(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-01-11
(45)【発行日】2024-01-19
(54)【発明の名称】モノリシック発光ダイオード前駆体を形成する方法
(51)【国際特許分類】
H01L 33/08 20100101AFI20240112BHJP
H01L 33/32 20100101ALI20240112BHJP
【FI】
H01L33/08
H01L33/32
(21)【出願番号】P 2022535717
(86)(22)【出願日】2020-12-03
(86)【国際出願番号】 EP2020084546
(87)【国際公開番号】W WO2021115934
(87)【国際公開日】2021-06-17
【審査請求日】2022-08-04
(32)【優先日】2019-12-12
(33)【優先権主張国・地域又は機関】GB
(73)【特許権者】
【識別番号】520445406
【氏名又は名称】プレッシー・セミコンダクターズ・リミテッド
【氏名又は名称原語表記】PLESSEY SEMICONDUCTORS LIMITED
(74)【代理人】
【識別番号】110001195
【氏名又は名称】弁理士法人深見特許事務所
(72)【発明者】
【氏名】タン,ウェイ・シン
【審査官】佐藤 美紗子
(56)【参考文献】
【文献】特開2009-094228(JP,A)
【文献】特開2011-228628(JP,A)
【文献】特開2009-292713(JP,A)
【文献】中国特許出願公開第102130230(CN,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01L 33/00-33/46
H01L 21/205
H01L 21/31
H01L 21/365
H01L 21/469
H01L 21/86
H01S 5/00-5/50
(57)【特許請求の範囲】
【請求項1】
モノリシックLED前駆体を形成する方法であって、
(a)上面を有する基板を設けることと、
(b)前記基板の前記上面に、III族窒化物を含む第1の半導体層を形成することと、
(c)前記第1の半導体層をLEDマスク層で選択的にマスキングすることとを備え、前記LEDマスク層は、前記LEDマスク層の厚さを通して前記第1の半導体層のマスキングされていない部分までLEDウェルを画定する開口を含み、前記LEDウェルは、前記第1の半導体層の上面から前記LEDマスク層の上面まで延在するLEDウェル側壁を含み、前記方法はさらに、
(d)前記第1の半導体層の前記マスキングされていない部分の上の前記LEDウェル内にモノリシックLEDスタックを選択的に形成することを備え、前記モノリシックLEDスタックは、
前記第1の半導体層上に形成された、III族窒化物を含むn型半導体層と、
1つ以上の量子井戸副層を含む、前記第1の半導体層上に形成された活性層であって、III族窒化物を含む前記活性層と、
前記活性層上に形成された、III族窒化物を含むp型半導体層とを含み、
前記第1の半導体層の前記上面から延在する前記モノリシックLEDスタックのLEDスタック側壁は、前記LEDマスク層の前記LEDウェル側壁に一致し、
(e)前記LEDマスク層が前記モノリシックLEDスタックの上面と共に平坦化された表面を形成するように、前記LEDマスク層の部分を前記LEDマスク層の前記上面から除去することをさらに備える、方法。
【請求項2】
前記第1の半導体層をLEDマスク層で選択的にマスキングすることは、
前記第1の半導体層の前記上面にわたって前記LEDマスク層を堆積させることと、
前記LEDマスク層の厚さを通して前記LEDマスク層の第1のウェル部分を選択的に除去して、前記LEDウェルを形成することとを含む、請求項1に記載の方法。
【請求項3】
前記LEDウェル側壁は、前記第1の半導体層の前記上面に対して略垂直な方向に延在する、請求項1または2に記載の方法。
【請求項4】
前記第1の半導体層と前記LEDマスク層の前記上面との間に延在する前記LEDウェル側壁の一部は、前記第1の半導体層の前記上面に垂直な方向に対して傾斜している、請求項1から3のいずれか1項に記載の方法。
【請求項5】
前記第1の半導体層の前記上面に平行な平面における前記LEDウェルの断面積が、前記第1の半導体層の前記上面から前記LEDマスク層の前記上面に向かう方向に減少するように、前記LED側壁は傾斜している、請求項4に記載の方法。
【請求項6】
前記第1の半導体層の前記上面に平行な平面における前記LEDウェルの断面積が、前記第1の半導体層の前記上面から前記LEDマスク層の前記上面に向かう方向に増加するように、前記LEDウェル側壁は傾斜している、請求項4に記載の方法。
【請求項7】
前記第1の半導体層から延在する各LEDウェル側壁のコリメート部分が、前記第1の半導体層に略垂直な方向に延在し、
前記第1の半導体層の前記上面に平行な平面における前記LEDウェルの断面積が、前記第1の半導体層の前記上面から前記LEDマスク層の前記上面に向かう方向に減少するように、前記コリメート部分と前記LEDマスク層の前記上面との間に延在する各LEDウェル側壁のテーパ部分が傾斜している、請求項4または5に記載の方法。
【請求項8】
前記LEDマスク層の前記部分は、研磨プロセスを使用して除去される、請求項1から7のいずれか1項に記載の方法。
【請求項9】
(f)前記LED前駆体の前記平坦化された表面を、バックプレーン電子デバイスを含むさらに別の基板に接合することをさらに備える、請求項1から8のいずれか1項に記載の方法。
【請求項10】
(g)前記第1の半導体層から前記上面を有する前記基板を除去することをさらに備える、請求項9に記載の方法。
【請求項11】
前記LEDマスク層は、誘電体、たとえばSiO
2またはSiN
xを含む、請求項1から10のいずれか1項に記載の方法。
【請求項12】
前記第1の半導体層上の前記LEDウェルの断面積は、100μm×100μm以下である、請求項1から11のいずれか1項に記載の方法。
【請求項13】
請求項1~12のいずれか1項に記載の方法に従って、基板に複数のLED前駆体を形成することを備える、LEDアレイ前駆体を形成する方法。
【発明の詳細な説明】
【技術分野】
【0001】
開示の分野
本開示は、発光ダイオード(light emitting diodes:LEDs)に関する。特に、本開示は、III族窒化物を含むLEDに関する。
【背景技術】
【0002】
背景
マイクロLEDアレイは、通常、100×100μm2以下のサイズを有するLEDのアレイとして定義される。マイクロLEDアレイは、スマートウォッチ、頭部装着型ディスプレイ、ヘッドアップディスプレイ、カムコーダ、ビューファインダ、マルチサイト励起源、およびピコプロジェクタ等の種々のデバイスにおける使用に好適な、マイクロディスプレイ/プロジェクタ内の自己発光構成要素である。
【0003】
あるタイプのマイクロLEDアレイは、III族窒化物で形成される複数のLEDを含む。III族窒化物LEDは、たとえば、GaNと、活性発光領域にInNおよびAlNを有するその合金とを含む無機半導体LEDである。III族窒化物LEDは、従来の大面積LED、たとえば発光層が有機化合物である有機発光ダイオード(organic light emitting diodes:OLED)よりも、著しく高い電流密度で駆動することができ、高い光出力密度を放出することができる。
【0004】
Wong, M.S., "High efficiency of III-nitride micro-light-emitting diodes by sidewall passivation using atomic layer deposition" Optics express, Vol. 26, No. 16, 6 August 2018に開示されているような、III族窒化物を含むLEDを製造するためのある既知のプロセスでは、マイクロLED構造およびITOコンタクト層がサファイア基板にわたって堆積される。次に、ITO層およびマイクロLED構造の一部が除去される反応性イオンエッチングステップを用いて、個々のマイクロLEDメサ構造が画定された。そのようなエッチングプロセスは、露出した側壁表面を有する基板から延在するマイクロLED構造をもたらす。RIEステップは、電荷トラップサイトが側壁表面上に存在するように、マイクロLEDメサの側壁表面に欠陥を導入する。側壁表面上にトラップサイトが存在することによって、マイクロLEDの外部量子効率(external quantum efficiency:EQE)が低下する。
【0005】
LEDの表面寸法がマイクロLEDサイズに縮小されるにつれて、LED表面積に対するLED外周の比率は増加する。したがって、エッチングから生じる欠陥を含み得る側壁表面は、デバイスのEQEにより大きな影響を及ぼす。
【0006】
Wong, M. S.その他で説明されるように、マイクロLEDのEQEを改善するためのある方法は、側壁表面上に誘電体パッシベーション層を堆積させることである。たとえば、SiO2を含む誘電体パッシベーション層を使用してLEDメサ構造の側壁表面を被覆して、側壁欠陥を不活性化しようとすることができる。
【0007】
III族窒化物を含むLEDを形成するための代替的なプロセスでは、選択的領域成長(selective area growth:SAG)プロセスを使用する。たとえば、英国特許出願GB1811109.6は、マスク層の開口部を通るLED前駆体の成長を開示している。各LED前駆体は、基板に垂直な規則的な台形断面を有する柱として形成される。マスク中の材料は、成長条件では、追加の材料がマスク上に直接成長しないが、下にあるバッファ層の表面の露出部分上にのみ成長するようなものである。[0001]方向に沿って成長したIII族窒化物の選択的領域成長の別の注目すべき特徴は、成長温度、圧力、およびV/III比などの成長パラメータに応じて、c面としても知られる(0001)面に対して傾斜したファセットが、パターン形成されたマスクの開放領域によって画定されるc面半導体の成長部分の周囲で得られることである。傾斜したファセットは、概してウルツ鉱結晶の{101}または{102}面に沿って配向され、c面表面(半極性表面)と比較して低減された分極場を示す。したがって、LED前駆体の傾斜したファセット(側壁)は、エッチングステップによって形成されない。
【発明の概要】
【発明が解決しようとする課題】
【0008】
本発明の目的は、LED前駆体を形成するための改良された方法、ならびに先行技術の方法およびアレイに関連する問題の少なくとも1つに対処する改良されたLED前駆体を提供すること、または少なくともその商業的に有用な代替物を提供することである。
【課題を解決するための手段】
【0009】
概要
本発明の目的は、EQEが改善されたLED前駆体を提供することである。したがって、本発明の目的は、LED構造の側壁に欠陥、たとえばエッチングステップから生じる欠陥を導入しないプロセスを使用して、LED構造を形成することである。
【0010】
本開示の第1の態様によれば、モノリシックLED前駆体を形成する方法が提供される。方法は、
(a)上面を有する基板を設けることと、
(b)基板の上面に、III族窒化物を含む第1の半導体層を形成することと、
(c)第1の半導体層をLEDマスク層で選択的にマスキングすることとを備え、LEDマスク層は、LEDマスク層の厚さを通して第1の半導体層のマスキングされていない部分までLEDウェルを画定する開口を含み、LEDウェルは、第1の半導体層の上面からLEDマスク層の上面まで延在するLEDウェル側壁を含み、方法はさらに、
(d)第1の半導体層のマスキングされていない部分の上のLEDウェル内にモノリシックLEDスタックを選択的に形成することを備え、モノリシックLEDスタックは、
第1の半導体層上に形成された、III族窒化物を含むn型半導体層と、
1つ以上の量子井戸副層を含む、第1の半導体層上に形成された活性層であって、III族窒化物を含む活性層と、
第2の半導体層上に形成された、III族窒化物を含むp型半導体層とを含み、
第1の半導体層の上面から延在するモノリシックLEDスタックのLEDスタック側壁は、LEDマスク層のLEDウェル側壁に一致する。
【0011】
モノリシックLEDスタックのLEDスタック側壁は、LEDマスク層のLEDウェル側壁に対して形成される。したがって、LEDスタック側壁は、LEDマスク層によって成形される。それゆえ、モノリシックLEDスタックは、エッチングが引き起こした損傷がモノリシックLEDスタックに導入されないように、LEDスタック側壁をエッチングすることなく、形成および成形可能である。製造プロセス中のLEDスタック側壁への損傷を低減または排除することによって、得られるLEDのEQEを改善することができる。
【0012】
第1の半導体層に垂直な平面におけるモノリシックLEDスタックの断面形状は、LEDマスク層内のLEDウェルの断面形状によって制御される。そのため、SAGプロセスとは異なり、LED構造の側壁の形状は、LEDウェルを画定するLEDマスク側壁の断面形状に基づいて、異なる幾何学形状を提供するように制御することができる。すなわち、第1の半導体層上のモノリシックLEDスタックの断面積は、LEDウェルによって露出された第1の半導体層のマスキングされていない部分の断面積(すなわち、LEDウェルの断面積)に一致する。対照的に、SAGプロセスでは、LEDは、LEDの断面の形状およびサイズがマスク開口と異なるように、マスク層の上に形成される。
【0013】
モノリシックLEDスタックの製造中にLEDマスク層があることによって、LEDマスク側壁と直接接触するLEDスタック側壁表面が形成される。したがって、LEDスタックの側壁は、パッシベーション層(LEDマスク側壁)がすでに適所にある状態で形成される。したがって、LED前駆体を形成する方法は、効率的で経済的な製造方法を用いて、EQEが改善されたLED前駆体を提供することができる。
【0014】
いくつかの実施形態では、第1の半導体層をLEDマスク層で選択的にマスキングすることは、第1の半導体層の上面にわたってLEDマスク層を堆積することと、LEDマスク層の厚さを通してLEDマスク層の第1の部分を選択的に除去して、LEDウェルを形成することとを含む。したがって、LEDマスク層は、リソグラフィ技術を使用して形成することができる。
【0015】
いくつかの実施形態では、LEDウェル側壁は、第1の半導体層の上面に対して略垂直な方向に延在する。したがって、モノリシックLEDスタックは、第1の半導体層の上面に対して略垂直な方向に延在するLEDスタック側壁で形成することができる。対照的に、SAGプロセスでは、LEDの側壁は、成長プロセスの結果、法線に対して傾斜し得る。
【0016】
いくつかの実施形態では、第1の半導体層とLEDマスク層の上面との間に延在するLEDウェル側壁の一部は、第1の半導体層の上面に対して垂直な方向に対して傾斜している。たとえば、いくつかの実施形態では、LEDウェル側壁は、第1の半導体層に略垂直に延在する第1の部分と、第1の半導体層の上面に垂直な方向に対して傾斜した方向に延在する第2の部分とを含み得る。第1の部分は、第2の部分と第1の半導体層の上面との間に配置されてもよく、またはその逆でもよい。いくつかの実施形態では、LEDウェル側壁の実質的にすべては、第1の半導体層の上面に対して垂直な方向に対して傾斜していてもよい。
【0017】
いくつかの実施形態では、第1の半導体層の上面に平行な平面におけるLEDウェルの断面積が、第1の半導体層の上面からLEDマスク層の上面に向かう方向に減少するように、LEDウェル側壁の一部は傾斜していてもよい。または、第1の半導体層の上面に平行な平面におけるLEDウェルの断面積が、第1の半導体層の上面からLEDマスク層の上面に向かう方向に増加するように、LEDウェル側壁の一部は傾斜していてもよい。したがって、LEDウェル側壁は、LEDからの光の抽出を改善する、結果として生じるモノリシックLEDスタックの特徴を定義するように成形されてもよい。たとえば、減少する表面積は、光コリメート特徴を提供してもよい。
【0018】
いくつかの実施形態では、第1の半導体層から延在する各LEDウェル側壁のコリメート部分は、第1の半導体層に略垂直な方向に延在し、第1の半導体層の上面に平行な平面におけるLEDウェルの断面積が、第1の半導体層の上面からLEDマスク層の上面に向かう方向に減少するように、コリメート部分とLEDマスク層の上面との間に延在する各LEDウェル側壁のテーパ部分が傾斜している。
【0019】
いくつかの実施形態では、第1の態様の方法はさらに、
(f)LEDマスク層がモノリシックLEDスタックの上面と共に平坦化された表面を形成するように、LEDマスク層の第2の部分をLEDマスク層の上面から除去することを備える。
【0020】
したがって、モノリシックLEDスタックを成形するために使用されるLEDマスク層の一部を、LEDスタック側壁も不活性化するギャップ充填絶縁体として機能するように、製造プロセス中に保持することができる。LEDスタック側壁と接触するLEDマスク層の一部を除去しないことによって、LEDスタック側壁への損傷を低減および/または防止することができ、製造プロセスを簡略化することができる。
【0021】
いくつかの実施形態では、LEDマスク層の第2の部分は、研磨プロセスを使用して除去される。他の実施形態では、選択的エッチング液を使用して、LEDマスク層を除去してもよい。したがって、モノリシックLEDスタックをエッチングすることなく、LEDマスク層のみを選択的に除去することができる。
【0022】
いくつかの実施形態では、第1の態様の方法はさらに、
(f)モノリシックLEDスタックの形成に続いて、LEDマスク層の全てを選択的に除去することを備える。
【0023】
したがって、LEDマスク層のすべてを、モノリシックLEDスタックの形成後に除去することができる。方法はまた、モノリシックLEDスタックを取り囲む第1の半導体層の上面に、ギャップ充填絶縁体を堆積させることを備えてもよく、ギャップ充填絶縁体は、モノリシックLEDスタックの上面と共に平坦化された表面を形成する。
【0024】
平坦化された表面が形成されると、方法はさらに、
(g)LED前駆体の平坦化された表面を、バックプレーン電子デバイスを含むさらに別の基板に接合することと、任意に、
(h)第1の半導体層から基板を除去することとを備え得る。
【0025】
したがって、第1の態様のLED前駆体は、フリップチップ接合面と一致するように作製することができる。特に、いくつかの実施形態では、LED前駆体は、エッチングステップを使用せずに、バックプレーン電子デバイスへの基板接合のために、加工および準備されてもよい。
【0026】
いくつかの実施形態では、LEDマスク層は、誘電体、たとえば、SiO2またはSiNxを含む。
【0027】
いくつかの実施形態では、第1の半導体層上のLEDウェルの断面積は、100μm×100μm以下である。したがって、第1の態様の方法は、マイクロLED前駆体を製造するために使用されてもよい。特に、第1の半導体層上のLEDウェルの断面積は、50μm×50μm、30μm×30μm、20μm×20μm、10μm×10μm、5μm×5μm、2μm×2μmまたは1μm×1μm以下でもよく、対応する断面積のマイクロLED前駆体が、第1の態様の方法に従って製造される。
【0028】
本開示の第2の態様によれば、LEDアレイ前駆体を製造する方法が提供される。方法は、本開示の第1の態様の方法に従って、基板上に複数のLED前駆体を形成することを備える。
【0029】
したがって、第2の態様の方法は、上記に列挙した任意の特徴のいずれかを組み込むことができる。
【0030】
次に、本開示は、以下の非限定的な図に関連して説明される。本開示のさらなる利点は、図と関連して考慮される場合、詳細な説明を参照することによって明らかになる。
【図面の簡単な説明】
【0031】
【
図1】本開示の一実施形態に係るLEDアレイを形成する方法を示すフローチャートである。
【
図2】第1の半導体層上に形成された複数のLEDウェルを含むLEDマスク層を示す図である。
【
図3】
図2の構造のLEDウェルの各々に形成されたモノリシックLEDスタックを示す図である。
【
図4】LEDスタック側壁とLEDウェル側壁との間の界面が第1の成長メカニズムに従って示されている、
図3の部分Aを示す詳細図である。
【
図5】LEDスタック側壁とLEDウェル側壁との間の界面が第2の成長メカニズムに従って示されている、
図3の部分Aを示す詳細図である。
【
図6】鈍角の傾斜角を有するLEDウェル側壁を示す図である。
【
図7】鋭角の傾斜角を有するLEDウェル側壁を示す図である。
【
図8】第1のLEDウェル側壁部分および第2のLEDウェル側壁部分を有する複合LEDウェル側壁を示す図である。
【
図9】
図3の構造のモノリシックLEDスタック上に形成されたコンタクト層を示す図である。
【
図10】化学機械研磨プロセス後の
図9の構造を示す図である。
【
図11】
図10の構造と位置合わせされたバックプレーン電子基板を示す図である。
【
図12】基板接合後に
図11の構造から除去されるSi基板を示す概略図である。
【
図13】第1の半導体層の発光面上に形成されたさらに別の光抽出特徴を有する
図12の構造を示す図である。
【
図14】LEDマスク層を除去した後の
図3の構造のモノリシックLEDスタック上に形成されたコンタクト層を示す図である。
【
図15】
図14の構造上に形成されたギャップ充填絶縁体を示す図である。
【
図16】
図15の構造と位置合わせされたバックプレーン電子基板を示す図である。
【
図17】基板接合後に
図16の構造から除去されるSi基板を示す概略図である。
【
図18】第1の半導体層の発光面上に形成されたさらに別の光抽出特徴を有する
図17の構造を示す図である。
【
図19】クロストーク低減特徴を含むLEDを示す図である。
【発明を実施するための形態】
【0032】
詳細な説明
本開示のある実施形態によれば、LED前駆体を形成する方法100が提供される。LED前駆体は、複数のIII族窒化物層を含む。方法100のフロー図を
図1に示す。
【0033】
LED前駆体における「前駆体」という用語によって、説明されるLED前駆体は必ずしも、光の放射を可能にするようなLEDごとの電気接点も、関連回路も含まないことに留意されたい。当然のことながら、LED前駆体およびその形成方法は、さらに別の電気接点および関連回路の追加を除外するものではない。したがって、本開示における前駆体という用語の使用は、最終製品(すなわち、LED、LEDアレイなど)を含むものとする。
【0034】
本開示は、LED前駆体の層のさまざまな上面に言及する。本開示では、上面の概念は、LED前駆体が形成される基板10に対するものであると見なされる。すなわち、ある層の上面は、基板に垂直な方向において基板10から最も遠いそれぞれの層の表面である。
【0035】
図1に示すように、方法100は、
(a)基板を設けるステップ(101)と、
(b)基板上に第1の半導体層を形成するステップ(102)と、
(c)第1の半導体層を選択的にマスキングするステップ(103)と、
(d)LEDウェル内にモノリシックLEDスタックを選択的に形成するステップ(104)と、
(e)モノリシックLEDスタックを含む平坦化された表面を形成するステップ(105)と、
(f)LED前駆体をバックプレーン電子基板に対して位置合わせし、接合するステップ(106)と、
(g)基板を除去するステップ(107)とを備える。
【0036】
ステップ101において、基板10が設けられる。基板10は、III族窒化物半導体層と共に使用するのに適した任意の基板であり得る。たとえば、基板10は、シリコン、GaN、サファイア、炭化ケイ素、SiO2、または当該技術分野で知られている他の任意の既知の基板10材料を含むさまざまな材料で形成することができる。いくつかの実施形態では、基板は、Siウエハ、サファイアウエハ、またはSiCウエハを含み得る。基板10は、その上にIII族窒化物層を形成するのに適した上面12を含む。
【0037】
ステップ102において、第1の半導体層20が基板10の上面12に形成される。第1の半導体層20はIII族窒化物を含む。いくつかの実施形態では、第1の半導体層20はGaNを含む。いくつかの実施形態では、第1の半導体層20は、ドープされたn型であり得る。たとえば、第1の半導体層は、n型ドープGaNを含み得る。n型ドーパントは、III族窒化物に好適な任意のn型ドーパント、たとえばSiまたはGeでもよい。第1の半導体層20を、約1016~1019cm-3のドナー密度でn型ドープすることができる。
【0038】
第1の半導体層20は、基板10の上面12の実質的に全体にわたって、連続層として設けられてもよい。第1の半導体層20は、基板10の上面12と略位置合わせされた上面22を含む。したがって、第1の半導体層22の上面22は、基板10の上面12に対して第1の半導体層20の反対側にある。
【0039】
第1の半導体層20を、III族窒化物層を形成するための当該技術分野で知られている任意の好適な堆積技術によって堆積することができる。たとえば、n型ドープGaNを含む第1の半導体層20を、有機金属化学蒸着(Metal Organic Chemical Vapour Deposition:MOCVD)、分子線エピタキシー(Molecular Beam Epitaxy:MBE)、ハイドライド気相成長(hydride vapour phase epitaxy:HVPE)または遠隔プラズマ化学蒸着(Remote Plasma Chemical Vapour Deposition:RPCVD)によって堆積することができる。
【0040】
いくつかの実施形態では、第1の半導体層20は、少なくとも500nmの基板表面に垂直な方向に厚さを有し得る。それゆえ、第1の半導体層20は、基板10上に、複数のLED前駆体をその上に形成するのに適した略均一な層を提供可能である。いくつかの実施形態では、第1の半導体層20は、基板表面12に対して垂直な少なくとも700nm、1μm、1.3μm、または1.5μmの厚さを有し得る。いくつかの実施形態では、第1の半導体層20は、基板表面12に垂直な2μm以下の厚さを有し得る。
【0041】
ステップ103において、第1の半導体層20の上面にLEDマスク層30を選択的に形成する。
図2に示すように、LEDマスク層30は、LEDマスク層30の厚さを通して第1の半導体層20のマスキングされていない部分24まで複数のLEDウェル31を画定するために、選択的に形成される。
【0042】
いくつかの実施形態では、第1の半導体層20をLEDマスク層30で選択的にマスキングすることは、第1の半導体層20の上面22にわたってLEDマスク層を堆積させることを含む。たとえば、いくつかの実施形態では、LEDマスク層30は最初に、第1の半導体層20の上面22にわたって実質的に連続した層として形成される。次に、LEDマスク層30の第1の部分をLEDマスク層30の厚さを通して選択的に除去して、LEDウェル31を形成する。たとえば、LEDウェル31の各々を画定するために、LEDマスク層30を選択的にエッチングして、LEDマスク層30の一部を除去することができる。他の実施形態では、第1の半導体層30は、好適なパターン層を使用して選択的にパターニングされてもよく、その後、第1の半導体層20の露出部分にLEDマスク層30が堆積される。次に、パターン層を除去して、
図2に示すようにLEDウェル31を画定することができる。したがって、LEDマスク層30の開口は、当該技術分野で知られているリソグラフィ方法によって形成可能で或ことが理解されるであろう。
【0043】
LEDマスク層30は、複数の開口を含む。各開口は、LEDマスク層30の厚さを通してLEDウェル31を画定する。各LEDウェルは、LED前駆体(すなわち、モノリシックLEDスタック)が形成される容器容積を画定する。
図2に示すように、各LEDウェル31は、第1の半導体層20の上面22からLEDマスク層32の上面まで延在するLEDウェル側壁34を含む。LEDウェル側壁34は、LEDウェル31を画定する。
【0044】
LEDマスク層30は、電気絶縁体である材料を含み得る。特に、LEDマスク層30は、III族窒化物の成長速度が第1の半導体層20上の成長速度と比較して著しく低減される材料を含み得る。たとえば、LEDマスク層は、SiNx、SiON、またはSiO2を含み得る。
【0045】
LEDウェル31の各々を画定するLEDマスク層30の開口は、その内部に形成されたモノリシックLEDスタックの形状を画定する。第1の半導体層20の上面22の平面(およびこれに平行な平面)における開口(LEDウェル31)の形状およびサイズは、LEDの表面積を画定する。各LEDウェルの断面形状は、所望の任意の二次元形状でもよい。たとえば、LEDウェル31の断面形状は、楕円形、三角形、四角形、五角形、六角形、または任意の他の多角形(規則的または不規則的)でもよい。
【0046】
いくつかの実施形態では、LED前駆体はマイクロLED前駆体である。したがって、各LEDウェル31の断面形状は、100μm×100μm以下の断面積を画定する(すなわち、形状は100μm×100μmの面積内に適合する)ことができる。いくつかの実施形態では、各LEDウェル31の断面形状は、50μm×50μm、30μm×30μm、20μm×20μm、10μm×10μm、5μm×5μm、2μm×2μm、または1μm×1μm以下でもよい。したがって、マイクロLEDは、この実施形態の方法に従って形成することができる。
【0047】
LEDマスク層30は、モノリシックLEDスタックがLEDウェル31内に形成されるように、第1の半導体層20に垂直な方向に厚さを有し得る。LEDマスク層30の厚さは、モノリシックLEDスタック40の所望の厚さによって決まる。たとえば、いくつかの実施形態では、LEDマスク層の厚さは、モノリシックLEDスタック40の厚さよりも少なくとも100nm厚くなるように設けられる。いくつかの実施形態では、LEDマスク層の厚さは、モノリシックLEDスタック40の厚さより少なくとも500nm、700nm、1μm、2μmまたは5μm厚くなるように設けられる。いくつかの実施形態では、LEDマスク層の厚さは、少なくとも2μm以下でもよい。他の実施形態では、LEDマスク層30の厚さは、少なくとも3μm、5μm、または10μmでもよい。いくつかの実施形態では、LEDマスク層30の厚さは、30μm以下でもよい。したがって、LEDマスク層30は、効率的な態様で、LEDウェル31の陰影を過度に作り出さないように設けられてもよい。
【0048】
ステップ104において、各LEDウェル31にモノリシックLEDスタック40を形成することができる。モノリシックLEDスタック40は、第1の半導体層の露出した上面22に形成される。したがって、モノリシックLEDスタックは、第1の半導体層20と電気的に接触している。このステップ104に従って形成されたモノリシックLEDスタック40の例を
図3に示す。
【0049】
各モノリシックLEDスタック40は、複数の層を含む。各層はIII族窒化物を含み得る。特に、モノリシックLEDスタック40は、n型半導体層42と、活性層44と、p型半導体層46とを含む。
図3に示すように、モノリシックLEDスタック40を形成する各層の側壁は、LEDスタック側壁47を形成する。各モノリシックスタックのLEDスタック側壁47は、第1の半導体層20の上面22からモノリシックLEDスタックの上面(たとえば、p型半導体層46の上面)まで延在する。
【0050】
n型半導体層42は、第1の半導体層上に形成されたIII族窒化物を含む。n型半導体層42は、III族窒化物を含み得る。n型半導体層42は、好適な電子ドナー、たとえばSiまたはGeでドープされてもよい。n型半導体層42は、第1の半導体層20の露出部分上に、連続層として堆積される。n型半導体層42は、第1のLEDの第1の活性層21への電荷キャリア注入を改善することができる。
【0051】
n型半導体層42は、第1の半導体層表面22に垂直な方向に、少なくとも100nmの厚さを有し得る。いくつかの実施形態では、n型半導体層42は、第1の半導体層表面22に垂直な方向に、2μm以下の厚さを有し得る。
【0052】
活性層44は、第1の半導体層42上に形成されている。活性層は、1つ以上の量子井戸副層を含む。活性層はIII族窒化物を含む。
図3の実施形態では、活性層44は、1つ以上の量子井戸層(図示せず)を含み得る。したがって、活性層44は多重量子井戸層でもよい。活性層44内の量子井戸層は、III族窒化物半導体、好ましくはInを含むIII族窒化物合金を含み得る。たとえば、
図3の実施形態では、活性層44は、GaNとIn
xGa
1-xNとの交互の層を含んでもよく、ここで、0<X≦1である。特に、いくつかの実施形態では、活性層42は、In
xGa
1-xN層を含んでもよく、ここで、0<X≦0.5である。したがって、いくつかの実施形態におけるLED前駆体の活性層42は、少なくとも360nmかつ650nm以下の波長を有する光を出力するように構成することができる。活性層42によって生じる光の波長を制御するために、量子井戸層の厚さおよびIn含有量(X)を制御することができる。活性層44は、III族窒化物薄膜の製造に好適な任意のプロセス、たとえば、有機金属化学蒸着(MOCVD)、ハイドライド気相成長(HVPE)、遠隔プラズマ化学蒸着(RPCVD)または分子線エピタキシー(MBE)を使用して堆積されてもよい。たとえば、いくつかの実施形態では、活性層44は、第1の半導体表面22に垂直な方向に、少なくとも50nmの全厚(すなわち、活性層40のすべての層を組合せたもの)を有し得る。いくつかの実施形態では、活性層44の全厚は、300nm以下でもよい。
【0053】
p型半導体層46はIII族窒化物を含む。たとえば、p型層はGaNを含み得る。p型半導体層46は、活性層上に形成される。p型半導体層46は、好適な電子受容体、たとえばMgでドープされてもよい。p型半導体層46は、約1017~1021cm-3のアクセプタ密度(NA)を有し得る。p型半導体層46は、各LEDウェル31内の活性層4の露出面のかなりの部分(たとえば、全部)を覆う連続層として形成されてもよい。いくつかの実施形態では、p型半導体層46は、第1の半導体層22に垂直な方向に少なくとも50nmの厚さを有し得る。いくつかの実施形態では、第1の半導体層22に垂直な方向のp型半導体層46の厚さは、400nm以下でもよい。
【0054】
いくつかの実施形態では、モノリシックLEDスタック40の各層は、III族窒化物薄膜の製作に好適な任意のプロセス、たとえば、有機金属化学蒸着(MOCVD)または分子線エピタキシー(MBE)を使用して堆積されてもよい。
【0055】
モノリシックLEDスタック40の層は、第1の半導体層20の露出面上に実質的に形成され、LEDマスク層30の表面上には形成されないことが理解されよう。その結果、モノリシックLEDスタック40は、LEDマスク層30によって画定されるLEDウェル31内に形成されることになる。モノリシックLEDスタック40の層がLEDウェル31内に形成されると、モノリシックLEDスタックのLEDスタック側壁は、LEDマスク層30のLEDウェル側壁に一致する。すなわち、LEDウェル側壁34は、モノリシックLEDスタックが成長するとモノリシックLEDスタックのLEDスタック側壁47を成形するように構成されている。したがって、LEDウェル31のLEDウェル側壁を、成長するモノリシックLEDスタック40の形状を制御するために使用することができる。特に、以下でより詳細に説明するように、LEDスタック側壁のさまざまな異なる形状およびプロファイルを実現することができる。
【0056】
モノリシックLEDスタック40の全厚は、モノリシックLEDスタックを形成する層の数および層の厚さによって決まることが理解されるであろう。たとえば、モノリシックLEDスタック40は、第1の半導体層表面22に垂直な方向に、少なくとも400nmの厚さを有し得る。いくつかの実施形態では、モノリシックLEDスタック40は、第1の半導体層表面22に垂直な方向に2.7μm以下の厚さを有し得る。
【0057】
図4および
図5は、LEDウェル側壁34とモノリシックLEDスタック40との間の2つの可能な界面を示す詳細図である。
図4では、モノリシックLEDスタック40の層は、各々がLEDウェル31を横切って延在する略均一な層に成長している。したがって、
図4の実施形態では、モノリシックLEDスタックの各層の成長速度は、LEDウェル31のすべての領域にわたって実質的に同じである。特に、モノリシックLEDスタック40の層の成長速度は、LEDウェル側壁34に近いLEDウェル31の領域において、LEDウェル側壁31の中心に向かう領域における成長速度とほぼ同じである。
【0058】
図5の実施形態では、LEDウェル側壁34に向かうモノリシックLEDスタック40の層は、LEDウェル31の中心に向かうものとは異なる厚さ(第1の半導体層20に垂直)を有する。
図5に示すように、モノリシックLEDスタック40の層は、成長速度が遅いため、LEDウェル側壁34に近い領域で薄くなり得る。モノリシックLEDスタックの層42、44、46は、III族窒化物層のウルツ鉱型結晶構造に起因して、この領域において傾斜面に沿って成長し得る。
図5において、LEDスタック側壁47は、LEDウェル側壁34に一致するように、第1の半導体層20に略垂直な方向に延在する。p型半導体層46の上面は、LEDウェル側壁34から離れるように延在する。
【0059】
図4および
図5の両方において、LEDスタック側壁47は、LEDウェルのLEDウェル側壁34に一致することが理解されるであろう。
図10および
図11において、モノリシックLEDスタック40の各層は、LEDウェル側壁34によって終端される。すなわち、各モノリシックLEDスタック40は、LEDマスク層30によって、他のモノリシックLEDスタック40から分離されている。したがって、各モノリシックLEDスタック40の層は、他のモノリシックLEDスタック40の層と不連続である。したがって、各モノリシックLEDスタック40の形成されたままの層は、LEDの形成のために同じ第1の半導体層20上に形成することができる他のモノリシックLEDスタック40から、好適に電子的に絶縁されている。したがって、この実施形態に係るLED前駆体を形成する方法は、LED前駆体の形成中にLEDスタックの堆積されたままの層を電気的に絶縁することに関する処理ステップを減らす、または排除することができる。
【0060】
いくつかの実施形態では、マスク層30はLEDスタック側壁47のパッシベーション層としても作用することが理解されよう。それゆえ、
図4および
図5に示すように、マスク層30は、LEDスタック側壁47上の表面状態を不活性化する。したがって、この実施形態の方法に従って形成されたLED前駆体は、製造プロセスの一部としてパッシベーション層を組み込んで、LED前駆体の製造をより効率的にすることが可能である。
【0061】
図2~
図5では、LEDウェル側壁34は、第1の半導体層20に略垂直に延在するように示されている。他の実施形態では、LEDウェル側壁34は、LEDスタック側壁47上に異なる側壁プロファイルを施すように構成することができる。このようなLEDウェル側壁の例を、
図6~
図8に示す。
【0062】
図6および
図7において、第1の半導体層20とLEDマスク層30の上面32との間に延在するLEDウェル側壁34の一部は、第1の半導体層20の上面に垂直な方向に対して傾斜している。
図6および
図7では、LEDウェル側壁34は、LEDウェル31を画定するLEDマスク層30のすべての表面上で同じ傾斜を有する。当然のことながら、他の実施形態では、LEDウェル側壁34の傾斜は、LEDウェル31の周囲で変化してもよい。
【0063】
図6において、第1の半導体層20の上面22に平行な平面におけるLEDウェル31の断面積が、第1の半導体層20の上面22からLEDマスク層32の上面に向かう方向に増加するように、LEDウェル側壁34は(第1の半導体層20の)法線に対して傾斜している。
図6では、LED側壁34は、LEDウェル側壁34と第1の半導体層20の露出面24との間で鈍角(α)で傾斜している。
【0064】
図7において、第1の半導体層20の上面22に平行な平面におけるLEDウェル31の断面積が、第1の半導体層の上面からLEDマスク層30の上面32に向かう方向に減少するように、LED側壁34は(第1の半導体層20の)法線に対して傾斜している。
図7では、LED側壁34は、LEDウェル側壁34と第1の半導体層20の露出面24との間で鋭角(β)で傾斜している。
【0065】
図8では、LEDウェル側壁34は、複数のLEDウェル側壁部分を含む複合プロファイルを有する。したがって、LEDウェル側壁34は、第1の方向に延在する第1のLEDウェル側壁部分34aと、第2の方向に延在する第2のLEDウェル側壁部分34bとを備え得る。
図8の実施形態では、第1のLED側壁部分34aは、第1の半導体層20から第2のLED側壁部分34bまで延在し、第2のLED側壁部分34bは、第1のLED側壁部分34aからLEDマスク層30の上面32まで延在する。
図8に示すように、第1のLED側壁部分34aは、第1の半導体層に略垂直な第1の方向に延在する。第2のLEDウェル側壁部分34bは、法線に対して傾斜した第2方向に延在する。
図8は、複合プロファイルの1つの可能な例であることが理解されるであろう。他の実施形態では、複合プロファイルは、複数のLEDウェル側壁部分で形成されてもよい。LEDウェル側壁部分の各々は、任意の所望の複合プロファイルを形成するように、垂直方向、または垂線に対して傾斜(鋭角または鈍角)した方向のそれぞれの方向に延在してもよい。
【0066】
図8では、モノリシックLEDスタック40の活性層44は、第2のLEDウェル側壁部分34bの断面に沿って配置されている。n型半導体層42は、第1のLEDウェル側壁部分34aを充填するように配置されている。したがって、モノリシックLEDスタック40は、活性層44と第1の半導体層20との間に(発光面28に向かって)延在するn型半導体層の細長い柱状部分を含む。それゆえ、n型半導体層42は、光抽出効率および/またはLEDから抽出される光のコリメーションを改善するのに役立つように、LED前駆体の光ガイド特徴として機能する。
【0067】
したがって、
図8では、各LEDウェル側壁34aのコリメート部分が、第1の半導体層20から、第1の半導体層20に略垂直な方向に延在する。このコリメート部分により、LEDスタック側壁47aのコリメート部分が形成される。LEDスタック側壁のコリメート部分は、第1の半導体層20から第1の半導体層20に略垂直な方向に延在する。LEDウェル側壁はまた、コリメート部分34aとLEDマスク層30の上面32との間に延在するLEDウェル側壁34bのテーパ部分を含む。テーパ部分34aは、第1の半導体層20の上面22に平行な面におけるLEDウェル31の断面積が、第1の半導体層の上面からLEDマスク層30の上面に向かう方向に減少するように、鋭角に傾斜している。これにより、鋭角に傾斜したLEDスタック側壁47bのテーパ部が形成される。LEDスタック側壁47bのテーパ部分は、コリメート部分47aからモノリシックLEDスタック40の上面まで延在する。
【0068】
LEDマスク側壁の化合物プロファイルは、当業者に公知のリソグラフィ技術を使用して形成することができる。
【0069】
図6~
図8に示すLEDマスク側壁34の例は、概して平坦な(すなわち平らな)表面を含むが、他の実施形態では、LEDマスク側壁34は、凹状部分または凸状部分を含み得ることが理解されよう。その結果、LEDスタック側壁47も、凹状部分または凸状部分を含み得る。
【0070】
LEDウェル31内にモノリシックLEDスタック40を堆積させることによって、LED前駆体を設けることができる。ステップ101~104に続いて、LED前駆体をさらに処理して、電気接点および関連回路を追加することによってLEDを形成することができる。
図1のステップ105~107は、LEDを形成するための追加の処理ステップを概説する。
【0071】
モノリシックLEDスタック40がLEDウェル31内に形成されると、方法のステップ105は、モノリシックLEDスタックに対する接点を形成することと、基板接合のために接点表面を平坦化することとを含む。ステップ105は、LEDマスク層30がさらに処理される程度に応じて、さまざまな方法で実行されてもよい。ここで、2つの可能な手法を説明する。第1の手法では、
図9~
図13に示すように、LEDウェル側壁34が保存される。第2の手法では、
図14~
図18に示すように、コンタクト層の堆積の前にLEDマスク層30が除去される。
【0072】
第1の手法では、アノードコンタクト層50をp型半導体層46の上面に形成することができる。アノードコンタクト層は、p型半導体層46に対するオーミックコンタクトの形成に好適な任意の材料を含み得る。
【0073】
アノードコンタクト層50を、任意の好適なパターニング技術を用いてパターニングすることができる。たとえば、アノードコンタクト層50は、リソグラフィプロセスを用いてパターニングされてもよい。
図9に示す例では、アノードコンタクト層50は、各モノリシックLEDスタック40の上面を覆うようにパターニングされている。アノードコンタクト層50は、LEDウェル31に堆積される。したがって、LEDマスク層30の上面は、アノードコンタクト層50を越えて第1の半導体層に垂直な方向に延在する。アノードコンタクト層50をLEDウェルに堆積させることによって、アノードコンタクト層はモノリシックLEDスタック40の一部を形成する。
【0074】
アノードコンタクト層50の堆積に続いて、LED前駆体は平坦化される。LED前駆体の平坦化によって、バックプレーン電子基板への接合に適したLED前駆体の表面が設けられる。第1の手法によれば、LED前駆体は、化学機械研磨(Chemical Mechanical Polishing:CMP)プロセスを使用して平坦化される。
図10は、CMPが施された
図9のLED前駆体を示す図である。
図10に示すように、アノードコンタクト層50を越えて第1の半導体層に垂直な方向に延在するLEDマスク層の一部が除去されている。したがって、CMPプロセスでは、LEDマスク層の残りの第1の部分がモノリシックLEDスタックの上面と共に平坦化された表面を形成するように、LEDマスク層の上面からLEDマスク層の第2の部分を除去する。したがって、CMPに続いて、LEDマスク層30の上面は、アノードコンタクト層50の上面52(すなわち、モノリシックLEDスタック40の上面)と実質的に連続した平坦な表面を形成する。
【0075】
化学機械研磨プロセスは、III族窒化物などと共に使用するのに適した任意の既知のCMPプロセスであり得る。
【0076】
平坦化された表面が形成されると、LED前駆体をバックプレーン電子基板60に接合することができる(
図1のステップ106)。
図11は、基板接合のためにLED前駆体と位置合わせされているバックプレーン電子基板60の例を示す。バックプレーン電子基板は、複数のコンタクトパッド62および誘電体接合層64を含む。
【0077】
コンタクトパッド62を、第1の半導体層20上のアノードコンタクト/モノリシックLEDスタック40の配置に対応するパターンで、バックプレーン電子基板上に配置することができる。コンタクトパッド62は、バックプレーン電子基板60とアノードコンタクト50との間の電気的接続を形成するように構成されている。コンタクトパッド60は、接合プロセス中にアノードコンタクト50と拡散接合、直接接合または共晶接合を形成するように配置することができる。
【0078】
誘電体接合層64は、バックプレーン電子基板60上でコンタクトパッド62の周囲に配置される。誘電体接合層は、ハイブリッド基板接合が形成されるように、接合プロセス中にLEDマスク層30との接合を形成するように構成することができる。好適なハイブリッド接合プロセスに関するさらに詳しい情報は、少なくともGB1917182.6で説明されている。
【0079】
基板は、圧力および/または温度の印加によって共に接合されてもよい。たとえば、いくつかの実施形態では、位置合わせに続いて、基板は、少なくとも100℃の温度でプレス機内で共にプレスされてもよい。いくつかの実施形態では、少なくとも10kNの圧力が印加されてもよい。いくつかの実施形態では、少なくとも20kN、30kN、または40kNの圧縮力が印加されてもよい。接合される基板により大きな圧縮力を印加することによって、基板間の接合形成の信頼性を向上させることができる。いくつかの実施形態では、プレス機は、接合中のコンタクトパッド62およびアノードコンタクト50の基板破壊または望ましくない変形のリスクを低減するために、45kN以下の圧縮力を印加することができる。
【0080】
LED前駆体がバックプレーン電子基板60に接合されると、基板10を除去することができる(
図1のステップ107)。
図12は、第1の半導体層20の発光面28を露出させるために除去されている基板10を示す概略図である。
【0081】
基板の除去に続いて、第1の半導体層20の発光面28には、さらに別の処理ステップが行われてもよい。たとえば、
図13では、共通カソードコンタクト70が第1の半導体層20上に形成される。共通カソードコンタクト70は、発光面28上に形成されているため、本実施形態における共通カソードは、可視光に対して透明な材料を含む。たとえば、共通カソードコンタクト70は、インジウムスズ酸化物、または任意の他の好適な透明導電性酸化物を含み得る。当然のことながら、
図13は、共通カソードコンタクト70の可能な配置の一例にすぎないことが理解されるであろう。他の実施形態では、第1の半導体層20への電気接点を、LEDマスク層30を通してバックプレーン電子回路基板60に対して形成することができる。
【0082】
図13に示されるように、さらに別の導光特徴80を、基板除去後に形成することができる。
図13において、導光特徴80は、LED間のクロストークを防止するために、各モノリシックLEDスタック40の周囲に形成されている。いくつかの実施形態では、導光特徴80は、1つ以上の金属層を含む。たとえば、導光特徴は、Al、Ag、Au、または任意の他の好適な金属を含み得る。いくつかの実施形態では、導光特徴は、反射器、たとえば分布ブラッグ反射器(distributed Bragg reflector:DBR)を含み得る。それゆえ、LEDのアレイを、上で概説した第1の手法に従って形成可能であることが理解されよう。
【0083】
第2の手法によれば、LEDのアレイを設けることも可能である。第2の手法を
図14~
図18に示す。
【0084】
図14に示すように、LEDマスク層30を、モノリシックLEDスタック40の形成後に選択的に除去することができる。
図14の実施形態では、LEDマスク層30の実質的にすべてが除去される。したがって、LEDスタック側壁47は、
図14に示す中間処理ステップ中に露出される。
【0085】
次に、p型半導体層46および第1の半導体層20に対する接点を形成することができる。
図14に示すように、アノードコンタクト50を、p型半導体層46の上面に形成することができる。アノードコンタクト50は、第1の手法に関して上述したアノードコンタクト50と同様の材料を含み得る。
【0086】
第1の半導体層20に対して電気接点を形成するように構成されたカソードコンタクト71を形成することもできる。
図14に示すように、絶縁層74が、カソードコンタクト71とモノリシックLEDスタック40との間に電気的絶縁をもたらすために、モノリシックLEDスタックの少なくとも一部の上に設けられてもよい。
【0087】
接点(アノードコンタクト50およびカソードコンタクト71)の形成に続いて、モノリシックLEDスタック40間の空隙にギャップ充填絶縁体90を形成することができる。したがって、ギャップ充填絶縁体は、LEDマスク層の除去後に残された残りの空隙を充填する。ギャップ充填絶縁体は、アノードコンタクト50およびカソードコンタクト71のそれぞれの上面52、72と実質的に連続した平坦な表面(すなわち、平らな表面)を形成する上部絶縁体表面92を含むように堆積されてもよい。
【0088】
ギャップ充填絶縁体は、LEDマスク層30の除去後にモノリシックLEDスタック40間の空隙を充填するように構成することができる。ギャップ充填絶縁体は、モノリシックLEDスタックの各々が互いに短絡されないことを保証する絶縁材料を含む。ギャップ充填絶縁体はまた、各モノリシックLEDスタック40のLEDスタック側壁47のパッシベーション層としても作用する。ギャップ充填絶縁体90は、SiO2、SiNx、または任意の他の好適な絶縁体を含み得る。ギャップ充填絶縁体90は、たとえば、化学気相堆積法または他の好適な堆積技術によって形成されてもよい。
【0089】
平坦化された表面が形成されると、LED前駆体を、バックプレーン電子基板60に接合することができる(
図1のステップ106)。LED前駆体をバックプレーン基板に接合するためのプロセスを、
図16に概略的に示す。
図16では、バックプレーン電子基板60は、第1の半導体層20上のアノードコンタクトおよびカソードコンタクトと位置合わせされている。2つの基板を接合するプロセスは、上述の手法と同様に実行することができる。
【0090】
基板の接合に続いて、基板10を、第1の半導体層20から除去することができる(
図1のステップ107)。このようなプロセスの概略図を
図17に示す。このステップを実行するためのステップは、第1の手法について上述したものと実質的に同じでもよい。基板10の除去に続いて、残りの構造は、LEDのアレイ(すなわち、LEDアレイ)を含む。
【0091】
図18では、追加の導光特徴(すなわち、レンズ84)を、第1の半導体層20の発光面上に形成することができる。たとえば、第1の半導体層の発光面をさらにパターニングまたは成形してもよい。導光特徴84は、LEDからの光抽出を改善するためにレンズ84などのコリメート機構を備え得る。
【0092】
図19では、
図18の実施形態は、クロストークを低減するための導光特徴80(すなわち、クロストーク低減特徴)を含むようにさらに処理される。クロストーク低減特徴は、LED間のクロストークを低減または防止するために、各LEDを取り囲むように設けられてもよい。導光特徴80は、
図13の導光特徴と同様に設けられてもよい。
【0093】
したがって、LEDのアレイを、本開示の方法に従って、LED前駆体のアレイで形成することができる。