IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 日新電機株式会社の特許一覧

<>
  • 特許-薄膜トランジスタ 図1
  • 特許-薄膜トランジスタ 図2
  • 特許-薄膜トランジスタ 図3
  • 特許-薄膜トランジスタ 図4
  • 特許-薄膜トランジスタ 図5
  • 特許-薄膜トランジスタ 図6
  • 特許-薄膜トランジスタ 図7
  • 特許-薄膜トランジスタ 図8
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-01-12
(45)【発行日】2024-01-22
(54)【発明の名称】薄膜トランジスタ
(51)【国際特許分類】
   H01L 21/336 20060101AFI20240115BHJP
   H01L 29/786 20060101ALI20240115BHJP
   H01L 21/316 20060101ALI20240115BHJP
【FI】
H01L29/78 619A
H01L29/78 618B
H01L29/78 617T
H01L21/316 X
【請求項の数】 5
(21)【出願番号】P 2020113766
(22)【出願日】2020-07-01
(65)【公開番号】P2022012152
(43)【公開日】2022-01-17
【審査請求日】2023-04-26
(73)【特許権者】
【識別番号】000003942
【氏名又は名称】日新電機株式会社
(74)【代理人】
【識別番号】100121441
【弁理士】
【氏名又は名称】西村 竜平
(74)【代理人】
【識別番号】100154704
【弁理士】
【氏名又は名称】齊藤 真大
(74)【代理人】
【識別番号】100129702
【弁理士】
【氏名又は名称】上村 喜永
(74)【代理人】
【識別番号】100206151
【弁理士】
【氏名又は名称】中村 惇志
(74)【代理人】
【識別番号】100218187
【弁理士】
【氏名又は名称】前田 治子
(72)【発明者】
【氏名】酒井 敏彦
(72)【発明者】
【氏名】安東 靖典
【審査官】山口 祐一郎
(56)【参考文献】
【文献】特開2016-082241(JP,A)
【文献】特開2011-119355(JP,A)
【文献】特開2012-182388(JP,A)
【文献】特開2016-111324(JP,A)
【文献】特開2015-012131(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01L 21/336
H01L 29/786
H01L 21/316
(57)【特許請求の範囲】
【請求項1】
基板上に、ゲート電極と、ゲート絶縁層と、酸化物半導体から成るチャネル層と、前記チャネル層の表面を保護するチャネル保護層とがこの順に積層されたボトムゲート型の薄膜トランジスタであって、
前記チャネル保護層がフッ素を含有するシリコン酸化膜から構成されており、
前記フッ素を含有するシリコン酸化膜は、Si原子数(at%)に対するO原子数(at%)の比であるO/Si比が1.94以上、かつ2.00以下である薄膜トランジスタ。
【請求項2】
前記フッ素を含有するシリコン酸化膜は、O/Si比が1.96以上である請求項1に記載の薄膜トランジスタ。
【請求項3】
前記チャネル保護層の上に、シリコン窒化膜から構成される第2チャネル保護層がさらに積層されている請求項1又は2に記載の薄膜トランジスタ。
【請求項4】
前記チャネル層を構成する酸化物半導体がIGZOである請求項1~のいずれか一項に記載の薄膜トランジスタ。
【請求項5】
基板上に、酸化物半導体から成るチャネル層と、ゲート絶縁層と、ゲート電極とがこの順に積層されたトップゲート型の薄膜トランジスタであって、
前記ゲート絶縁層がフッ素を含有するシリコン酸化膜から構成されており、
前記フッ素を含有するシリコン酸化膜は、Si原子数(at%)に対するO原子数(at%)の比であるO/Si比が1.94以上、かつ2.00以下である薄膜トランジスタ。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、チャネル層が酸化物半導体からなる薄膜トランジスタに関するものである。
【背景技術】
【0002】
近年、In-Ga-Zn-O系(IGZO)等の酸化物半導体をチャネル層に用いた薄膜トランジスタ(TFT)の開発が活発に行われている。
【0003】
このような薄膜トランジスタとして、例えば特許文献1には、チャネル層に接触するゲート絶縁層やチャネル保護層を構成する絶縁膜として、膜密度が小さい(2.70~2.79g/cm)酸化アルミニウムを用いるものが開示されている。この薄膜トランジスタでは、このような膜密度が小さい酸化アルミニウムを絶縁膜とすることで、絶縁膜の負の固定電荷密度を大きくでき、これにより薄膜トランジスタの閾値電圧を正方向へシフトさせ、信頼性を向上できることが記載されている。
【先行技術文献】
【特許文献】
【0004】
【文献】特開2011-222767号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかしながら特許文献1に開示される薄膜トランジスタでは、酸化アルミニウム膜を成膜するためには、スパッタリング装置によりスパッタリングを行う必要がある。スパッタリング装置を用いる場合、チャンバー内をガスクリーニングすることができない。そのため、例えばチャンバー内をクリーニングする際には大気開放が必要となり、メンテナンスが長期化し、その生産コストが増大するという問題がある。
【0006】
本発明はこのような問題に鑑みてなされたものであり、チャネル層として酸化物半導体を用いるものにおいて、高い信頼性を有する薄膜トランジスタを低コストで提供することを主たる課題とするものである。
【課題を解決するための手段】
【0007】
すなわち本発明に係る薄膜トランジスタは、基板上に、ゲート電極(低抵抗Si基板がゲート電極として機能する場合も含む)と、ゲート絶縁層と、酸化物半導体から成るチャネル層と、前記チャネル層の表面を保護するチャネル保護層とがこの順に積層されたボトムゲート型のものであって、前記チャネル保護層がフッ素を含有するシリコン酸化膜(以下、単にフッ素含有シリコン酸化膜ともいう)から構成されており、前記フッ素を含有するシリコン酸化膜は、Si原子数(at%)に対するO原子数(at%)の比であるO/Si比が1.94以上であることを特徴とする。
【0008】
このような構成であれば、チャネル層に接触するチャネル保護層を、O/Si比が1.94以上であるフッ素含有シリコン酸化膜により構成することにより、チャネル保護層の固定電荷を負にすることができる。これにより、薄膜トランジスタの閾値電圧を正にシフトさせることができ、その信頼性を向上することができる。
さらに、チャネル保護層としてフッ素含有シリコン酸化膜を採用することで、ガスクリーニングが可能なCVD(化学気相成長)装置によりこれを成膜することができるので、大気開放することなくチャンバーをクリーニングすることができる。そのため、スパッタリング装置を用いる場合に比べてメンテナンス期間を短縮でき、その生産コストを低減することができる。
【0009】
前記シリコン酸化膜のO/Si比が大きいほど、負の固定電荷密度を大きくでき、薄膜トランジスタの閾値電圧をより正側にシフトでき、信頼性を向上できる。
そのため、前記シリコン酸化膜のO/Si比は、1.94以上であることが好ましい。このO/Si比を大きくするほど、負の固定電荷密度をより大きくでき、歩留まりを向上することができる。そのため、固定電荷密度が-1×1011cm-2以下となるよう、シリコン酸化膜のO/Si比は1.96以上であることがより好ましい。
【0010】
一方で、前記シリコン酸化膜のO/Si比が大きすぎると、経時的な酸素抜けにより、膜質が不安定となる恐れがある。
そのため、前記シリコン酸化膜のO/Si比はSiOの化学量論的組成比である2.00以下であることが好ましい。
【0011】
薄膜トランジスタの防湿性を向上させる観点から、前記チャネル保護層の上に、シリコン窒化膜から構成される第2チャネル保護層がさらに積層されていることが好ましい。
このような場合でも、負の固定電荷を有するチャネル保護層を、チャネル層の上に積層することにより、薄膜トランジスタの閾値電圧を正にシフトさせることができ、その信頼性を向上することができる。
【0012】
前記チャネル層を構成する酸化物半導体の具体的態様として、Inを主成分とする酸化物半導体、具体的にはIGZOを挙げることができる。
【0013】
また本発明の薄膜トランジスタは、基板上に、酸化物半導体から成るチャネル層と、ゲート絶縁層と、ゲート電極とがこの順に積層されたものであって、前記ゲート絶縁層がフッ素を含有するシリコン酸化膜から構成されており、前記フッ素を含有するシリコン酸化膜は、Si原子数(at%)に対するO原子数(at%)の比であるO/Si比が1.94以上であることを特徴とする。
このようなものであっても、上記した本発明の効果を奏することができる。すなわち、チャネル層に接触するゲート絶縁層を、O/Si比が1.94以上であるフッ素含有シリコン酸化膜により構成することにより、チャネル保護層の固定電荷を負にすることができる。これにより、薄膜トランジスタの閾値電圧を正にシフトさせることができ、その信頼性を向上することができる。さらに、ゲート絶縁層としてフッ素含有シリコン酸化膜を採用することで、ガスクリーニングが可能なCVD装置によりこれを成膜することができるので、大気開放することなくチャンバーをクリーニングすることができる。そのため、スパッタリング装置を用いる場合に比べてメンテナンス期間を短縮でき、その生産コストを低減することができる。
【発明の効果】
【0014】
このように構成した本発明によれば、チャネル層として酸化物半導体を用いるものにおいて、高い信頼性を有する薄膜トランジスタを低コストで提供することができる。
【図面の簡単な説明】
【0015】
図1】本実施形態の薄膜トランジスタの構成を模式的に示す断面図である。
図2】同実施形態の薄膜トランジスタの製造工程を模式的に示す断面図である。
図3】他の実施形態の薄膜トランジスタの構成を模式的に示す断面図である。
図4】実験例におけるフッ素含有シリコン酸化膜のO/Si比と固定電荷密度との関係を示すグラフ。
図5】実験例における実施例サンプルである薄膜トランジスタの構成を説明する模式図。
図6】実験例における実施例サンプルである薄膜トランジスタの伝達特性を示すグラフ。
図7】実験例における比較例サンプルである薄膜トランジスタの構成を説明する模式図。
図8】実験例における比較例サンプルである薄膜トランジスタの伝達特性を示すグラフ。
【発明を実施するための形態】
【0016】
以下に、本発明の一実施形態に係る薄膜トランジスタ及びその製造方法について説明する。
【0017】
<1.薄膜トランジスタ>
本実施形態の薄膜トランジスタ1は所謂ボトムゲート型のTFTであり、酸化物半導体をチャネルに用いたものである。具体的には図1に示すように、基板2と、ゲート電極3と、ゲート絶縁層4と、チャネル層5と、ソース電極6及びドレイン電極7と、チャネル保護層8とを有しており、基板2側からこの順に形成されている。以下、各部について詳述する。
【0018】
基板2は光を透過できるような任意の材料から構成されており、例えば、ポリエチレンテレフタレート(PET)、ポリエチレナフタレート(PEN)、ポリエーテルサルフォン(PES)、アクリル、ポリイミド等のプラスチック(合成樹脂)やガラス等によって構成されてよい。
【0019】
ゲート電極3は、薄膜トランジスタ1に印加されるゲート電圧によってチャネル層5中のキャリア密度を制御するものである。このゲート電極3は、高い導電性を有する任意の材料から構成されており、例えばSi、Al、Mo、Cr、Ta、Ti、Pt、Au、Ag等から選択される1種以上の金属から構成されてよい。また、Al-Nd、Ag合金、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウム錫(ITO)、酸化亜鉛インジウム(IZO)、In-Ga-Zn-O(IGZO)等の金属酸化物の導電性膜から構成されてよい。ゲート電極3は、これらの導電性膜の単層構造又は2層以上の積層構造から構成されてもよい。
【0020】
ゲート絶縁層4は高い絶縁性を有する任意の絶縁材料から構成されており、例えば、SiO、SiN、SiON、Al、Y、Ta、Hf等から選択される1つ以上の酸化物を含む絶縁膜であってよい。ゲート絶縁層4は、これらの導電性膜を単層構造又は2層以上の積層構造としたものであってよい。
【0021】
チャネル層5は、ソース電極6とドレイン電極7間を流れる電流を通過させるものである。チャネル層5は、酸化物半導体からなるものであり、例えばIn、Ga、Zn、Sn、Al、Ti等から選択される少なくとも1種の元素の酸化物を主成分として含んでいる。チャネル層5を構成する材料の具体例としては、例えば、In-Ga-Zn-O(IGZO)、In-Al-Mg-O、In-Al-Zn-O又はIn-Hf-Zn-O等が挙げられる。このチャネル層5は非晶質(アモルファス)の酸化物半導体膜により構成されている。本実施形態のチャネル層5は単層構造であるが、これに限らず、組成や結晶性が互いに異なる複数の層を重ねて構成した積層構造であってもよい。
【0022】
ソース電極6及びドレイン電極7は、チャネル層5の表面を部分的に覆うように、互いに離間して形成されている。ソース電極6及びドレイン電極7は、ゲート電極3と同様に、電極として機能するように高い導電性を有する材料から構成されている。ソース電極6及びドレイン電極7は、単一の材料からなる単層構造でよく、互いに異なる材料からなる複数の層を重ねた積層構造であってもよい。
【0023】
チャネル保護層8は、ソース電極6とドレイン電極7の間から露出するチャネル層5の表面(チャネル領域)を覆って保護する絶縁性のものである。チャネル保護層8は、少なくともチャネル層5の表面に接触して設けられている。本実施形態のチャネル保護層8は、ソース電極6及びドレイン電極7の表面を更に覆うように設けられている。
【0024】
このチャネル保護層8は、その固定電荷が負である材料から構成されている。具体的にこのチャネル保護層8は、フッ素含有シリコン酸化膜(SiO:F)により構成されている。このフッ素含有シリコン酸化膜は、Si原子数(at%)に対するO原子数(at%)の比であるO/Si比が1.94以上となるように構成されており、これにより負の固定電荷を有するようにしている。負の固定電荷を大きくする観点から、O/Si比は1.94以上であることが好ましく、1.96以上であることがより好ましい
一方で、O/Si比が大きすぎると、経時的な酸素抜けにより、膜質が不安定となることがある。そのため、O/Si比は、2.00以下であることが好ましい。
【0025】
フッ素含有シリコン酸化膜の組成比は、例えば、X線光電子分光法(X-ray Photoelectron Spectroscopy:XPS)によって求めることができる。試料表面にX線を照射し、試料表面から放出される光電子の運動エネルギーのピーク強度の面積強度を計測することで得られる各元素の組成から、O/Si比を算出することができる。なお、測定対象の層が最表面にない場合は、アルゴンイオン等によるエッチングを行う。図3は、XPSにより求められた値であり、Siおよび酸素はそれぞれ、Si2pおよびO1sのピーク強度から求めた。
【0026】
なおチャネル保護層8の上には、例えばフッ素含有シリコン酸化膜(SiN:F)等からなる第2のチャネル保護層が、必要に応じて更に設けられてもよい。
【0027】
<2.薄膜トランジスタの製造方法>
次に、上述した構造の薄膜トランジスタ1の製造方法を、図2を参照して説明する。
本実施形態の薄膜トランジスタ1の製造方法は、ゲート電極形成工程、ゲート絶縁層形成工程、チャネル層形成工程、ソース・ドレイン電極形成工程、及びチャネル保護層形成工程を含む。以下、各工程について説明する。
【0028】
(1)ゲート電極形成工程
まず図2の(a)に示すように、例えば石英ガラスからなる基板2を準備し、基板2の表面にゲート電極3を形成する。ゲート電極3の形成方法は特に制限されず、例えば真空蒸着法等の既知の方法により形成してよい。
【0029】
(2)ゲート絶縁層形成工程
次に、図2の(b)に示すように、基板2及びゲート電極3の表面を覆うようにゲート絶縁層4を形成する。ゲート絶縁層4の形成方法は特に限定されず、既知の方法により形成してよい。
【0030】
(3)チャネル層形成工程
次に、図2の(c)に示すように、ゲート絶縁層4上にチャネル層5を形成する。このチャネル層5は、既知の方法により形成してよい。例えば、プラズマを用いて、InGaZnO等の導電性酸化物焼結体をターゲットとしてスパッタリングすることによりチャネル層5を形成してよい。なおこれに限らず、他の方法により、酸化物半導体からなるチャネル層5を形成してもよい。
【0031】
(4)ソース・ドレイン電極形成工程
次に、図2の(d)に示すように、チャネル層5上にソース電極6及びドレイン電極7を形成する。ソース電極6およびドレイン電極7の形成は、例えば、RFマグネトロンスパッタリング等を用いた既知の方法により形成することができる。ソース電極6及びドレイン電極7は、チャネル層5の表面上で互いに離間し、チャネル層5の表面の一部を露出させるように形成される。
【0032】
(5)チャネル保護層形成工程
次に、図2の(e)に示すように、ソース電極6及びドレイン電極7の間から露出するチャネル層5の表面を覆うようにチャネル保護層8を形成する。このチャネル保護層8の形成は、CVD装置を用いたCVD法(化学気相成長法)を用いて行われる。
【0033】
例えば、G6基板サイズ(1500×1850mm)のCVD装置において、RFパワー20kW、基板の設定温度200℃、ガス流量SiF/O/H=100/5000/900sccm、成膜時の圧力10Paの条件により成膜することによりチャネル保護層8を形成する。このような方法により、O/Si比が1.94以上であるフッ素含有シリコン酸化膜からなるチャネル保護層8をチャネル層5上に形成することができる。なお、O/Si比が1.94以上であるフッ素含有シリコン酸化膜からなるチャネル保護層8の製造条件は、上記したものに限らず、基板サイズ、RFパワー、基板の設定温度、成膜時圧力、ガス流量は適宜変更されてもよい。
【0034】
必要に応じて、チャネル保護層8の上に、フッ素含有シリコン酸化膜(SiN:F)等からなる第2のチャネル保護層を成膜してもよい。このチャネル保護層の成膜は、チャネル保護層8と同様に、CVD装置を用いて行うことができる。
【0035】
(6)熱処理工程
必要に応じて酸素を含む大気圧下の雰囲気中で熱処理を行ってもよい。熱処理における炉内温度は特に限定されず、例えば150℃以上300℃以下である。また熱処理時間は特に限定されず、例えば1時間以上3時間以下である。
【0036】
以上により、本実施形態の薄膜トランジスタ1を得ることができる。
【0037】
<3.本実施形態の効果>
このように構成した本実施形態の薄膜トランジスタ1であれば、チャネル層5に接触するチャネル保護層8を、O/Si比が1.94以上であるフッ素含有シリコン酸化膜により構成することにより、チャネル保護層8の固定電荷を負にすることができる。これにより、薄膜トランジスタ1の閾値電圧を正にシフトさせることができ、その信頼性を向上することができる。さらに、チャネル保護層8としてフッ素含有シリコン酸化膜を採用することで、製造の際にはガスクリーニングが可能なCVD(化学気相成長)装置によりこれを成膜することができるので、大気開放することなくチャンバーをクリーニングすることができる。そのため、スパッタリング装置を用いる場合に比べてメンテナンス期間を短縮でき、その生産コストを低減することができる。
【0038】
<4.その他の変形実施形態>
なお、本発明は前記実施形態に限られるものではない。
【0039】
例えば、他の実施形態の薄膜トランジスタ1では、チャネル保護層8に加えて、ゲート絶縁層4が、O/Si比が1.94以上のフッ素含有シリコン酸化膜によりこうせいされていてもよい。
【0040】
前記実施形態の薄膜トランジスタ1は、ゲート電極3、ゲート絶縁層4及びチャネル層5が基板2側から順に積層されたボトムゲート型のものであったがこれに限らない。他の実施形態では、薄膜トランジスタ1は、チャネル層5、ゲート絶縁層4、及びゲート電極3が基板2側から順に積層されたトップゲート型のものであってもよい。この場合には、ゲート絶縁層4がフッ素含有シリコン酸化膜(SiO:F)により構成されており、このフッ素含有シリコン酸化膜は、Si原子数(at%)に対するO原子数(at%)の比であるO/Si比が1.94以上であることが好ましい。
【0041】
その他、本発明は前記実施形態に限られず、その趣旨を逸脱しない範囲で種々の変形が可能であるのは言うまでもない。
【実施例
【0042】
以下、実施例を挙げて本発明をより具体的に説明する。本発明は以下の実施例によって制限を受けるものではなく、前記、後記の趣旨に適合し得る範囲で適当に変更を加えて実施することが勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。
【0043】
<1.フッ素含有シリコン酸化膜のO/Si比と、固定電荷密度との関係性>
フッ素含有シリコン酸化膜のO/Si比と、その固定電荷密度との関係性を評価した。
【0044】
(サンプル作製)
具体的には、O/Si比が互いに異なるフッ素含有シリコン酸化膜をシリコン基板上に成膜した4つのサンプルを準備した。いずれのサンプルも、フッ素含有シリコン酸化膜の上に、更にシリコン窒化膜を成膜した。基板上へのフッ素含有シリコン酸化膜の成膜と、フッ素含有シリコン酸化膜上へのシリコン窒化膜の成膜は、前記したチャネル保護層形成工程に記載した方法により、プラズマCVD法により行った。
【0045】
具体的には、シリコン基板上へのフッ素含有シリコン酸化膜の成膜は、G6基板サイズ(1500×1850mm)のCVD装置を用いて、RFパワー20kW、基板の設定温度200℃、ガス流量SiF/O/H=100/5000/900sccm、成膜時の圧力10Paの条件により行った。
【0046】
具体的には、シリコン窒化膜の成膜は、G6基板サイズ(1500×1850mm)のCVD装置を用いて、RFパワー40kW、基板の設定温度200℃、ガス流量SiF/N/H=500/3000/900sccm、成膜時の圧力10Paの条件により行った。
【0047】
作製した4つのサンプルについて、X線光電子分光分析装置を用いたXPS分析により、フッ素含有シリコン酸化膜中のO/Si比を算出したところ、それぞれ1.80、1.83、1.90、1.96であった。
【0048】
(固定電荷密度の測定)
次に各サンプルの固定電荷密度を測定した。具体的には、フッ素含有シリコン窒化膜/フッ素含有シリコン酸化膜積層膜/Si基板となるサンプルを作製し、さらに、フッ素含有シリコン窒化膜およびSi基板それぞれにコンタクトする、アルミニウム含有の電極を形成し、CV測定から、フラットバンドシフト量を求めることにより、各サンプルの固定電荷密度を算出した。その結果を図4に示す。
【0049】
図4に示すように、フッ素含有シリコン酸化膜のO/Si比を1.94以上にすることにより、サンプルの固定電荷が負になることが分かった。
【0050】
<2.薄膜トランジスタのチャネル保護層の組成と伝達特性の関係性>
次に、薄膜トランジスタのチャネル保護層の組成と、伝達特性との関係を評価した。
【0051】
(サンプル作製)
具体的には、前記した製造方法に基づいて、低抵抗シリコン基板をゲート電極として使用したボトムゲート型の薄膜トランジスタのサンプルを2つ作成した(図5図7)。いずれも、低抵抗シリコン基板のゲート電極の上に、熱酸化シリコン膜からなるゲート絶縁層を設け、その上に酸化物半導体(具体的にはIGZO1114)からなるチャネル層を設け、その上に、ソース電極及びドレイン電極(Mo:80nm、Pt:20nm)を設けた。そして、チャネル層、ソース電極及びドレイン電極を覆うように、フッ素含有シリコン酸化膜(SiO:F)からなるチャネル保護層を設け、そのうえに、フッ素含有シリコン窒化膜(SiN:F)からなる第2保護層を更に設けた。
【0052】
いずれのサンプルも、プラズマCVD装置を用いたプラズマCVD法によりチャネル保護層を成膜した。具体的には、プラズマCVD装置を用いて、真空容器内の圧力を10Paまで減圧し、電極に20kWの高周波電力を供給し、基板温度を200℃まで加熱し、原料ガスとして、SiF、O及びHを供給した。ここで、一方のサンプル(実施例サンプルという)では、図5に示すように、原料ガスであるSiF、O及びHの流量をそれぞれ100sccm、5000sccm、900sccmとした。他方のサンプル(比較例サンプルという)では、図7に示すように、SiF、O及びHの流量をそれぞれ200sccm、1000sccm、900sccmとした。このようにして、フッ素含有シリコン酸化膜から成るチャネル保護層をチャネル層の上に形成した。
【0053】
またいずれのサンプルも、プラズマCVD装置を用いたプラズマCVD法によりチャネル保護層を成膜した。具体的には、プラズマCVD装置を用いて、真空容器内の圧力を10Paまで減圧し、電極に40kWの高周波電力を供給し、基板温度を200℃まで加熱し、原料ガスとしてSiF、N及びHを、それぞれ500sccm、3000sccm、900sccmの流量で供給した。このようにして、フッ素含有シリコン窒化膜からなる第2保護層をチャネル保護層の上に成膜した。
【0054】
作製した2つのサンプルに対して、X線光電子分光分析装置を用いたXPS分析により、チャネル保護層を構成するフッ素含有シリコン酸化膜のO/Si比を算出したところ、実施例サンプルの薄膜トランジスタでは1.96であり、比較例サンプルの薄膜トランジスタでは1.80であった。
【0055】
(ゲート閾値電圧Vthの測定)
作成した2つのサンプルに対して、ドレイン電流-ゲート電圧特性(I-V特性)の測定を行った。その結果を図6及び図8に示す。図6から分かるように、チャネル保護層を構成するフッ素含有シリコン酸化膜のO/Si比が1.94以上である実施例サンプルでは、正のゲート閾値電圧Vth(ドレイン電流I=1nAにおけるゲート電圧V)を有する相対的に信頼性の高い薄膜トランジスタが得られることが分かった。一方で図8から分かるように、チャネル保護層を構成するフッ素含有シリコン酸化膜のO/Si比が1.94未満である比較例サンプルでは、負のゲート閾値電圧Vthを有する相対的に信頼性の低い薄膜トランジスタが得られることが分かった。
【符号の説明】
【0056】
1 ・・・薄膜トランジスタ
2 ・・・基板
3 ・・・ゲート電極
4 ・・・ゲート絶縁層
5 ・・・チャネル層
6 ・・・ソース電極
7 ・・・ドレイン電極
8 ・・・チャネル保護層
図1
図2
図3
図4
図5
図6
図7
図8