(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-01-16
(45)【発行日】2024-01-24
(54)【発明の名称】導電フィルム及び接続構造体
(51)【国際特許分類】
H01B 1/22 20060101AFI20240117BHJP
H01B 5/16 20060101ALI20240117BHJP
H01R 11/01 20060101ALI20240117BHJP
C22C 13/00 20060101ALN20240117BHJP
B23K 35/26 20060101ALN20240117BHJP
【FI】
H01B1/22 A
H01B5/16
H01R11/01 501A
C22C13/00
B23K35/26 310A
B23K35/26 310C
B23K35/26 310D
(21)【出願番号】P 2019214010
(22)【出願日】2019-11-27
【審査請求日】2022-08-22
(31)【優先権主張番号】P 2018221189
(32)【優先日】2018-11-27
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000002174
【氏名又は名称】積水化学工業株式会社
(74)【代理人】
【識別番号】110001232
【氏名又は名称】弁理士法人大阪フロント特許事務所
(72)【発明者】
【氏名】山中 雄太
(72)【発明者】
【氏名】齋藤 諭
(72)【発明者】
【氏名】内野 慎也
【審査官】中嶋 久雄
(56)【参考文献】
【文献】特開2017-177196(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01B 1/22
H01B 5/16
H01R 11/01
C22C 13/00
B23K 35/26
(57)【特許請求の範囲】
【請求項1】
熱硬化性成分と、複数のはんだ粒子とを含む導電材料であり、
前記熱硬化性成分が、熱硬化性化合物を含み、
25℃での前記熱硬化性化合物の粘度が、3Pa・s以上であり、
前記導電材料が、溶剤を含まないか、又は、前記導電材料100重量%中に溶剤を1重量%以下で含み、
25℃及びせん断速度600sec
-1での前記導電材料の粘度が、1Pa・s以上20Pa・s以下であり、
25℃及びせん断速度0.06sec
-1での前記導電材料の粘度が、1000Pa・s以上3500Pa・s以下であり、
25℃及び周波数1Hzでの前記導電材料のtanδが、2以上10以下である、導電材料。
【請求項2】
脂肪酸アミン塩又は脂肪酸アミドを含む、請求項1に記載の導電材料。
【請求項3】
前記はんだ粒子の平均粒子径が、1μm以上15μm以下である、請求項1又は2に記載の導電材料。
【請求項4】
前記導電材料100重量%中、前記はんだ粒子の含有量が、40重量%以上75重量%以下である、請求項1~3のいずれか1項に記載の導電材料。
【請求項5】
25℃での前記熱硬化性化合物の粘度が、
3Pa・s以上100Pa・s以下である、請求項1~4のいずれか1項に記載の導電材料。
【請求項6】
導電ペーストである、請求項1~5のいずれか1項に記載の導電材料。
【請求項7】
第1の電極を表面に有する第1の接続対象部材と、
第2の電極を表面に有する第2の接続対象部材と、
前記第1の接続対象部材と、前記第2の接続対象部材とを接続している接続部とを備え、
前記接続部の材料が、請求項1~6のいずれか1項に記載の導電材料であり、
前記第1の電極と前記第2の電極とが、前記接続部中のはんだ部により電気的に接続されている、接続構造体。
【請求項8】
請求項1~6のいずれか1項に記載の導電材料を用いて、第1の電極を表面に有する第1の接続対象部材の表面上に、前記導電材料を配置する工程と、
前記導電材料の前記第1の接続対象部材側とは反対の表面上に、第2の電極を表面に有する第2の接続対象部材を、前記第1の電極と前記第2の電極とが対向するように配置する工程と、
前記はんだ粒子の融点以上に前記導電材料を加熱することで、前記第1の接続対象部材と前記第2の接続対象部材とを接続している接続部を、前記導電材料により形成し、かつ、前記第1の電極と前記第2の電極とを、前記接続部中のはんだ部により電気的に接続する工程とを備える、接続構造体の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、はんだ粒子を含む導電材料に関する。また、本発明は、上記導電材料を用いた接続構造体及び接続構造体の製造方法に関する。
【背景技術】
【0002】
異方性導電ペースト及び異方性導電フィルム等の異方性導電材料が広く知られている。上記異方性導電材料では、バインダー樹脂中に導電性粒子が分散されている。
【0003】
上記異方性導電材料は、各種の接続構造体を得るために使用されている。上記異方性導電材料による接続としては、例えば、フレキシブルプリント基板とガラス基板との接続(FOG(Film on Glass))、半導体チップとフレキシブルプリント基板との接続(COF(Chip on Film))、半導体チップとガラス基板との接続(COG(Chip on Glass))、並びにフレキシブルプリント基板とガラスエポキシ基板との接続(FOB(Film on Board))等が挙げられる。
【0004】
上記異方性導電材料により、例えば、フレキシブルプリント基板の電極とガラスエポキシ基板の電極とを電気的に接続する際には、ガラスエポキシ基板上に、導電性粒子を含む異方性導電材料を配置する。次に、フレキシブルプリント基板を積層して、加熱及び加圧する。これにより、異方性導電材料を硬化させて、導電性粒子を介して電極間を電気的に接続して、接続構造体を得る。
【0005】
下記の特許文献1には、導電部の外表面部分に、はんだを有する複数の導電性粒子と、熱硬化性成分とを含む導電材料が開示されている。上記導電材料では、25℃以上、上記導電性粒子における上記はんだの融点以下での導電材料の粘度の最小値は、25Pa・s以上、255Pa・s以下である。上記導電性粒子の平均粒子径は、3μm以上、15μm以下である。上記導電材料では、上記導電性粒子の平均粒子径(μm)をAとし、上記導電性粒子における上記はんだの融点での導電材料の粘度(Pa・s)をBとしたときに、上記Bが、(-5A+100)以上、(-15A+300)以下である。
【先行技術文献】
【特許文献】
【0006】
【発明の概要】
【発明が解決しようとする課題】
【0007】
はんだ粒子を含む導電材料を用いて導電接続を行う際には、上方の複数の電極と下方の複数の電極とが電気的に接続されて、導電接続が行われる。はんだ粒子は、上下の電極間に配置されることが望ましく、隣接する横方向の電極間には配置されないことが望ましい。隣接する横方向の電極間は、電気的に接続されないことが望ましい。
【0008】
一般に、はんだ粒子を含む導電材料は、スクリーン印刷等によって、基板上の特定の位置に配置された後、リフロー等により加熱されて用いられる。導電材料がはんだ粒子の融点以上に加熱されることで、はんだ粒子が溶融し、電極間にはんだが凝集することで、上下の電極間が電気的に接続される。
【0009】
従来の導電材料では、スクリーン印刷を繰り返し行う場合に、印刷時の導電材料の粘度が低く、スクリーン透過量が多くなり、導電材料のにじみが発生したり、印刷時の導電材料の粘度が高くなって、導電材料がメッシュに目詰まりすることで、導電材料のかすれが発生したりすることがある。従来の導電材料では、スクリーン印刷を連続して行う場合に、導電材料のにじみや導電材料のかすれ等が発生し、スクリーン印刷を連続して行うことが困難なことがある。
【0010】
また、従来の導電材料では、印刷後の導電材料の形状を維持することが困難なことがある。印刷後の導電材料の形状を維持することができない場合には、導電材料が本来配置される場所(例えば、電極近傍等)から離れることがある。従来の導電材料では、印刷後の導電材料の形状を維持することができず、接続されるべき上下の電極間にはんだ粒子を効率的に配置できないことがある。結果として、導電材料に含まれるはんだ粒子が電極が形成されていない領域に配置されて、接続されるべき上下の電極間に配置されるはんだ粒子の量が減少し、接続されるべき上下の電極間の導通信頼性が低くなったり、隣接する横方向の電極間の絶縁信頼性が低くなったりすることがある。
【0011】
本発明の目的は、スクリーン印刷を連続して行うことができ、さらに、電極上にはんだを効率的に配置することができる導電材料を提供することである。また、本発明の目的は、上記導電材料を用いた接続構造体及び接続構造体の製造方法を提供することである。
【課題を解決するための手段】
【0012】
本発明の広い局面によれば、熱硬化性成分と、複数のはんだ粒子とを含む導電材料であり、前記導電材料が、溶剤を含まないか、又は、前記導電材料100重量%中に溶剤を1重量%以下で含み、25℃及びせん断速度600sec-1での前記導電材料の粘度が、1Pa・s以上20Pa・s以下であり、25℃及びせん断速度0.06sec-1での前記導電材料の粘度が、1000Pa・s以上3500Pa・s以下であり、25℃及び周波数1Hzでの前記導電材料のtanδが、2以上10以下である、導電材料が提供される。
【0013】
本発明に係る導電材料のある特定の局面では、前記導電材料が、脂肪酸アミン塩又は脂肪酸アミドを含む。
【0014】
本発明に係る導電材料のある特定の局面では、前記はんだ粒子の平均粒子径が、1μm以上15μm以下である。
【0015】
本発明に係る導電材料のある特定の局面では、前記導電材料100重量%中、前記はんだ粒子の含有量が、40重量%以上75重量%以下である。
【0016】
本発明に係る導電材料のある特定の局面では、前記熱硬化性成分が、熱硬化性化合物を含み、25℃での前記熱硬化性化合物の粘度が、1Pa・s以上100Pa・s以下である。
【0017】
本発明に係る導電材料のある特定の局面では、前記導電材料が、導電ペーストである。
【0018】
本発明の広い局面によれば、第1の電極を表面に有する第1の接続対象部材と、第2の電極を表面に有する第2の接続対象部材と、前記第1の接続対象部材と、前記第2の接続対象部材とを接続している接続部とを備え、前記接続部の材料が、上述した導電材料であり、前記第1の電極と前記第2の電極とが、前記接続部中のはんだ部により電気的に接続されている、接続構造体が提供される。
【0019】
本発明の広い局面によれば、上述した導電材料を用いて、第1の電極を表面に有する第1の接続対象部材の表面上に、前記導電材料を配置する工程と、前記導電材料の前記第1の接続対象部材側とは反対の表面上に、第2の電極を表面に有する第2の接続対象部材を、前記第1の電極と前記第2の電極とが対向するように配置する工程と、前記はんだ粒子の融点以上に前記導電材料を加熱することで、前記第1の接続対象部材と前記第2の接続対象部材とを接続している接続部を、前記導電材料により形成し、かつ、前記第1の電極と前記第2の電極とを、前記接続部中のはんだ部により電気的に接続する工程とを備える、接続構造体の製造方法が提供される。
【発明の効果】
【0020】
本発明に係る導電材料は、熱硬化性成分と、複数のはんだ粒子とを含む。本発明に係る導電材料では、上記導電材料が、溶剤を含まないか、又は、上記導電材料100重量%中に溶剤を1重量%以下で含む。本発明では、25℃及びせん断速度600sec-1での上記導電材料の粘度が、1Pa・s以上20Pa・s以下である。本発明では、25℃及びせん断速度0.06sec-1での上記導電材料の粘度が、1000Pa・s以上3500Pa・s以下である。本発明では、25℃及び周波数1Hzでの上記導電材料のtanδが、2以上10以下である。本発明に係る導電材料では、上記の構成が備えられているので、スクリーン印刷を連続して行うことができ、さらに、電極上にはんだを効率的に配置することができる。
【図面の簡単な説明】
【0021】
【
図1】
図1は、本発明の一実施形態に係る導電材料を用いて得られる接続構造体を模式的に示す断面図である。
【
図2】
図2(a)~(c)は、本発明の一実施形態に係る導電材料を用いて、接続構造体を製造する方法の一例の各工程を説明するための断面図である。
【
図3】
図3は、接続構造体の変形例を示す断面図である。
【発明を実施するための形態】
【0022】
以下、本発明の詳細を説明する。
【0023】
(導電材料)
本発明に係る導電材料は、熱硬化性成分と、複数のはんだ粒子とを含む。本発明に係る導電材料では、上記導電材料が、溶剤を含まないか、又は、上記導電材料100重量%中に溶剤を1重量%以下で含む。本発明では、25℃及びせん断速度600sec-1での上記導電材料の粘度が、1Pa・s以上20Pa・s以下である。本発明では、25℃及びせん断速度0.06sec-1での上記導電材料の粘度が、1000Pa・s以上3500Pa・s以下である。本発明では、25℃及び周波数1Hzの条件で測定したときの上記導電材料のtanδが、2以上10以下である。
【0024】
本発明に係る導電材料では、上記の構成が備えられているので、スクリーン印刷を連続して行うことができ、さらに、電極上にはんだを効率的に配置することができる。
【0025】
従来の導電材料では、スクリーン印刷を繰り返し行う場合に、印刷時の導電材料の粘度が低く、スクリーン透過量が多くなり、導電材料のにじみが発生したり、印刷時の導電材料の粘度が高くなり、導電材料がメッシュに目詰まりすることで、導電材料のかすれが発生したりすることがある。
【0026】
また、従来の導電材料では、印刷後の導電材料の形状を維持することが困難なことがある。印刷後の導電材料の形状を維持することができない場合には、導電材料が本来配置される場所(例えば、電極近傍等)から離れることがある。従来の導電材料では、印刷後の導電材料の形状を維持することができず、接続されるべき上下の電極間にはんだ粒子を効率的に配置できないことがある。
【0027】
本発明者らは、導電材料の粘弾特性に注目し、特定の導電材料を用いることで、導電材料の粘弾特性を制御することができることを見出した。本発明では、導電材料の粘弾特性を制御することによって、スクリーン印刷時の導電材料のにじみや導電材料のかすれ等の発生を効果的に抑制することができ、スクリーン印刷を連続して行うことができる。また、本発明では、導電材料の粘弾特性を制御することによって、印刷後の導電材料の形状を維持することができ、接続されるべき上下の電極間に配置されるはんだ粒子の量を十分に確保することができる。結果として、接続されるべき上下の電極間の導通信頼性を効果的に高めることができる。
【0028】
また、本発明では、電極間の導電接続時に、複数のはんだ粒子が、上下の対向した電極間に集まりやすく、複数のはんだ粒子を電極(ライン)上に配置することができる。また、複数のはんだ粒子の一部が、接続されてはならない横方向の電極間に配置され難く、接続されてはならない横方向の電極間に配置されるはんだ粒子の量をかなり少なくすることができる。結果として、本発明では、接続されるべき上下の電極間の導通信頼性を効果的に高めることができ、接続されてはならない隣接する横方向の電極間の絶縁信頼性を効果的に高めることができる。
【0029】
本発明では、上記のような効果を得るために、特定の導電材料を用いることは大きく寄与する。
【0030】
さらに、本発明では、電極間の位置ずれを防ぐことができる。本発明では、導電材料を上面に配置した第1の接続対象部材に、第2の接続対象部材を重ね合わせる際に、第1の接続対象部材の電極と第2の接続対象部材の電極とのアライメントがずれた状態でも、そのずれを補正して電極同士を接続させることができる(セルフアライメント効果)。
【0031】
上記導電材料の粘度(ηA)を、25℃及びせん断速度600sec-1の条件で測定したときに、該粘度(ηA)は、1Pa・s以上20Pa・s以下である。スクリーン印刷をより一層良好に連続して行う観点、及び電極上にはんだをより一層効率的に配置する観点からは、上記粘度(ηA)は、好ましくは5Pa・s以上であり、好ましくは10Pa・s以下である。
【0032】
上記導電材料の粘度(ηB)を、25℃及びせん断速度0.06sec-1の条件で測定したときに、該粘度(ηB)は、1000Pa・s以上3500Pa・s以下である。スクリーン印刷をより一層良好に連続して行う観点、及び電極上にはんだをより一層効率的に配置する観点からは、上記粘度(ηB)は、好ましくは2000Pa・s以上であり、好ましくは3000Pa・s以下である。
【0033】
上記粘度(ηA及びηB)は、レオメーター(Thermo Scientific社製、タイプ:HAAKE)等により測定することができる。具体的には、以下のようにして測定することができる。
【0034】
25℃の一定温度下にて、導電材料に対して、プレシェアとして100sec-1のせん断速度を60秒間付与し、その後5分間静置する。次に、せん断速度を0sec-1~1000sec-1まで120秒間で変化させ、続いて、せん断速度を1000sec-1~0sec-1まで120秒間で変化させて測定を行う。この測定において、せん断速度を1000sec-1~0sec-1まで120秒間で変化させたときのせん断速度600sec-1における粘度をηAとし、せん断速度0.06sec-1における粘度をηBとする。
【0035】
上記導電材料のtanδを、25℃及び周波数1Hzの条件で測定したときに、該tanδが、2以上10以下である。スクリーン印刷をより一層良好に連続して行う観点、及び電極上にはんだをより一層効率的に配置する観点からは、上記tanδは、好ましくは4以上であり、好ましくは7以下である。
【0036】
上記tanδは、レオメーター(Thermo Scientific社製、タイプ:HAAKE)等により測定することができる。具体的には、以下のようにして測定することができる。
【0037】
25℃の一定温度下で、周波数1Hzにて、導電材料に与える歪みを0~100%まで掃引により変化させ、貯蔵弾性率(G’)と損失弾性率(G”)とをそれぞれ測定する。得られた貯蔵弾性率(G’)と損失弾性率(G”)とから、tanδ(G”/G’)を算出する。
【0038】
上記導電材料は、導電ペースト及び導電フィルム等として使用され得る。上記導電ペーストは異方性導電ペーストであることが好ましく、上記導電フィルムは異方性導電フィルムであることが好ましい。電極上にはんだをより一層効率的に配置する観点からは、上記導電材料は、導電ペーストであることが好ましい。上記導電材料は、電極の電気的な接続に好適に用いられる。上記導電材料は、回路接続材料であることが好ましい。
【0039】
以下、上記導電材料に含まれる各成分を説明する。なお、本明細書中において、「(メタ)アクリル」は「アクリル」と「メタクリル」との一方又は双方を意味する。
【0040】
(はんだ粒子)
上記はんだ粒子は、中心部分及び外表面のいずれもがはんだにより形成されている。上記はんだ粒子は、中心部分及び外表面のいずれもがはんだである粒子である。上記はんだ粒子の代わりに、はんだ以外の材料から形成された基材粒子と該基材粒子の表面上に配置されたはんだ部とを備える導電性粒子を用いた場合には、電極上に導電性粒子が集まり難くなる。また、上記導電性粒子では、導電性粒子同士のはんだ接合性が低いために、電極上に移動した導電性粒子が電極外に移動しやすくなる傾向があり、電極間の位置ずれの抑制効果も低くなる傾向がある。
【0041】
上記はんだは、融点が450℃以下である金属(低融点金属)であることが好ましい。上記はんだ粒子は、融点が450℃以下である金属粒子(低融点金属粒子)であることが好ましい。上記低融点金属粒子は、低融点金属を含む粒子である。該低融点金属とは、融点が450℃以下の金属を示す。低融点金属の融点は好ましくは300℃以下、より好ましくは230℃以下である。上記はんだは、融点が230℃未満の低融点はんだであることが好ましい。
【0042】
上記はんだ粒子の融点は、示差走査熱量測定(DSC)により求めることができる。示差走査熱量測定(DSC)装置としては、SII社製「EXSTAR DSC7020」等が挙げられる。
【0043】
また、上記はんだ粒子は錫を含むことが好ましい。上記はんだ粒子に含まれる金属100重量%中、錫の含有量は、好ましくは30重量%以上、より好ましくは40重量%以上、さらに好ましくは70重量%以上、特に好ましくは90重量%以上である。上記はんだ粒子における錫の含有量が、上記下限以上であると、はんだ部と電極との導通信頼性及び接続信頼性がより一層高くなる。
【0044】
なお、上記錫の含有量は、高周波誘導結合プラズマ発光分光分析装置(堀場製作所社製「ICP-AES」)、又は蛍光X線分析装置(島津製作所社製「EDX-800HS」)等を用いて測定することができる。
【0045】
上記はんだ粒子を用いることで、はんだが溶融して電極に接合し、はんだ部が電極間を導通させる。例えば、はんだ部と電極とが点接触ではなく面接触しやすいため、接続抵抗が低くなる。また、上記はんだ粒子の使用により、はんだ部と電極との接合強度が高くなる結果、はんだ部と電極との剥離がより一層生じ難くなり、導通信頼性及び接続信頼性がより一層高くなる。
【0046】
上記はんだ粒子を構成する低融点金属は特に限定されない。該低融点金属は、錫、又は錫を含む合金であることが好ましい。該合金は、錫-銀合金、錫-銅合金、錫-銀-銅合金、錫-ビスマス合金、錫-亜鉛合金、錫-インジウム合金等が挙げられる。電極に対する濡れ性に優れることから、上記低融点金属は、錫、錫-銀合金、錫-銀-銅合金、錫-ビスマス合金、錫-インジウム合金であることが好ましい。上記低融点金属は、錫-ビスマス合金、錫-インジウム合金であることがより好ましい。
【0047】
はんだ部と電極との接合強度をより一層高めるために、上記はんだ粒子は、ニッケル、銅、アンチモン、アルミニウム、亜鉛、鉄、金、チタン、リン、ゲルマニウム、テルル、コバルト、ビスマス、マンガン、クロム、モリブデン、パラジウム等の金属を含んでいてもよい。また、はんだ部と電極との接合強度をさらに一層高める観点からは、上記はんだ粒子は、ニッケル、銅、アンチモン、アルミニウム又は亜鉛を含むことが好ましい。はんだ部と電極との接合強度をより一層高める観点からは、接合強度を高めるためのこれらの金属の含有量は、はんだ粒子に含まれる金属100重量%中、好ましくは0.0001重量%以上、好ましくは1重量%以下である。
【0048】
本発明に係る導電材料では、上記はんだ粒子の平均粒子径は、好ましくは1μm以上、より好ましくは2μm以上であり、好ましくは15μm以下、より好ましくは10μm以下、さらに好ましくは10μm未満、特に好ましくは7μm以下である。上記はんだ粒子の平均粒子径が、上記下限以上及び上記上限以下であると、電極上にはんだをより一層効率的に配置することができる。上記はんだ粒子の平均粒子径は、2μm以上10μm以下であることが特に好ましい。
【0049】
上記はんだ粒子の平均粒子径は、体積平均粒子径である。上記はんだ粒子の平均粒子径は、例えば、任意のはんだ粒子50個を電子顕微鏡又は光学顕微鏡にて観察し、各はんだ粒子の粒子径の平均値を算出することや、レーザー回折式粒度分布測定を行うことにより求められる。電子顕微鏡又は光学顕微鏡での観察では、1個当たりのはんだ粒子の粒子径は、円相当径での粒子径として求められる。電子顕微鏡又は光学顕微鏡での観察において、任意の50個のはんだ粒子の円相当径での平均粒子径は、球相当径での平均粒子径とほぼ等しくなる。レーザー回折式粒度分布測定では、1個当たりのはんだ粒子の粒子径は、球相当径での粒子径として求められる。上記はんだ粒子の平均粒子径は、レーザー回折式粒度分布測定により算出することが好ましい。
【0050】
上記はんだ粒子の粒子径の変動係数(CV値)は、好ましくは5%以上、より好ましくは10%以上であり、好ましくは40%以下、より好ましくは30%以下である。上記はんだ粒子の粒子径の変動係数が、上記下限以上及び上記上限以下であると、電極上にはんだをより一層効率的に配置することができる。但し、上記はんだ粒子の粒子径のCV値は、5%未満であってもよい。
【0051】
上記変動係数(CV値)は、以下のようにして測定できる。
【0052】
CV値(%)=(ρ/Dn)×100
ρ:はんだ粒子の粒子径の標準偏差
Dn:はんだ粒子の粒子径の平均値
【0053】
上記はんだ粒子の形状は特に限定されない。上記はんだ粒子の形状は、球状であってもよく、球状以外の形状であってもよく、扁平状等であってもよい。上記はんだ粒子の形状は、球状であることが好ましい。上記はんだ粒子は、球状粒子であることが好ましい。
【0054】
上記導電材料100重量%中、上記はんだ粒子の含有量は、好ましくは40重量%以上、より好ましくは45重量%以上、さらに好ましくは50重量%以上、特に好ましくは55重量%以上、最も好ましくは60重量%以上であり、好ましくは75重量%以下、より好ましくは70重量%以下、さらに好ましくは65重量%以下である。上記はんだ粒子の含有量が、上記下限以上及び上記上限以下であると、電極上にはんだをより一層効率的に配置することができ、電極間にはんだを多く配置することが容易であり、導通信頼性をより一層効果的に高めることができる。導通信頼性をより一層効果的に高める観点からは、上記はんだ粒子の含有量は多い方が好ましい。
【0055】
(熱硬化性成分)
本発明に係る導電材料は、熱硬化性成分を含む。上記熱硬化性成分は、熱硬化性化合物を含むことが好ましい。上記導電材料は、熱硬化性成分として、熱硬化性化合物と熱硬化剤とを含んでいてもよい。導電材料をより一層良好に硬化させるために、上記導電材料は、熱硬化性成分として、熱硬化性化合物と熱硬化剤とを含むことが好ましい。導電材料をより一層良好に硬化させるために、上記導電材料は、熱硬化性成分として硬化促進剤を含むことが好ましい。
【0056】
(熱硬化性成分:熱硬化性化合物)
本発明に係る導電材料は、熱硬化性化合物を含むことが好ましい。上記熱硬化性化合物は、加熱により硬化可能な化合物である。上記熱硬化性化合物は特に限定されない。上記熱硬化性化合物としては、オキセタン化合物、エポキシ化合物、エピスルフィド化合物、(メタ)アクリル化合物、フェノール化合物、アミノ化合物、不飽和ポリエステル化合物、ポリウレタン化合物、シリコーン化合物及びポリイミド化合物等が挙げられる。導電材料の硬化性及び粘度をより一層良好にし、導通信頼性をより一層高める観点から、エポキシ化合物又はエピスルフィド化合物が好ましく、エポキシ化合物がより好ましい。上記導電材料は、エポキシ化合物を含むことが好ましい。上記熱硬化性化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。
【0057】
上記エポキシ化合物は、少なくとも1個のエポキシ基を有する化合物である。上記エポキシ化合物としては、ビスフェノールA型エポキシ化合物、ビスフェノールF型エポキシ化合物、ビスフェノールS型エポキシ化合物、フェノールノボラック型エポキシ化合物、ビフェニル型エポキシ化合物、ビフェニルノボラック型エポキシ化合物、ビフェノール型エポキシ化合物、ナフタレン型エポキシ化合物、フルオレン型エポキシ化合物、フェノールアラルキル型エポキシ化合物、ナフトールアラルキル型エポキシ化合物、ジシクロペンタジエン型エポキシ化合物、アントラセン型エポキシ化合物、アダマンタン骨格を有するエポキシ化合物、トリシクロデカン骨格を有するエポキシ化合物、ナフチレンエーテル型エポキシ化合物、及びトリアジン核を骨格に有するエポキシ化合物等が挙げられる。上記エポキシ化合物は1種のみが用いられてもよく、2種以上が併用されてもよい。
【0058】
上記エポキシ化合物は、常温(23℃)で液状又は固体であり、上記エポキシ化合物が常温で固体である場合には、上記エポキシ化合物の溶融温度は、上記はんだ粒子の融点以下であることが好ましい。上記の好ましいエポキシ化合物を用いることで、接続対象部材を貼り合わせた段階では、粘度が高く、搬送等の衝撃により加速度が付与された際に、第1の接続対象部材と、第2の接続対象部材との位置ずれを抑制することができる。さらに、硬化時の熱により、導電材料の粘度を大きく低下させることができ、導電接続時のはんだの凝集を効率よく進行させることができる。
【0059】
本発明に係る導電材料では、25℃での上記熱硬化性化合物の粘度は、好ましくは1Pa・s以上、より好ましくは3Pa・s以上であり、好ましくは100Pa・s以下、より好ましくは60Pa・s以下である。上記熱硬化性化合物の粘度が、上記下限以上及び上記上限以下であると、スクリーン印刷をより一層良好に連続して行うことができ、電極上にはんだをより一層効率的に配置することができる。
【0060】
上記熱硬化性化合物の粘度は、例えば、E型粘度計(東機産業社製「TVE22L」)等を用いて、25℃及び5rpmの条件で測定することができる。
【0061】
絶縁信頼性をより一層効果的に高める観点、及び導通信頼性をより一層効果的に高める観点からは、上記熱硬化性成分はエポキシ化合物を含むことが好ましく、上記熱硬化性化合物はエポキシ化合物を含むことが好ましい。
【0062】
電極上にはんだをより一層効果的に配置する観点からは、上記熱硬化性化合物は、ポリエーテル骨格を有する熱硬化性化合物を含むことが好ましい。
【0063】
上記ポリエーテル骨格を有する熱硬化性化合物としては、炭素数3~12のアルキル鎖の両末端にグリシジルエーテル基を有する化合物、並びに炭素数2~4のポリエーテル骨格を有し、該ポリエーテル骨格2~10個が連続して結合した構造単位を有するポリエーテル型エポキシ化合物等が挙げられる。
【0064】
硬化物の耐熱性をより一層効果的に高める観点からは、上記熱硬化性化合物は、イソシアヌル骨格を有する熱硬化性化合物を含むことが好ましい。
【0065】
上記イソシアヌル骨格を有する熱硬化性化合物としてはトリイソシアヌレート型エポキシ化合物等が挙げられ、日産化学工業社製TEPICシリーズ(TEPIC-G、TEPIC-S、TEPIC-SS、TEPIC-HP、TEPIC-L、TEPIC-PAS、TEPIC-VL、TEPIC-UC)等が挙げられる。
【0066】
電極上にはんだをより一層効率的に配置する観点、接続されるべき上下の電極間の導通信頼性をより一層効果的に高める観点、及び熱硬化性化合物の変色をより一層効果的に抑制する観点からは、上記熱硬化性化合物は、高い耐熱性を有することが好ましく、ノボラック型エポキシ化合物であることがより好ましい。ノボラック型エポキシ化合物は、比較的高い耐熱性を有する。
【0067】
上記導電材料100重量%中、上記熱硬化性化合物の含有量は、好ましくは5重量%以上、より好ましくは8重量%以上、さらに好ましくは10重量%以上であり、好ましくは99重量%以下、より好ましくは90重量%以下、さらに好ましくは80重量%以下、特に好ましくは70重量%以下である。上記熱硬化性化合物の含有量が、上記下限以上及び上記上限以下であると、電極上にはんだをより一層効率的に配置し、電極間の絶縁信頼性をより一層効果的に高めることができ、電極間の導通信頼性をより一層効果的に高めることができる。耐衝撃性をより一層効果的に高める観点からは、上記熱硬化性化合物の含有量は多い方が好ましい。
【0068】
上記導電材料100重量%中、上記エポキシ化合物の含有量は、好ましくは5重量%以上、より好ましくは8重量%以上、さらに好ましくは10重量%以上であり、好ましくは99重量%以下、より好ましくは90重量%以下、さらに好ましくは80重量%以下、特に好ましくは70重量%以下である。上記エポキシ化合物の含有量が、上記下限以上及び上記上限以下であると、電極上にはんだをより一層効率的に配置し、電極間の絶縁信頼性をより一層効果的に高めることができ、電極間の導通信頼性をより一層効果的に高めることができる。耐衝撃性をより一層高める観点からは、上記エポキシ化合物の含有量は多い方が好ましい。
【0069】
(熱硬化性成分:熱硬化剤)
上記導電材料は、熱硬化剤を含んでいてもよい。上記導電材料は、上記熱硬化性化合物とともに熱硬化剤を含んでいてもよい。上記熱硬化剤は、上記熱硬化性化合物を熱硬化させる。上記熱硬化剤は特に限定されない。上記熱硬化剤としては、イミダゾール硬化剤、フェノール硬化剤、チオール硬化剤、アミン硬化剤、酸無水物硬化剤、熱カチオン硬化剤及び熱ラジカル発生剤等がある。上記熱硬化剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
【0070】
導電材料を低温でより一層速やかに硬化可能とする観点からは、上記熱硬化剤は、イミダゾール硬化剤、チオール硬化剤、又はアミン硬化剤であることが好ましい。また、上記熱硬化性化合物と上記熱硬化剤とを混合したときの保存安定性を高める観点からは、上記熱硬化剤は、潜在性の硬化剤であることが好ましい。潜在性の硬化剤は、潜在性イミダゾール硬化剤、潜在性チオール硬化剤又は潜在性アミン硬化剤であることが好ましい。なお、上記熱硬化剤は、ポリウレタン樹脂又はポリエステル樹脂等の高分子物質で被覆されていてもよい。
【0071】
上記イミダゾール硬化剤は特に限定されない。上記イミダゾール硬化剤としては、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-フェニルイミダゾリウムトリメリテート、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン及び2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンイソシアヌル酸付加物、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、2-フェニル-4-ベンジル-5-ヒドロキシメチルイミダゾール、2-パラトルイル-4-メチル-5-ヒドロキシメチルイミダゾール、2-メタトルイル-4-メチル-5-ヒドロキシメチルイミダゾール、2-メタトルイル-4,5-ジヒドロキシメチルイミダゾール、2-パラトルイル-4,5-ジヒドロキシメチルイミダゾール等における1H-イミダゾールの5位の水素をヒドロキシメチル基で、かつ、2位の水素をフェニル基またはトルイル基で置換したイミダゾール化合物等が挙げられる。
【0072】
上記チオール硬化剤は特に限定されない。上記チオール硬化剤としては、トリメチロールプロパントリス-3-メルカプトプロピオネート、ペンタエリスリトールテトラキス-3-メルカプトプロピオネート及びジペンタエリスリトールヘキサ-3-メルカプトプロピオネート等が挙げられる。
【0073】
上記アミン硬化剤は特に限定されない。上記アミン硬化剤としては、ヘキサメチレンジアミン、オクタメチレンジアミン、デカメチレンジアミン、3,9-ビス(3-アミノプロピル)-2,4,8,10-テトラスピロ[5.5]ウンデカン、ビス(4-アミノシクロヘキシル)メタン、メタフェニレンジアミン及びジアミノジフェニルスルホン等が挙げられる。
【0074】
上記酸無水物硬化剤は特に限定されず、エポキシ化合物等の熱硬化性化合物の硬化剤として用いられる酸無水物であれば広く用いることができる。上記酸無水物硬化剤としては、無水フタル酸、テトラヒドロ無水フタル酸、トリアルキルテトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、メチルブテニルテトラヒドロ無水フタル酸、フタル酸誘導体の無水物、無水マレイン酸、無水ナジック酸、無水メチルナジック酸、無水グルタル酸、無水コハク酸、グリセリンビス無水トリメリット酸モノアセテート、及びエチレングリコールビス無水トリメリット酸等の2官能の酸無水物硬化剤、無水トリメリット酸等の3官能の酸無水物硬化剤、並びに、無水ピロメリット酸、無水ベンゾフェノンテトラカルボン酸、メチルシクロヘキセンテトラカルボン酸無水物、及びポリアゼライン酸無水物等の4官能以上の酸無水物硬化剤等が挙げられる。
【0075】
上記熱カチオン開始剤は特に限定されない。上記熱カチオン開始剤としては、ヨードニウム系カチオン硬化剤、オキソニウム系カチオン硬化剤及びスルホニウム系カチオン硬化剤等が挙げられる。上記ヨードニウム系カチオン硬化剤としては、ビス(4-tert-ブチルフェニル)ヨードニウムヘキサフルオロホスファート等が挙げられる。上記オキソニウム系カチオン硬化剤としては、トリメチルオキソニウムテトラフルオロボラート等が挙げられる。上記スルホニウム系カチオン硬化剤としては、トリ-p-トリルスルホニウムヘキサフルオロホスファート等が挙げられる。
【0076】
上記熱ラジカル発生剤は特に限定されない。上記熱ラジカル発生剤としては、アゾ化合物及び有機過酸化物等が挙げられる。上記アゾ化合物としては、アゾビスイソブチロニトリル(AIBN)等が挙げられる。上記有機過酸化物としては、ジ-tert-ブチルペルオキシド及びメチルエチルケトンペルオキシド等が挙げられる。
【0077】
上記熱硬化剤の含有量は特に限定されない。上記熱硬化性化合物100重量部に対して、上記熱硬化剤の含有量は、好ましくは0.01重量部以上、より好ましくは1重量部以上であり、好ましくは200重量部以下、より好ましくは100重量部以下、さらに好ましくは75重量部以下である。熱硬化剤の含有量が、上記下限以上であると、導電材料を十分に硬化させることが容易である。熱硬化剤の含有量が、上記上限以下であると、硬化後に硬化に関与しなかった余剰の熱硬化剤が残存し難くなり、かつ硬化物の耐熱性がより一層高くなる。
【0078】
(熱硬化性成分:硬化促進剤)
上記導電材料は硬化促進剤を含んでいてもよい。上記硬化促進剤は特に限定されない。上記硬化促進剤は、上記熱硬化性化合物と上記熱硬化剤との反応において硬化触媒として作用することが好ましい。上記硬化促進剤は、上記熱硬化性化合物との反応において硬化触媒として作用することが好ましい。上記硬化促進剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
【0079】
上記硬化促進剤としては、ホスホニウム塩、三級アミン、三級アミン塩、四級オニウム塩、三級ホスフィン、クラウンエーテル錯体、アミン錯体化合物及びホスホニウムイリド等が挙げられる。具体的には、上記硬化促進剤としては、イミダゾール化合物、イミダゾール化合物のイソシアヌル酸塩、ジシアンジアミド、ジシアンジアミドの誘導体、メラミン化合物、メラミン化合物の誘導体、ジアミノマレオニトリル、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ビス(ヘキサメチレン)トリアミン、トリエタノールアミン、ジアミノジフェニルメタン、有機酸ジヒドラジド等のアミン化合物、1,8-ジアザビシクロ[5,4,0]ウンデセン-7、3,9-ビス(3-アミノプロピル)-2,4,8,10-テトラオキサスピロ[5,5]ウンデカン、三フッ化ホウ素、三フッ化ホウ素-アミン錯体化合物、並びに、トリフェニルホスフィン、トリシクロヘキシルホスフィン、トリブチルホスフィン及びメチルジフェニルホスフィン等の有機リン化合物等が挙げられる。
【0080】
上記ホスホニウム塩は特に限定されない。上記ホスホニウム塩としては、テトラノルマルブチルホスホニウムブロマイド、テトラノルマルブチルホスホニウムO-Oジエチルジチオリン酸、メチルトリブチルホスホニウムジメチルリン酸塩、テトラノルマルブチルホスホニウムベンゾトリアゾール、テトラノルマルブチルホスホニウムテトラフルオロボレート、及びテトラノルマルブチルホスホニウムテトラフェニルボレート等が挙げられる。
【0081】
上記熱硬化性化合物が良好に硬化するように、上記硬化促進剤の含有量は適宜選択される。上記熱硬化性化合物100重量部に対する上記硬化促進剤の含有量は、好ましくは0.5重量部以上、より好ましくは0.8重量部以上であり、好ましくは10重量部以下、より好ましくは8重量部以下である。上記硬化促進剤の含有量が、上記下限以上及び上記上限以下であると、上記熱硬化性化合物を良好に硬化させることができる。また、上記硬化促進剤の含有量が、上記下限以上及び上記上限以下であると、電極上にはんだをより一層効率的に配置することができ、接続されるべき上下の電極間の導通信頼性をより一層効果的に高めることができる。
【0082】
(溶剤)
本発明に係る導電材料では、溶剤を含まないか、又は、上記導電材料100重量%中に溶剤を1重量%以下で含む。上記導電材料では、上記導電材料100重量%中に溶剤を1重量%以下で含むことが好ましく、溶剤を含まないことがより好ましい。上記溶剤が、上記の好ましい態様を満足すると、スクリーン印刷をより一層良好に連続して行うことができ、電極上にはんだをより一層効率的に配置することができる。上記溶剤は1種のみが用いられてもよく、2種以上が併用されてもよい。
【0083】
上記溶剤としては、水及び有機溶剤等が挙げられる。容易に除去できることから、有機溶剤が好ましい。上記有機溶剤としては、エタノール等のアルコール化合物、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン化合物、トルエン、キシレン、テトラメチルベンゼン等の芳香族炭化水素化合物、セロソルブ、メチルセロソルブ、ブチルセロソルブ、カルビトール、メチルカルビトール、ブチルカルビトール、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールジエチルエーテル、トリプロピレングリコールモノメチルエーテル等のグリコールエーテル化合物、酢酸エチル、酢酸ブチル、乳酸ブチル、セロソルブアセテート、ブチルセロソルブアセテート、カルビトールアセテート、ブチルカルビトールアセテート、プロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールモノメチルエーテルアセテート、炭酸プロピレン等のエステル化合物、オクタン、デカン等の脂肪族炭化水素化合物、並びに石油エーテル、ナフサ等の石油系溶剤等が挙げられる。
【0084】
上記溶剤は、260℃及び5分間の条件で加熱したときに蒸発することが好ましい。上記の好ましい態様を満足する溶剤としては、ベンジルグリコール、ジエチレングリコールモノヘキシルエーテル及びジエチレングリコールモノ2-エチルヘキシルエーテル等が挙げられる。上記溶剤は、ベンジルグリコール、又はジエチレングリコールモノヘキシルエーテルであることが好ましい。
【0085】
(脂肪酸アミン塩又は脂肪酸アミド)
上記導電材料は、脂肪酸アミン塩又は脂肪酸アミドを含むことが好ましい。上記導電材料は脂肪酸アミン塩のみを含んでいてもよく、脂肪酸アミドのみを含んでいてもよく、脂肪酸アミン塩と脂肪酸アミドとを含んでいてもよい。脂肪酸アミン塩又は脂肪酸アミドを用いることで、導電材料の粘弾特性をより一層良好にすることができ、スクリーン印刷をより一層良好に連続して行うことができ、電極上にはんだをより一層効率的に配置することができる。上記脂肪酸アミン塩及び上記脂肪酸アミドは、後述するフラックスとして導電材料に用いられてもよい。上記脂肪酸アミン塩及び上記脂肪酸アミドは、後述するフラックスとは異なる添加剤として導電材料に用いられてもよい。上記脂肪酸アミン塩は、1種のみが用いられてもよく、2種以上が併用されてもよい。上記脂肪酸アミドは、1種のみが用いられてもよく、2種以上が併用されてもよい。
【0086】
上記脂肪酸アミン塩としては、グルタル酸ベンジルアミン塩、アジピン酸ベンジルアミン塩及びグルタル酸ヘキシルアミン塩等が挙げられる。導電材料の粘弾特性をより一層良好にする観点、スクリーン印刷をより一層良好に連続して行う観点、及び電極上にはんだをより一層効率的に配置する観点からは、上記脂肪酸アミン塩は、グルタル酸ベンジルアミン塩又はアジピン酸ベンジルアミン塩であることが好ましい。
【0087】
上記脂肪酸アミドとしては、グルタル酸ベンジルアミド、アジピン酸ベンジルアミド及びグルタル酸ヘキシルアミド等が挙げられる。導電材料の粘弾特性をより一層良好にする観点、スクリーン印刷をより一層良好に連続して行う観点、及び電極上にはんだをより一層効率的に配置する観点からは、上記脂肪酸アミドは、グルタル酸ベンジルアミド又はアジピン酸ベンジルアミドであることが好ましい。
【0088】
上記導電材料100重量%中、上記脂肪酸アミン塩の含有量は、好ましくは1重量%以上、より好ましくは3重量%以上であり、好ましくは10重量%以下、より好ましくは7重量%以下である。上記導電材料は、上記脂肪酸アミン塩を含んでいなくてもよい。上記脂肪酸アミン塩の含有量が、上記下限以上及び上記上限以下であると、導電材料の粘弾特性をより一層良好にすることができ、スクリーン印刷をより一層良好に連続して行うことができ、電極上にはんだをより一層効率的に配置することができる。
【0089】
上記導電材料100重量%中、上記脂肪酸アミドの含有量は、好ましくは0.2重量%以上、より好ましくは0.5重量%以上であり、好ましくは3重量%以下、より好ましくは2重量%以下である。上記導電材料は、上記脂肪酸アミドを含んでいなくてもよい。上記脂肪酸アミドの含有量が、上記下限以上及び上記上限以下であると、導電材料の粘弾特性をより一層良好にすることができ、スクリーン印刷をより一層良好に連続して行うことができ、電極上にはんだをより一層効率的に配置することができる。
【0090】
(フラックス)
上記導電材料は、フラックスを含んでいてもよい。フラックスを用いることで、導電接続時のはんだの凝集性をより一層効果的に高めることができる。上記フラックスは特に限定されない。上記フラックスとして、はんだ接合等に一般的に用いられているフラックスを用いることができる。上記フラックスは、上述した脂肪酸アミン塩又は脂肪酸アミドであってもよい。上記フラックスは、上述した脂肪酸アミン塩又は脂肪酸アミド以外の化合物を含んでいてもよい。
【0091】
上記フラックスとしては、塩化亜鉛、塩化亜鉛と無機ハロゲン化物との混合物、塩化亜鉛と無機酸との混合物、溶融塩、リン酸、リン酸の誘導体、有機ハロゲン化物、ヒドラジン、アミン化合物、有機酸及び松脂等が挙げられる。上記フラックスは、1種のみが用いられてもよく、2種以上が併用されてもよい。
【0092】
上記溶融塩としては、塩化アンモニウム等が挙げられる。上記有機酸としては、乳酸、クエン酸、ステアリン酸、グルタミン酸及びグルタル酸等が挙げられる。上記松脂としては、活性化松脂及び非活性化松脂等が挙げられる。上記フラックスは、カルボキシル基を2個以上有する有機酸、又は松脂であることが好ましい。上記フラックスは、カルボキシル基を2個以上有する有機酸であってもよく、松脂であってもよい。カルボキシル基を2個以上有する有機酸、松脂の使用により、電極間の導通信頼性をより一層効果的に高めることができる。
【0093】
上記カルボキシル基を2個以上有する有機酸としては、例えば、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、及びセバシン酸等が挙げられる。
【0094】
上記アミン化合物としては、シクロヘキシルアミン、ジシクロヘキシルアミン、ベンジルアミン、ベンズヒドリルアミン、イミダゾール、ベンゾイミダゾール、フェニルイミダゾール、カルボキシベンゾイミダゾール、ベンゾトリアゾール、及びカルボキシベンゾトリアゾール等が挙げられる。
【0095】
上記松脂はアビエチン酸を主成分とするロジン類である。上記ロジン類としては、アビエチン酸、及びアクリル変性ロジン等が挙げられる。フラックスはロジン類であることが好ましく、アビエチン酸であることがより好ましい。この好ましいフラックスの使用により、電極間の導通信頼性をより一層効果的に高めることができる。
【0096】
上記フラックスの活性温度(融点)は、好ましくは50℃以上、より好ましくは70℃以上、さらに好ましくは80℃以上であり、好ましくは200℃以下、より好ましくは190℃以下、より一層好ましくは160℃以下、さらに好ましくは150℃以下、さらに一層好ましくは140℃以下である。上記フラックスの活性温度が、上記下限以上及び上記上限以下であると、フラックス効果がより一層効果的に発揮され、はんだが電極上により一層効率的に配置される。上記フラックスの活性温度(融点)は80℃以上190℃以下であることが好ましい。上記フラックスの活性温度(融点)は80℃以上140℃以下であることが特に好ましい。
【0097】
上記フラックスの融点は、示差走査熱量測定(DSC)により求めることができる。示差走査熱量測定(DSC)装置としては、SII社製「EXSTAR DSC7020」等が挙げられる。
【0098】
フラックスの活性温度(融点)が80℃以上190℃以下である上記フラックスとしては、コハク酸(融点186℃)、グルタル酸(融点96℃)、アジピン酸(融点152℃)、ピメリン酸(融点104℃)、スベリン酸(融点142℃)等のジカルボン酸、安息香酸(融点122℃)、リンゴ酸(融点130℃)等が挙げられる。
【0099】
また、上記フラックスの沸点は200℃以下であることが好ましい。
【0100】
上記フラックスは、導電材料中に分散されていてもよく、はんだ粒子の表面上に付着していてもよい。
【0101】
上記フラックスは、加熱によりカチオンを放出するフラックスであることが好ましい。加熱によりカチオンを放出するフラックスの使用により、電極上にはんだをより一層効率的に配置することができる。
【0102】
上記加熱によりカチオンを放出するフラックスとしては、上記熱カチオン開始剤(熱カチオン硬化剤)が挙げられる。
【0103】
電極上にはんだをより一層効率的に配置する観点、絶縁信頼性をより一層効果的に高める観点、及び導通信頼性をより一層効果的に高める観点からは、上記フラックスは、酸化合物と塩基化合物との塩であることが好ましい。上記酸化合物は、金属の表面を洗浄する効果を有することが好ましく、上記塩基化合物は、上記酸化合物を中和する作用を有することが好ましい。上記フラックスは、上記酸化合物と上記塩基化合物との中和反応物(塩)であることが好ましい。
【0104】
上記酸化合物は、カルボキシル基を有する有機化合物であることが好ましい。上記酸化合物としては、脂肪族系カルボン酸であるマロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、クエン酸、リンゴ酸、環状脂肪族カルボン酸であるシクロヘキシルカルボン酸、1,4-シクロヘキシルジカルボン酸、芳香族カルボン酸であるイソフタル酸、テレフタル酸、トリメリット酸、及びエチレンジアミン四酢酸等が挙げられる。電極上にはんだをより一層効率的に配置する観点、絶縁信頼性をより一層効果的に高める観点、及び導通信頼性をより一層効果的に高める観点からは、上記酸化合物は、グルタル酸、シクロヘキシルカルボン酸、又はアジピン酸であることが好ましい。
【0105】
上記塩基化合物は、アミノ基を有する有機化合物であることが好ましい。上記塩基化合物としては、ジエタノールアミン、トリエタノールアミン、メチルジエタノールアミン、エチルジエタノールアミン、シクロヘキシルアミン、ジシクロヘキシルアミン、ベンジルアミン、ベンズヒドリルアミン、2-メチルベンジルアミン、3-メチルベンジルアミン、4-tert-ブチルベンジルアミン、N-メチルベンジルアミン、N-エチルベンジルアミン、N-フェニルベンジルアミン、N-tert-ブチルベンジルアミン、N-イソプロピルベンジルアミン、N,N-ジメチルベンジルアミン、イミダゾール化合物、及びトリアゾール化合物が挙げられる。電極上にはんだをより一層効率的に配置する観点、絶縁信頼性をより一層効果的に高める観点、及び導通信頼性をより一層効果的に高める観点からは、上記塩基化合物は、ベンジルアミンであることが好ましい。
【0106】
上記導電材料100重量%中、上記フラックスの含有量は、好ましくは1重量%以上であり、好ましくは10重量%以下、より好ましくは7重量%以下である。上記フラックスの含有量が、上記下限以上及び上記上限以下であると、はんだ及び電極の表面に酸化被膜がより一層形成され難くなり、さらに、はんだ及び電極の表面に形成された酸化被膜をより一層効果的に除去できる。
【0107】
(フィラー)
上記導電材料は、フィラーを含んでいてもよい。上記フィラーは、有機フィラーであってもよく、無機フィラーであってもよい。フィラーの添加により、基板の全電極上に対して、はんだをより一層均一に凝集させることができる。
【0108】
上記導電材料は、上記フィラーを含まないか、又は上記フィラーを5重量%以下で含むことが好ましい。上記熱硬化性化合物を用いている場合には、フィラーの含有量が少ないほど、電極上にはんだ粒子が移動しやすくなる。
【0109】
上記導電材料100重量%中、上記フィラーの含有量は、好ましくは0重量%(未含有)以上であり、好ましくは5重量%以下、より好ましくは2重量%以下、さらに好ましくは1重量%以下である。上記フィラーの含有量が、上記下限以上及び上記上限以下であると、はんだが電極上により一層均一に配置される。
【0110】
(他の成分)
上記導電材料は、必要に応じて、例えば、充填剤、増量剤、軟化剤、可塑剤、増粘剤、チキソ剤、レベリング剤、重合触媒、硬化触媒、着色剤、酸化防止剤、熱安定剤、光安定剤、紫外線吸収剤、滑剤、帯電防止剤及び難燃剤等の各種添加剤を含んでいてもよい。
【0111】
(接続構造体及び接続構造体の製造方法)
本発明に係る接続構造体は、第1の電極を表面に有する第1の接続対象部材と、第2の電極を表面に有する第2の接続対象部材と、上記第1の接続対象部材と、上記第2の接続対象部材とを接続している接続部とを備える。本発明に係る接続構造体では、上記接続部の材料が、上述した導電材料である。本発明に係る接続構造体では、上記第1の電極と上記第2の電極とが、上記接続部中のはんだ部により電気的に接続されている。
【0112】
本発明に係る接続構造体の製造方法は、上述した導電材料を用いて、第1の電極を表面に有する第1の接続対象部材の表面上に、上記導電材料を配置する工程を備える。本発明に係る接続構造体の製造方法は、上記導電材料の上記第1の接続対象部材側とは反対の表面上に、第2の電極を表面に有する第2の接続対象部材を、上記第1の電極と上記第2の電極とが対向するように配置する工程を備える。本発明に係る接続構造体の製造方法は、上記はんだ粒子の融点以上に上記導電材料を加熱することで、上記第1の接続対象部材と上記第2の接続対象部材とを接続している接続部を、上記導電材料により形成し、かつ、上記第1の電極と上記第2の電極とを、上記接続部中のはんだ部により電気的に接続する工程と備える。
【0113】
本発明に係る接続構造体及び接続構造体の製造方法では、特定の導電材料を用いているので、はんだ粒子が第1の電極と第2の電極との間に集まりやすく、はんだ粒子を電極(ライン)上に効率的に配置することができる。また、はんだ粒子の一部が、電極が形成されていない領域(スペース)に配置され難く、電極が形成されていない領域に配置されるはんだ粒子の量をかなり少なくすることができる。従って、第1の電極と第2の電極との間の導通信頼性を高めることができる。しかも、接続されてはならない横方向に隣接する電極間の電気的な接続を防ぐことができ、絶縁信頼性を高めることができる。
【0114】
また、はんだを電極上に効率的に配置し、かつ電極が形成されていない領域に配置されるはんだの量をかなり少なくするためには、上記導電材料は、導電フィルムではなく、導電ペーストを用いることが好ましい。
【0115】
本発明に係る接続構造体の製造方法では、上記第2の接続対象部材を配置する工程及び上記接続部を形成する工程において、加圧を行わず、上記導電材料には、上記第2の接続対象部材の重量が加わることが好ましい。本発明に係る接続構造体の製造方法では、上記第2の接続対象部材を配置する工程及び上記接続部を形成する工程において、上記導電材料には、上記第2の接続対象部材の重量の力を超える加圧圧力は加わらないことが好ましい。これらの場合には、複数のはんだ部において、はんだ量の均一性をより一層高めることができる。さらに、はんだ部の厚みをより一層効果的に厚くすることができ、複数のはんだ粒子が電極間に多く集まりやすくなり、複数のはんだ粒子を電極(ライン)上により一層効率的に配置することができる。また、複数のはんだ粒子の一部が、電極が形成されていない領域(スペース)に配置され難く、電極が形成されていない領域に配置されるはんだ粒子におけるはんだの量をより一層少なくすることができる。従って、電極間の導通信頼性をより一層高めることができる。しかも、接続されてはならない横方向に隣接する電極間の電気的な接続をより一層防ぐことができ、絶縁信頼性をより一層高めることができる。
【0116】
また、導電フィルムではなく、導電ペーストを用いれば、導電ペーストの塗布量によって、接続部及びはんだ部の厚みを調整することが容易になる。一方で、導電フィルムでは、接続部の厚みを変更したり、調整したりするためには、異なる厚みの導電フィルムを用意したり、所定の厚みの導電フィルムを用意したりしなければならないという問題がある。また、導電フィルムでは、導電ペーストと比べて、はんだの溶融温度で、導電フィルムの溶融粘度を十分に下げることができず、はんだ粒子の凝集が阻害されやすい傾向がある。
【0117】
以下、図面を参照しつつ、本発明の具体的な実施形態を説明する。
【0118】
図1は、本発明の一実施形態に係る導電材料を用いて得られる接続構造体を模式的に示す断面図である。
【0119】
図1に示す接続構造体1は、第1の接続対象部材2と、第2の接続対象部材3と、第1の接続対象部材2と第2の接続対象部材3とを接続している接続部4とを備える。接続部4は、上述した導電材料により形成されている。本実施形態では、上記導電材料は、熱硬化性成分と、複数のはんだ粒子とを含む。上記熱硬化性成分は、熱硬化性化合物と熱硬化剤とを含む。本実施形態では、導電材料として、導電ペーストが用いられている。
【0120】
接続部4は、複数のはんだ粒子が集まり互いに接合したはんだ部4Aと、熱硬化性成分が熱硬化された硬化物部4Bとを有する。
【0121】
第1の接続対象部材2は表面(上面)に、複数の第1の電極2aを有する。第2の接続対象部材3は表面(下面)に、複数の第2の電極3aを有する。第1の電極2aと第2の電極3aとが、はんだ部4Aにより電気的に接続されている。従って、第1の接続対象部材2と第2の接続対象部材3とが、はんだ部4Aにより電気的に接続されている。なお、接続部4において、第1の電極2aと第2の電極3aとの間に集まったはんだ部4Aとは異なる領域(硬化物部4B部分)では、はんだは存在しない。はんだ部4Aとは異なる領域(硬化物部4B部分)では、はんだ部4Aと離れたはんだは存在しない。なお、少量であれば、第1の電極2aと第2の電極3aとの間に集まったはんだ部4Aとは異なる領域(硬化物部4B部分)に、はんだが存在していてもよい。
【0122】
図1に示すように、接続構造体1では、第1の電極2aと第2の電極3aとの間に、複数のはんだ粒子が集まり、複数のはんだ粒子が溶融した後、はんだ粒子の溶融物が電極の表面を濡れ拡がった後に固化して、はんだ部4Aが形成されている。このため、はんだ部4Aと第1の電極2a、並びにはんだ部4Aと第2の電極3aとの接続面積が大きくなる。すなわち、はんだ粒子を用いることにより、導電部の外表面部分がニッケル、金又は銅等の金属である導電性粒子を用いた場合と比較して、はんだ部4Aと第1の電極2a、並びにはんだ部4Aと第2の電極3aとの接触面積が大きくなる。このため、接続構造体1における導通信頼性及び接続信頼性が高くなる。なお、導電材料に含まれるフラックスは、一般に、加熱により次第に失活する。
【0123】
なお、
図1に示す接続構造体1では、はんだ部4Aの全てが、第1,第2の電極2a,3a間の対向している領域に位置している。
図3に示す変形例の接続構造体1Xは、接続部4Xのみが、
図1に示す接続構造体1と異なる。接続部4Xは、はんだ部4XAと硬化物部4XBとを有する。接続構造体1Xのように、はんだ部4XAの多くが、第1,第2の電極2a,3aの対向している領域に位置しており、はんだ部4XAの一部が第1,第2の電極2a,3aの対向している領域から側方にはみ出していてもよい。第1,第2の電極2a,3aの対向している領域から側方にはみ出しているはんだ部4XAは、はんだ部4XAの一部であり、はんだ部4XAから離れたはんだではない。なお、本実施形態では、はんだ部から離れたはんだの量を少なくすることができるが、はんだ部から離れたはんだが硬化物部中に存在していてもよい。
【0124】
はんだ粒子の使用量を少なくすれば、接続構造体1を得ることが容易になる。はんだ粒子の使用量を多くすれば、接続構造体1Xを得ることが容易になる。
【0125】
上記第1の電極と上記第2の電極との間におけるはんだ部の厚みは、好ましくは10μm以上、より好ましくは20μm以上であり、好ましくは100μm以下、より好ましくは80μm以下である。上記第1の電極及び上記第2の電極において、電極の表面上のはんだ濡れ面積(電極の露出した面積100%中のはんだが接している面積)は、好ましくは50%以上、より好ましくは60%以上、さらに好ましくは70%以上であり、好ましくは100%以下である。上記接続部中の上記はんだ部が、上記の好ましい態様を満足することで、導通信頼性及び絶縁信頼性をより一層効果的に高めることができる。
【0126】
接続構造体1,1Xでは、第1の電極2aと接続部4,4Xと第2の電極3aとの積層方向に第1の電極2aと第2の電極3aとの対向し合う部分をみたときに、第1の電極2aと第2の電極3aとの対向し合う部分の面積100%中の50%以上に、接続部4,4X中のはんだ部4A,4XAが配置されていることが好ましい。接続部4,4X中のはんだ部4A,4XAが、上記の好ましい態様を満足することで、導通信頼性をより一層高めることができる。
【0127】
上記第1の電極と上記接続部と上記第2の電極との積層方向に上記第1の電極と上記第2の電極との対向し合う部分をみたときに、上記第1の電極と上記第2の電極との対向し合う部分の面積100%中の50%以上に、上記接続部中のはんだ部が配置されていることが好ましい。上記第1の電極と上記接続部と上記第2の電極との積層方向に上記第1の電極と上記第2の電極との対向し合う部分をみたときに、上記第1の電極と上記第2の電極との対向し合う部分の面積100%中の60%以上に、上記接続部中のはんだ部が配置されていることがより好ましい。上記第1の電極と上記接続部と上記第2の電極との積層方向に上記第1の電極と上記第2の電極との対向し合う部分をみたときに、上記第1の電極と上記第2の電極との対向し合う部分の面積100%中の70%以上に、上記接続部中のはんだ部が配置されていることがさらに好ましい。上記第1の電極と上記接続部と上記第2の電極との積層方向に上記第1の電極と上記第2の電極との対向し合う部分をみたときに、上記第1の電極と上記第2の電極との対向し合う部分の面積100%中の80%以上に、上記接続部中のはんだ部が配置されていることが特に好ましい。上記第1の電極と上記接続部と上記第2の電極との積層方向に上記第1の電極と上記第2の電極との対向し合う部分をみたときに、上記第1の電極と上記第2の電極との対向し合う部分の面積100%中の90%以上に、上記接続部中のはんだ部が配置されていることが最も好ましい。上記接続部中のはんだ部が、上記の好ましい態様を満足することで、導通信頼性をより一層高めることができる。
【0128】
上記第1の電極と上記接続部と上記第2の電極との積層方向と直交する方向に上記第1の電極と上記第2の電極との対向し合う部分をみたときに、上記第1の電極と上記第2の電極との対向し合う部分に、上記接続部中のはんだ部の60%以上が配置されていることが好ましい。上記第1の電極と上記接続部と上記第2の電極との積層方向と直交する方向に上記第1の電極と上記第2の電極との対向し合う部分をみたときに、上記第1の電極と上記第2の電極との対向し合う部分に、上記接続部中のはんだ部の70%以上が配置されていることがより好ましい。上記第1の電極と上記接続部と上記第2の電極との積層方向と直交する方向に上記第1の電極と上記第2の電極との対向し合う部分をみたときに、上記第1の電極と上記第2の電極との対向し合う部分に、上記接続部中のはんだ部の90%以上が配置されていることがさらに好ましい。上記第1の電極と上記接続部と上記第2の電極との積層方向と直交する方向に上記第1の電極と上記第2の電極との対向し合う部分をみたときに、上記第1の電極と上記第2の電極との対向し合う部分に、上記接続部中のはんだ部の95%以上が配置されていることが特に好ましい。上記第1の電極と上記接続部と上記第2の電極との積層方向と直交する方向に上記第1の電極と上記第2の電極との対向し合う部分をみたときに、上記第1の電極と上記第2の電極との対向し合う部分に、上記接続部中のはんだ部の99%以上が配置されていることが最も好ましい。上記接続部中のはんだ部が、上記の好ましい態様を満足することで、導通信頼性をより一層高めることができる。
【0129】
次に、
図2では、本発明の一実施形態に係る導電材料を用いて、接続構造体1を製造する方法の一例を説明する。
【0130】
先ず、第1の電極2aを表面(上面)に有する第1の接続対象部材2を用意する。次に、
図2(a)に示すように、第1の接続対象部材2の表面上に、熱硬化性成分11Bと、複数のはんだ粒子11Aとを含む導電材料11を配置する(第1の工程)。熱硬化性成分11Bは、熱硬化性化合物と熱硬化剤とを含む。
【0131】
第1の接続対象部材2の第1の電極2aが設けられた表面上に、導電材料11を配置する。導電材料11の配置の後に、はんだ粒子11Aは、第1の電極2a(ライン)上と、第1の電極2aが形成されていない領域(スペース)上との双方に配置されている。なお、上記導電材料は、上記第1の電極の表面上にのみ配置されてもよい。
【0132】
導電材料11の配置方法としては、特に限定されないが、ディスペンサーによる塗布、スクリーン印刷、及びインクジェット装置による吐出等が挙げられる。導電材料11の配置方法は、スクリーン印刷であることが好ましい。
【0133】
また、第2の電極3aを表面(下面)に有する第2の接続対象部材3を用意する。次に、
図2(b)に示すように、第1の接続対象部材2の表面上の導電材料11において、導電材料11の第1の接続対象部材2側とは反対側の表面上に、第2の接続対象部材3を配置する(第2の工程)。導電材料11の表面上に、第2の電極3a側から、第2の接続対象部材3を配置する。このとき、第1の電極2aと第2の電極3aとを対向させる。
【0134】
次に、はんだ粒子11Aの融点以上に導電材料11を加熱する(第3の工程)。好ましくは、熱硬化性成分11B(熱硬化性化合物)の硬化温度以上に導電材料11を加熱する。この加熱時には、電極が形成されていない領域に存在していたはんだ粒子11Aは、第1の電極2aと第2の電極3aとの間に集まる(自己凝集効果)。導電フィルムではなく、導電ペーストを用いた場合には、はんだ粒子11Aが、第1の電極2aと第2の電極3aとの間により一層効果的に集まる。また、はんだ粒子11Aは溶融し、互いに接合する。また、熱硬化性成分11Bは熱硬化する。この結果、
図2(c)に示すように、第1の接続対象部材2と第2の接続対象部材3とを接続している接続部4が、導電材料11により形成される。導電材料11により接続部4が形成され、複数のはんだ粒子11Aが接合することによってはんだ部4Aが形成され、熱硬化性成分11Bが熱硬化することによって硬化物部4Bが形成される。はんだ粒子11Aが十分に移動すれば、第1の電極2aと第2の電極3aとの間に位置していないはんだ粒子11Aの移動が開始してから、第1の電極2aと第2の電極3aとの間にはんだ粒子11Aの移動が完了するまでに、温度を一定に保持しなくてもよい。
【0135】
本実施形態では、特定の導電材料11を用いているので、スクリーン印刷を繰り返し行っても、導電材料のにじみや導電材料のかすれ等の発生を効果的に抑制することができる。また、本実施形態では、特定の導電材料11を用いているので、印刷後の導電材料の形状を維持することができる。結果として、接続されるべき電極間にはんだ粒子11Aをより一層効率的に配置することができ、導通信頼性及び絶縁信頼性をより一層効果的に高めることができる。
【0136】
上記第2の工程及び上記第3の工程において、加圧を行わない方が好ましい。この場合には、導電材料11には、第2の接続対象部材3の重量が加わる。このため、接続部4の形成時に、はんだ粒子11Aが、第1の電極2aと第2の電極3aとの間により一層効果的に集まる。なお、上記第2の工程及び上記第3の工程の内の少なくとも一方において、加圧を行えば、はんだ粒子11Aが第1の電極2aと第2の電極3aとの間に集まろうとする作用が阻害される傾向が高くなる。
【0137】
また、本実施形態では、加圧を行っていないため、第1の電極2aと第2の電極3aとのアライメントが僅かにずれた状態で、第1の接続対象部材2と第2の接続対象部材3とが重ね合わされた場合でも、その僅かなずれを補正して、第1の電極2aと第2の電極3aとを接続させることができる(セルフアライメント効果)。これは、第1の電極2aと第2の電極3aとの間に自己凝集している溶融したはんだが、第1の電極2aと第2の電極3aとの間のはんだと導電材料のその他の成分とが接する面積が最小となる方がエネルギー的に安定になるため、その最小の面積となる接続構造であるアライメントのあった接続構造にする力が働くためである。この際、導電材料が硬化していないこと、及び、その温度、時間にて、導電材料のはんだ粒子以外の成分の粘度が十分低いことが望ましい。
【0138】
このようにして、
図1に示す接続構造体1が得られる。なお、上記第2の工程と上記第3の工程とは連続して行われてもよい。また、上記第2の工程を行った後に、得られる第1の接続対象部材2と導電材料11と第2の接続対象部材3との積層体を、加熱部に移動させて、上記第3の工程を行ってもよい。上記加熱を行うために、加熱部材上に上記積層体を配置してもよく、加熱された空間内に上記積層体を配置してもよい。
【0139】
上記第3の工程における上記加熱温度は、好ましくは220℃以上、より好ましくは240℃以上であり、好ましくは300℃以下、より好ましくは260℃以下である。上記第3の工程における上記加熱温度が、上記下限以上及び上記上限以下であると、電極上にはんだをより一層効率的に配置することができ、接続されるべき上下の電極間の導通信頼性をより一層効果的に高めることができる。
【0140】
上記第3の工程における加熱方法としては、はんだの融点以上及び熱硬化性成分の硬化温度以上に、接続構造体全体を、リフロー炉を用いて又はオーブンを用いて加熱する方法や、接続構造体の接続部のみを局所的に加熱する方法が挙げられる。
【0141】
局所的に加熱する方法に用いる器具としては、ホットプレート、熱風を付与するヒートガン、はんだゴテ、及び赤外線ヒーター等が挙げられる。
【0142】
また、ホットプレートにて局所的に加熱する際、接続部直下は、熱伝導性の高い金属にて、その他の加熱することが好ましくない個所は、フッ素樹脂等の熱伝導性の低い材質にて、ホットプレート上面を形成することが好ましい。
【0143】
上記第1,第2の接続対象部材は、特に限定されない。上記第1,第2の接続対象部材としては、具体的には、半導体チップ、半導体パッケージ、LEDチップ、LEDパッケージ、コンデンサ及びダイオード等の電子部品、並びに樹脂フィルム、プリント基板、フレキシブルプリント基板、フレキシブルフラットケーブル、リジッドフレキシブル基板、ガラスエポキシ基板及びガラス基板等の回路基板等の電子部品等が挙げられる。上記第1,第2の接続対象部材は、電子部品であることが好ましい。
【0144】
上記第1の接続対象部材及び上記第2の接続対象部材の内の少なくとも一方が、樹脂フィルム、フレキシブルプリント基板、フレキシブルフラットケーブル又はリジッドフレキシブル基板であることが好ましい。上記第1の接続対象部材及び上記第2の接続対象部材の内の少なくとも一方が、樹脂フィルム、フレキシブルプリント基板、フレキシブルフラットケーブル又はリジッドフレキシブル基板であることが好ましい。樹脂フィルム、フレキシブルプリント基板、フレキシブルフラットケーブル及びリジッドフレキシブル基板は、柔軟性が高く、比較的軽量であるという性質を有する。このような接続対象部材の接続に導電フィルムを用いた場合には、はんだが電極上に集まりにくい傾向がある。これに対して、導電ペーストを用いることで、樹脂フィルム、フレキシブルプリント基板、フレキシブルフラットケーブル又はリジッドフレキシブル基板を用いたとしても、はんだを電極上に効率的に集めることで、電極間の導通信頼性を十分に高めることができる。樹脂フィルム、フレキシブルプリント基板、フレキシブルフラットケーブル又はリジッドフレキシブル基板を用いる場合に、半導体チップ等の他の接続対象部材を用いた場合と比べて、加圧を行わないことによる電極間の導通信頼性の向上効果がより一層効果的に得られる。
【0145】
上記接続対象部材に設けられている電極としては、金電極、ニッケル電極、錫電極、アルミニウム電極、銅電極、モリブデン電極、銀電極、SUS電極、及びタングステン電極等の金属電極が挙げられる。上記接続対象部材がフレキシブルプリント基板である場合には、上記電極は金電極、ニッケル電極、錫電極、銀電極又は銅電極であることが好ましい。上記接続対象部材がガラス基板である場合には、上記電極はアルミニウム電極、銅電極、モリブデン電極、銀電極又はタングステン電極であることが好ましい。なお、上記電極がアルミニウム電極である場合には、アルミニウムのみで形成された電極であってもよく、金属酸化物層の表面にアルミニウム層が積層された電極であってもよい。上記金属酸化物層の材料としては、3価の金属元素がドープされた酸化インジウム及び3価の金属元素がドープされた酸化亜鉛等が挙げられる。上記3価の金属元素としては、Sn、Al及びGa等が挙げられる。
【0146】
本発明に係る接続構造体では、上記第1の電極及び上記第2の電極は、エリアアレイ又はペリフェラルにて配置されていることが好ましい。上記第1の電極及び上記第2の電極が、エリアアレイ又はペリフェラルにて配置されている場合において、はんだを電極上により一層効果的に凝集させることができる。上記エリアアレイとは、接続対象部材の電極が配置されている面にて、格子状に電極が配置されている構造のことである。上記ペリフェラルとは、接続対象部材の外周部に電極が配置されている構造のことである。電極が櫛型に並んでいる構造の場合は、櫛に垂直な方向に沿ってはんだが凝集すればよいのに対して、上記エリアアレイ又はペリフェラル構造では電極が配置されている面において、全面にて均一にはんだが凝集する必要がある。そのため、従来の方法では、はんだ量が不均一になりやすいのに対して、本発明の方法では、全面にて均一にはんだを凝集させることができる。
【0147】
以下、実施例及び比較例を挙げて、本発明を具体的に説明する。本発明は、以下の実施例のみに限定されない。
【0148】
熱硬化性成分(熱硬化性化合物):
熱硬化性化合物1:フェノールノボラック型エポキシ化合物、DOW社製「DEN431」、25℃での粘度50Pa・s(51.7℃での粘度1.4Pa・s)
熱硬化性化合物2:フェノールノボラック型エポキシ化合物、DOW社製「DEN438」、25℃での粘度600Pa・s以上(51.7℃での粘度35.5Pa・s)
熱硬化性化合物3:ビスフェノールA型エポキシ化合物、新日鉄住金化学社製「YD-8125」、25℃での粘度0.173Pa・s
熱硬化性化合物4:ビスフェノールF型エポキシ樹脂、DOW社製「DER354」、25℃での粘度3.8Pa・s
【0149】
熱硬化性成分(硬化促進剤):
硬化促進剤1:三フッ化ホウ素、アルドリッチ社製「三フッ化ホウ素エチルアミン錯体」
【0150】
脂肪酸アミン塩:
脂肪酸アミン塩1:「グルタル酸ベンジルアミン塩」、融点108℃
脂肪酸アミン塩1の作製方法:
ガラスビンに、反応溶媒である水24gと、グルタル酸(和光純薬工業社製)13.212gとを入れ、室温で均一になるまで溶解させた。その後、ベンジルアミン(和光純薬工業社製)10.715gを入れて、約5分間撹拌し、混合液を得た。得られた混合液を5~10℃の冷蔵庫に入れて、一晩放置した。析出した結晶をろ過により分取し、水で洗浄し、真空乾燥し、脂肪酸アミン塩1を得た。
【0151】
脂肪酸アミド:
脂肪酸アミド1:「グルタル酸ベンジルアミド」、融点101℃
脂肪酸アミド1の作製方法:
3つ口フラスコに、グルタル酸(和光純薬工業社製)13.212gと、ベンジルアミン(和光純薬工業社製)10.715gとを入れて、140℃で1時間加熱して反応させ、脂肪酸アミド1を得た。
【0152】
はんだ粒子:
はんだ粒子1:SnAgCuはんだ粒子、融点219℃、三井金属鉱業社製「Sn96.5Ag3Cu0.5」を選別したはんだ粒子、平均粒子径30μm
はんだ粒子2:SnAgCuはんだ粒子、融点219℃、三井金属鉱業社製「Sn96.5Ag3Cu0.5」を選別したはんだ粒子、平均粒子径10μm
はんだ粒子3:SnAgCuはんだ粒子、融点219℃、三井金属鉱業社製「Sn96.5Ag3Cu0.5」を選別したはんだ粒子、平均粒子径3μm
はんだ粒子4:SnAgCuはんだ粒子、融点219℃、三井金属鉱業社製「Sn96.5Ag3Cu0.5」を選別したはんだ粒子、平均粒子径2μm
【0153】
溶剤:
溶剤1:2-メチル-1,3-プロパンジオール、東京化成工業社製「2-メチル-1,3-プロパンジオール」、沸点214℃
【0154】
(25℃での熱硬化性化合物の粘度)
25℃での熱硬化性化合物の粘度は、E型粘度計(東機産業社製「TVE22L」)を用いて、25℃及び5rpmの条件で測定した。
【0155】
(はんだ粒子の平均粒子径)
はんだ粒子の平均粒子径は、レーザー回折式粒度分布測定装置(堀場製作所社製「LA-920」)を用いて測定した。
【0156】
(はんだ粒子の融点)
はんだ粒子の融点は、示差走査熱量測定(DSC)を用いて算出した。示差走査熱量測定(DSC)装置としては、SII社製「EXSTAR DSC7020」を用いた。
【0157】
(実施例1~9及び比較例1~6)
(1)導電材料(異方性導電ペースト)の作製
下記の表1,2に示す成分を下記の表1,2に示す配合量で配合して、導電材料(異方性導電ペースト)を得た。
【0158】
(2)接続構造体Aの作製
第1の接続対象部材として、L/S=50μm/50μmの銅電極(電極長さ:3mm、電極厚み:12μm)を表面に有するガラスエポキシ基板(材質:FR-4、厚み:0.6mm)を用意した。
【0159】
第2の接続対象部材として、L/S=50μm/50μmの銅電極(電極長さ:3mm、電極厚み:12μm)を表面に有するフレキシブルプリント基板(材質:ポリイミド、厚み:0.1mm)を用意した。
【0160】
上記ガラスエポキシ基板の上面に、スクリーン印刷により、作製直後の導電材料(異方性導電ペースト)を厚さ100μmとなるように印刷し、導電材料(異方性導電ペースト)層を形成した。次に、導電材料(異方性導電ペースト)層の上面にフレキシブルプリント基板を電極同士が対向するように積層した。導電材料(異方性導電ペースト)層には、上記フレキシブルプリント基板の重量は加わる。その状態から、導電材料(異方性導電ペースト)層の温度が、昇温開始から5秒後にはんだ粒子の融点となるように加熱した。さらに、昇温開始から15秒後に、導電材料(異方性導電ペースト)層の温度が200℃となるように加熱し、導電材料(異方性導電ペースト)層を硬化させ、接続構造体を得た。加熱時には、加圧を行わなかった。
【0161】
(3)接続構造体Bの作製
上記ガラスエポキシ基板の上面に、スクリーン印刷により、作製直後の導電材料(異方性導電ペースト)を厚さ100μmとなるように印刷した。その後、連続して20回のスクリーン印刷を行った。20回後のスクリーン印刷により、導電材料(異方性導電ペースト)層が形成されたガラスエポキシ基板を用いたこと以外は、接続構造体Aと同様にして、接続構造体Bを作製した。
【0162】
(評価)
(1)導電材料の粘度
得られた導電材料について、25℃及びせん断速度600sec-1の条件で測定したときの粘度(ηA)を算出した。また、得られた導電材料について、25℃及びせん断速度0.06sec-1の条件で測定したときの粘度(ηB)を算出した。上記粘度(ηA及びηB)を以下の基準で判定した。
【0163】
上記粘度(ηA及びηB)は、レオメーター(Thermo Scientific社製、「HAAKE MARS III」)により測定した。具体的には、以下のようにして測定した。
【0164】
25℃の一定温度下にて、得られた導電材料に対して、プレシェアとして100sec-1のせん断速度を60秒間付与し、その後5分間静置した。次に、せん断速度を0sec-1~1000sec-1まで120秒間で変化させ、続いて、せん断速度を1000sec-1~0sec-1まで120秒間で変化させて測定を実施した。この測定において、せん断速度を1000sec-1~0sec-1まで120秒間で変化させたときのせん断速度600sec-1における粘度をηAとし、せん断速度0.06sec-1における粘度をηBとした。
【0165】
[ηAの判定基準]
○○:ηAが5Pa・s以上10Pa・s以下
○:ηAが1Pa・s以上5Pa・s未満であるか、又は、10Pa・sを超え20Pa・s以下
×:ηAが1Pa・s未満であるか、又は、20Pa・sを超える
【0166】
[ηBの判定基準]
○○:ηBが2000Pa・s以上3000Pa・s以下
○:ηBが1000Pa・s以上2000Pa・s未満であるか、又は、3000Pa・sを超え3500Pa・s以下
×:ηBが1000Pa・s未満であるか、又は、3500Pa・sを超える
【0167】
(2)導電材料のtanδ
得られた導電材料について、25℃及び周波数1Hzの条件で測定したときのtanδを算出した。上記tanδを以下の基準で判定した。
【0168】
上記tanδは、レオメーター(Thermo Scientific社製、「HAAKE MARS III」)により測定した。具体的には、以下のようにして測定した。
【0169】
25℃の一定温度下で、周波数1Hzにて、得られた導電材料に与える歪みを0~100%まで掃引により変化させ、貯蔵弾性率(G’)と損失弾性率(G”)とをそれぞれ測定した。得られた貯蔵弾性率(G’)と損失弾性率(G”)とから、tanδ(G”/G’)を算出した。
【0170】
[tanδの判定基準]
○○:tanδが4以上7以下
○:tanδが2以上4未満であるか、又は、7を超え10以下
×:tanδが2未満であるか、又は、10を超える
【0171】
(3)連続印刷性
得られた導電材料について、開口部1箇所当たりの寸法が130mm×175mm、厚みが40μmのメタルマスクを用いて、スライドガラス上にスクリーン印刷を行った。印刷されたパターンについて、印刷直後の印刷面を目視および実体顕微鏡で観察し、また寸法を測定し、にじみやかすれが発生しているか否かを確認した。連続してスクリーン印刷を行い、にじみやかすれが発生せずに印刷できる回数を確認し、以下の基準で連続印刷性を判定した。
【0172】
[にじみ又はかすれの判定基準]
[にじみ]:印刷直後に、製版寸法に対して20%以上太っている箇所がある場合
[かすれ]:印刷直後に、製版寸法に対して20%以上欠けている箇所がある場合
【0173】
[連続印刷性の判定基準]
○○:にじみやかすれが発生せずに印刷できる回数が25回以上
○:にじみやかすれが発生せずに印刷できる回数が11回以上25回未満
×:にじみやかすれが発生せずに印刷できる回数が11回未満
【0174】
(4)電極上のはんだの配置精度(初期のはんだ凝集性)
得られた接続構造体Aにおいて、第1の電極と接続部と第2の電極との積層方向に第1の電極と第2の電極との対向し合う部分をみたときに、第1の電極と第2の電極との対向し合う部分の面積100%中の、接続部中のはんだ部が配置されている面積の割合Xを評価した。電極上のはんだの配置精度を下記の基準で判定した。
【0175】
[電極上のはんだの配置精度の判定基準]
○○:割合Xが70%以上
○:割合Xが50%以上70%未満
×:割合Xが50%未満
【0176】
(5)電極上のはんだの配置精度(連続印刷後のはんだ凝集性)
得られた接続構造体Bにおいて、第1の電極と接続部と第2の電極との積層方向に第1の電極と第2の電極との対向し合う部分をみたときに、第1の電極と第2の電極との対向し合う部分の面積100%中の、接続部中のはんだ部が配置されている面積の割合Yを評価した。電極上のはんだの配置精度を下記の基準で判定した。
【0177】
[電極上のはんだの配置精度の判定基準]
○○:割合Yが70%以上
○:割合Yが50%以上70%未満
×:割合Yが50%未満
【0178】
(6)はんだサイドボール
得られた接続構造体Aにおいて、走査型電子顕微鏡により接続部を観察することで、接続部の周囲に直径100μm以上のはんだサイドボール又は直径100μm未満のはんだサイドボールが形成されているか否かを確認した。はんだサイドボールを以下の基準で判定した。
【0179】
[直径100μm以上のはんだサイドボールの判定基準]
○○:接続部の周囲に直径100μm以上のはんだサイドボールが形成されていない
○:接続部の周囲に形成されている直径100μm以上のはんだサイドボールの個数が3個以下
×:接続部の周囲に形成されている直径100μm以上のはんだサイドボールの個数が4個を超える
【0180】
[直径100μm未満のはんだサイドボールの判定基準]
○○:接続部の周囲に形成されている直径100μm未満のはんだサイドボールの個数が3個以下
○:接続部の周囲に形成されている直径100μm未満のはんだサイドボールの個数が4個を超え10個以下
×:接続部の周囲に形成されている直径100μm未満のはんだサイドボールの個数が11個を超える
【0181】
(7)導通信頼性(上下の電極間)
得られた接続構造体A(合計20個)において、上下の電極間の1接続箇所当たりの接続抵抗をそれぞれ、4端子法により測定した。接続抵抗の平均値を算出した。なお、電圧=電流×抵抗の関係から、一定の電流を流した時の電圧を測定することにより接続抵抗を求めることができる。導通信頼性を下記の基準で判定した。
【0182】
[導通信頼性の判定基準]
○○:接続抵抗の平均値が50mΩ以下
○:接続抵抗の平均値が50mΩを超え100mΩ以下
×:接続抵抗の平均値が100mΩを超える、又は接続不良が生じている
【0183】
(8)絶縁信頼性(横方向に隣接する電極間)
上記(7)導通信頼性の評価で得られた20個の接続構造体Aにおいて、隣接する電極間のリークの有無を、テスターで抵抗値を測定することにより評価した。絶縁信頼性を下記の基準で評価した。
【0184】
[絶縁信頼性の判定基準]
○○:抵抗値が108Ω以上の接続構造体の個数が、18個以上
○:抵抗値が108Ω以上の接続構造体の個数が、10個以上18個未満
×:抵抗値が108Ω以上の接続構造体の個数が、10個未満
【0185】
結果を下記の表1,2に示す。
【0186】
【0187】
【0188】
フレキシブルプリント基板、樹脂フィルム、フレキシブルフラットケーブル及びリジッドフレキシブル基板を用いた場合でも、同様の傾向が見られた。
【符号の説明】
【0189】
1,1X…接続構造体
2…第1の接続対象部材
2a…第1の電極
3…第2の接続対象部材
3a…第2の電極
4,4X…接続部
4A,4XA…はんだ部
4B,4XB…硬化物部
11…導電材料
11A…はんだ粒子
11B…熱硬化性成分