(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-01-15
(45)【発行日】2024-01-23
(54)【発明の名称】電力取引支援装置および電力取引方法
(51)【国際特許分類】
H02J 3/00 20060101AFI20240116BHJP
G06Q 50/06 20240101ALI20240116BHJP
H02J 3/32 20060101ALI20240116BHJP
H02J 13/00 20060101ALI20240116BHJP
【FI】
H02J3/00 180
G06Q50/06
H02J3/32
H02J13/00 301A
H02J13/00 311T
(21)【出願番号】P 2020055136
(22)【出願日】2020-03-25
【審査請求日】2022-11-09
(73)【特許権者】
【識別番号】000003687
【氏名又は名称】東京電力ホールディングス株式会社
(74)【代理人】
【識別番号】100114890
【氏名又は名称】アインゼル・フェリックス=ラインハルト
(74)【代理人】
【識別番号】100116403
【氏名又は名称】前川 純一
(74)【代理人】
【識別番号】100162880
【氏名又は名称】上島 類
(72)【発明者】
【氏名】鈴木 健一
(72)【発明者】
【氏名】田中 晃司
(72)【発明者】
【氏名】猿田 健一
(72)【発明者】
【氏名】柴本 真吾
【審査官】杉田 恵一
(56)【参考文献】
【文献】特開2018-033213(JP,A)
【文献】特開2018-160949(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G06Q 50/06
H02J 3/00
H02J 13/00
(57)【特許請求の範囲】
【請求項1】
受電点を介して外部から電力の供給を受ける負荷に対して、前記外部からの電力とは別に電力を供給可能な補助電力源と、前記受電点における受電電力の値を入力とし、前記受電電力の値が所定の放電閾値を超えないように前記補助電力源の放電電力の値を制御するとともに、前記受電電力の値が所定の充電閾値を超えないように前記補助電力源の充電電力の値を制御する制御装置とを備えた電力調整設備に接続可能な電力取引支援装置であって、
電力取引における使用電力の増加または減少を要求するデマンドレスポンス指令に基づいて、前記補助電力源の目標値を取得する目標値取得部と、
前記電力調整設備において予め同値に設定された前記補助電力源の放電閾値および充電閾値と同じ値の電力閾値が設定された電力閾値設定部と、
前記電力閾値に前記補助電力源の目標値を加算して仮想受電電力を算出する仮想受電電力算出部と、
前記算出した仮想受電電力の値を前記受電点における受電電力の値に代えて前記電力調整設備の前記制御装置に対し出力する仮想受電電力出力部と、
を備えたことを特徴とする電力取引支援装置。
【請求項2】
請求項1記載の電力取引支援装置であって、
前記目標値取得部は、前記補助電力源の放電電力の値または充電電力の値を指定したデマンドレスポンス指令に基づいて前記補助電力源の目標値を算出する個別制御目標値算出部と、前記受電電力の増加または削減の量の値を指定したデマンドレスポンス指令と前記受電点における受電電力の値とに基づいて補助電力源の目標値を算出する受電点制御目標値算出部とを有し、個別制御目標値算出部または受電点制御目標値算出部で算出した補助電力源の目標値を取得する
ことを特徴とする電力取引支援装置。
【請求項3】
請求項1または2記載の電力取引支援装置であって、
前記仮想受電電力出力部が、前記受電点における受電電力の値に代えて前記仮想受電電力の値を前記電力調整設備の前記制御装置に対し出力することを許可する仮想受電電力出力許可部をさらに備える
ことを特徴とする電力取引支援装置。
【請求項4】
請求項2または請求項2を引用する
請求項3記載の電力取引支援装置であって、
前記受電点における電源周波数と基準周波数との差分である周波数偏差を、電力値である第1の周波数偏差補正値に変換し、前記第1の周波数偏差補正値に所定のオフセット値を加算して第2の周波数偏差補正値を算出する周波数偏差補正部をさらに備え、
前記個別制御目標値算出部は、前記デマンドレスポンス指令に含まれる放電電力の値または充電電力の値から前記第2の周波数偏差補正値を減算する指令値調整部を有する
ことを特徴とする電力取引支援装置。
【請求項5】
請求項1から4のいずれか1項記載の電力取引支援装置であって、
前記受電点における受電電力が契約電力を超える場合に、前記電力調整設備の前記制御装置に前記仮想受電電力の値を入力せずに、前記受電点における受電電力の値を入力する契約電力超過防止部をさらに備える
ことを特徴とする電力取引支援装置。
【請求項6】
受電点を介して外部から電力の供給を受ける負荷に対して、前記外部からの電力とは別に電力を供給可能な補助電力源と、前記受電点における受電電力の値を入力とし、前記受電電力の値が所定の放電閾値を超えないように前記補助電力源の放電電力の値を制御するとともに、前記受電電力の値が所定の充電閾値を超えないように前記補助電力源の充電電力の値を制御する制御装置とを備えた電力調整設備を電力取引に適合させるための電力取引支援方法であって、
前記電力取引における使用電力の増加または減少を要求するデマンドレスポンス指令に基づいて、前記補助電力源の目標値を取得する第1ステップと、
前記電力調整設備において予め同値に設定された前記補助電力源の放電閾値および充電閾値と同じ値の電力閾値を設定する第2ステップと、
前記電力閾値に前記補助電力源の目標値を加算して仮想受電電力を算出する第3のステップと、
前記算出した仮想受電電力の値を前記受電点における受電電力の値に代えて前記電力調整設備の前記制御装置に対し出力する第4ステップと、
を含むことを特徴とする電力取引支援方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は電力取引支援装置および電力取引方法に関する。
【背景技術】
【0002】
従来の電力網は、火力発電所や水力発電所などの大型の発電所で発電した電力を、電気の需要家である企業や家庭に供給する形態をとるのが一般的であった。近年、従来の電力網に代わる、バーチャルパワープラント(VPP:Virtual Power Plant)を用いた電力網が注目されている。バーチャルパワープラントは、太陽光発電、蓄電池、電気自動車、ネガワット(節電した電力)といった広く普及したエネルギーリソース(分散型のエネルギーリソース)を活用すべく、IoTを駆使した高度なエネルギーマネジメント技術によって分散型のエネルギーリソースを遠隔・統合制御し、あたかも1つの発電所のような機能を実現するものである。
【0003】
近年、バーチャルパワープラントの分散型のエネルギーリソースのひとつであるネガワット取引のための技術の開発が進みつつある。
【0004】
ここで、バーチャルパワープラントとは、電力系統に直接接続されている発電設備や蓄電設備等の分散型エネルギーリソースの保有者または第三者が、当該分散型エネルギーリソースを制御することで発電所と同等の機能を提供することをいう。バーチャルパワープラントは、例えば、リソースアグリゲーターやアグリゲーションコーディネーター等によって構成される。
【0005】
リソースアグリゲーターとは、需要家とバーチャルパワープラントサービス契約を直接締結して電力リソースの制御を行う事業者のことをいう。アグリゲーションコーディネーターとは、リソースアグリゲーターが制御した電力を束ね、一般送配電事業者や小売電気事業者と直接電力取引を行う事業者をいう。また、ネガワット取引とは、例えば送配電事業者やリソースアグリゲーター等の要請に応じた電力の需要削減量の取引を言う。
【0006】
例えば、特許文献1には、受電点の受電電力を契約電力閾値以下の電力に調整する受電電力調整機能を有する既設の蓄電池システムを用いてネガワット取引を実現するためのネガワット取引支援装置が開示されている。
【0007】
特許文献1に開示されたネガワット取引支援装置は、受電点の受電電力(以下、「受電点電力」とも称する。)を監視し、受電点電力が所定の閾値(負荷追従閾値)を超えないように蓄電池を放電して負荷に電力を供給する負荷追従機能を備えた蓄電池システムの前段に接続され、受電電力の見かけ上の値を調整して蓄電池システムに入力することにより、ネガワット取引を実現する装置である。
【0008】
具体的に、特許文献1に開示されたネガワット取引支援装置は、ネガワット取引のトリガとなるデマンドレスポンスを指示する指令(デマンドレスポンス指令)に含まれる受電電力の目標削減量に基づく値を受電点電力の計測値に加算して仮想受電電力を算出し、蓄電池システムに入力する。蓄電地システムは、実際の受電点電力よりも見かけ上大きい仮想受電電力に基づいて、蓄電池の放電電力を制御し、負荷に供給する。これにより、既存の蓄電池システムを改造することなく、デマンドレスポンス指令に応じた受電電力の削減を実現することができる。
【先行技術文献】
【特許文献】
【0009】
【発明の概要】
【発明が解決しようとする課題】
【0010】
ところで、バーチャルパワープラントを含む電力網において、ゴールデンウイークや年末年始などの電力需要が落ち込む期間に晴天が続いた場合、太陽光発電などの再生可能エネルギーによる供給電力が増加し、供給電力が需要電力を上回るおそれがある。この場合には、電力需給のバランスをとる必要がある。
【0011】
このような状況において電力需給のバランスをとる方法としては、送配電事業者と需要者との間において電力需要の増加量の取引であるポジワット取引を行うことが考えられる。ポジワット取引では、送配電事業者が、上述した使用電力の削減を指示するデマンドレスポンス指令(以下、「ネガワット指令」とも称する。)とは逆に、使用電力の増加を指示するデンマンドレスポンス指令(以下、「ポジワット指令」とも称する。)を需要家に送信し、需要家がポジワット指令に応じて使用電力を増加させることにより、需要家における使用電力の増加分が取引される。このポジワット取引を行うことにより、供給電力が需要電力を上回る状況下において、供給電力と需要電力とをバランスさせることが可能となる。
【0012】
しかしながら、一般的な受電電力調整機能を備えた蓄電池システムは、蓄電池の充電時に受電点電力が需要家の契約電力を超過することを防止するために、予め設定された所定の閾値(以下、「充電時受電点最大電力値」、「充電閾値」とも称する。)を超えないように蓄電池の充電電力を制御する機能(以下、「充電時受電点最大電力制限機能」とも称する。)を備えているが、外部からの指令に応じて、蓄電池の充電を制御する機能は有していない。
【0013】
また、上述した特許文献1に開示されたネガワット取引支援装置は、既存の蓄電池システム等をネガワット取引に利用するための機能を有するものであり、ポジワット取引を実現させる機能は有していない。
【0014】
このように、送配電事業者と需要者との間で行われる電力取引は、ネガワット取引とポジワット取引とがあるが、既存の蓄電池システムなどの電力調整設備はネガワット取引とポジワット取引との両方を切り替えて実行することはできない。
【0015】
本発明は、上記の課題に鑑みてなされたものであり、本発明の目的は、既存の電力調整設備を用いた電力取引におけるネガワット取引とポジワット取引とを適切に切り替えて最適な電力取引を実現することにある。
【課題を解決するための手段】
【0016】
本発明の代表的な実施の形態に係る電力取引支援装置は、受電点を介して外部から電力の供給を受ける負荷に対して、前記外部からの電力とは別に電力を供給可能な補助電力源と、前記受電点における受電電力の値を入力とし、前記受電電力の値が所定の放電閾値を超えないように前記補助電力源の放電電力の値を制御するとともに、前記受電電力の値が所定の充電閾値を超えないように前記補助電力源の充電電力の値を制御する制御装置とを備えた電力調整設備に接続可能な電力取引支援装置であって、電力取引における使用電力の増加または減少を要求するデマンドレスポンス指令に基づいて、前記補助電力源の目標値を取得する目標値取得部と、前記電力調整設備において予め同値に設定された前記補助電力源の放電閾値および充電閾値と同じ値の電力閾値が設定された電力閾値設定部と、前記電力閾値に前記補助電力源の目標値を加算して仮想受電電力を算出する仮想受電電力算出部と、前記算出した仮想受電電力の値を前記受電点における受電電力の値に代えて前記電力調整設備の前記制御装置に対し出力する仮想受電電力出力部と、を備えたことを特徴とする。
【発明の効果】
【0017】
本発明によれば、既存の電力調整設備を用いた電力取引におけるネガワット取引とポジワット取引とを切り替えて実現することが可能となる。
【図面の簡単な説明】
【0018】
【
図1】電力取引支援装置を既存の蓄電池システムに組み込んだ電力取引装置の構成例を示す図である。
【
図2】第1モード切替スイッチSW1および第2モード切替スイッチSW2のON・OFFを排他的に切り替える切替SWの構成例を示す図である。
【
図3】DR指令に蓄電池11の充電電力の値を500kWとする第1のDR指令値が含まれている場合のタイミングチャートである。
【
図4】DR指令に蓄電池11の放電電力の値を500kWとする第1のDR指令値が含まれている場合のタイミングチャートである。
【
図5】蓄電池11の充電電力の値を500kWとする第1のDR指令値が含まれているDR指令に従って制御しているときに、負荷が6000kWから7700kWに急増した場合のタイミングチャートである。
【
図6】ベースライン電力よりも500kW増加した受電電力とすることを指定した第2のDR指令値がDR指令に含まれている場合のタイミングチャートである。
【
図7】ベースライン電力よりも500kW減少した受電電力とすることを指定した第2のDR指令値がDR指令に含まれている場合のタイミングチャートである。
【
図8】電力取引支援装置を既存の蓄電池システムに組み込んだ電力取引装置の他の構成例を示す図である。
【発明を実施するための形態】
【0019】
1.実施の形態の概要
先ず、本願において開示される発明の代表的な実施の形態について概要を説明する。なお、以下の説明では、一例として、発明の構成要素に対応する図面上の参照符号を、括弧を付して記載している。
【0020】
[1]本発明の代表的な実施の形態に係る電力取引支援装置(3)は、受電点を介して外部から電力の供給を受ける負荷(2)に対して、前記外部からの電力とは別に電力を供給可能な補助電力源(11)と、前記受電点における受電電力の値を入力とし、前記受電電力の値が所定の放電閾値を超えないように前記補助電力源(11)の放電電力の値を制御するとともに、前記受電電力の値が所定の充電閾値を超えないように前記補助電力源の充電電力の値を制御する制御装置とを備えた電力調整設備(1)に接続可能な電力取引支援装置(3)であって、電力取引における使用電力の増加または減少を要求するデマンドレスポンス指令に基づいて、前記補助電力源(11)の目標値を取得する目標値取得部(30、31)と、前記電力調整設備(1)において予め同値に設定された前記補助電力源(11)の放電閾値および充電閾値と同じ値の電力閾値が設定された電力閾値設定部(32)と、前記電力閾値に前記補助電力源(11)の目標値を加算して仮想受電電力を算出する仮想受電電力算出部(33)と、前記算出した仮想受電電力の値を前記受電点における受電電力の値に代えて前記電力調整設備の前記制御装置に対し出力する仮想受電電力出力部(35)と、を備えたことを特徴とする。
【0021】
[2]上記[1]の電力取引支援装置において、前記目標値取得部は、前記補助電力源の放電電力の値または充電電力の値を指定したデマンドレスポンス指令に基づいて前記補助電力源の目標値を算出する個別制御目標値算出部と、前記受電電力の増加または削減の量の値を指定したデマンドレスポンス指令と前記受電点における受電電力の値とに基づいて補助電力源の目標値を算出する受電点制御目標値算出部とを有し、個別制御目標値算出部または受電点制御目標値算出部で算出した補助電力源の目標値を取得してもよい。
【0022】
[3]上記[1]または[2]の電力取引支援装置において、前記仮想受電電力出力部が、前記受電点における受電電力の値に代えて前記仮想受電電力の値を前記電力調整設備の前記制御装置に対し出力することを許可する仮想受電電力出力許可部をさらに備えていてもよい。
【0023】
[4]上記[2]または[3]のいずれか1つに記載の電力取引支援装置において、前記受電点における電源周波数と基準周波数との差分である周波数偏差を、電力値である第1の周波数偏差補正値に変換し、前記第1の周波数偏差補正値に所定のオフセット値を加算して第2の周波数偏差補正値を算出する周波数偏差補正部をさらに備え、
前記個別制御目標値算出部は、前記デマンドレスポンス指令に含まれる放電電力の値または充電電力の値から前記第2の周波数偏差補正値を減算する指令値調整部を有していてもよい。
【0024】
[5]上記[1]から[4]のいずれか1つに記載の電力取引支援装置において、前記受電点における受電電力が契約電力を超える場合に、前記電力調整設備の前記制御装置に前記仮想受電電力の値を入力せずに、前記受電点における受電電力の値を入力する契約電力超過防止部をさらに備えていてもよい。
【0025】
[6]本発明の代表的な実施の形態に係る電力取引支援方法は、受電点を介して外部から電力の供給を受ける負荷に対して、前記外部からの電力とは別に電力を供給可能な補助電力源と、前記受電点における受電電力の値を入力とし、前記受電電力の値が所定の放電閾値を超えないように前記補助電力源の放電電力の値を制御するとともに、前記受電電力の値が所定の充電閾値を超えないように前記補助電力源の充電電力の値を制御する制御装置とを備えた電力調整設備を電力取引に適合させるための電力取引支援方法であって、前記電力取引における使用電力の増加または減少を要求するデマンドレスポンス指令に基づいて、前記補助電力源の目標値を取得する第1ステップと、前記電力調整設備において予め同値に設定された前記補助電力源の放電閾値および充電閾値と同じ値の電力閾値を設定する第2ステップと、前記電力閾値に前記補助電力源の目標値を加算して仮想受電電力を算出する第3のステップと、前記算出した仮想受電電力の値を前記受電点における受電電力の値に代えて前記電力調整設備の前記制御装置に対し出力する第4ステップと、を含むことを特徴とする。
【0026】
2.実施の形態の具体例
以下、本発明の実施の形態の具体例について図を参照して説明する。なお、以下の説明において、各実施の形態において共通する構成要素には同一の参照符号を付し、繰り返しの説明を省略する。
【0027】
(第1の実施形態)
図1は、本発明の実施形態に係る電力取引支援装置を既存の蓄電池システムに組み込んだ電力取引装置の構成を示す図である。
【0028】
電力取引装置100は、例えば、需要家の敷地内に設置され、バーチャルパワープラントを構成するリソースアグリゲーター等から送信されるデマンドレスポンス指令(以下、「DR指令」とも称する。)に応じて、蓄電池の電力を制御することにより、受電電力を増加(ポジワット)または減少(ネガワット)させて電力取引を可能にするシステムである。
【0029】
ここでバーチャルパワープラントとは、一般送配電事業者や小売電気事業者のことをいう。リソースアグリゲーターとは、需要家とバーチャルパワープラントサービス契約を直接締結して電力リソースの制御を行う事業者のことをいう。
【0030】
図1に示すように、電力取引装置100は、蓄電池システム1と、蓄電池システム1(制御装置10)の前段に設けられる電力取引支援装置3と、を備えている。
【0031】
蓄電池システム1は、需要家の受電点における受電電力が供給される負荷2に対して、上記受電電力とは別に電力を供給し、受電点における受電電力によって充電可能な蓄電池を備えた設備である。例えば、蓄電池システム1は、需要家の敷地内に既設のシステムである。
【0032】
図1に示すように、蓄電池システム1は、制御装置10、蓄電池11、および電力変換部12を備えている。蓄電池システム1は、動作モードとして、蓄電池11を充電する充電モードと、蓄電池11を放電する放電モードとを有している。蓄電池システム1は、充電モードにおいて、受電電力に応じて蓄電池11の充電電力が変化するように動作し、放電モードにおいて、受電電力に応じて蓄電池11の放電電力が変化するように動作する。
【0033】
蓄電池11は、繰り返しの充電が可能な二次電池であり、例えばナトリウム・硫黄電池である。
【0034】
電力変換部12は、後述する制御装置10によって制御され、蓄電池11と、負荷2と、系統との間で相互に電力の変換を行う。電力変換部12は、例えば交直変換装置である。例えば、電力変換部12は、充電モードにおいて、制御装置10からの指示に応じて、受電点からの交流電力(AC)を直流電力(DC)に変換して蓄電池11に供給し、放電モードにおいて、制御装置10からの指示に応じて、蓄電池11からの直流電力を交流電力に変換して負荷2に供給する。放電モードにおいては、蓄電池11からの電力Pcと受電点からの電力とが負荷2に供給されることにより、外部(系統)から受電点に供給される電力(受電点電力)を削減することが可能となる。
【0035】
制御装置10は、電力変換部12を制御して蓄電池11の充放電を制御するための装置である。制御装置10は、ハードウェア資源として、例えば、CPU等のプロセッサと、RAM、ROM等の各種記憶装置と、タイマ(カウンタ)と、A/D変換回路と、D/A変換回路と、入出力I/F回路等の周辺回路とがバスを介して互いに接続された構成を有するプログラム処理装置(例えば、マイクロコントローラ)を備えている。
【0036】
図1に示すように、制御装置10は、蓄電池11の放電電力および充電電力を調整する機能を実現するための機能ブロックとして、放電制御部14と、充電制御部15と、電力調整値出力部16とを有している。これらの機能ブロックは、例えば、上述した制御装置10を構成するハードウェア資源としてのプログラム処理装置(例えば、マイクロコントローラ)において、プロセッサが記憶装置に記憶されたプログラムに従って各種演算を実行し、入出力I/F回路やタイマ等の周辺回路を制御することによって、実現される。なお、本実施の形態では、制御装置10の上記機能ブロックがプログラム処理によって実現されるものとして説明するが、一部または全ての機能ブロックがハードウェアロジック回路等によって実現されていてもよい。
【0037】
負荷電力算出部13は、例えば、入力された受電電力の値と蓄電池11の電力Pcの値とを加算して、負荷電力の値PLBを算出する。
【0038】
本実施形態では、蓄電池11が放電しているときの電力(放電電力)Pcを正の値で表し、蓄電池11が充電しているときの電力(充電電力)Pcを負の値で表すものとする。
【0039】
放電制御部14は、放電モードにおいて、蓄電池11の放電電力を制御する。放電制御部14は、負荷電力算出部13によって算出された負荷電力PLBの値に基づいて、蓄電池11の放電電力の目標値である放電電力調整値Pdaを算出する。
【0040】
次に、放電制御部14の詳細について説明する。
【0041】
放電制御部14は、負荷電力PLBの値を監視し、負荷電力PLBの値が予め設定された閾値(以下、「放電閾値」とも称する。)PAを超えないように、放電電力調整値Pdaを算出する。具体的に、放電制御部14は、放電閾値設定部140、放電電力調整値算出部141、および出力制限部142を有している。
【0042】
放電閾値設定部140は、放電閾値PAを設定する。ここで、放電閾値PAは、蓄電池11の放電時に受電点の受電電力が需要家の契約電力を超えないように蓄電池11の放電量を制限するための閾値である。蓄電池システム1では、放電閾値PAを基準として、蓄電池11の放電電力Pcが調整される。
【0043】
放電閾値PAとしては、例えば、需要家の契約電力に準じた値が設定される。例えば、放電閾値PAを契約電力よりも低い値に設定することにより、蓄電池システム1が余裕をもって動作することが可能となる。なお、放電閾値PAは1つに限られず、複数設定しておき、どの閾値に基づいて制御を行うかを選択できるようにしてもよい。
【0044】
放電電力調整値算出部141は、放電電力調整値Pdaを算出する。放電電力調整値Pdaは、受電点の受電電力が放電閾値PAを超えないように蓄電池11を放電するための、蓄電池11の放電電力の目標値である。
【0045】
具体的には、放電電力調整値算出部141は、負荷電力算出部13によって算出された負荷電力PLBの値から放電閾値PAを減算して、放電電力調整値Pdaを算出する。
【0046】
出力制限部142は、放電電力調整値算出部141によって算出された放電電力調整値Pdaが入力され、入力された放電電力調整値Pdaが正の値(例えば+9999から0までの範囲の値)である場合には、入力された放電電力調整値Pdaをそのまま出力し、放電電力調整値Pdaが負の値である場合には、放電電力調整値Pdaを“0”として出力する。
【0047】
充電制御部15は、充電モードにおいて、蓄電池11の充電電力を制御する。充電制御部15は、負荷電力算出部13によって算出された負荷電力PLBの値に基づいて、蓄電池11の充電電力の目標値である充電電力調整値Pcaを算出する。
【0048】
次に、充電制御部15の詳細について説明する。
【0049】
充電制御部15は、負荷電力PLBの値を監視し、負荷電力PLBの値が予め設定された閾値(以下、「充電閾値」とも称する。)PBを超えないように、充電電力調整値Pcaを算出する。具体的に、充電制御部15は、充電閾値設定部150、充電電力調整値算出部151、出力制限部152、および最大値選択部153を有している。
【0050】
充電閾値設定部150は、充電閾値PBを設定する。ここで、充電閾値PBは、蓄電池11の充電時に受電点の受電電力が需要家の契約電力を超えないように蓄電池11の充電量を制限するための閾値である。蓄電池システム1では、充電閾値PBを基準として、蓄電池11の充電電力Pcが調整される。
【0051】
充電閾値PBとしては、例えば、需要家の契約電力に準じた値が設定される。例えば、充電閾値PBを契約電力よりも低い値に設定することにより、蓄電池システム1が余裕をもって動作することが可能となる。なお、充電閾値PBは1つに限られず、複数設定しておき、どの閾値に基づいて制御を行うかを選択できるようにしてもよい。
【0052】
充電電力調整値算出部151は、充電電力調整値Pcaを算出する。充電電力調整値Pcaは、受電点の受電電力が充電閾値PBを超えないように蓄電池11を充電するための、蓄電池11の充電電力の目標値である。
【0053】
具体的には、充電電力調整値算出部151は、負荷電力算出部13によって算出された負荷電力PLBの値から充電閾値PBを減算して、充電電力調整値Pcaを算出する。
【0054】
出力制限部152は、充電電力調整値算出部151によって算出された充電電力調整値Pcaが入力され、入力された充電電力調整値Pcaが負の値(例えば-9999から0までの範囲の値)である場合には、入力された充電電力調整値Pcaをそのまま出力し、充電電力調整値Pcaが正の値である場合には、充電電力調整値Pcaを“0”として出力する。
【0055】
最大値選択部153は、出力制限部152から出力された充電電力調整値Pcaと、充電電力設定値Pcstとが入力され、いずれか大きい方を電力調整値出力部16に対して出力する。
【0056】
ここで、充電電力設定値Pcstは、蓄電池11の充電電力の上限値であり、例えば、ユーザが蓄電池システム1の入力インタフェースを操作することにより、予め設定されている。
【0057】
例えば、充電電力設定値Pcstが-2000kW、充電電力調整値算出部151によって算出された充電電力調整値Pcaが-3000kWである場合、最大値選択部153は、充電電力設定値Pcst(=-2000kW)を充電電力調整値Pcaとして出力する。最大値選択部153から出力された充電電力調整値Pcaは、電力調整値出力部16を介して電力変換部12に入力される。
【0058】
このように、最大値選択部153が充電電力調整値Pcaと充電電力設定値Pcstのいずれか大きい方を選択することにより、受電点の受電電力(負荷2の電力)が充電閾値PBよりも十分に低く、蓄電池11に対して多くの充電が可能な状況であっても、蓄電池11の充電電力は充電電力設定値Pcst以下に制限されることになる。
【0059】
電力調整値出力部16は、放電制御部14から入力された放電電力調整値Pdaまたは充電制御部15から入力された充電電力調整値Pcaを、電力変換部12に対して出力する。例えば、電力調整値出力部16は、放電制御部14から入力された放電電力調整値Pdaが入力された場合には、その放電電力調整値Pdaを電力変換部12に対して出力し、充電制御部15から入力された充電電力調整値Pcaが入力された場合には、その充電電力調整値Pcaを電力変換部12に対して出力する。
【0060】
電力変換部12は、電力調整値出力部16から入力された電力調整値に従って蓄電池11の充放電を制御する。電力変換部12は、放電モードにおいて、蓄電池11の放電電力が放電電力調整値Pdaに一致するように蓄電池11の放電を制御し、充電モードにおいて、蓄電池11の充電電力が充電電力調整値Pcaに一致するように蓄電池11の充電を制御する。
【0061】
次に、電力取引支援装置3について説明する。
【0062】
電力取引支援装置3は、上述した既存の蓄電池システム1におけるフィードバック系の目標値に代えて、電力取引のトリガとなるDR指令値(デマンドレスポンスで指定する値)で指定された値に基づいて決定した値を新たな目標値として、蓄電池システム1を制御する装置である。本実施形態では、受電点の電力を減少または蓄電池11を放電させるDR指令(ネガワット指令)を正の値で表し、受電点の電力を増加または蓄電池11を充電させるDR指令(ポジワット指令)を負の値で表すものとする。
【0063】
電力取引支援装置3は、ハードウェア資源として、例えば、CPU等のプロセッサと、RAM、ROM等の各種記憶装置と、タイマ(カウンタ)と、A/D変換回路と、D/A変換回路と、入出力I/F回路等の周辺回路とがバスを介して互いに接続された構成を有するプログラム処理装置(例えば、マイクロコントローラ)を備えている。また、電力取引支援装置3は、例えば、リソースアグリゲーター等の上位装置や蓄電池システム1との間で有線または無線により通信を行うための通信インタフェースおよび通信回路等も備えている。また、電力取引支援装置3は、その一部または全部の機能をハードウェアロジック回路等によって実現されていてもよい。
【0064】
図1に示すように、電力取引支援装置3は、蓄電池システム1を用いた電力取引を支援する機能を実現するための機能ブロックとして、個別機器制御部30と、受電点制御部31と、電力閾値設定部32と、仮想受電電力算出部33と、仮想受電電力調整部34と、仮想受電電力出力部35と、誤充電防止部36と、周波数ドループ制御部(周波数偏差補正部)37と、契約電力超過防止部38とを備えて構成されている。
【0065】
個別機器制御部30と受電点制御部31とは、電力取引における使用電力の増加または減少を要求するデマンドレスポンス指令に基づいて、蓄電池11の目標値を取得する。
【0066】
本実施形態のDR指令には、蓄電池11の放電電力の値または充電電力の値をDR指令値(第1のDR指令値)として含むものと、受電点の受電電力を基準とした放電電力の値または充電電力の値をDR指令値(第2のDR指令値)として含むものとがある。第1のDR指令値は、蓄電池11の出力を直接的に指定した値であるのに対し、第2のDR指令値は、ベースラインとよばれる当該需用者の過去の電力使用量に基づいて推定される受電点の受電電力を基準として増加または減少させる電力を指定した値である。
【0067】
本実施形態の電力取引支援装置3では、DR指令値を個別機器制御部30が処理するモードを第1モードと、DR指令値を受電点制御部31が処理するモードを第2モードとを切り替える切替手段を備えている。本実施形態の電力取引支援装置3では、DR指令値が第1のDR指令値であるときには第1モードとし、第2のDR指令値であるときには第2モードとする切替手段で2つのモードを切り替えることにより、第1のDR指令値を個別機器制御部30が処理し、第2のDR指令値を受電点制御部31が処理するように構成している。
【0068】
ここで、切替手段について説明する。個別機器制御部30には、第1モード切替スイッチSW1が設けられており、受電点制御部31には、第2モード切替スイッチSW2が設けられている。これらの第1モード切替スイッチSW1および第2モード切替スイッチSW2は、一方がON(閉状態)のときに他方がOFF(開状態)となる、いわゆる排他的にON・OFFするスイッチである。個別機器制御部30と受電点制御部31とは、第1モード切替スイッチSW1および第2モード切替スイッチSW2によって、どちらか一方だけが機能するように構成されている。
【0069】
図2は、第1モード切替スイッチSW1および第2モード切替スイッチSW2のON・OFFを排他的に切り替える切替SWの構成例を示す図である。
図2は、切替SWをハードウェアロジック回路で構成した例である。
【0070】
切替SWは、2つの入力n1、n2の一方の入力n1がNOTゲートで反転され、1つの出力が2つの出力Out1、Out2に分岐され、その一方の出力Out2は、NOTゲートによって反転される構成のORゲートによって構成されている。
【0071】
2つの入力n1、n2には、DR指令に応じた値が入力される。入力n1には、DR発動中であるか否かを示す信号が入力され、入力n2には、DR指令値が第1のDR指令値であるか否かを示す信号が入力される。2つの出力Out1、Out2のうち出力Out1は、第1モード切替スイッチSW1に接続され、出力Out2は、第2モード切替スイッチSW2に接続されている。入力n1は、DR発動中にHigh状態にされ、入力n2は、第1モードであるときにHigh状態にされる。2つの出力Out1、Out2は、Low状態でOFF(開状態)となり、High状態でON(閉状態)となる。ここで、Low状態を「0」、High状態を「1」として切替SWの動作を説明する。
【0072】
1)第1モード(第1のDR指令値を個別機器制御部30が処理するモード)
入力n1には、DR発動中を示す「1」が入力され、入力n2には第1モードを示す「1」が入力される。その結果、出力Out1は「1」、出力Out2は「0」となる。したがって、第1モード切り替えスイッチSW1が「ON」、第2モード切り替えスイッチSW2が「OFF」となる。
【0073】
2)第2モード(DR指令値を受電点制御部31が処理するモード)
入力n1には、DR発動中を示す「1」が入力され、入力n2には第1モードでないことを示す「0」が入力される。その結果、出力Out1は「0」、出力Out2は「1」となる。したがって、第1モード切り替えスイッチSW1が「OFF」、第2モード切り替えスイッチSW2が「ON」となる。
【0074】
図1に戻って、個別機器制御部30は、DR指令が第1のDR指令値を含む場合に、蓄電池11の放電電力の目標値または充電電力の目標値を算出する。個別機器制御部30は、指令値調整部301と、第1モード切替スイッチSW1とを有している。第1モード切替スイッチSW1は、第1モードが選択されたときにONとなり、個別機器制御部30が第1のDR指令値に基づく蓄電池11の目標値を算出する。個別機器制御部30は、算出した蓄電池11の目標値を仮想受電電力算出部33に出力する。
【0075】
個別機器制御部30で算出される蓄電池11の目標値は、DR指令による蓄電池11の放電電力の値または充電電力の値そのままであってもよいが、この実施形態では、周波数ドループを実行するための補正値が入力され、それを減算することにより蓄電池11の目標値を算出している。
【0076】
受電点制御部31は、DR指令が第2のDR指令値を含む場合に、蓄電池11の放電電力の目標値または充電電力の目標値を算出する。受電点制御部31は、ベースライン加算部311と、受電点電力減算部312と、第2モード切り替えスイッチSW2とを有している。第2モード切替スイッチSW2は、第2モードが選択されたときにONとなり、受電点制御部31がDR指令値に基づく蓄電池11の目標値を算出する。受電点制御部31は、算出した蓄電池11の目標値を仮想受電電力算出部33に出力する。
【0077】
ベースライン加算部311は、第2のDR指令値にベースラインBLの値を加算することによって、ベースライン加算値を算出する。第2のDR指令値は、ベースラインの電力に対してDR指令によって増加または削減すべき正味の電力である。したがって、ベースライン加算値は、DR指令により調整されるべき受電点の受電電力の目標値と等しいことになる。ベースライン加算部311は、算出したベースライン加算値を受電点電力減算部312に出力する。
【0078】
受電点電力減算部312は、DR指令による受電点の受電電力の目標値(ベースライン加算値)を、実際の受電点における受電電力(受電電力計測値)PjAから減算する。受電点の受電電力の目標値と実際の受電点における受電電力との差分の値は、第2のDR指令値を実現するために必要な蓄電池11の放電電力の目標値または充電電力の目標値と等しい。ベースラインBLの値と受電電力計測値PjAの値が一致していないと、算出される目標値は、第2のDR指令値で指令された値と異なる。受電点電力減算部312は、算出した蓄電池11の目標値を仮想受電電力算出部33へと出力する。
【0079】
電力閾値設定部32には、放電閾値PAおよび充電閾値PBに設定した値と同一の値が閾値(以下、「電力閾値」とも称する。)PDとして設定される。
【0080】
仮想受電電力算出部33は、個別機器制御部30で算出された蓄電池11の目標値が入力されると、電力閾値PDと加算し、仮想受電電力PjBを算出する。仮想受電電力算出部33は、同様に、受電点制御部31で算出された蓄電池11の目標値が入力されると、電力閾値PDから加算して、仮想受電電力PjBを算出する。仮想受電電力算出部33は、算出した仮想受電電力PjBを仮想受電電力調整部34に出力する。
【0081】
仮想受電電力調整部34は、DR指令が第1のDR指令値を含む場合に、仮想受電電力PjBを蓄電池11の出力で調整して仮想受電電力出力部35へと出力する。仮想受電電力調整部34は、DR指令が第2のDR指令値を含む場合には、受け取った仮想受電電力PjBを仮想受電電力出力部35へとそのまま出力する。具体的には、仮想受電電力調整部34は、第1モード切替スイッチSW1を有し、第1モード切替スイッチSW1がONのときに、蓄電池11の出力の値を入力して、受け取った仮想受電電力PjBに加算する。
【0082】
仮想受電電力出力部35は、仮想受電電力PjBの値を受け取ると、受け取った仮想受電電力の値PjBを受電電力計測値PjAに代えて蓄電池システム1の制御装置10に対し出力する。
【0083】
誤充電防止部36は、電力取引支援装置3の運転中のみ、仮想受電電力出力部35が、仮想受電電力PjBの値を、受電電力計測値PjAに代えて蓄電池システム1の制御装置10に対し出力することを許可する。具体的には、例えば、仮想受電電力出力部35の2つの入力部に、仮想受電電力PjBの値の入力を許可する切替部361と、受電電力計測値PjAの値の入力を許可する切替部362と、電力取引支援装置3の運転中は切替部361のみがアクティブとなり、電力取引支援装置3の運転停止中は切替部362のみがアクティブとなる信号を入力するスイッチ363およびNOTゲート364によって構成することができる。誤充電防止部36は、仮想受電電力出力部35への入力を切り替えることによって、電力取引支援装置3の運転中か否かに応じて、仮想受電電力出力部35の出力を仮想受電電力PjBか受電電力計測値PjAかのいずれかに切り替えることができればよく、仮想受電電力出力部35自体に誤充電防止部36の機能をもたせてもよい。
【0084】
本実施形態の電力取引装置100では、蓄電池システム1を充電モードに設定して充電制御部15を機能させることが必要となる。しかしながら、DR指令に応じた動作の開始前に、充電閾値PBとして設定される値よりも小さい受電電力計測値PjAが入力されると、充電する必要がないにもかかわらず、蓄電池11が充電されてしまう。これを防止するために、誤充電防止部36は、充電モードに設定された後に、充電閾値PBよりも小さい受電電力計測値PjAが制御装置10に入力されないように、切り替えることができる。その場合、蓄電池システム1を充電モードに切り替える前に、誤充電防止部36により、電力取引支援装置3運転中に切り替える必要がある。
【0085】
周波数ドループ制御部37は、周波数ドループ制御を実行する。具体的には、受電点における電源周波数と基準周波数との差分である周波数偏差を、電力値である第1の周波数偏差補正値に変換し、前記第1の周波数偏差補正値に所定のオフセット値を加算して第2の周波数偏差補正値を算出する。
【0086】
周波数ドループ制御部37により、電力取引を実行する際に、電源周波数が低下したときに出力を増加させ、電源周波数が上昇したときに出力を減少させるといういわゆるガバナフリー機能を実現することができる。
【0087】
契約電力超過防止部38は、仮想受電電力PjBによって蓄電池システム1が制御された結果、受電電力計測値PjAが契約電力を超えないように調整する。具体的には、受電電力計測値PjAから契約電力の値を減算した差分値(契約電力差分値)がプラスとなった場合に、契約電力差分値が0となるような補正値を算出する。補正値は、仮想受電電力調整部34によって、仮想受電電力PjBの調整値を算出する際に加算される。
【0088】
次に、第1の実施形態に係る電力取引装置の動作について、図を用いて説明する。
【0089】
図3から
図7は、
図1の電力取引装置100におけるDR指令に応じた動作の開始(発動)前後の電力の変化を示すタイミングチャートである。
図3から
図7に示すタイミングチャートには、負荷電力PL、受電電力計測値PjA、受電電力補正値(仮想受電電力PjB)、蓄電池出力Pcの変化が示されている。電力取引装置100は、DR指令に含まれるDR指令値によって異なる動作をするので、DR指令値ごとにそれぞれの動作について説明する。なお、この例では、DR指令に応じた動作の開始前の負荷電力PLは5000kWであり、ベースラインBLは5200kWであるとする。
【0090】
第1の実施形態に係る電力取引装置100は、電力取引支援装置3の運転の前に、あらかじめ蓄電池システム1の制御装置10の放電閾値PA、充電閾値PB、電力閾値PDを同じ値に設定するとともに、蓄電池システム1を充電モードとするために充電電力設定値Pcstを例えば-2000kWに設定する。この例では、放電閾値PA、充電閾値PB、電力閾値PDはそれぞれ7000kWに設定されているものとする。
【0091】
(蓄電池11の充電電力の値を指定した第1のDR指令値)
図3は、DR指令に蓄電池11の充電電力の値を500kWとする第1のDR指令値が含まれている場合のタイミングチャートである。
【0092】
図3に示すように、DR指令に応じた動作の開始(発動)前は、仮想受電電力算出部33は、電力閾値PDに設定された7000kWを仮想受電電力PjBとして算出し、受電電力補正値として出力するが、制御装置10の放電電力調整値算出部141によって算出された放電電力調整値Pdaは0kWとなる。同様に、充電電力調整値算出部151によって算出された充電電力調整値Pcaも0kWとなる。その結果、蓄電池出力Pcは0kWである。
【0093】
次に、DR指令に応じた動作が開始されると、DR指令に含まれる第1のDR指令値に基づいて、個別機器制御部30が-500kWと算出し、仮想受電電力算出部33が、仮想受電電力PjBを6500kWと算出する。このときはまだ蓄電池出力Pcは0kWなので、仮想受電電力出力部35は6500kW(受電電力補正値)を出力する。
【0094】
6500kWの仮想受電電力PjBを受け取った制御装置10は、放電電力調整値算出部141によって放電電力調整値Pdaが-500kWと算出されるが、出力制限部142で0kWとなる。放電電力調整値Pdaの0kWは、電力調整値出力部16に入力される。
【0095】
充電電力調整値算出部151によっても同様に、充電電力調整値Pcaが-500kWと算出される。最大値選択部153は、出力制限部152から出力された充電電力調整値Pcaの-500kWと、充電電力設定値Pcstである-2000kWとが入力されるので、最大値である-500kWが選択され、電力調整値出力部16に出力する。
【0096】
電力調整値出力部16は、充電制御部15から入力された充電電力調整値Pcaである-500kWを、電力変換部12に対して出力する。電力変換部12は、電力調整値出力部16から入力された電力調整値に従って蓄電池11が500kW充電を行うように制御すると、蓄電池出力Pcが-500kW(すなわち500kWの充電)となる。
【0097】
その後、仮想受電電力算出部33において仮想受電電力PjBを6500kWと算出するが、仮想受電電力調整部34は、仮想受電電力PjBの6500kWを蓄電池出力Pcの-500kWで調整する。具体的には、仮想受電電力PjBの6500kWから蓄電池出力Pcの-500kWを減算して、仮想受電電力PjBを7000kWに調整する。仮想受電電力出力部35は7000kW(受電電力補正値)を出力する。
【0098】
7000kWの仮想受電電力PjBを受け取った制御装置10は、負荷電力算出部13において入力された仮想受電電力PjBの7000kWと蓄電池出力Pcの-500kWとを加算して、負荷電力の値PLBを6500kWと算出する。放電電力調整値算出部141によって、負荷電力の値PLBを6500kWから放電閾値7000kWを減算して-500kWを得るが、出力制限部142で0kWとなる。放電電力調整値Pdaとして0kWが電力調整値出力部16に入力される。
【0099】
充電電力調整値算出部151によっても同様に、充電電力調整値Pcaが-500kWと算出される。最大値選択部153は、出力制限部152から出力された充電電力調整値Pcaの-500kWと、充電電力設定値Pcstである-2000kWとが入力されるので、最大値である-500kWが選択され、電力調整値出力部16に出力する。
【0100】
電力調整値出力部16は、充電制御部15から入力された充電電力調整値Pcaの-500kWを、電力変換部12に対して出力する。電力変換部12は、電力調整値出力部16から入力された電力調整値に従って蓄電池11が500kW充電を行うように制御し、蓄電池出力Pcが-500kWに制御される。このように、蓄電池出力Pcが-500kWに制御されることによって、500kWのポジワットが実現されたことになる。
【0101】
(蓄電池11の放電電力の値を指定した第1のDR指令値)
図4は、DR指令に蓄電池11の放電電力の値を500kWとする第1のDR指令値が含まれている場合のタイミングチャートである。
【0102】
図4に示すように、DRDR指令に応じた動作の開始(発動)前は、仮想受電電力算出部33は、電力閾値PDに設定された7000kWを仮想受電電力PjBとして算出し、受電電力補正値として出力するが、制御装置10の放電電力調整値算出部141によって算出された放電電力調整値Pdaは0kWとなる。同様に、充電電力調整値算出部151によって算出された充電電力調整値Pcaも0kWとなる。その結果、蓄電池出力Pcは0kWである。
【0103】
次に、DRが開始されると、DR指令に含まれる第1のDR指令値に基づいて、個別機器制御部30が500kWと算出し、仮想受電電力算出部33が、仮想受電電力PjBを7500kWと算出する。このときはまだ蓄電池出力Pcは0kWなので、仮想受電電力出力部35は7500kW(受電電力補正値)を出力する。
【0104】
7500kWの仮想受電電力PjBを受け取った制御装置10は、放電電力調整値算出部141によって放電電力調整値Pdaを500kWと算出する。算出された放電電力調整値Pdaの500kWは、電力調整値出力部16に入力される。
【0105】
充電電力調整値算出部151によっても同様に、充電電力調整値Pcaが500kWと算出されるが、出力制限部152で0kWとなる。最大値選択部153は、出力制限部152から出力された充電電力調整値Pcaの0kWと、充電電力設定値Pcstである-2000kWとが入力されるので、最大値である0kWが選択され、電力調整値出力部16に出力する。
【0106】
電力調整値出力部16は、放電制御部14から入力された放電電力調整値Pdaである500kWを、電力変換部12に対して出力する。電力変換部12は、電力調整値出力部16から入力された電力調整値に従って蓄電池11が500kW放電を行うように制御すると、蓄電池出力Pcが500kWとなる。
【0107】
その後、仮想受電電力算出部33において仮想受電電力PjBを7500kWと算出するが、仮想受電電力調整部34は、仮想受電電力PjBの7500kWを蓄電池出力Pcの500kWで調整する。具体的には、仮想受電電力PjBの7500kWから蓄電池出力Pcの500kWを減算して、仮想受電電力PjBを7000kWに調整する。仮想受電電力出力部35は7000kW(受電電力補正値)を出力する。
【0108】
7000kWの仮想受電電力PjBを受け取った制御装置10は、負荷電力算出部13において入力された仮想受電電力PjBの7000kWと蓄電池出力Pcの500kWとを加算して、負荷電力の値PLBを7500kWと算出する。放電電力調整値算出部141によって、負荷電力の値PLBを7500kWから放電閾値7000kWを減算して放電電力調整値Pdaを500kWと算出する。算出された放電電力調整値Pdaの500kWは、電力調整値出力部16に入力される。
【0109】
充電電力調整値算出部151によっても同様に、充電電力調整値Pcaが500kWと算出されるが、出力制限部152で0kWとなる。最大値選択部153は、出力制限部152から出力された充電電力調整値Pcaの0kWと、充電電力設定値Pcstである-2000kWとが入力されるので、最大値である0kWが選択され、電力調整値出力部16に出力する。
【0110】
電力調整値出力部16は、放電制御部14から入力された放電電力調整値Pdaである500kWを、電力変換部12に対して出力する。電力変換部12は、電力調整値出力部16から入力された電力調整値に従って蓄電池11が500kW放電を行うように制御し、蓄電池出力Pcが500kWに制御される。このように、蓄電池出力Pcが500kWに制御されることによって、500kWのネガワットが実現されたことになる。
【0111】
(蓄電池11の充電電力の値を指定した第1のDR指令値における負荷の急増時)
、
図5は、蓄電池11の充電電力の値を500kWとする第1のDR指令値が含まれているDR指令に従って制御しているときに、負荷が6000kWから7700kWに急増した場合のタイミングチャートである。
【0112】
この場合、負荷が6000kWの状態では、蓄電池出力Pcは-500kWである。すなわち、蓄電池出力Pcは500kWの充電をしている。この状態で負荷が7700kWに増加すると、受電電力計測値PjAは8200kWに急増する。
【0113】
受電電力計測値PjAが8200kWに急増すると、契約電力の値7500kWを超えるので、契約電力超過防止部38は、受電電力計測値PjAである8200kWから契約電力の値7500kWを減算した差分値700kWが0となるような補正値を算出する。補正値は、仮想受電電力調整部34によって、仮想受電電力PjBの調整値を算出する際に加算される。その結果、受電電力計測値PjAが7500kWとなるように、蓄電池出力Pcが200kWに制御される。すなわち、蓄電池出力Pcは200kWの放電をすることになる。
【0114】
(受電点の受電電力を基準とした充電電力の値を指定した第2のDR指令値)
図6は、ベースライン電力よりも500kW増加した受電電力とすることを指定した第2のDR指令値がDR指令に含まれている場合のタイミングチャートである。
【0115】
図6に示すように、DR指令に応じた動作の開始(発動前)は、仮想受電電力算出部33は、電力閾値PDに設定された7000kWを仮想受電電力PjBとして算出し、受電電力補正値として出力するが、制御装置10の放電電力調整値算出部141によって算出された放電電力調整値Pdaは0kWとなる。同様に、充電電力調整値算出部151によって算出された充電電力調整値Pcaも0kWとなる。その結果、蓄電池出力Pcは0kWである。
【0116】
次に、DRが開始されると、DR指令に含まれる第2のDR指令値に基づいて、受電点制御部31のベースライン加算部311が、第2のDR指令値500kWにベースラインの値BLとして5200kWを加算し、ベースライン加算値5700kWを算出する。
【0117】
受電点電力減算部312は、ベースライン加算値5700kWを受電電力計測値PjAである5000kWから減算して、蓄電池11の充電電力の目標値を-700kWと算出する。
【0118】
仮想受電電力算出部33は、電力閾値PDの7000kWと蓄電池11の充電電力の目標値を-700kWとを加算し、仮想受電電力PjBを6300kWと算出する。このときはまだ蓄電池出力Pcは0kWなので、仮想受電電力出力部35は6300kW(受電電力補正値)を出力する。
【0119】
6300kWの仮想受電電力PjBを受け取った制御装置10は、放電電力調整値算出部141によって放電電力調整値Pdaが-700kWと算出されるが、出力制限部142で0kWとなる。放電電力調整値Pdaの0kWは、電力調整値出力部16に入力される。
【0120】
充電電力調整値算出部151によっても同様に、充電電力調整値Pcaが-700kWと算出される。最大値選択部153は、出力制限部152から出力された充電電力調整値Pcaの-700kWと、充電電力設定値Pcstである-2000kWとが入力されるので、最大値である-700kWが選択され、電力調整値出力部16に出力する。
【0121】
電力調整値出力部16は、充電制御部15から入力された充電電力調整値Pcaである-700kWを、電力変換部12に対して出力する。電力変換部12は、電力調整値出力部16から入力された電力調整値に従って蓄電池11が700kW充電を行うように制御すると、蓄電池出力Pcが-700kW(すなわち700kWの充電)となる。
【0122】
その後、蓄電池出力Pcが-700kWとなることによって、負荷の変動はないものの、受電電力計測値PjAが5700kWに増加する。この増加によって、受電点電力減算部312は、ベースライン加算値5700kWを受電電力計測値PjAである5700kWから減算して、蓄電池11の充電電力の目標値を0kWと算出する。蓄電池11の充電電力の目標値を0kWとなると、仮想受電電力算出部33において仮想受電電力PjBを7000kWと算出し、仮想受電電力出力部35は7000kW(受電電力補正値)を出力する。
【0123】
7000kWの仮想受電電力PjBを受け取った制御装置10は、負荷電力算出部13において入力された仮想受電電力PjBの7000kWと蓄電池出力Pcの-700kWとを加算して、負荷電力の値PLBを6300kWと算出する。放電電力調整値算出部141によって、負荷電力の値PLBを6300kWから放電閾値7000kWを減算して-700kWを得るが、出力制限部142で0kWとなる。放電電力調整値Pdaとして0kWが電力調整値出力部16に入力される。
【0124】
充電電力調整値算出部151によっても同様に、充電電力調整値Pcaが-700kWと算出される。最大値選択部153は、出力制限部152から出力された充電電力調整値Pcaの-700kWと、充電電力設定値Pcstである-2000kWとが入力されるので、最大値である-700kWが選択され、電力調整値出力部16に出力する。
【0125】
電力調整値出力部16は、充電制御部15から入力された充電電力調整値Pcaの-700kWを、電力変換部12に対して出力する。電力変換部12は、電力調整値出力部16から入力された電力調整値に従って蓄電池11が700kW充電を行うように制御し、蓄電池出力Pcが-700kWに制御される。このように、蓄電池出力Pcが-700kWに制御されることによって、受電電力計測値PjAが5700kWに制御されることになる。ベースラインの値BLは5200kWなので、500kWのポジワットが実現されたことになる。
【0126】
(受電点の受電電力を基準とした放電電力の値を指定した第2のDR指令値)
図7は、ベースライン電力よりも500kW減少した受電電力とすることを指定した第2のDR指令値がDR指令に含まれている場合のタイミングチャートである。
【0127】
図7に示すように、DR指令に応じた動作の開始(発動前)は、仮想受電電力算出部33は、電力閾値PDに設定された7000kWを仮想受電電力PjBとして算出し、受電電力補正値として出力するが、制御装置10の放電電力調整値算出部141によって算出された放電電力調整値Pdaは0kWとなる。同様に、充電電力調整値算出部151によって算出された充電電力調整値Pcaも0kWとなる。その結果、蓄電池出力Pcは0kWである。
【0128】
次に、DRが開始されると、DR指令に含まれる第2のDR指令値に基づいて、受電点制御部31のベースライン加算部311が、第2のDR指令値-500kWにベースラインの値5200kWを加算し、ベースライン加算値4700kWを算出する。
【0129】
受電点電力減算部312は、ベースライン加算値4700kWを受電電力計測値PjAである5000kWから減算して、蓄電池11の放電電力の目標値を300kWと算出する。
【0130】
仮想受電電力算出部33は、電力閾値PDの7000kWと蓄電池11の放電電力の目標値を300kWとを加算し、仮想受電電力PjBを7300kWと算出する。このときはまだ蓄電池出力Pcは0kWなので、仮想受電電力出力部35は7300kW(受電電力補正値)を出力する。
【0131】
7300kWの仮想受電電力PjBを受け取った制御装置10は、放電電力調整値算出部141によって放電電力調整値Pdaを300kWと算出する。算出された放電電力調整値Pdaの300kWは、電力調整値出力部16に入力される。
【0132】
充電電力調整値算出部151によっても同様に、充電電力調整値Pcaが300kWと算出されるが、出力制限部152で0kWとなる。最大値選択部153は、出力制限部152から出力された充電電力調整値Pcaの0kWと、充電電力設定値Pcstである-2000kWとが入力されるので、最大値である0kWが選択され、電力調整値出力部16に出力する。
【0133】
電力調整値出力部16は、放電制御部14から入力された放電電力調整値Pdaである300kWを、電力変換部12に対して出力する。電力変換部12は、電力調整値出力部16から入力された電力調整値に従って蓄電池11が300kW放電を行うように制御すると、蓄電池出力Pcが300kWとなる。
【0134】
その後、蓄電池出力Pcが300kWとなることによって、負荷の変動はないものの、受電電力計測値PjAが4700kWに減少する。この減少によって、受電点電力減算部312は、ベースライン加算値4700kWを受電電力計測値PjAである4700kWから減算して、蓄電池11の充電電力の目標値を0kWと算出する。蓄電池11の充電電力の目標値を0kWとなると、仮想受電電力算出部33において仮想受電電力PjBを7000kWと算出し、仮想受電電力出力部35は7000kW(受電電力補正値)を出力する。
【0135】
7000kWの仮想受電電力PjBを受け取った制御装置10は、負荷電力算出部13において入力された仮想受電電力PjBの7000kWと蓄電池出力Pcの300kWとを加算して、負荷電力の値PLBを7300kWと算出する。放電電力調整値算出部141によって、負荷電力の値PLBを7300kWから放電閾値7000kWを減算して放電電力調整値Pdaを300kWと算出する。算出された放電電力調整値Pdaの300kWは、電力調整値出力部16に入力される。
【0136】
充電電力調整値算出部151によっても同様に、充電電力調整値Pcaが300kWと算出されるが、出力制限部152で0kWとなる。最大値選択部153は、出力制限部152から出力された充電電力調整値Pcaの0kWと、充電電力設定値Pcstである-2000kWとが入力されるので、最大値である0kWが選択され、電力調整値出力部16に出力する。
【0137】
電力調整値出力部16は、放電制御部14から入力された放電電力調整値Pdaである300kWを、電力変換部12に対して出力する。電力変換部12は、電力調整値出力部16から入力された電力調整値に従って蓄電池11が300kW放電を行うように制御し、蓄電池出力Pcが300kWに制御される。このように、蓄電池出力Pcが300kWに制御されることによって、受電電力計測値PjAが4700kWに制御されることになる。ベースラインの値BLは5200kWなので、500kWのネガワットが実現されたことになる。
【0138】
このように、本実施形態に係る電力取引支援装置3は、DR指令に含まれるDR指令値が、蓄電池11の放電電力の値または充電電力の値をDR指令値(第1のDR指令値)である場合と、受電点の受電電力を基準とした放電電力の値または充電電力の値をDR指令値である場合とのいずれであっても必要に応じて蓄電池の充電と放電を切り替えてその出力を制御することができるので、幅広いDR指令に応じた電力取引を実現することができる。
【0139】
また、既存の蓄電池システム(電力調整設備の一例)はデジタル的に基幹システムと接続される構成であることが多く、その蓄電池システムに外部からデジタル接続する装置はセキュリティの観点から敬遠されつつある。本実施形態の電力取引支援装置は、蓄電池システムにアナログの入力値を与えるだけにすぎず、蓄電池システムの中身にデジタル的にアクセスすることはない。したがって、既存の蓄電池システムに接続する装置としてセキュリティの観点からも好ましいといえる。
【0140】
(実施の形態の拡張)
以上、本発明者らによってなされた発明を実施の形態に基づいて具体的に説明したが、本発明はそれらに限定されるものでなく、その要旨を逸脱しない範囲において種々変更可能であることは言うまでもない。
【0141】
例えば、
図1の構成では、契約電力超過防止部38を仮想受電電力調整部34の入力部に設けた例について説明した。しかしながら、
図8に示すように、契約超過が発生する場合に、DR指令に含まれるDR指令値を処理させないように構成した契約電力超過防止部38をDR指令値の入力部のすぐ後段に設けてもよい。
【0142】
また例えば、以上の実施形態では、電力取引支援装置を既存の電力調整設備である蓄電池システムに組み込んだ電力取引装置の構成を例に挙げて説明した。しかしながら、電力調整設備としては蓄電池システムに限らず、補助電力源として発電機を併用するシステムに組み込んだ構成とすることもできる。この場合、電力取引装置には、発電機を起動する手段を追加して設けることができる。発電機を起動する手段としては、起動信号により起動する方式の場合は発電機に起動信号を入力する手段を採用することができ、発電機が起動状態となるような閾値が設定されている方式の場合は発電機の起動時に設定された閾値を超える値となるようなパルスを与える手段を採用することができる。
【符号の説明】
【0143】
100…電力取引装置、1…蓄電池システム、10…制御装置、11…蓄電池、12…電力変換部、13…負荷電力算出部、14…放電制御部、140…放電閾値設定部、141…放電電力調整値算出部、142…出力制限部、15…充電制御部、150…充電閾値設定部、151…充電電力調整値算出部、152…出力制限部、153…最大値選択部、16…電力調整値出力部、2…負荷、3…電力取引支援装置、30…個別機器制御部、31…受電点制御部、32…電力閾値設定部、33…仮想受電電力算出部、34…仮想受電電力調整部、35…仮想受電電力出力部、36…誤充電防止部、37…周波数ドループ制御部、38…契約電力超過防止部