(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-01-11
(45)【発行日】2024-01-19
(54)【発明の名称】圃場水管理装置
(51)【国際特許分類】
A01G 25/00 20060101AFI20240112BHJP
【FI】
A01G25/00 501D
(21)【出願番号】P 2020108101
(22)【出願日】2020-06-23
【審査請求日】2022-12-19
(73)【特許権者】
【識別番号】000001052
【氏名又は名称】株式会社クボタ
(74)【代理人】
【識別番号】100107478
【氏名又は名称】橋本 薫
(74)【代理人】
【識別番号】100117972
【氏名又は名称】河崎 眞一
(72)【発明者】
【氏名】末吉 康則
(72)【発明者】
【氏名】森田 仁
(72)【発明者】
【氏名】陳 巨壹
(72)【発明者】
【氏名】藤本 好宏
(72)【発明者】
【氏名】武内 利樹
(72)【発明者】
【氏名】▲高▼橋 雅司
(72)【発明者】
【氏名】三木 一浩
(72)【発明者】
【氏名】山森 直毅
【審査官】吉田 英一
(56)【参考文献】
【文献】特開平11-000064(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
A01G 25/00
(57)【特許請求の範囲】
【請求項1】
複数の圃場で構成される圃場群を単位として各圃場への給水を管理する圃場水管理装置であって、
給水対象圃場の現在水位を算出する水位演算部と、
前記水位演算部により算出された現在水位が設定水位となるように、前記給水対象圃場に備えた自動給水栓を開閉制御する給水制御部と、
を備え、
前記水位演算部は、
給水管を挟んで対向するように配置された一対の圃場のうち前記給水管の上流側で前記給水管に近接した隅に設置したセンサと、前記給水管を挟んで前記一対の圃場に隣接する一対の圃場のうち前記給水管の下流側で前記給水管に近接した隅に設置したセンサとを含む少なくとも三つの水位センサにより検出された各水位情報に基づいて、風に起因する水位勾配の影響を抑制した圃場水位を算出することを特徴とする圃場水管理装置。
【請求項2】
前記水位演算部は、前記圃場群のうち同一の配列方向に配列された複数の圃場に備えた複数の水位センサにより検出された各水位情報に基づいて、風に起因する水位勾配の影響を抑制した圃場水位を算出することを特徴とする請求項1記載の圃場水管理装置。
【請求項3】
前記複数の水位センサは少なくとも風上の水位を検出する第1水位センサと風下の水位を検出する第2水位センサを含むことを特徴とする請求項1または2記載の圃場水管理装置。
【請求項4】
前記複数の水位センサの少なくとも一つは前記給水対象圃場以外の圃場に設置した水位センサであることを特徴とする請求項1から3の何れかに記載の圃場水管理装置。
【請求項5】
前記水位演算部は気象データセンタから取得した風速が基準風速以上のときに前記圃場水位を算出し、基準風速未満のときに予め設定した一つの水位センサの計測水位を前記圃場水位として採用することを特徴とする請求項1から
4の何れかに記載の圃場水管理装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、圃場水管理装置に関する。
【背景技術】
【0002】
特許文献1には、圃場への給水または圃場からの排水を制御するための変位機構を作動させる圃場用電動アクチュエータを備えた給水栓や排水栓が開示されている。これらの給水栓や排水栓を用いることにより、圃場水管理装置を介して圃場への給水や圃場からの排水を遠隔制御することが可能になる。
【0003】
当該圃場用電動アクチュエータは、給水栓や排水栓を制御する制御装置であり、給水栓または排水栓を作動させる電動モータを備えたアクチュエータと、アクチュエータを制御するとともに圃場水管理装置と交信する電子制御回路を備えた制御部を備えている。
【0004】
そして、各圃場商用電源設備から離隔した圃場では商用電源を利用するのが困難なため、制御部及びアクチュエータに給電する蓄電池と、蓄電池の充電状態の低下を回避するため充電用のソーラーセルを備えている。
【0005】
圃場水管理装置は、各圃場の給水栓を制御するために各圃場の水位を把握する必要があり、そのために例えば給水栓の近傍に水位センサを設置して、水位センサにより検出された水位を給水栓に備えた電子制御回路を介して圃場水管理装置に送信するように構成されている。
【先行技術文献】
【特許文献】
【0006】
【発明の概要】
【発明が解決しようとする課題】
【0007】
しかし、圃場水管理装置が各圃場に設置された水位センサの値に基づいて各圃場の給水栓の開閉を遠隔制御する場合、水位センサの値が正確な水位を表していない場合には目標とする設定水位を下回り、或いは設定水位以上の水位になる虞があった。
【0008】
例えば、風の影響を受けるような場合には、同じ圃場であっても風上側では水位が低くなり、風下側では水位が高くなるという水位勾配が生じるため、水位センサが設置された位置によって検出する水位に差が生じることになる。
【0009】
水位勾配の影響を回避するために、一つの圃場に複数の水位センサを設置すると設備費が嵩み、圃場の中央部に水位センサを設置すると当該水位センサから圃場の隅に設置した給水栓や排水栓まで信号線を引き延ばす必要があり、設置作業が煩雑となるばかりか、信号線が断線する虞もある。また、信号線に代えて水位センサに無線信号機能を付加する場合には設備コストが嵩むことにもなる。
【0010】
本発明の目的は、上述した問題に鑑み、水位勾配の影響を受けることなく各圃場の水位を正確に検出できる圃場水管理装置を提供する点にある。
【課題を解決するための手段】
【0011】
上述の目的を達成するため、本発明による圃場水管理装置の第一の特徴構成は、複数の圃場で構成される圃場群を単位として各圃場への給水を管理する圃場水管理装置であって、給水対象圃場の現在水位を算出する水位演算部と、前記水位演算部により算出された現在水位が設定水位となるように、前記給水対象圃場に備えた自動給水栓を開閉制御する給水制御部と、を備え、前記水位演算部は、給水管を挟んで対向するように配置された一対の圃場のうち前記給水管の上流側で前記給水管に近接した隅に設置したセンサと、前記給水管を挟んで前記一対の圃場に隣接する一対の圃場のうち前記給水管の下流側で前記給水管に近接した隅に設置したセンサとを含む少なくとも三つの水位センサにより検出された各水位情報に基づいて、風に起因する水位勾配の影響を抑制した圃場水位を算出する点にある。
【0012】
水位演算部は、圃場群に備えた複数の水位センサ、つまり複数の圃場に備えた複数の水位センサにより検出された各水位情報を取得して、それらの水位情報に基づいて風に起因する水位勾配の影響を抑制した圃場水位を算出し、給水制御部は水位演算部が算出した圃場水位が設定水位となるように自動給水栓を開閉制御するため、風の影響を受けることなく各圃場の水位を適正に調整することができる。そして、同一の配列方向に配列された各圃場は、同じ風の影響を受けて同様の水位勾配が生じる。そのため、各圃場に設置する水位センサの位置を異ならせると、実質的に同一の圃場で水位勾配に対応した複数の水位を検出することができるようになる。例えば、そのような複数の水位センサによる検出水位を演算処理することにより、適切な水位を求めることができる。例えば、全値の平均処理、上限値と下限値の平均処理、中央値の抽出処理などである。
【0013】
各圃場の四隅のうち、其々異なる隅に水位センサを設置し、各水位センサにより得られる水位情報に基づけば、実質的に同一圃場の異なる三隅における水位が得られ、水位演算部により他の一隅の水位も演算処理により推定することができ、当該圃場の水位が適切に求まる。そして、演算により得られた水位が各圃場の水位となる。
【0014】
そして、給水管の延出方向に沿って給水管を挟むように複数枚の圃場が配される場合が多い。そのような圃場では、給水管を挟んで対向するように配置された一対の圃場のうち給水管の上流側で給水管に近接した隅に設置した少なくとも一つのセンサと、給水管を挟んで一対の圃場に隣接する一対の圃場のうち給水管の下流側で給水管に近接した隅に設置した一つのセンサを含むことが好ましい。
【0015】
同第二の特徴構成は、上述した第一の特徴構成に加えて、前記水位演算部は、前記圃場群のうち同一の配列方向に配列された複数の圃場に備えた複数の水位センサにより検出された各水位情報に基づいて、風に起因する水位勾配の影響を抑制した圃場水位を算出する点にある。
【0016】
同一の配列方向に配列された各圃場は、同じ風の影響を受けて同様の水位勾配が生じる。そのため、各圃場に設置する水位センサの位置を異ならせると、実質的に同一の圃場で水位勾配に対応した複数の水位を検出することができるようになる。例えば、そのような複数の水位センサによる検出水位を演算処理することにより、適切な水位を求めることができる。例えば、全値の平均処理、上限値と下限値の平均処理、中央値の抽出処理などである。
【0017】
同第三の特徴構成は、上述した第一または第二の特徴構成に加えて、前記複数の水位センサは少なくとも風上の水位を検出する第1水位センサと風下の水位を検出する第2水位センサを含む点にある。
【0018】
水位勾配に対応した複数の水位を検出するためには、少なくとも風上の水位を検出する第1水位センサと風下の水位を検出する第2水位センサを備えることが好ましい。第1水位センサと第2水位センサが同一の圃場に設置されていてもよいし、異なる圃場に設置されていてもよい。
【0019】
同第四の特徴構成は、上述した第一から第三の何れかの特徴構成に加えて、前記複数の水位センサの少なくとも一つは前記給水対象圃場以外の圃場に設置した水位センサである点にある。
【0020】
給水対象圃場とは異なる圃場に設置された水位センサの値に基づいて給水対象圃場の水位を算出できるようになり、各圃場に設置する水位センサの数を増やす必要がない。
【0021】
同第五の特徴構成は、上述した第一から第四の何れかの特徴構成に加えて、前記水位演算部は気象データセンタから取得した風速が基準風速以上のときに前記圃場水位を算出し、基準風速未満のときに予め設定した一つの水位センサの計測水位を前記圃場水位として採用する点にある。
【0022】
気象データセンタから取得した風速が基準風速以上のときに圃場に無視できない水位勾配が生じていると判断して、水位演算部が圃場水位を算出することが好ましく、基準風速未満のときには水位勾配が問題にならないと判断して予め設定した一つの水位センサの計測水位を圃場水位に採用することが好ましい。
【発明の効果】
【0023】
以上説明した通り、本発明によれば、風の影響を受けることなく各圃場の水位を正確に検出できる圃場水管理装置を提供することができるようになった。
【図面の簡単な説明】
【0024】
【
図4】(a),(b)は圃場に設置される水位センサの配置を示す説明図
【
図5】別実施形態を示し、圃場に設置される水位センサの配置を示す説明図
【発明を実施するための最良の形態】
【0025】
以下に、本発明による圃場水管理装置を図面に基づいて説明する。以下の説明で用いる圃場との用語は水田及び畑の双方を意味し、水源から分水工などで分水された共通の配水系統から灌漑用水が供給される複数の圃場を圃場群という。また、規模の大きな圃場群は複数のブロック圃場群の集合で構成され、ブロック圃場群単位で給水の要否が管理される。通常、共通の水源から取水された灌漑用水は分水工などにより分水された複数の配水系統によって其々異なる圃場群に給水される。以下の実施形態では稲作用の圃場について説明するが、畑用の圃場であっても同様である。
【0026】
[灌漑用水設備の構成]
図1に示すように、灌漑用水設備は、河川や湖沼などの水源池130に設置された揚水機場131で取水された灌漑用水を幹線となる配水管120及び支線となる配水管121、さらに配水管121に接続された給水管100を介して各圃場1に送水するための設備である。
【0027】
なお、本実施形態では、便宜上、灌漑用水管理装置により管理される灌漑用水の送水を配水と称し、圃場水管理装置により管理される灌漑用水の圃場への送水を給水と称している。
【0028】
揚水機場131で取水された灌漑用水は、圧送ポンプ131Pを介して排水管120に直接圧送され、或いは揚水ポンプ131Pを介して調整槽である配水池122(
図1では破線で示されている。)に揚水された後に配水池122から配水管120に自然流下により送水される。何れの場合もポンプ131Pは原則として交互運転される2基のポンプを単一または複数備えて構成され、送水量が多くなる場合には双方が同時運転される。
【0029】
幹線となる配水管120は各圃場群10に向けてそれぞれ分岐され、分岐された各配水管121への配水量を調整するための分水工として機能する分水装置140が設けられている。つまり、揚水機場131から圧送された灌漑用水は、分水装置140によって配水量が調整された後に給水管100を介して各圃場群10へ送水される。
【0030】
給水管100に沿って配された各圃場1には、給水管100から給水可能に接続された給水栓を備えた給水装置2が設けられている。また、各圃場1には排水栓を備えた排水装置4が設けられ、排水装置4を介した各圃場1からの放水が排水路9を経由して河川に放流されるように構成されている。
【0031】
[圃場設備の構成]
図2に示すように、圃場1には、給水管100に流れる灌漑用水を、導水路3を介してして圃場1に導く給水栓を備えた給水装置2と、圃場1の水を、放水路5を介して排水路9に排水する排水栓を備えた排水装置4と、圃場1の水位を計測する水位センサ6などが設けられている。
【0032】
給水装置12及び排水装置16にはソーラーパネルSPを備えた蓄電器、給水栓または排水栓を駆動する電動モータ、電動モータを制御する制御回路、無線中継器7を介して無線通信する通信回路などが設けられ、ソーラーパネルSPによる発電電力が蓄積された蓄電器の電力によって給水栓や排水栓を駆動するモータや通信回路などが作動するように構成されている。
【0033】
圃場1の近傍にはインターネットなどの通信ネットワークに接続可能な無線中継器7が設置され、給水装置2及び排水装置4に備えた通信回路は無線中継器7を介して圃場水管理装置として機能する圃場水管理サーバ21と通信可能に構成されている。給水栓または排水栓の状態や水位センサ6で検出された各圃場1の水位などが圃場水管理サーバ21に送信されるとともに、圃場水管理サーバ21により給水栓を介した給水量及び/または排水栓を介した排水水位が遠隔制御により調整可能に構成されている。
【0034】
[給配水管理システムの構成]
図1に戻り、揚水機場131に備えた圧送ポンプ131Pには、制御回路及び通信回路が設けられ、通信回路を介して灌漑用水管理装置として機能する灌漑用水管理サーバ31と通信可能に構成されている。揚水機場131と各圃場群10を結ぶ配水管120,121に備えた各分水装置140には分水のための流量調整弁と、流量調整弁を制御する制御回路及び通信回路が設けられ、通信回路を介して灌漑用水管理サーバ31と通信可能に構成されている。灌漑用水管理サーバ31により揚水機場に備えた圧送ポンプ131Pや分水装置140に備えた流量調整弁が遠隔制御される。
【0035】
水稲栽培を例に挙げると、圃場に十分な量の水を供給して代掻きを行ない、田植え後のしばらくは稲の保護のために深水管理を継続し、ある程度安定すると浅水管理を経て間断灌水して根の成長を促し、茎の増加を抑制すべく中干した後に間断灌水を再開し、収穫時期に落水する、といったように稲の成長に伴って圃場の水位を調整する必要がある。
【0036】
代掻きの時期など、各圃場の給水時期が重なり同時期に大量の用水を供給する必要がある場合には、水源で確保された一定量の灌漑用水を各圃場に公平に配水するべく、輪番制を採用するなど圃場群単位で給水日程を計画して管理する必要がある。
【0037】
深水管理や浅水管理などのように、各圃場1の水位を設定水位に維持する一定灌水モードでは、蒸発や蒸散さらには浸透など減水深の影響により設定水位から低下した水量を日々補充する必要もある。
【0038】
しかし、同一の圃場群の圃場でも給水管の水圧によってはそのときに十分な量の給水ができない場合があり、所定量の給水後も給水栓が解放され続けていると他の圃場への給水量が不足する場合もある。
【0039】
また、稲作であっても品種が異なると給水時期が異なる場合もあり、それぞれの圃場の固有の条件によって適切な時期に適切な量の給水を計画管理するのは非常に困難な状況にある。
【0040】
給配水管理システムは、この様な問題に柔軟に対処すべく、上述した灌漑用水管理サーバ31と圃場水管理サーバ21をインターネットなどの通信媒体を介して連系させることにより、営農者が管理する個々の圃場の状況に応じて適切に灌漑用水を供給することを可能とするシステムである。
【0041】
例えば、圃場水管理サーバ21から圃場群10ごとの必要給水量が灌漑用水管理サーバ31に送られると、灌漑用水管理サーバ31が圧送ポンプ131Pの運転台数や分水装置140に備えた流量調整弁を制御することにより、適切に配水できるように管理される。
【0042】
[圃場水管理システムの構成]
図3には、圃場水管理システム20の構成が示されている。
圃場水管理システム20は、圃場管理装置である圃場水管理サーバ21と、営農者などが所有する端末装置8と、各圃場1に備えた給水装置2、排水装置4、水位センサ6などを備えて構成されている。端末装置8には、スマートフォンやタブレットコンピュータなどの可搬性の端末装置やデスクトップコンピュータのような据置型の端末装置が含まれる。
【0043】
圃場水管理サーバ21には、各圃場1の状態を管理する圃場管理部21Aを備えており、圃場管理部21Aには水位管理部21B、水位演算部21C、給水制御部21Dなどの機能ブロックを備えている。
【0044】
圃場水管理サーバ21には、CPUボード、メモリボード、通信ボード、記憶装置などが設けられ、メモリボードに備えたメモリに格納されたアプリケーションプログラムがCPUボードに搭載されたCPUによって実行されることにより、上述した各機能ブロックが具現化される。
【0045】
圃場管理部21Aは、各圃場1の状態を管理する機能ブロックで、各圃場1を固有に識別する識別情報と稼働情報と給水情報を管理する。識別情報には、管理番号、圃場の位置を示す所在地情報、圃場面積、所有者情報などが含まれる。稼働情報とは栽培中または休耕中の何れかを識別する情報、栽培中の場合には栽培品種、代掻き、深水管理、浅水管理、中干し、間断灌水、落水などの育成ステージ、及び各育成ステージの目標スケジュールなどを管理する情報が含まれる。また、水温が以上の高い場合や異常に低い場合には、かけ流しなどのイレギュラーな管理情報も含まれる。
【0046】
給水情報とは、各圃場1の給水状態を示す情報であり、各育成ステージに応じて適切な目標とする設定水位、現在水位、給水栓の開度などを含む。設定水位は営農者の端末装置8から入力され、排水装置4に備えた排水栓を調節する排水水位をいう。識別情報と稼働情報と給水情報を含む管理情報はメモリに管理され、営農者が所持する端末装置8からの初期入力及びその後の更新入力、さらには水位演算部21Cや給水制御部21Dからの入力に基づいて管理される。
【0047】
水位演算部21Cは、各圃場1に備えた水位センサ6からの水位情報を受けて各圃場1の水位を算出する機能ブロックであり、給水制御部21Dは各圃場1に備えた給水装置2に組み込まれる自動給水栓を遠隔により開閉制御して水位演算部21Cで算出された現在水位を目標水位である設定水位になるように調整する機能ブロックであり、水位管理部21Bは各圃場1の水位を管理する機能ブロックであり、各圃場1に備えた配水装置4を遠隔制御して排水栓による配水高さを目標水位に調整する。
【0048】
[水位演算の詳細]
通常は、給水管100に沿って配された圃場のうち、給水管100の近傍の一隅に給水装置4が配されるとともにその近傍に水位センサ6が配されている。そして、減水深の影響を受けて低下した圃場の水位を設定水位に回復させるように、必要に応じて各圃場1に対して給水制御を実行するように構成されている。
【0049】
しかし、風の影響を受けるような場合には、同一の圃場1であっても風上側では水位が低くなり、風下側では水位が高くなるという水位勾配が生じる。そのため、水位センサ6が設置された位置によって検出する水位に差が生じると、圃場1の水位を設定水位に調整することが困難になる場合がある。
【0050】
そこで、水位演算部21Cは、圃場群10に備えた複数の水位センサ6により検出された各水位情報に基づいて、風に起因する水位勾配の影響を抑制した圃場水位を算出するように構成されている。
【0051】
図4(a)には圃場群10の一例が示されている。水源地130から取水した灌漑用水が2基の圧送ポンプ131Pにより配水管120,122及び給水管100を介して二つの圃場群10A,10Bに配水されている。各圃場群10A,10Bは其々12枚の圃場1で構成され、各圃場1には自動給水栓が組み込まれた給水装置2及び自動排水水栓が組み込まれた排水装置4が設置されている。給水装置2の近傍には水位センサ6が設置されている。
【0052】
何れの圃場群10A,10Bでも、給水管100に沿って上流側から下流側に向けて両側に圃場1が配され、給水管100と接する畔とは反対側の畔に排水路9が設けられている。そして、各圃場1のうち、給水管100と接する畔に近い隅に給水装置2が設置され、排水路9と接する畔に近い隅に排水装置4が設置されている。
【0053】
図4(a)に示す二つの圃場群10A,10Bはともに、給水管100を挟んで南北に対向し、東西に整列するように圃場1が配されている。つまり、複数の圃場が同一の配列方向に配列されている。東西南北に隣接する四枚の圃場1に着目すると、北西の圃場1では南西隅に水位センサ6aが配され、北東の圃場1では南東隅に水位センサ6bが配され、南西の圃場1では北西隅に水位センサ6cが配され、南東の圃場1では北東隅に水位センサ6dが配されている。
【0054】
これら東西南北に隣接する四枚の圃場1の設定水位及び減水深に大きな差がない場合には、各水位センサ6a,6b,6c,6dにより検出された水位は、
図4(b)に示すように、同一の圃場1の四隅に水位センサ6a,6b,6c,6dを設置した場合の水位と同じ水位であるとみなすことができる。
【0055】
水位演算部21Cは、このような水位センサ6a,6b,6c,6dの値を入力してそれらの平均値を各圃場1の水位とすることで、風に起因する水位勾配の影響を抑制した圃場水位を得ることができ、各圃場1に設置した水位センサ6の数は一つであっても、実質的に四つの水位センサ6を設置したと同等の効果が得られるようになる。
【0056】
このようにして水位演算部21Cにより算出された水位に基づいて給水制御部21Dが給水制御することにより、各圃場1に設定水位まで給水することができるようになる。
【0057】
この例では、水位センサ6a,6b,6c,6dを其々圃場1の隅に設置し、水位演算部21Cが算出した平均値を各圃場の1の水位として取り扱う例を示したが、水位センサ6a,6b,6c,6dは其々圃場1の相対的に異なる位置に設置していればよく、隅に設置する必要はない。また、水位センサ6a,6b,6c,6dは給水装置2の近傍に設置することが好ましいが、給水装置2の近傍でなくてもよい。
【0058】
予め圃場1の形状と水位センサ6の設置位置が分かっていれば、各水位センサ6により検出された水位とそのロケーションから水位勾配を算出することができるので、それらの値から圃場1の平均水位を算出することができる。このように、圃場1で生じている水位勾配を算出する場合には、少なくとも三つの水位センサ6の値が検出できれば十分であり、例えば、東西南北に隣接する四枚の圃場1のうちの三枚の圃場1で相対的に異なる位置に其々水位センサ6を設置すればよい。
【0059】
即ち、三つの水位センサ6は、給水管100を挟んで対向するように配置された一対の圃場1のうち給水管100の上流側で給水管100に近接した隅に設置した少なくとも一つのセンサ6と、給水管100を挟んで一対の圃場1に隣接する一対の圃場1のうち給水管の下流側で給水管に近接した隅に設置した一つのセンサとを含むように構成すればよい。
【0060】
二つの圃場群10A,10Bを構成する12枚の圃場1は、はともに給水管100を挟んで南北に対向し、東西に整列するように圃場1が配されているので、設定水位及び減水深に大きな差がない場合には、12枚の圃場の其々に水位センサ6a,6b,6c,6dを備えることなく、例えば東西南北に隣接する三枚の圃場1の一組にのみ水位センサ6a,6b,6cを備え、水位演算部21Cで算出された水位を12枚の圃場1の水位として採用することも可能である。
【0061】
換言すると、これらの12枚の圃場1のうち、設定水位及び減水深に大きな差がない圃場1に対して、其々相対的に異なる位置に水位センサ6を備えればよい。
【0062】
同一の圃場群に属する圃場であれば、隣接していない圃場が含まれていてもよい。
図4(a)に示す例では、圃場群10Aで給水管100の北側で東西に隣接する三枚の圃場1を一組としてそれぞれの圃場1に相対的な位置を異ならせて水位センサ6を設置してもよい。
【0063】
また、給水管100を挟んで隣接する圃場1でなくてもよい。即ち、複数の水位センサ6は、一枚の圃場1の互いに交差する二辺及び/または角部に対向するように位置する少なくとも三枚の圃場1の其々に設置した三つの水位センサで、各圃場1の其々異なる隅または相対的に異なる位置に設置した水位センサを含んでいればよい。
【0064】
水位勾配に対応した複数の水位を検出するためには、少なくとも風上の水位を検出する第1水位センサと風下の水位を検出する第2水位センサを含むものであればよい。
【0065】
第1水位センサと第2水位センサが同一の圃場に設置されていてもよいし、異なる圃場に設置されていてもよい。例えば、
図4(a)に示すように、東西南北に隣接する四枚の圃場1の其々に水位センサ6を設けるのではなく、何れか一枚の圃場に、
図4(b)に示すような4つの水位センサ6を設置し、他の三枚の圃場1には水位センサ6を設置しないような態様が含まれる。水位センサ6が設置された一枚の圃場が他の三枚の圃場1を代表する圃場として位置付けることができる。
【0066】
複数の水位センサ6の少なくとも一つは給水対象圃場以外の圃場に設置した水位センサであってもよい。給水対象圃場とは異なる圃場に設置された水位センサの値に基づいて給水対象圃場の水位を算出できるようになり、各圃場に設置する水位センサの数を増やす必要がなくなる。
【0067】
図5には、同一の配列方向に配列された三つの圃場群10A,10B,10Cが示されている。圃場群10A,10Bを構成する圃場1の配列方向は同一であるが、圃場群10Cを構成する圃場1の配列方向は圃場群10A,10Bとは異なる。
【0068】
このような場合には、水位演算部21Cが、配列方向が同一の圃場群ごとに複数の圃場1に其々相対的な位置を異ならせて設置された複数の水位センサ6の検出水位に基づいて、風に起因する水位勾配の影響を抑制した圃場水位を算出するように構成すればよい。
【0069】
この例では、圃場群10Aに属する複数の圃場1A、圃場群10Bに属する複数の圃場1B、圃場群10Cに属する複数の圃場1Cの其々で其々相対的な位置を異ならせて複数の水位センサ6を設置すれよい。例えば、圃場群10Bに属する圃場1Bと圃場群10Cに属する圃場1Cとの組み合わせは、水位勾配の現れ方が異なるので排除される。
【0070】
図5に示す圃場群10Bのうち、南西隅の圃場1は不等辺四角形であり、他の圃場のように長方形にはなっていない。このように実際の圃場1は三角形であったり、五角形であったりと様々である。圃場1の形状や面積が異なれば、発生する水位勾配も異なることになる。従って、本発明が適用される圃場1は、配列方向の同一性に加えて、圃場1がほぼ同一の形状及び面積、或いは形状及び面積が予め設定された許容範囲にある複数の圃場1に適用することが好ましい。
【0071】
なお、形状や面積が異なる圃場であっても、給水開始前の水位であれば、本発明が適用される圃場に対して算出した水位と同等であると判定することは可能である。その後、給水制御部21Dにより制御される給水栓の開度と給水時間から給水量が算出できるので、算出した給水量を圃場面積で除すれば給水により増加した水位を算出することができる。
【0072】
水位演算部21Cは、気象データセンタから取得した風速が基準風速以上のときに圃場水位を算出し、基準風速未満のときに予め設定した一つの水位センサの計測水位を圃場水位として採用することが好ましい。
【0073】
気象データセンタから取得した風速が基準風速以上のときに圃場に無視できない水位勾配が生じていると判断して、水位演算部21Cが圃場水位を算出することが好ましく、基準風速未満のときには水位勾配が問題にならないと判断して予め設定した一つの水位センサの計測水位を圃場水位に採用するものである。
【0074】
以上説明した実施形態は本発明の一例に過ぎず、該記載により本発明の技術的範囲が限定されることを意図するものではなく、本発明による作用効果を奏する範囲において適宜変更設計可能であることはいうまでもない。
【符号の説明】
【0075】
1:圃場
2:給水装置
3:導水路
6:水位センサ
8:端末
10:圃場群
20:圃場水管理システム
21:圃場水管理装置(圃場水管理サーバ)
21A:圃場管理部
21B:水位管理部
21C:水位演算部
21D:給水制御部
100:給水管
120:配水管(幹線)
121:配水管(支線)
122:配水池
130:水源池
131:揚水機場
131P:揚水ポンプ(圧送ポンプ)
200:給排水管理システム