、平面上にある多角形の辺上の各点と、その平面外の一点とを結んでできる立体多角形である。このため、三角錐や四角錐など、多くの錐体の形状を含む。
この突出部52は、センサダイアフラム41に格子状に配置したり、圧力室44内から見て6角形状に配置したり、適宜変更可能である。
【0044】
図11に示す突出部52は、四角錘状に形成されている。この四角錘の4つの側面64が本発明でいう「傾斜面」に相当する。
図12に示す突出部52は、円錐状に形成されている。円錐の側面である周面65が本発明でいう「傾斜面」に相当する。
図13に示す突出部52は、底面が四角形の角錐台状に形成されている。この角錐台の4つの側面66が本発明でいう「傾斜面」に相当する。
図14に示す突出部52は、円錐台状に形成されている。この円錐台の周面67が本発明でいう「傾斜面」に相当する。
図15に示す突出部52は、半球状に形成されている。この半球状の球面68が本発明でいう「傾斜面」に相当する。
【0045】
四角錐を格子状に配置してシミュレーションを行った場合の計算結果を以下に示す。
図16は3次元の計算モデルを示す図で、図16(A)は、四角錐からなる突出部52が設けられたダイアフラムモデル71の一部を示す斜視図、図16(B)は、図16(A)の一部を拡大して示す斜視図である。図16(C)は、平坦なダイアフラムモデル72の一部を示す斜視図、図16(D)は、図16(C)の一部を拡大して示す斜視図である。
ダイアフラムモデル71の厚みは全体で100μmである。突出部52となる四角錐は、底面幅が50μm×50μm、高さが50μmである。この四角錐は格子状に配置されている。ダイアフラムモデル71の径は6.5mmとしたので半径方向の配置数(すなわち分割数)は130である。比較の為の平坦なダイアフラムモデル72は、圧力感度を等しくする為に厚みを63.2μmとした。
【0046】
このシミュレーションの結果を図17に示す。図17(A)は、四角錐を有するダイアフラムモデル71の変位の度合いをドットの密度で示す斜視図であり、図17(B)は、平坦なダイアフラムモデル72の変位の度合いをドットの密度で示す斜視図である。図17は、ドットの密度が高いほど変位が大きいことを示す。ダイアフラムモデル71の中心部の変位は、ダイアフラムモデル72の変位の凡そ1/12となり、3次元の場合でも十分な効果が得られることが検証された。
【0047】
このような突出部52は、センサダイアフラム41の表面を500~1000程度に分割する場合とは異なり、現実的な加工寸法で実現することができる。
したがって、この実施の形態によれば、膜応力低減のための構造を現実的な加工寸法で実現し、センサダイアフラム41の堆積膜55が原因で生じる零点シフトが可及的小さくなる圧力センサを提供することができる。
【0048】
突出部52を角錐状、円錐状、角錐台状、円錐台状、半球状などの形状に形成する場合であっても、高さは、センサダイアフラム41の全体の厚みに対して25%~75%であることが望ましい。
また、突出部52を角錐状、円錐状、角錐台状、円錐台状に形成する場合であっても、傾斜面53,54がセンサダイアフラム41に平行な面とのなす角度は、図7に示すように、それぞれ少なくとも20°~90°であり、45°~80°であることが望ましい。
さらに、突出部52を角錐状や円錐状などの形状に形成する場合であっても互いに隣接する二つの突出部52どうしの間に断面矩形状のスリット(溝)56を形成することができる。このスリット56も図8に示すように溝幅Wが10~50μmであり、深さDが溝幅より大きいことが望ましい。
【符号の説明】
【0049】
1…静電容量型隔膜真空計、13…センサチップ(圧力センサ)、41…センサダイアフラム(ダイアフラム)、44…圧力室、52…突出部、53,54…傾斜面、56…スリット(溝)、64…側面、65,67…周面、68…球面。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17
図18
図19
図20