(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-01-12
(45)【発行日】2024-01-22
(54)【発明の名称】磁気濾過装置および方法
(51)【国際特許分類】
A61M 1/36 20060101AFI20240115BHJP
A61M 60/109 20210101ALI20240115BHJP
A61M 60/37 20210101ALI20240115BHJP
A61M 60/279 20210101ALI20240115BHJP
【FI】
A61M1/36 119
A61M60/109
A61M60/37
A61M60/279
(21)【出願番号】P 2021151106
(22)【出願日】2021-09-16
(62)【分割の表示】P 2018532819の分割
【原出願日】2016-09-14
【審査請求日】2021-09-16
(32)【優先日】2015-09-14
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】518085324
【氏名又は名称】メディシーブ リミテッド
(74)【代理人】
【識別番号】100078282
【氏名又は名称】山本 秀策
(74)【代理人】
【識別番号】100113413
【氏名又は名称】森下 夏樹
(74)【代理人】
【識別番号】100181674
【氏名又は名称】飯田 貴敏
(74)【代理人】
【識別番号】100181641
【氏名又は名称】石川 大輔
(74)【代理人】
【識別番号】230113332
【氏名又は名称】山本 健策
(72)【発明者】
【氏名】ジョージ チャールズ マーティン フロッドシャム
(72)【発明者】
【氏名】クエンティン アンドリュー パンクハースト
(72)【発明者】
【氏名】リチャード アラン ウェンマン
(72)【発明者】
【氏名】サイモン リチャード ハッターズリー
【審査官】細川 翔多
(56)【参考文献】
【文献】米国特許第05514340(US,A)
【文献】特開昭58-175565(JP,A)
【文献】特表昭58-500980(JP,A)
【文献】特表2010-515503(JP,A)
【文献】米国特許第04769130(US,A)
【文献】米国特許第04375407(US,A)
【文献】米国特許第04544482(US,A)
【文献】米国特許第05980479(US,A)
(58)【調査した分野】(Int.Cl.,DB名)
A61M 1/36
A61M 60/109
A61M 60/37
A61M 60/279
(57)【特許請求の範囲】
【請求項1】
血液濾過器アセンブリであって、
第1の磁石と、
取り外し可能なフィルタ筐体であって、前記フィルタ筐体は、入力ポートと、出力ポートと、前記フィルタ筐体内の1つ以上の容積とを画定し、前記入力ポートは、1つ以上の流速での血液を受け取るように構成されている、フィルタ筐体と、
複数のメッシュのスタックであって、前記複数のメッシュは、第1のメッシュを含み、前記複数のメッシュのうちの各メッシュは、複数のワイヤを含み、前記複数のメッシュのスタックは、前記フィルタ筐体内に配置されており、前記第1のメッシュは、前記入力ポートと流体連通し、前記複数のワイヤは、磁化可能な材料を含む、複数のメッシュのスタックと
を備え、
前記第1の磁石は、前記複数のメッシュのスタックに実質的に垂直であり、かつ、前記磁化可能な材料内に磁場を誘起するように十分に強い磁場を生成し、これにより、前記複数のワイヤの各ワイヤの表面の近くの1つ以上の領域内に高磁場勾配が生成され、血液由来の磁性標的は、前記高磁場勾配を有する1つ以上の領域内で捕捉される、血液濾過器アセンブリ。
【請求項2】
前記1つ以上の流速に応答して、
前記血液は、前記複数のメッシュのスタックを通過し、前記複数のメッシュのスタックを通過する前記血液の流れの方向は、磁場の方向に平行であり、これにより、前記1つ以上の領域は、磁気的に標識された生体分子を捕捉するように構成されている静止捕捉ゾーンを画定し、前記1つ以上の流速は、ヒトの動脈または静脈への血液の流速およびヒトの動脈または静脈からの血液の流速の両方に相応である、請求項1に記載の血液濾過器アセンブリ。
【請求項3】
前記複数のメッシュのスタックは、前記1つ以上の
容積のうちの少なくとも1つを通る層流経路を画定するように前記1つ以上の容積に対して配列されており、前記スタックを通る血液の流れは、前記1つ以上の流速で流れるときに層流である、請求項1に記載の血液濾過器アセンブリ。
【請求項4】
前記第1の磁石は、前記複数のワイヤのうちの1つ以上のワイヤの近くに不均質な磁場を生成するように配列されている、請求項1に記載の血液濾過器アセンブリ。
【請求項5】
前記複数のメッシュは、ランダムで整合されていない構成で配列されている、請求項1に記載の血液濾過器アセンブリ。
【請求項6】
前記入力ポートのサイズおよび前記出力ポートのサイズおよび前記1つ以上の容積のサイズは、前記入力ポートと前記出力ポートとの間で約40ml/分から約400ml/分までの範囲の流速をサポートするように選択される、請求項1に記載の血液濾過器アセンブリ。
【請求項7】
前記第1のメッシュは、前記複数のワイヤの織物を画定し、前記織物は、実質的に最大の磁気減退力の面積が実質的に最小の粘弾性抗力の面積と重複するように構成されている、請求項1に記載の血液濾過器アセンブリ。
【請求項8】
前記複数のメッシュは、前記複数のメッシュを通過する血液が1つ以上の層流に分離するように配列されており、前記1つ以上の層流は、前記1つ以上の層流が前記複数のメッシュのうちの1つ以上を通って移動するにつれて分割および再結合する、請求項1に記載の血液濾過器アセンブリ。
【請求項9】
前記第1のメッシュは、前記スタックを通過する血液のレイノルズ数が2300未満または約2300であるように選択される、請求項1に記載の血液濾過器アセンブリ。
【請求項10】
前記複数のメッシュの配列および前記1つ以上の容積のサイズおよび形状は、前記スタックを通って流れる血液に対するデッドスポットを回避するように選択される、請求項1に記載の血液濾過器アセンブリ。
【請求項11】
前記1つ以上の流速に応答して、前記スタックは、前記複数のメッシュの1つ以上のワイヤの近くを流れる血液から1つ以上の標的を保持するために、前記複数のメッシュのうちの1つ以上のメッシュの1つ以上のワイヤに隣接する1つ以上の静止捕捉ゾーンを画定する、請求項1に記載の血液濾過器アセンブリ。
【請求項12】
前記第1の磁石は、複数の磁石のうちの1つ、または、一対の磁石のうちの1つである、請求項1に記載の血液濾過器アセンブリ。
【請求項13】
前記第1のメッシュは、前記複数のワイヤから織られており、前記第1のメッシュは、約10ミクロンから約1000ミクロンまでの範囲の開口間隔を有している、請求項1に記載の血液濾過器アセンブリ。
【請求項14】
前記血液濾過器アセンブリは、第2の磁石をさらに備え、前記第1の磁石および前記第2の磁石は、前記フィルタ筐体の反対側に配列されている、請求項1に記載の血液濾過器アセンブリ。
【請求項15】
前記フィルタ筐体は、第1の内側表面と第2の内側表面とをさらに含み、前記第1の内側表面は、前記第2の内側表面の反対側にあり、前記第1の内側表面の表面積は、前記第2の内側表面の表面積によりも大きく、これにより、前記フィルタ筐体内の前記1つ以上の容積を通る流速が増大される、請求項1に記載の血液濾過器アセンブリ。
【請求項16】
前記筐体は、前記筐体によって画定される他の表面に比較してより大きな表面積を有する一対の表面を画定し、前記入力ポートに入る血液は、前記血液が前記より大きな表面積にわたって広がるように前記筐体によって方向転換される、請求項1に記載の血液濾過器アセンブリ。
【請求項17】
前記入力ポートは、ヒトの動脈または静脈への血液の流速およびヒトの動脈または静脈からの血液の流速から選択される1つ以上の流速での血液を受け取るように構成されている、請求項1に記載の血液濾過器アセンブリ。
【請求項18】
血液濾過器アセンブリであって、
第1の永久磁石と、
取り外し可能なフィルタ筐体であって、前記フィルタ筐体は、第1の内側表面と第2の内側表面とを含み、前記第1の内側表面は、前記第2の内側表面の反対側にあり、前記第1の内側表面の表面積は、前記第2の内側表面の表面積によりも大きく、前記フィルタ筐体は、入力ポートと、出力ポートと、前記フィルタ筐体内の1つ以上の容積とを画定し、前記入力ポートは、ヒトの動脈または静脈への血液の流速およびヒトの動脈または静脈からの血液の流速から選択される1つ以上の流速での血液を受け取るように構成されている、フィルタ筐体と、
抗凝固剤コーティングであって、前記コーティングは、前記取り外し可能なフィルタ筐体の1つ以上の内側表面に適用される、抗凝固剤コーティングと、
複数のメッシュのスタックであって、前記複数のメッシュは、第1のメッシュを含み、前記複数のメッシュのうちの各メッシュは、複数のワイヤを含み、前記複数のメッシュのスタックは、前記フィルタ筐体内に配置されており、前記第1のメッシュは、前記入力ポートと流体連通し、前記複数のワイヤは、磁化可能な材料を含む、複数のメッシュのスタックと
を備え、
前記第1の永久磁石は、前記複数のメッシュのスタックに実質的に垂直であり、かつ、前記磁化可能な材料内に磁場を誘起するように十分に強い磁場を生成し、これにより、前記複数のワイヤの各ワイヤの表面の近くの1つ以上の領域内に高磁場勾配が生成され、
前記第1の永久磁石は、
前記フィルタ筐体内の前記1つ以上の容積を通る流体の流れに実質的に平行に配向された磁場を生成し、
血液由来の磁性標的は、前記高磁場勾配を有する1つ以上の領域内で捕捉される、血液濾過器アセンブリ。
【請求項19】
前記取り外し可能なフィルタ筐体は、前記筐体によって画定される他の表面に比較してより大きな表面積を有する一対の表面を画定し、前記入力ポートに入る血液は、前記血液が前記より大きな表面積にわたって広がるように前記筐体によって方向転換される、請求項18に記載の血液濾過器アセンブリ。
【発明の詳細な説明】
【技術分野】
【0001】
(発明の分野)
本願は、概して、血液濾過システムに関し、より具体的には、磁気濾過システムに関する。
【0002】
(関連出願)
本願は、本願の譲受人に譲渡された2015年9月14日に出願された米国仮特許出願第62/218,211号に対する優先権を主張するものであり、その内容は、全体が参照により本明細書中に援用される。
【背景技術】
【0003】
磁気分離が、選鉱で長年使用されている。概して、これは、反磁性物質を含有する混合物から磁性鉱物を分離して取り出すために使用される。そのような分離システムでは、液体中の粒子の懸濁液が、磁気ワイヤで構築された磁化可能フィルタを通過される。ワイヤの近傍で、高い磁場勾配は、任意の通過する磁化可能物質を引き付ける磁気保定力をもたらす。
【0004】
これらの磁気分離技法は、本質的に磁性である(すなわち、正常な血液および血液成分の反磁性から有意に逸脱する)か、または利用可能であって臨床的に使用され得る、具体的な血液が運ぶ作用物質を標的にする磁性ナノ粒子もしくはビーズで磁気的に標識されるかのいずれかである、あらゆるものを血流から除去するために、磁気血液濾過とともに使用されることができる。
【0005】
必要とされるものは、迅速に、効率的に、かつ低コストで、血流中の磁気的に標識された標的を抽出することが可能である、磁気フィルタである。
【0006】
本発明は、これらの要件に対処する。
【発明の概要】
【課題を解決するための手段】
【0007】
本発明の一側面は、血液濾過器システムである。一実施形態では、血液濾過器システムは、第1の表面、第2の表面、および1つまたはそれを上回る壁表面を有する、コンテナであって、第1の表面、第2の表面、および1つまたはそれを上回る壁表面は、容積を画定する、コンテナと、第1の表面と流体連通する入力ポートと、第2の表面と流体連通する出力ポートと、密接に並置して積み重ねられ、入力ポートから出力ポートまでの流体の経路内でコンテナ容積内に位置付けられる、複数の平面磁気メッシュを備える、濾床と、コンテナの第1の表面上に位置付けられる第1の磁石と、入力ポートと流体連通する第1の入力導管と、出力ポートと流体連通する第1の出力導管とを含み、第1の磁石は、血液が運ぶ磁性標的の捕捉を可能にするために濾床内の自由空間の中で十分に強力かつ不均質な磁場を生成するような方法で、平面磁気メッシュの存在によって修正される磁場を生成する。別の実施形態では、第2の磁石が、コンテナの第2の表面上に位置付けられる。
【0008】
さらに別の実施形態では、血液濾過器システムは、入力導管の中にポンプを含む。なおも別の実施形態では、血液濾過器システムは、入力導管と流体連通する生理食塩水点滴ユニットを含む。さらに別の実施形態では、血液濾過器システムは、生理食塩水リザーバと、T字接合部分を通して第1の導管と並列に流体連通して接続されるシリンジポンプとを含む。なおもさらに別の実施形態では、血液濾過器システムは、出力導管と流体連通する空気検出器を含む。一実施形態では、血液濾過器システムは、出力導管と流体連通する圧力検出器を含む。
【0009】
別の側面では、本発明は、第1の表面、第2の表面、および1つまたはそれを上回る壁表面を有する、コンテナであって、第1の表面、第2の表面、および1つまたはそれを上回る壁表面は、容積を画定する、コンテナと、第1の表面と流体連通する入力ポートと、第2の表面と流体連通する出力ポートと、密接に並置して積み重ねられ、コンテナ容積内に位置付けられて、第1および第2の表面と同一平面上にある、複数の平面磁気メッシュを備える、濾床と、コンテナの第1の表面上に位置付けられる第1の磁石と、コンテナの第2の表面上に位置付けられる第2の磁石とを含み、第1および第2の磁石は、平面磁気メッシュと垂直な磁場を生成し、これが、血液が運ぶ磁性標的の捕捉を可能にするために濾床内の自由空間の中で十分に強力かつ不均質な磁場を生成する、血液濾過器である。
【0010】
さらに別の実施形態では、フィルタは、デッドスポットおよび渦を回避するよう、かつフィルタを通過する各個々の赤血球のための迷路流路を生成することによって全体的に十分な流速を維持するよう、ミリメートル規模長において一様な流量特性を生成するように設計される。一実施形態では、流動は、赤血球をその無妨害流から赤血球の直径の3倍を上回って逸脱させる。別の実施形態では、無妨害流からの逸脱は、約20ミクロンを上回る。
【0011】
一般に、血液濾過器は、フィルタを通過する血液側で、3次元編組層流を生成するように設計される。本側面では、血液の流動は、蛇行する川床の流動のようであるが、2次元表面を覆うのではなく、3次元体積を通る。一実施形態では、平面金属ワイヤメッシュのスタックは、フィルタを通過する血液が、メッシュの各層を通って移動するにつれて連続的に分割および再結合する、一連の層流チャネルに分離するような方法で、配列される。流動の層流性は、血液の通過中に、いかなる激しいまたは潜在的に損傷を与える乱流運動も決して受けないように、フィルタのメッシュスタック充填部分の全体を通して保定される。同時に、層流チャネルの連続分割および再結合は、例えば、所与の個々の赤血球または磁気的に標識された生体分子等の血液のありとあらゆる一部が、少なくとも1つの捕捉部位(予想される速度で移動する、予想される磁気特性の磁気または磁気的に標識された実体に関して、実体がフィルタのメッシュスタック充填部分を通過するにつれて捕捉される(保定および保持される)であろうために、磁気的に作動するメッシュに十分に近い空間の容積であるものとして画定される)に物理的に遭遇することの有限でゼロを上回る確率を有することを確実にする。
【0012】
一実施形態では、ワイヤメッシュの多層スタックは、流動チャネル分割および再結合の3次元パターンが規則的で明確に画定された構造を帯びるように、フィルタのメッシュスタック充填部分を通過するにつれて血液が分離する層流チャネルが、高度に規則化されるような方法で配列される。そのような実施形態は、繰り返され、順次的であり、かつ整合された様式で空間内に配列されたメッシュ層を有することによって達成される。
【0013】
血液濾過器の本側面の別の実施形態では、ワイヤメッシュの多層スタックは、流動チャネル分割および再結合の3次元パターンが不規則的でランダムな構造を帯びるように、フィルタのメッシュスタック充填部分を通過するにつれて血液が分離する層流チャネルが、よりランダム、確率的、または複雑であるような方法で配列される。そのような実施形態は、整合されていないランダムな様式で空間内に配列されたメッシュ層を有することによって達成される。
【0014】
さらなる側面では、血液濾過器は、フィルタのメッシュスタック充填部分を通過する血液のレイノルズ数が、乱流ではなく、層流または遷移(層流と乱流との間の中間を意味する)流のものに特有であるような方法で、設計される。レイノルズ数は、いくつかの方法で定義されることができ、そのうちの2つが例証目的のためにここで説明され、オペレータは、適切な定義を使用される血液濾過器の実施形態に適用するべきである。第1の場合では、レイノルズ数は、Re=ρvL/μとして定義され、式中、ρは、血液の密度(約1.06×103kgm-3)であり、vは、フィルタを通過する際の血液の平均速度であり、Lは、メッシュ開口サイズ等のフィルタの特徴的寸法であり、μは、血液の粘度(約3~4×10-3Pas)である。この場合、Reは、層流については2300未満または約2300である。第2の場合では、レイノルズ数は、剛体球のランダム充填床について定義されるものであり、Re*=ρud/μ(1-ε)であり、式中、ρおよびμは、前述のように定義され、uは、(フィルタの巨視的断面積で除算されるフィルタを通る体積流速によって求められる)フィルタを通る血液の表面流速であり、dは、球体の同等粒子直径(すなわち、所与のフィルタメッシュ材料によって占有されるものと同一の空間の容積を占有するであろう球体の直径)であり、εは、床空隙率(フィルタ材料によって占有されていないフィルタの容積割合を意味する)である。この場合、Re*は、層流については10未満または約10である。
【0015】
その上さらなる側面では、血液濾過器は、ヒト動脈または静脈への血液およびそこからの血液の流速、ならびに任意の所与の時間に体外で保持されることができる血液の量への許容安全限度の両方に相応する、流速およびフィルタ容積で効率的な捕捉を提供するように設計される。小児に関して、これは、40~200ml/分の流速と、例えば、体重が20kgの5歳児では約0.08×1.6リットル=128mlであろう、全血液量の約8%の体外体積とに対応する。成人では、これは、40~400ml/分の流速と、例えば、80kgの成人では約0.08×6.4リットル=512mlであろう、全血液量の約8%の体外体積とに対応する。
【0016】
なおもさらなる側面では、血液濾過器は、脆弱または繊細な生物学的実体の保定および安全な収集のための静止捕捉ゾーンを含有するように設計される。本側面は、標的にされて捕捉された生物学的実体のレセプタクルとしても好適である一方で、そうでなければ血液が通過しないであろう「デッドゾーン」を構成するであろうため、捕捉ゾーンが流動に対して本質的に能動であることを要求する。一実施形態では、これらの静止捕捉ゾーンは、ワイヤの配向と垂直かつ流動の方向と平行に磁化されるワイヤの反対側の長さに沿って位置し、高い磁力および低い抗力の面積を作成し、捕捉を促進する。
例えば、本願は以下の項目を提供する。
(項目1)
第1の表面、第2の表面、および1つまたはそれを上回る壁表面を有する、コンテナであって、前記第1の表面、前記第2の表面、および前記1つまたはそれを上回る壁表面は、コンテナ容積を画定する、コンテナと、
前記コンテナと流体連通する入力ポートと、
前記コンテナと流体連通する出力ポートと、
密接に並置して積み重ねられ、前記コンテナ容積内に位置付けられる、複数の平面磁気メッシュを備える、濾床と、
前記コンテナの第1の表面上に位置付けられる第1の永久磁石と、
前記入力ポートと流体連通する臨床体外血液回路の第1の入力導管と、
前記出力ポートと流体連通する臨床体外血液回路の第1の出力導管と、
を備え、前記第1の磁石は、前記平面磁気メッシュに対して配向される磁場を生成する、血液の臨床体外濾過のための血液濾過器システム。
(項目2)
前記入力導管の中にポンプをさらに備え、前記ポンプは、40~400ml/分の流速を生成する、項目1に記載の血液濾過器システム。
(項目3)
前記入力ポートと前記出力ポートとの間の流体流は、前記メッシュの平面と平行である、項目1に記載の血液濾過器システム。
(項目4)
前記入力ポートと前記出力ポートとの間の流体流は、前記メッシュの平面に対して傾斜している、項目1に記載の血液濾過器システム。
(項目5)
前記第1の表面と反対の前記コンテナの前記第2の表面上に位置付けられる第2の磁石をさらに備える、項目1に記載の血液濾過器システム。
(項目6)
第1の表面、第2の表面、および1つまたはそれを上回る壁表面を有する、コンテナであって、前記第1の表面、前記第2の表面、および前記1つまたはそれを上回る壁表面は、容積を画定する、コンテナと、
前記コンテナと流体連通する入力ポートと、
前記コンテナと流体連通する出力ポートと、
密接に並置して積み重ねられ、前記コンテナ容積内に位置付けられて、前記第1および第2の表面と同一平面上にある、複数の平面磁気メッシュを備える、濾床と、
前記コンテナの前記第1の表面上に位置付けられる第1の永久磁石と、
を備える、血液濾過器。
(項目7)
前記第1の永久磁石は、前記平面磁気メッシュと実質的に垂直に配向される磁場を生成する、項目6に記載の血液濾過器。
(項目8)
前記コンテナの前記第2の表面上に位置付けられる第2の永久磁石をさらに備える、請求項6に記載の血液濾過器。
(項目9)
前記フィルタを通過する各個々の赤血球のための迷路層流路を備え、
前記フィルタは、デッドスポットおよび渦を回避するよう、かつ全体的に十分な流速を維持するよう、ミリメートル規模長において一様な流量特性を生成するように設計される、
血液濾過器。
(項目10)
前記流路は、赤血球をその無妨害流から前記赤血球の直径の3倍を上回って逸脱させる、項目8に記載の血液濾過器。
(項目11)
前記流路は、赤血球をその無妨害流から約20ミクロンを上回って逸脱させる、項目8に記載の血液濾過器。
(項目12)
それを通って血液が流動する、第1の容積であって、前記容積の平均磁場に対して前記血液上で増加した磁気減退力を生成するよう、その内側で前記血液が磁場に暴露される、複数の副次的な第1の容積が存在する、第1の容積と、
それを通って血液が流動する、第2の容積であって、その内側で前記血液が前記容積の平均抗力と比較してより低い粘弾性抗力を受ける、複数の副次的な第2の容積が存在する、第2の容積と、
を備え、前記第1および第2の副容積は、空間内で実質的に一致する、
血液濾過器。
(項目13)
前記入力ポートは、前記コンテナ内の流体流の方向と直交し、前記出力ポートは、前記コンテナ内の流体流の方向と直交する、項目1に記載の血液濾過器システム。
(項目14)
前記平面磁気メッシュは、織物である、項目1に記載の血液濾過器システム。
(項目15)
前記織物メッシュは、畳織である、項目14に記載の血液濾過器システム。
(項目16)
前記システム内の全流体体積は、患者の血液量の8%未満である、項目1に記載の血液濾過器システム。
(項目17)
前記システム内の全流体体積は、100mlを上回り、かつ250ml未満である、請求項16に記載の血液濾過器システム。
(項目18)
前記システム内の全流体体積は、20mlを上回り、かつ35ml未満である、項目16に記載の血液濾過器システム。
(項目19)
前記入力および出力ポートは、前記1つまたはそれを上回る壁表面内にある、項目1に記載の血液濾過器システム。
(項目20)
第1の表面、第2の表面、および1つまたはそれを上回る壁表面を有する、コンテナであって、前記第1の表面、前記第2の表面、および前記1つまたはそれを上回る壁表面は、容積を画定する、コンテナと、
前記コンテナと流体連通する臨床体外血液回路への接続のための入力ポートと、
前記コンテナと流体連通する臨床体外血液回路への接続のための出力ポートと、
密接に並置して積み重ねられ、前記コンテナ容積内に位置付けられて、前記第1および第2の表面と同一平面上にある、複数の平面磁気メッシュを備える、濾床と、
を備える、血液の臨床体外濾過のための血液濾過器。
(項目21)
前記コンテナの前記第1の表面上に位置付けられる第1の磁石をさらに備え、前記第1の磁石は、前記平面磁気メッシュと実質的に垂直に配向される磁場を生成する、項目20に記載の血液濾過器。
(項目22)
前記コンテナの前記第2の表面上に位置付けられる第2の磁石をさらに備える、項目20に記載の血液濾過器。
【図面の簡単な説明】
【0017】
本発明の構造および機能は、付随の図面と併せて本明細書の説明から最良に理解されることができる。図は、必ずしも一定の縮尺ではなく、代わりに、概して、例証的原理が強調される。図は、全ての側面で例証的と見なされるものであり、本発明を限定することを意図せず、その範囲は、請求項のみによって定義される。
【0018】
【
図1】
図1は、本発明のシステムの実施形態のブロック図である。
【
図3C】
図3Cは、
図2に示される磁気フィルタ筐体の実施形態の流量ホモジナイザの断面図である。
【
図3D】
図3Dは、
図3Cに示される磁気フィルタ筐体の実施形態の流量ホモジナイザの上面図である。
【
図4B】
図4Bは、線DD’を通した
図4Aに示される磁気フィルタ筐体の実施形態の上面切断図である。
【
図5A】
図5Aは、5層磁気メッシュフィルタのメッシュ層の実施形態の斜視図である。
【
図5B】
図5Bは、ワイヤの交互配列を示すように拡大された、
図5Aの5層フィルタの一部の平面図である。
【
図5C】
図5Cは、開口の辺の長さに対するワイヤ直径の比の流体流上の抗力への影響のグラフである。
【
図6A】
図6Aは、畳織構成における磁気フィルタのメッシュの実施形態の平面図である。
【
図6B】
図6Bは、平畳織構成における磁気フィルタのメッシュの実施形態の側面図である。
【
図6D】
図6Dは、平織または1/1織構成における磁気フィルタのメッシュの実施形態の平面図である。
【
図6E】
図6Eは、各方向へのワイヤの間の間隔が異なる、平織または1/1織構成における磁気フィルタのメッシュの実施形態の平面図である。
【
図6F】
図6Fは、綾織または上2/下2織構成における磁気フィルタのメッシュの実施形態の平面図である。
【
図7】
図7は、磁石に隣接して位置付けられたフィルタ筐体の実施形態を示す、ブロック図である。
【
図8】
図8は、鋼鉄保持具を伴う2磁石アセンブリの実施形態のブロック図である。
【
図9】
図9は、その円筒軸が外部から印加された磁場と垂直である、円筒ワイヤに隣接する磁場の磁場図である。
【
図10】
図10は、磁場内のワイヤに隣接する静止捕捉ゾーンを示す。
【
図11】
図11は、鋼鉄背板およびアルミニウム支持体を伴う6磁石磁気アセンブリの実施形態のブロック図である。
【
図12】
図12は、本発明のための磁石として機能する上部および下部磁気アセンブリの実施形態の斜視図である。
【
図13】
図13は、濾過された体積とともに寄生低減率を示すグラフである。
【発明を実施するための形態】
【0019】
図1を参照すると、本発明の実施形態に従って構築されるシステム10は、入力ポート14と、出力ポート18とを含む。一実施形態では、入力14および出力18ポートは、患者のカテーテルの対応する噛合ルアータイプコネクタに係合するように構成されるルアータイプコネクタを含む。患者からの血液は、入力導管25に接続されたポンプ22を用いて、入力ポート14を通してシステム10に引き込まれる。実施形態では、ポンプは、蠕動ポンプである。入力ラインの他方の端部もまた、磁気フィルタ34の入力ポート26として構成される、対応する噛合ルアータイプコネクタ32に係合するように位置付けられるルアータイプコネクタ30を含む。
【0020】
磁気フィルタ34の出力ポート38のルアータイプコネクタは、システム出力導管42の一方の端部においてルアータイプコネクタ36に係合する。システム出力導管42の他方の端部は、システム出力ポート18として作用するルアータイプコネクタを含む。ルアータイプ出力ポートは、血液を患者に戻すカテーテルに係合する。一実施形態では、蠕動ポンプ22は、注入ポンプ(Baxter International(Deerfield,IL)注入ポンプモデルBM-11)であり、フィルタ43を伴うガストラップと、血流中の気泡(矢印)を検出および/または濾過する空気検出器46とを含む、出力回路を含む。本実施形態では、蠕動ポンプは、患者の中へ戻るように流動する血液の圧力が所望の限界内であることを確実にするように、出力回路の中に圧力センサ48を含む。また、本実施形態では、出力回路は、気泡が検出された場合に回路を通る流動を停止することができる、緊急クランプ47を含む。種々の実施形態では、入力25および出力導管42は、空気透過性管類で構築される。一実施形態では、出力導管42は、収集レセプタクル74に取り付けられる。別の実施形態では、出力導管42は、患者の血液を患者に戻すようにカニューレ77に接続される。
【0021】
一実施形態では、コントローラ73が、デジタルポート61を通したシリンジポンプ64および蠕動ポンプ22を制御する。
【0022】
別の実施形態では、生理食塩水点滴サブシステム54が、ルアーコネクタ63を通して、第1のT字コネクタ50を通した入力ライン25に接続される。一実施形態では、生理食塩水点滴サブシステム54は、手動静脈ライン制御弁65を有する、生理食塩水リザーバ点滴バッグ62を含む。入力ライン26は、第2のT字コネクタ67を通して蠕動ポンプ22の入力に接続される。第2のT字コネクタ67の第2のポートが、ポンプ22に先立って入力ライン25における流体圧力を測定するように入力圧力センサ69に接続される。
【0023】
蠕動ポンプ22の出力は、第3のT字コネクタ74を通して、シリンジ70からのヘパリン等の抗凝固剤の流量を制御するシリンジポンプドライバ66を有する、シリンジポンプ64に接続される。本第3のT字コネクタ74の出力78は、入力導管26への第2の入力である。本抗凝固剤サブシステムは、システム10を通過するにつれて患者の血液の凝固が起こらないことを確実にする。
【0024】
さらに詳細に、
図2および3A-Dを参照すると、磁気フィルタ34は、外側コンテナ82を含む。一実施形態では、外側コンテナ82は、使い捨てプラスチックまたは滅菌可能材料で作製される。一実施形態では、プラスチックは、ポリエチレン、ポリカーボネート、またはシリコーン等の医療グレードプラスチックである。一実施形態では、コンテナおよびメッシュの内面は、抗凝固剤でコーティングされる。一実施形態では、抗凝固剤コーティングは、組み込みヘパリンを伴う複合多糖である。外側コンテナ82は、典型的には、上部83および底部85蓋によって恒久的に密閉されるが、清掃および改修のために開放されるように構成されてもよい。コンテナ筐体82のサイズは、部分的に、本システムが接続される患者のサイズによって判定される。フィルタ34の体積が大きすぎる場合、患者が過剰な失血に起因する反応を起こすであろう。体積が小さすぎる場合、デバイスを通して患者の血液の有意な部分を移動させるために必要とされる時間量が過剰になる。
【0025】
概して、腎臓学では、体外ループにおいて患者から引き出される血液の最大量は、患者の血液量の8%である。平均的な成人は、約5リットルの血液を有し、したがって、体外回路内の血液の量は、約400ml未満となり得る。患者の一部が貧血症になるであろうという事実を考慮するように、これをさらに50%低減させると、体外回路の容積は、約200mlになる。本容積は、小児に対しては縮小させられなければならない。12ヶ月齢未満の幼児に関して、本システムの容積は、約30mlである。本システムの管類およびコネクタは、約10mlの血液を含有することが仮定され、それは、筐体容積が小児のための約20mlから成人のための約190mlまで変動するであろうことを意味する。
【0026】
外側コンテナ82が、コンテナの容積の最大3分の1を占有する磁性金属メッシュフィルタを含むため、実際のコンテナ容積は、所望の血液量より約3分の1大きい。したがって、成人(約190mlの血液)のために定寸されたチャンバは、容積が約250mlである。
【0027】
コンテナの形状は、抗力を低減させることによってコンテナを通る流速を増加させるように設計される。抗力を低減させるために、コンテナは、コンテナの他の(本実施形態では4つの)表面と比較してより広い表面積を伴う、一対の表面、例えば、上部および底部を有するように構築される。本議論では、フィルタは、一般性を失うことなく、直方体として議論されるが、円筒を含む他の形状も考慮されることに留意されたい。一実施形態では、血流は、次いで、2つのより大きい表面の間で垂直に配向される。例えば、125mlの容積が所望される場合、5cmである6つの表面の各縁(5×5×5cm)を有するようにコンテナを構築するのではなく、頂面および底面が125cm2であるように、12.5×10×1cmの寸法を有することが有利である。第1の場合(各表面の縁毎に5cm)では、最大表面積は、25cm2である。第2の実施例では、最大表面(上部および底部)の面積は、125cm2である。所与の体積流速のための液体の直線流速が、それを通って液体が流動する表面の面積に依存するため、表面積を最大限にすることは、直線流速、したがって、抗力を最小限にする。したがって、抗力は、2つの最大表面の間の流量について5分の1に低減されるであろう。しかしながら、他を犠牲にして1つの辺を増大させることは、濾床の高さを縮小するであろうことに留意することが重要である。
【0028】
増大した表面積を利用するために、より大きい表面を覆って広がるように入力血流を方向転換する必要がある。再度、
図3A-Dを参照すると、コンテナの入力ポート26は、流量ホモジナイザまたはディスペンサ80を通して血流を提供する。血液が管80(
図3C)を下って通過すると、管は、より幅広く平坦になり、容積が充填するにつれて表面を覆って血液を広げさせ、最終的に出力ポート38に到達させる。いくつかの実施形態では、血液は、チャンバの上部において流量均一性を維持するために、出力ポート38において退出する前に流量ホモジナイザまたはダイバータを通って流動する。他の形態のダイバータまたはホモジナイザも、可能である。本システムは、概して、底部における入力ポート26および上部における出力ポート38を伴って説明されるが、コンテナの配向は関連性がないにもかかわらず、血流の量が2つの最大表面の間にある場合に、効率が増加させられることに留意されたい。
【0029】
直交壁を有するコンテナに関する1つの問題は、壁が交わる角が、流体が集合してコンテナを通って大部分の流量を伴って流動しない、「デッドスペース」を形成することである。これらのデッドスペースは、いくつかの実施形態では、コンテナの角の壁が交わる、連続非直交表面を形成することによって除去される(
図3B)。一実施形態では、コンテナの内面は、疎水性コーティングでコーティングされる。一実施形態では、疎水性コーティングは、ポリジメチルシロキサン等のシリコーンベースのポリマーである。
【0030】
図5A、Bを参照すると、コンテナ82内に、コンテナ82に進入する血液が出力ポート38まで流動するにつれて通過する、濾床がある。一実施形態では、濾床は、ともに積み重ねられた複数の平面メッシュ100、100’...100”(概して、100)として構築される。一実施形態では、メッシュの平面は、好ましくは、コンテナ容積を通る血流と垂直である。メッシュは、ワイヤの間の10~1000ミクロン、好ましくは、50ミクロンの開口間隔(概して、108)に織成された非反磁性(フェロまたはフェリストランドを含むが、それらに限定されない)ワイヤ104’...104”(概して、104)で構築される。一実施形態では、非反磁性磁気ワイヤは、10~1000ミクロン、好ましくは、250ミクロンのワイヤ直径を伴うSS430ステンレス鋼である。一実施形態では、メッシュの少なくとも100層のそのような構成が、厚さ約30mmに対応する。メッシュ100は、積み重ねられ、各メッシュのワイヤの間の間隔が濾床を通して中断されたチャネルを形成するよう交互配置されるように、各メッシュは、前の層から無作為にオフセットされる(
図5B)。濾床を通って流動する血液細胞は、したがって、チャネルを上方に流動するにつれて複数のワイヤに遭遇する高い確率を有する。ワイヤに隣接する自由空間内のより高い磁場の結果として、以下で説明されるように、血流内の磁気または磁気的に標識された成分は、流動を減速する磁気減退力成分を受ける。
図5Cは、開口の辺の長さに対するワイヤ直径の比の抗力への影響のグラフである。すなわち、ワイヤ直径が開口の辺に対してより大きくなると、抗力は、開口サイズの減少に起因して急速に増加する。
【0031】
図6A-Fを参照すると、磁気メッシュフィルタは、多くの形態または織り方を成してもよく、いくつかの実施形態が、本明細書で議論される。
図6Aは、畳織構成における磁気フィルタのメッシュの実施形態である。畳織では、「縦」および「横」ワイヤは、異なる直径を有する。
図6Bは、畳織構成における磁気フィルタのメッシュの実施形態の側面図であり、
図6Cは、
図6Bの同一の磁気フィルタメッシュの斜視平面図である。
図6Dは、平織または1/1織構成における磁気フィルタメッシュの平面図である。
図6Eは、各方向へのワイヤの間の間隔が異なる、
図6Dの磁気フィルタのメッシュの実施形態である。
図6Fは、綾織構成における磁気フィルタのメッシュの実施形態である。一般に、織り方は、以下で議論されるように、実質的に最大の磁気減退力の面積が実質的に最小の粘弾性抗力の面積と重複するように選定される。
【0032】
図7を参照すると、メッシュ内で適切な磁場を確立するために、一実施形態では、メッシュフィルタを含有するコンテナ82は、永久磁石120に隣接して配置される。
図8の第2の実施形態では、磁場を増大させるために、同一の極性を伴って配向される2つの永久磁石120、120’は、磁場124がメッシュ100の平面と垂直であるように、コンテナ82の反対側に適用される。本実施形態は、磁場のための帰還路を提供するように保持具126を含む。
【0033】
そのような構成は、メッシュに各開口108を形成する、ワイヤ100および104のそれぞれに作用するほぼ等しい磁場を誘発する。しかしながら、メッシュが(ワイヤ内の誘発磁化につながる)本質的に磁化可能である強磁性またはフェリ磁性物質から作製されることを考慮すると、メッシュの中の各開口108内で作用する磁場は、永久磁石120および120’に起因する磁場、ならびに磁化ワイヤ100、100’、100”等および104、104’、104”等によって生成される磁場の重畳になるように修正される。磁化ワイヤに起因する磁場は、ほぼ磁気双極子の磁場であり、したがって、磁場の方向に最大であり、磁場の方向に沿って急速に減退する(rがワイヤからの距離である、1/r
3としての縮尺)(
図9)。第1の一対の点線矢印は、左側の図数値の上側から延在し、ワイヤの断面の上部および底部の近傍に示されるような磁場の方向に高い磁場値(約0.6テスラ)を指し示す。第2の一対の矢印は、数値の下側から延在し、ワイヤ断面の左および右側の低い磁場値(ゼロに接近する)を指し示す。実線矢印および別の点線矢印もまた、磁場内の2つの付加的な点(約0.15テスラおよび約0.48テスラ)を強調して、さらなる状況を数値に与えるように含まれる。合計磁場は、したがって、最も強力であり、各ワイヤの近傍で最高磁場勾配を有する。磁気標的を含有する流体が、次いで、流動方向が磁場の方向と平行であるような方法でフィルタメッシュを通過させられる場合には、
図10に示されるように、最大磁気捕捉の領域が、メッシュのワイヤのそれぞれに隣接して作成され、その領域は、比較的大きい磁気減退力および比較的小さい粘弾性抗力の組み合わせを伴うものとして特徴付けられる。
【0034】
メッシュのワイヤの近傍を通過する磁性粒子によって受けられる磁力(F
m)は、以下の式によって求められる。
【化1】
式中、μ
0は、自由空間の透過性であり、χは、磁性物質の体積磁化率であり、Vは、粒子中の磁性物質の体積であり、Hは、ワイヤに隣接する磁場であり(χVHは、粒子の全磁気モーメントMである)、∇Hは、各ワイヤの近傍の磁場勾配であり、太字は、ベクトルを示す。メッシュのワイヤの近くで、磁場勾配は大きくなる。
【0035】
同様に、液体流中の球状物体に印加される抗力(F
d)は、ストークスの法則によって説明され、フィルタが捕捉する磁化および/または磁化可能実体によって感じられる抗力の適正な近似である。
【化2】
式中、μは、液体粘度であり、Rは、細胞の半径であり、vは、細胞に対する液体の速度である。粒子に力を及ぼす液体の速度vは、体積流速f(ml/分)および断面流面積Cに依存し、以下の式によって求められる。
【化3】
【0036】
フィルタチャンバ断面積がメッシュのワイヤによって占められる空間の量によって縮小されるため、フィルタの実際の断面積が縮小され、したがって、液体流速が低減され、故に、抗力F
dはまた、面積の分数変化であるγに依存し、これは、ひいては、各ワイヤの直径であるdとメッシュ内の開口の1つの辺の長さであるlとの間の比である、xに依存する。
【化4】
【化5】
【0037】
ワイヤの直径が開口辺の長さの1/5である場合、フィルタの断面積は、70%まで減少し、流速は、44%まで減少される。抗力への比xの影響が、
図5Cに示されている。
【0038】
捕捉が起こるために、抗力Fdは、磁力Fm未満でなければならない。本関係が満たされることを確実にするために、以下のオプションが、デバイスの設計および展開で使用されてもよい。磁力は、(以下で議論されるように)外部磁場を生成する永久磁石または電磁石のタイプおよび構成を変動させることによって、磁場Hを増大させることによって増加されてもよい。代替として、磁場勾配∇Hは、ワイヤの特定の寸法および磁気性質のためにHの規模を最適化すること、より高い磁化率もしくはより高い磁化率磁気飽和を伴う強磁性メッシュを使用すること、または磁場と一致するワイヤの直径を最適化することによって、変動または最適化されてもよい。磁性粒子等の具体的標的の捕捉は、標的の磁性物質の体積を増加させることによって、またはより高い磁化率を伴う物質を使用することによってのいずれかで、磁性粒子の磁気モーメントを増加させることによって改良されることができる。
【0039】
さらに、標的が高い磁場勾配の面積を通過する可能性を増加させ得る。メッシュの開口を通って流動する標的の場合、磁力は、開口の中心で最も低い。多数の層を伴う無作為化積層メッシュ設計の使用は、標的が高勾配の(すなわち、ワイヤの表面に近い)面積を決して通過しない可能性が非常に低いことを確実にする。抗力をさらに減少させることはまた、標的の速度を低下させること(これは、全体的な処理時間を増加させるであろうため、望ましくない場合がある)、断面流面積を増大させること(これもまた、体外ループにおいて患者から除去されることができる血液の総量(典型的には、全血液量の8%)によって限定されるため、望ましくない場合がある)、またはより高い開口サイズ対ワイヤ直径比(すなわち、より低いx)を伴うメッシュを使用することによって、達成されてもよい。本最後のオプションは、大きい開口が、粒子が高磁気勾配の面積に決して進入しないチャネルを通して流路を作成し得るため、十分な標的がワイヤの近くを通過するために開口が十分に小さいことを確実にすることと平衡を保たれなければならない。
【0040】
大きい磁石を生産して取り扱うことの費用および困難により、かつ有利な磁気回路設計を取得するために、一実施形態では(
図11)、複数のより小さい磁石120が、コンテナ82の反対側の配置前に、ともにグループ化される。一実施形態では、複数対の磁石120が、磁石120を超えて小さい距離に延在する、鋼鉄背板134に磁気的または別様に取り付けられる。鋼鉄背板134は、磁場を集束し、フィルタに隣接する面積を遮蔽することに役立つ。鋼鉄背板134は、次いで、フレーム142の第1の部分の中のリップ138の上に静置する。フレーム146の第2の部分は、磁石130がフレーム146を通って突出し、依然として整合して保持されることを可能にするように定寸および成形される、複数の開口部を有する。アルミニウムフレームの第1の部分142および第2の146部分は、第2の磁石アセンブリとともに、コンテナ82の反対表面上に位置付けられる2つの磁石120、120’である、磁石アセンブリを形成するように、ともにボルトで留められる160(
図12)。このようにして、コンテナ82は、磁石アセンブリ160の間で除去され、コンテナは、別の患者で使用するために交換されることができる。
【0041】
一実施形態では、磁石は、32.2kgの引力、3,000ガウスの表面流束密度、および40~43OeのBH最大エネルギー積を伴うN42グレードNdFeB(ネオジム鉄ホウ素)である。磁石130は、30mmの分離における45Nおよび10mmの分離における200Nの一対の磁石の間で力を生成するために十分に強力である。
【0042】
血液から有害物質を除去するために、どのようにして本システムが臨床的に使用されるかは、部分的に、除去される物質の性質によって判定される。(ヘモゾイン、すなわち、寄生生物のヘモグロビンの代謝の常磁性鉱物副産物の存在に起因して)本質的に常磁性である、マラリア感染赤血球等のそれ自体が非反磁性である物質は、磁気フィルタ34に細胞を通過させることによって、直接除去されてもよい。ウイルス、細菌、または他の毒素等の反磁性標的は、例えば、好適に表面官能化された強磁性またはフェリ磁性ナノ粒子等の非反磁性実体でこれらの標的を標識することによって、除去されてもよい。原理は、例えば、対応する抗原また受容体が、ある存在度で標的実体の表面上に存在する、抗体または抗体断片、もしくは好適なリガンド等の好適な実体で、磁性ナノ粒子をコーティングすることである。有利な条件下で、好適に設計された選択的標的を用いて、次いで、例えば、官能化ナノ粒子を患者の血流に、または磁気フィルタ34から上流の位置における体外ループに注入することによって、表面官能化磁性ナノ粒子を患者の血液と混合し、それによって、標的実体を磁気的に標識し、その後、磁気フィルタ34にこれらの実体を通過させることによってそれらを除去することが可能である。
【0043】
動作中に、カテーテルが、患者の血管の中に配置され、カテーテルのルアータイプまたは他のコネクタが、入力導管25のルアータイプコネクタ14に接続される。一実施形態では、カテーテルは、システム10の入力導管25に接続される入力管腔と、システム10の出力導管42に接続される出力管腔とを有する。入力導管25は、カテーテルの出力管腔を通して出力導管42から置換される血液の排出から上流のカテーテルの入力管腔から採血する。別の実施形態では、本システムの入力導管は、単一の管腔カテーテルに接続され、出力導管は、第2の単一の管腔カテーテルに接続される。2つのカテーテルは、次いで、患者の異なる静脈または動脈に導入されることができる。
【0044】
さらに詳細に、入力導管26の中のポンプ22は、患者から採血し、磁気フィルタ34に血液を通過させる。生理食塩点滴62が、シリンジポンプ64からのヘパリンと混合され、入力導管25を通って流動する血液と混合する。いったん血液がフィルタ34を通過すると、カテーテルの別の管腔または患者の血管内の別のカテーテルを通して患者の中へ戻るように出力導管42を通して送出される。空気検出器46は、患者に戻る血流中に気泡がないことを確実にする。気泡除去デバイス43は、血流から任意の気泡を除去するように含まれることができる。一実施形態では、気泡除去は、血液回路の全体を通してガス透過性プラスチック管類を使用することによって達成される。
【0045】
図13は、90%の単一通過効率、2%の初期寄生負荷、および5Lの全血液量を仮定して濾過される全血液の関数として、血液からのマラリア等の寄生生物に感染した血液細胞の除去のモデル計算のグラフである。本グラフが示すように、本システムを用いると、患者への細菌、ウイルス、寄生、または毒物負荷は、単純な濾過を使用して除去もしくは低下されることができる。これは、感染症を治療する薬物が取得することが困難である場所で、特に重要である。
【0046】
いくつかの実装が、説明されている。それでもなお、本開示の精神および範囲から逸脱することなく、種々の修正が行われ得ることが理解されるであろう。例えば、上記で示される種々の形態の流動は、ステップが並べ替えられた、追加された、または除去された状態で使用されてもよい。故に、他の実装も、以下の請求項の範囲内である。
【0047】
本明細書で提示される実施例は、本開示の潜在的および具体的実装を例証することを意図している。実施例は、主に当業者のための本発明の例証の目的のために意図されている。実施例の1つまたは複数の特定の側面は、必ずしも本発明の範囲を限定することを意図していない。本発明の図および説明は、明確にする目的のために、他の要素を排除しながら、本発明の明確な理解のために関連する要素を例証するように簡略化されている。しかしながら、当業者は、これらの種類の焦点を当てた議論が、本開示のさらなる理解を促進せず、したがって、そのような要素のより詳細な説明が本明細書では提供されないことを認識し得る。
【0048】
本実施形態と関連付けられるプロセスは、コンピュータ等のプログラマブル機器によって実行されてもよい。プログラマブル機器にプロセスを実行させるために採用され得る、ソフトウェアまたは他の命令のセットは、例えば、コンピュータシステム(不揮発性)メモリ、光ディスク、磁気テープ、または磁気ディスク等の任意の記憶デバイスの中に記憶されてもよい。さらに、プロセスのうちのいくつかは、コンピュータシステムが製造されるときに、またはコンピュータ可読メモリ媒体を介して、プログラムされてもよい。
【0049】
本開示は、多くの詳細を含有するが、これらは、本開示の範囲または請求され得るものの制限としてではなく、むしろ本開示の特定の実装に特有の特徴の説明として解釈されるべきである。別個の実装との関連で本開示に説明される、ある特徴はまた、単一の実装において組み合わせで提供されることもできる。逆に、単一の実装との関連で説明される種々の特徴はまた、別個に、または任意の好適な副次的組み合わせで、複数の実装において提供されることもできる。また、特徴は、ある組み合わせで作用するものとして上記で説明され、さらに、そのようなものとして最初に請求され得るが、請求される組み合わせからの1つまたはそれを上回る特徴は、ある場合には、組み合わせから削除されることができ、請求される組み合わせは、副次的組み合わせまたは副次的組み合わせの変形例を対象としてもよい。
【0050】
同様に、動作は、特定の順序で図面に描写されるが、これは、そのような動作が、示される特定の順序で、または順次に行われること、もしくは図示される動作が望ましい結果を達成するように行われることを要求するものとして理解されるべきではない。ある状況では、マルチタスクおよび並行処理が、有利であり得る。また、上記で説明される実装における種々のシステムコンポーネントの分離は、全ての実装においてそのような分離を要求するものとして理解されるべきではなく、説明されるコンポーネントおよびシステムは、概して、単一の製品の中でともに統合され得ることを理解されたい。
【0051】
本開示の側面、実施形態、特徴、および実施例は、あらゆる点に関して例証的と見なされるものであり、その範囲が請求項のみによって定義される、本開示を限定することを意図していない。他の実施形態、修正、および使用法が、請求される発明の精神ならびに範囲から逸脱することなく、当業者に明白となるであろう。
【0052】
別様に示されない限り、本明細書および請求項で使用される、長さ、幅、深度、または他の寸法等を表す全ての数字は、あらゆる事例において、示されるような正確な値および「約」という用語によって修飾される値の両方を示すものとして理解されるものである。本明細書で使用されるように、「約」という用語は、公称値から±20%変動を指す。故に、そうではないと示されない限り、本明細書および添付の請求項に記載される数値パラメータは、取得されるように努められる所望の性質に応じて変動し得る、近似値である。少なくとも、請求項の範囲への均等物の教義の適用を限定する試行としてではなく、各数値パラメータは、少なくとも、報告された有効数字の数を踏まえて、かつ通常の四捨五入技法を適用することによって、解釈されるべきである。任意の具体的値は、20%だけ変動し得る。
【0053】
本発明は、その精神または必須特性から逸脱することなく、他の具体的形態で具現化されてもよい。前述の実施形態は、したがって、本明細書に説明される本発明に限定的ではなく、あらゆる点に関して例証的と見なされるものである。本発明の範囲は、したがって、前述の説明によってではなく、添付の請求項によって示され、請求項の同等の意味および範囲内に入る全ての変更は、その中に包含されることを意図している。
【0054】
種々の修正および変更が、説明される技術の範囲から逸脱することなく行われ得ることが、当業者によって理解されるであろう。そのような修正および変更は、説明される実施形態の範囲内に入ることを意図している。また、一実施形態に含まれる特徴は、他の一実施形態と交換可能であり、描写される実施形態からの1つまたはそれを上回る特徴は、任意の組み合わせで他の描写される実施形態とともに含まれ得ることも、当業者によって理解されるであろう。例えば、本明細書に説明される、および/または図で描写される種々の構成要素のうちのいずれかは、組み合わせられてもよい、交換されてもよい、もしくは他の実施形態から除外されてもよい。
(項目1)
第1の表面、第2の表面、および1つまたはそれを上回る壁表面を有する、コンテナであって、前記第1の表面、前記第2の表面、および前記1つまたはそれを上回る壁表面は、コンテナ容積を画定する、コンテナと、
前記コンテナと流体連通する入力ポートと、
前記コンテナと流体連通する出力ポートと、
密接に並置して積み重ねられ、前記コンテナ容積内に位置付けられる、複数の平面磁気メッシュを備える、濾床と、
前記コンテナの第1の表面上に位置付けられる第1の磁石と、
前記入力ポートと流体連通する第1の入力導管と、
前記出力ポートと流体連通する第1の出力導管と、
を備え、
前記第1の磁石は、前記平面磁気メッシュに対して配向される磁場を生成する、
血液濾過器システム。
(項目2) 前記入力導管の中にポンプをさらに備える、項目1に記載の血液濾過器システム。
(項目3)
前記入力導管と流体連通する生理食塩水点滴ユニットをさらに備える、項目1に記載の血液濾過器システム。
(項目4)
前記生理食塩水点滴ユニットは、生理食塩水リザーバと、T字接合部分を通して前記第1の導管と並列に流体連通して接続されるシリンジポンプとを備える、項目3に記載の血液濾過器システム。
(項目5)
前記出力導管と流体連通する空気検出器をさらに備える、項目1に記載の血液濾過器システム。
(項目6)
前記出力導管と流体連通する圧力センサをさらに備える、項目1に記載の血液濾過器システム。
(項目7)
前記入力ポートは、表面の中にある、項目1に記載の血液濾過器システム。
(項目8)
前記入力ポートは、壁の中にある、項目1に記載の血液濾過器システム。
(項目9)
前記入力ポートと前記出力ポートとの間の流体流は、前記メッシュの平面と垂直である、項目1に記載の血液濾過器。
(項目10)
前記入力ポートと前記出力ポートとの間の流体流は、前記メッシュの平面と平行である、項目1に記載の血液濾過器。
(項目11)
前記入力ポートと前記出力ポートとの間の流体流は、前記メッシュの平面に対して傾斜している、項目1に記載の血液濾過器。
(項目12)
前記コンテナの前記第2の表面上に位置付けられる第2の磁石をさらに備える、項目1に記載の血液濾過器。
(項目13)
第1の表面、第2の表面、および1つまたはそれを上回る壁表面を有する、コンテナであって、前記第1の表面、前記第2の表面、および前記1つまたはそれを上回る壁表面は、容積を画定する、コンテナと、
前記コンテナと流体連通する入力ポートと、
前記コンテナと流体連通する出力ポートと、
密接に並置して積み重ねられ、前記コンテナ容積内に位置付けられて、前記第1および第2の表面と同一平面上にある、複数の平面磁気メッシュを備える、濾床と、
前記コンテナの前記第1の表面上に位置付けられる第1の磁石と、
を備える、血液濾過器。
(項目14)
前記第1の磁石は、前記平面磁気メッシュと実質的に垂直に配向される磁場を生成する、項目13に記載の血液濾過器。
(項目15)
前記コンテナの前記第2の表面上に位置付けられる第2の磁石をさらに備える、項目13に記載の血液濾過器。
(項目16)
前記フィルタを通過する各個々の赤血球のための迷路層流路を備え、
前記フィルタは、デッドスポットおよび渦を回避するよう、かつ全体的に十分な流速を維持するよう、ミリメートル規模長において一様な流量特性を生成するように設計される、
血液濾過器。
(項目17)
前記流路は、赤血球をその無妨害流から前記赤血球の直径の3倍を上回って逸脱させる、項目15に記載の血液濾過器。
(項目18)
前記流路は、赤血球をその無妨害流から約20ミクロンを上回って逸脱させる、項目15に記載の血液濾過器。
(項目19)
それを通って血液が流動する、第1の容積であって、前記容積の平均磁場に対して前記血液上で増加した磁気減退力を生成するよう、その内側で前記血液が磁場に暴露される、複数の副次的な第1の容積が存在する、第1の容積と、
それを通って血液が流動する、第2の容積であって、その内側で前記血液が前記容積の平均抗力と比較してより低い粘弾性抗力を受ける、複数の副次的な第2の容積が存在する、第2の容積と、
を備え、前記第1および第2の副容積は、空間内で実質的に一致する、
血液濾過器。