IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ マジック リープ, インコーポレイテッドの特許一覧

(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-01-17
(45)【発行日】2024-01-25
(54)【発明の名称】薄型ビームスプリッタ
(51)【国際特許分類】
   G02B 27/02 20060101AFI20240118BHJP
   G02B 5/30 20060101ALI20240118BHJP
   G02B 5/08 20060101ALI20240118BHJP
【FI】
G02B27/02 Z
G02B5/30
G02B5/08 D
【請求項の数】 26
(21)【出願番号】P 2022178004
(22)【出願日】2022-11-07
(62)【分割の表示】P 2021038210の分割
【原出願日】2018-03-21
(65)【公開番号】P2023014115
(43)【公開日】2023-01-26
【審査請求日】2022-11-07
(31)【優先権主張番号】62/474,543
(32)【優先日】2017-03-21
(33)【優先権主張国・地域又は機関】US
(31)【優先権主張番号】62/570,995
(32)【優先日】2017-10-11
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】514108838
【氏名又は名称】マジック リープ, インコーポレイテッド
【氏名又は名称原語表記】Magic Leap,Inc.
【住所又は居所原語表記】7500 W SUNRISE BLVD,PLANTATION,FL 33322 USA
(74)【代理人】
【識別番号】100078282
【弁理士】
【氏名又は名称】山本 秀策
(74)【代理人】
【識別番号】100113413
【弁理士】
【氏名又は名称】森下 夏樹
(74)【代理人】
【識別番号】100181674
【弁理士】
【氏名又は名称】飯田 貴敏
(74)【代理人】
【識別番号】100181641
【弁理士】
【氏名又は名称】石川 大輔
(74)【代理人】
【識別番号】230113332
【弁護士】
【氏名又は名称】山本 健策
(72)【発明者】
【氏名】ジャジャ アイ. トリスナディ
(72)【発明者】
【氏名】ピエール サン ティレール
(72)【発明者】
【氏名】チェン フイ-チュアン
(72)【発明者】
【氏名】クリントン カーライル
(72)【発明者】
【氏名】マイケル アンソニー クルグ
(72)【発明者】
【氏名】ケビン リチャード カーティス
【審査官】横井 亜矢子
(56)【参考文献】
【文献】特開2015-161737(JP,A)
【文献】特開2001-117045(JP,A)
【文献】特開2014-081481(JP,A)
【文献】特表2009-503585(JP,A)
【文献】特表2015-504616(JP,A)
【文献】特表2011-510344(JP,A)
【文献】米国特許出願公開第2015/0234254(US,A1)
【文献】米国特許第05617227(US,A)
【文献】国際公開第2016/205256(WO,A1)
【文献】韓国公開特許第10-2008-0045159(KR,A)
(58)【調査した分野】(Int.Cl.,DB名)
G02B 27/00-30/60
G02B 5/30,5/18,5/32
G02B 5/00-5/136
JSTPlus/JMEDPlus/JST7580(JDreamIII)
(57)【特許請求の範囲】
【請求項1】
ビームスプリッタであって、
回折光学要素を備える第1の表面と、
前記第1の表面に対して垂直である第2の表面と、
前記第2の表面に対して45度未満の角度で配列されるビーム分割表面と
を備え、
前記ビームスプリッタは、前記第1の表面における入力ビームに応答して第2の表面全体を照明するように構成され、
前記第1の表面は、前記第2の表面よりも長さが短い、ビームスプリッタ。
【請求項2】
前記回折光学要素は、透過型回折光学要素である、請求項1に記載のビームスプリッタ。
【請求項3】
前記ビーム分割表面は、第1の状態の光に対して反射性であり、第2の状態の光に対して透過性であり、前記透過型回折光学要素は、垂直に前記第1の表面上に入射するコリメートされた入力ビームを受け取ることであって、前記コリメートされた入力ビームは、前記第1の状態を有する光を備える、ことと、第1の回折ビームが、前記ビーム分割表面に向かって指向され、前記第1の表面と略平行な方向に前記ビーム分割表面によって反射されるように、前記コリメートされた入力ビームを第1の回折角における少なくとも第1の回折ビームに変換することとを行うように構成される、請求項2に記載のビームスプリッタ。
【請求項4】
前記第1の回折ビームは、前記第2の表面において前記ビームスプリッタから出射し、空間光変調器が、前記第1の回折ビームを受け取るために前記第2の表面に隣接して提供され、前記空間光変調器は、前記第1の回折ビームを、第1の変調されたビームに変換することであって、前記第1の変調されたビームは、前記第2の状態を有する光を備える、ことと、前記第2の表面に向かって戻るように前記第1の変調されたビームを指向することとを行うように構成される、請求項3に記載のビームスプリッタ。
【請求項5】
前記空間光変調器は、シリコン上液晶(LCOS)空間光変調器またはデジタル光処理(DLP)空間光変調器である、請求項4に記載のビームスプリッタ。
【請求項6】
前記第2の表面の反対側に第3の表面をさらに備え、前記第3の表面は、前記第2の表面を通過した後に前記第1の変調されたビームを受け取り、かつ透過させるように構成され、前記第3の表面は、湾曲している、請求項4に記載のビームスプリッタ。
【請求項7】
前記透過型回折光学要素はさらに、第2の回折ビームが、前記第2の表面に向かって指向され、全内部反射を介して前記ビーム分割表面に向かって前記第2の表面によって反射され、前記第1の表面と略平行な方向に前記ビーム分割表面によって反射されるように、前記コリメートされた入力ビームを第2の回折角における第2の回折ビームに変換するように構成される、請求項2に記載のビームスプリッタ。
【請求項8】
前記反射された第1の回折ビームおよび前記反射された第2の回折ビームは、空間光変調器によって受け取られ、前記反射された第1の回折ビームおよび前記反射された第2の回折ビームは、組み合わせて空間光変調器全体を照明する、請求項7に記載のビームスプリッタ。
【請求項9】
前記第1、第2、およびビーム分割表面は、平面的である、請求項1に記載のビームスプリッタ。
【請求項10】
前記第2の表面は、曲面である、請求項1に記載のビームスプリッタ。
【請求項11】
前記第1、第2、およびビーム分割表面は、ウェッジを形成する、請求項1に記載のビームスプリッタ。
【請求項12】
前記ウェッジは、少なくとも約1.5の屈折率を備える、請求項11に記載のビームスプリッタ。
【請求項13】
前記ビーム分割表面は、偏光ビーム分割表面を備える、請求項1に記載のビームスプリッタ。
【請求項14】
前記第2の表面に対する前記ビーム分割表面の前記角度は、約30度である、請求項1に記載のビームスプリッタ。
【請求項15】
前記第1の回折角は、0度を上回る、請求項3に記載のビームスプリッタ。
【請求項16】
前記第1の回折角は、約30度である、請求項15に記載のビームスプリッタ。
【請求項17】
前記回折光学要素は、複数の回折特徴を備える、請求項1に記載のビームスプリッタ。
【請求項18】
前記回折光学要素は、反射型回折光学要素である、請求項1に記載のビームスプリッタ。
【請求項19】
前記ビーム分割表面は、第1の状態の光に対して反射性であり、第2の状態の光に対して透過性であり、前記反射型回折光学要素は、発散入力ビームを受け取ることであって、前記発散入力ビームは、前記第1の状態を有する光を備える、ことと、第1のコリメートおよび回折されたビームが、前記ビーム分割表面に向かって指向され、前記第1の表面と略平行な方向に前記ビーム分割表面によって反射されるように、前記発散入力ビームを第1の回折角における少なくとも第1のコリメートおよび回折されたビームに変換することとを行うように構成される、請求項18に記載のビームスプリッタ。
【請求項20】
前記第1のコリメートおよび回折されたビームは、前記第2の表面において前記ビームスプリッタから出射し、空間光変調器が、前記第1のコリメートおよび回折されたビームを受け取るために前記第2の表面に隣接して提供され、前記空間光変調器は、前記第1のコリメートおよび回折されたビームを、第1の変調されたビームに変換することであって、前記第1の変調されたビームは、前記第2の状態を有する光を備える、ことと、前記第2の表面に向かって戻るように前記第1の変調されたビームを指向することとを行うように構成される、請求項19に記載のビームスプリッタ。
【請求項21】
前記反射型回折光学要素はさらに、第2のコリメートおよび回折されたビームが、前記第2の表面に向かって指向され、全内部反射を介して前記ビーム分割表面に向かって前記第2の表面によって反射され、前記第1の表面と略平行な方向に前記ビーム分割表面によって反射されるように、前記発散入力ビームを第2の回折角における第2のコリメートおよび回折されたビームに変換するように構成される、請求項19に記載のビームスプリッタ。
【請求項22】
前記反射された第1のコリメートおよび回折されたビームおよび前記反射された第2のコリメートおよび回折されたビームは、空間光変調器によって受け取られ、前記反射された第1のコリメートおよび回折されたビームおよび前記反射された第2のコリメートおよび回折されたビームは、組み合わせて空間光変調器全体を照明する、請求項21に記載のビームスプリッタ。
【請求項23】
前記反射型回折光学要素は、複数の発散入力ビームを受け取るように構成され、前記複数の発散入力ビームは、相互に対して角度分離されるかまたは側方分離されており、前記反射型回折光学要素はさらに、前記複数の発散入力ビームを低減された量の角度分離または側方分離を伴ってコリメートおよび回折されたビームに変換するように構成される、請求項19に記載のビームスプリッタ。
【請求項24】
前記複数の発散入力ビームを出力するための複数の側方分離された光源をさらに備える、請求項23に記載のビームスプリッタ。
【請求項25】
前記反射型回折光学要素は、第1の角度において前記複数の発散入力ビームのうちの第1の入力ビームを受け取ることと、前記第1の入力ビームを光学経路に沿って前記ビーム分割表面に向かって指向される対応する第1のコリメートおよび回折されたビームに変換することと、第2の角度において前記複数の発散入力ビームのうちの第2の入力ビームを受け取ることと、前記第2の入力ビームを前記光学経路に沿って前記ビーム分割表面に向かって指向される第2のコリメートおよび回折されたビームに変換することとを行うように構成される、請求項24に記載のビームスプリッタ。
【請求項26】
前記反射型回折光学要素は、ホログラムを備える、請求項18に記載のビームスプリッタ。
【発明の詳細な説明】
【技術分野】
【0001】
(任意の優先出願に対する参照による援用)
本願は、2017年3月21日に出願され“LOW-PROFILE BEAM SPLITTER”と題された米国仮特許出願第62/474,543号および2017年10月11日に出願され“LOW-PROFILE BEAM SPLITTER”と題された米国仮特許出願第62/570,995号に対する優先権を主張するものであり、これらの内容は、全体が記載されているかのように、参照によりこれらの全体が参照により本明細書中に明示的かつ完全に援用される。
【0002】
本開示は、仮想現実、拡張現実、および複合現実結像および可視化システムに関し、より具体的には、これらおよび他の光学システムで使用するためのコンパクトなビームスプリッタに関する。
【背景技術】
【0003】
現代のコンピューティングおよびディスプレイ技術は、いわゆる「仮想現実」または「拡張現実」体験のためのシステムの開発を促進しており、デジタル的に再現された画像またはその一部が、現実であるように見える、またはそのように知覚され得る様式でユーザに提示される。仮想現実(VR)シナリオは、典型的には、他の実際の実世界の視覚的入力に対する透過性を伴わずに、デジタルまたは仮想画像情報の提示を伴う。拡張現実(AR)シナリオは、典型的には、ユーザの周囲の実際の実世界の可視化に対する拡張としてのデジタルまたは仮想画像情報の提示を伴う。複合現実(MR)シナリオは、一種のARシナリオであって、典型的には、実際の実世界の中に統合され、それに応答する、仮想オブジェクトを伴う。例えば、MRシナリオでは、AR画像コンテンツは、実際の実世界内のオブジェクトによってブロックされる、または別様にそれと相互作用するように知覚され得る。
【0004】
図1では、AR場面10が、描写され、AR技術のユーザには、人々、木々、背景における建物、および実世界プラットフォーム30を特徴とする、実世界公園状設定20が見える。これらのアイテムに加え、AR技術のユーザはまた、実世界プラットフォーム30上に立っているロボット像40、およびマルハナバチの擬人化のように見える、飛んでいる漫画のようなアバタキャラクタ50等の「仮想コンテンツ」を「見ている」と知覚するが、これらの要素40、50は、実世界には存在しない。
【0005】
VR、AR、および/またはMR技術はすでに、面白く楽しめる視認体験をユーザに提供することができるが、ユーザ体験をさらに増進するためのよりコンパクトで軽量のVR、AR、およびMRシステムの必要性が存在する。本明細書に開示されるシステムおよび方法は、これらの目標を達成することに役立ち得る。
【発明の概要】
【課題を解決するための手段】
【0006】
いくつかの実施形態では、光学デバイスは、透過型回折光学要素を備える、第1の表面と、第1の表面に対して垂直である、第2の表面と、第2の表面に対してある角度で配列される、第3の表面であって、第1の状態の光に対して反射性であり、第2の状態の光に対して透過性である、第3の表面とを備え、透過型回折光学要素は、垂直に第1の表面上に入射する、コリメートされた入力ビームであって、第1の状態を有する光を備える、コリメートされた入力ビームを受け取るように、かつ第1の回折ビームが、第3の表面に向かって指向され、第1の表面と略平行な方向に第3の表面によって反射されるように、コリメートされた入力ビームを第1の回折角における少なくとも第1の回折ビームに変換するように構成される。
【0007】
いくつかの実施形態では、光学デバイスは、反射型回折光学要素を備える、第1の表面と、第1の表面に対して垂直である、第2の表面と、第2の表面に対してある角度で配列される、第3の表面であって、第1の状態の光に対して反射性であり、第2の状態の光に対して透過性である、第3の表面とを備え、反射型回折光学要素は、発散入力ビームであって、第1の状態を有する光を備える、発散入力ビームを受け取るように、かつ第1のコリメートおよび回折されたビームが、第3の表面に向かって指向され、第1の表面と略平行な方向に第3の表面によって反射されるように、発散入力ビームを第1の回折角における少なくとも第1のコリメートおよび回折されたビームに変換するように構成される。
【0008】
いくつかの実施形態では、ユーザの頭部上に装着されるように構成される、頭部搭載型ディスプレイ(HMD)は、フレームと、フレームによって支持され、画像をユーザの眼に投影するように構成される、投影光学系と、投影光学系と光学通信する光プロジェクタシステムであって、画像を用いて符号化される変調された光を提供するように構成される、光プロジェクタシステムであって、入力ビームを放出するための光源と、回折光学要素を伴う第1の表面と、第1の表面に対して垂直である第2の表面と、第2の表面に対してある角度で配列される、第3の表面であって、第1の状態の光に対して反射性であり、第2の状態の光に対して透過性である、第3の表面とを備え、回折光学要素は、入力ビームであって、第1の状態を有する光を備える、入力ビームを受け取るように、かつ第1の回折ビームが、第3の表面に向かって指向され、第1の表面と略平行な方向に第3の表面によって反射されるように、入力ビームを第1の回折角における少なくとも第1の回折ビームに変換するように構成される、光学デバイスと、光学デバイスによって空間光変調器に送達される入力ビームを使用して、変調された光を生成するように構成される、空間光変調器とを備える、光プロジェクタシステムとを備える。
【0009】
いくつかの実施形態では、光学デバイスは、回折光学要素を備える、第1の表面と、第1の表面に対して垂直である、第2の表面と、第2の表面に対してある角度で配列される、第3の表面であって、第1の状態の光に対して反射性であり、第2の状態の光に対して透過性である、第3の表面とを備え、回折光学要素は、入力ビームであって、第1の状態を有する光を備える、入力ビームを受け取るように、かつ第1の回折ビームが、第3の表面に向かって指向され、第1の表面と略平行な方向に第3の表面によって反射されるように、入力ビームを第1の回折角における少なくとも第1の回折ビームに変換するように構成される。
【0010】
いくつかの実施形態では、画像情報をユーザに伝送する方法は、第1の表面と、第1の表面に対して垂直である、第2の表面と、第2の表面に対してある角度で配列される、第3の表面であって、第1の状態の光に対して反射性であり、第2の状態の光に対して透過性である、第3の表面とを備える、光学デバイスを提供するステップと、第1の表面上に入射する入力ビームであって、第1の表面に対して垂直に進行し、第1の状態を有する、入力ビームを生成するステップと、第1の表面上に透過型回折光学要素を提供し、第1の回折ビームが、第3の表面に向かって指向され、第1の表面と略平行な方向に第3の表面によって反射されるように、入力ビームを第1の回折角における少なくとも第1の回折ビームに変換するステップと、空間光変調器を使用して、画像情報を用いて、少なくとも反射された第1の回折ビームを変調するステップであって、空間光変調器は、空間光変調器に対して垂直である反射された第1の回折ビームを受け取るように、かつ第2の状態を有する変調された光ビームを生成するように構成される、ステップと、1つ以上の投影光学構成要素を使用して、変調された光ビームを受け取るステップと、1つ以上の投影光学構成要素を使用して、画像情報をユーザに投影するステップとを含む。
【0011】
いくつかの実施形態では、画像情報をユーザに伝送する方法は、第1の表面と、第1の表面に対して垂直である、第2の表面と、第2の表面に対してある角度で配列される、第3の表面であって、第1の状態の光に対して反射性であり、第2の状態の光に対して透過性である、第3の表面とを備える、光学デバイスを提供するステップと、第1の表面上に入射する発散入力ビームであって、第1の状態を有する、発散入力ビームを生成するステップと、第1の表面上に反射型回折光学要素を提供し、第1のコリメートおよび回折されたビームが、第3の表面に向かって指向され、第1の表面と略平行な方向に第3の表面によって反射されるように、発散入力ビームを第1の回折角における少なくとも第1のコリメートおよび回折されたビームに変換するステップと、空間光変調器を使用して、画像情報を用いて、少なくとも反射された第1の回折ビームを変調するステップであって、空間光変調器は、空間光変調器に対して垂直である反射された第1の回折ビームを受け取るように、かつ第2の状態を有する変調された光ビームを生成するように構成される、ステップと、1つ以上の投影光学構成要素を使用して、変調された光ビームを受け取るステップと、1つ以上の投影光学構成要素を使用して、画像情報をユーザに投影するステップとを含む。
本願明細書は、例えば、以下の項目も提供する。
(項目1)
光学デバイスであって、
透過型回折光学要素を備える第1の表面と、
前記第1の表面に対して垂直である第2の表面と、
前記第2の表面に対してある角度で配列される第3の表面であって、前記第3の表面は、第1の状態の光に対して反射性であり、第2の状態の光に対して透過性である、第3の表面と
を備え、
前記透過型回折光学要素は、垂直に前記第1の表面上に入射するコリメートされた入力ビームを受け取ることであって、前記コリメートされた入力ビームは、前記第1の状態を有する光を備える、ことと、第1の回折ビームが、前記第3の表面に向かって指向され、前記第1の表面と略平行な方向に前記第3の表面によって反射されるように、前記コリメートされた入力ビームを第1の回折角における少なくとも第1の回折ビームに変換することとを行うように構成される、光学デバイス。
(項目2)
前記第1の回折ビームは、前記第2の表面において前記光学デバイスから出射し、前記光学デバイスはさらに、前記第1の回折ビームを受け取るための前記第2の表面に隣接する空間光変調器を備え、前記空間光変調器は、前記第1の回折ビームを、第1の変調されたビームに変換することであって、前記第1の変調されたビームは、前記第2の状態を有する光を備える、ことと、前記第2の表面に向かって戻るように前記第1の変調されたビームを指向することとを行うように構成される、項目1に記載の光学デバイス。
(項目3)
前記空間光変調器は、シリコン上液晶(LCOS)空間光変調器またはデジタル光処理(DLP)空間光変調器である、項目2に記載の光学デバイス。
(項目4)
前記第2の表面の反対側に第4の表面をさらに備え、前記第4の表面は、前記第2の表面を通過した後に前記第1の変調されたビームを受け取り、かつ透過させるように構成され、前記第4の表面は、湾曲している、項目2に記載の光学デバイス。
(項目5)
前記透過型回折光学要素はさらに、第2の回折ビームが、前記第2の表面に向かって指向され、全内部反射を介して前記第3の表面に向かって前記第2の表面によって反射され、前記第1の表面と略平行な方向に前記第3の表面によって反射されるように、前記コリメートされた入力ビームを第2の回折角における第2の回折ビームに変換するように構成される、項目1に記載の光学デバイス。
(項目6)
前記反射された第1の回折ビームおよび前記反射された第2の回折ビームは、空間光変調器によって受け取られ、前記反射された第1の回折ビームおよび前記反射された第2の回折ビームは、組み合わせて空間光変調器全体を照明する、項目5に記載の光学デバイス。
(項目7)
前記第1、第2、および第3の表面は、平面的である、項目1に記載の光学デバイス。(項目8)
前記第2の表面は、曲面である、項目1に記載の光学デバイス。
(項目9)
前記第1、第2、および第3の表面は、ウェッジを形成する、項目1に記載の光学デバイス。
(項目10)
前記ウェッジは、少なくとも約1.5の屈折率を備える、項目9に記載の光学デバイス。
(項目11)
前記第3の表面は、偏光ビーム分割表面を備える、項目1に記載の光学デバイス。
(項目12)
前記第2の表面に対する前記第3の表面の角度は、45度未満である、項目1に記載の光学デバイス。
(項目13)
前記第2の表面に対する前記第3の表面の角度は、約30度である、項目12に記載の光学デバイス。
(項目14)
前記第1の回折角は、0度を上回る、項目1に記載の光学デバイス。
(項目15)
前記第1の回折角は、約30度である、項目14に記載の光学デバイス。
(項目16)
前記透過型回折光学要素は、複数の回折特徴を備える、項目1に記載の光学デバイス。
(項目17)
前記第1の回折角は、前記複数の回折特徴の周期に基づく、項目16に記載の光学デバイス。
(項目18)
光学デバイスであって、
反射型回折光学要素を備える第1の表面と、
前記第1の表面に対して垂直である第2の表面と、
前記第2の表面に対してある角度で配列される第3の表面であって、前記第3の表面は、第1の状態の光に対して反射性であり、第2の状態の光に対して透過性である、第3の表面と
を備え、
前記反射型回折光学要素は、発散入力ビームを受け取ることであって、前記発散入力ビームは、前記第1の状態を有する光を備える、ことと、第1のコリメートおよび回折されたビームが、前記第3の表面に向かって指向され、前記第1の表面と略平行な方向に前記第3の表面によって反射されるように、前記発散入力ビームを第1の回折角における少なくとも第1のコリメートおよび回折されたビームに変換することとを行うように構成される、
光学デバイス。
(項目19)
前記第1のコリメートおよび回折されたビームは、前記第2の表面において前記光学デバイスから出射し、前記光学デバイスはさらに、前記第1のコリメートおよび回折されたビームを受け取るための前記第2の表面に隣接する空間光変調器を備え、前記空間光変調器は、前記第1のコリメートおよび回折されたビームを、第1の変調されたビームに変換することであって、前記第1の変調されたビームは、前記第2の状態を有する光を備える、ことと、前記第2の表面に向かって戻るように前記第1の変調されたビームを指向することとを行うように構成される、項目18に記載の光学デバイス。
(項目20)
前記空間光変調器は、シリコン上液晶(LCOS)空間光変調器またはデジタル光処理(DLP)空間光変調器である、項目19に記載の光学デバイス。
(項目21)
前記第2の表面の反対側に第4の表面をさらに備え、前記第4の表面は、前記第2の表面を通過した後に前記第1の変調されたビームを受け取り、かつ透過させるように構成され、前記第4の表面は、湾曲している、項目19に記載の光学デバイス。
(項目22)
前記反射型回折光学要素はさらに、第2のコリメートおよび回折されたビームが、前記第2の表面に向かって指向され、全内部反射を介して前記第3の表面に向かって前記第2の表面によって反射され、前記第1の表面と略平行な方向に前記第3の表面によって反射されるように、前記発散入力ビームを第2の回折角における第2のコリメートおよび回折されたビームに変換するように構成される、項目18に記載の光学デバイス。
(項目23)
前記反射された第1のコリメートおよび回折されたビームおよび前記反射された第2のコリメートおよび回折されたビームは、空間光変調器によって受け取られ、前記反射された第1のコリメートおよび回折されたビームおよび前記反射された第2のコリメートおよび回折されたビームは、組み合わせて空間光変調器全体を照明する、項目22に記載の光学デバイス。
(項目24)
前記反射型回折光学要素は、複数の角度または側方分離された発散入力ビームを受け取るように、かつそれらを低減された量の角度または側方分離を伴ってコリメートおよび回折されたビームに変換するように構成される、項目18に記載の光学デバイス。
(項目25)
前記複数の角度または側方分離された発散入力ビームを出力するための複数の側方分離された光源をさらに備える、項目24に記載の光学デバイス。
(項目26)
前記反射型回折光学要素は、第1の角度において前記複数の角度または側方分離された発散入力ビームのうちの第1の入力ビームを受け取ることと、前記第1の入力ビームを光学経路に沿って前記第3の表面に向かって指向される対応する第1のコリメートおよび回折されたビームに変換することと、第2の角度において前記複数の角度または側方分離された発散入力ビームのうちの第2の入力ビームを受け取ることと、前記第2の入力ビームを前記光学経路に沿って前記第3の表面に向かって指向される第2のコリメートおよび回折されたビームに変換することとを行うように構成される、項目24に記載の光学デバイス。
(項目27)
前記第1、第2、および第3の表面は、平面的である、項目18に記載の光学デバイス。
(項目28)
前記第2の表面は、曲面である、項目18に記載の光学デバイス。
(項目29)
前記第1、第2、および第3の表面は、ウェッジを形成する、項目18に記載の光学デバイス。
(項目30)
前記ウェッジは、少なくとも約1.5の屈折率を備える、項目29に記載の光学デバイス。
(項目31)
前記第3の表面は、偏光ビーム分割表面を備える、項目18に記載の光学デバイス。
(項目32)
前記第2の表面に対する前記第3の表面の角度は、45度未満である、項目18に記載の光学デバイス。
(項目33)
前記第2の表面に対する前記第3の表面の角度は、約30度である、項目32に記載の光学デバイス。
(項目34)
前記第1の回折角は、0度を上回る、項目18に記載の光学デバイス。
(項目35)
前記第1の回折角は、約30度である、項目34に記載の光学デバイス。
(項目36)
前記第1の回折角は、前記反射型回折光学要素の回折特徴の周期に基づく、項目18に記載の光学デバイス。
(項目37)
前記反射型回折光学要素は、ホログラムを備える、項目18に記載の光学デバイス。
(項目38)
ユーザの頭部上に装着されるように構成される頭部搭載型ディスプレイ(HMD)であって、前記HMDは、
フレームと、
前記フレームによって支持され、画像を前記ユーザの眼に投影するように構成される投影光学系と、
前記投影光学系と光学通信する光プロジェクタシステムであって、前記光プロジェクタシステムは、前記画像を用いて符号化される変調された光を提供するように構成され、前記光プロジェクタシステムは、
入力ビームを放出するための光源と、
光学デバイスであって、前記光学デバイスは、
回折光学要素を伴う第1の表面と、
前記第1の表面に対して垂直である第2の表面と、
前記第2の表面に対してある角度で配列される第3の表面であって、前記第3の表面は、第1の状態の光に対して反射性であり、第2の状態の光に対して透過性である、第3の表面と
を備え、
前記回折光学要素は、入力ビームを受け取ることであって、前記入力ビームは、前記第1の状態を有する光を備える、ことと、第1の回折ビームが、前記第3の表面に向かって指向され、前記第1の表面と略平行な方向に前記第3の表面によって反射されるように、前記入力ビームを第1の回折角における少なくとも第1の回折ビームに変換することとを行うように構成される、光学デバイスと、
空間光変調器であって、前記空間光変調器は、前記光学デバイスによって空間光変調器に送達される前記入力ビームを使用して、前記変調された光を生成するように構成される、空間光変調器と
を備える、光プロジェクタシステムと
を備える、HMD。
(項目39)
前記回折光学要素は、透過型回折光学要素を備える、項目38に記載のHMD。
(項目40)
前記回折光学要素は、反射型回折光学要素を備える、項目38に記載のHMD。
(項目41)
前記回折光学要素は、回折格子を備える、項目38に記載のHMD。
(項目42)
前記回折光学要素は、ホログラムを備える、項目38に記載のHMD。
(項目43)
前記光学デバイスと前記光源との間に配置されるコリメータをさらに備える、項目38に記載のHMD。
(項目44)
前記投影光学系は、
内部結合光学要素と、
外部結合光学要素と
を備え、
前記内部結合光学要素は、前記変調された光を受け取り、かつ内部結合するように構成され、
前記外部結合光学要素は、前記ユーザの眼に向かって前記内部結合された光を外部結合するように構成される、項目38に記載のHMD。
(項目45)
前記投影光学系は、導波管のスタックを備える、項目44に記載のHMD。
(項目46)
各導波管は、前記導波管のスタックのうちの1つ以上の他の導波管と比較して、異なる量の発散を伴って光を外部結合するように構成される、項目45に記載のHMD。
(項目47)
光学デバイスであって、
回折光学要素を備える第1の表面と、
前記第1の表面に対して垂直である第2の表面と、
前記第2の表面に対してある角度で配列される第3の表面であって、前記第3の表面は、第1の状態の光に対して反射性であり、第2の状態の光に対して透過性である、第3の表面と
を備え、
前記回折光学要素は、入力ビームを受け取ることであって、前記入力ビームは、前記第1の状態を有する光を備える、ことと、第1の回折ビームが、前記第3の表面に向かって指向され、前記第1の表面と略平行な方向に前記第3の表面によって反射されるように、前記入力ビームを第1の回折角における少なくとも第1の回折ビームに変換することとを行うように構成される、光学デバイス。
(項目48)
前記回折光学要素は、透過型回折光学要素を備える、項目47に記載の光学デバイス。
(項目49)
前記回折光学要素は、反射型回折光学要素を備える、項目47に記載の光学デバイス。
(項目50)
前記回折光学要素は、回折格子を備える、項目47に記載の光学デバイス。
(項目51)
前記回折光学要素は、ホログラムを備える、項目47に記載の光学デバイス。
(項目52)
前記入力ビームは、前記光学デバイスから分離しているコリメータによってコリメートされる、項目47に記載の光学デバイス。
(項目53)
前記回折光学要素は、前記入力ビームを第1のコリメートおよび回折されたビームに変換するように構成される、項目47に記載の光学デバイス。
(項目54)
前記第1および第2の状態は、それぞれ、第1の偏光状態および第2の偏光状態である、項目47に記載の光学デバイス。
(項目55)
画像情報をユーザに伝送する方法であって、前記方法は、
光学デバイスを提供することであって、前記光学デバイスは、第1の表面と、前記第1の表面に対して垂直である第2の表面と、前記第2の表面に対してある角度で配列される第3の表面であって、前記第3の表面は、第1の状態の光に対して反射性であり、第2の状態の光に対して透過性である、第3の表面とを備える、ことと、
前記第1の表面上に入射する入力ビームを生成することであって、前記入力ビームは、前記第1の表面に対して垂直に進行し、第1の状態を有する、ことと、
前記第1の表面上に透過型回折光学要素を提供し、第1の回折ビームが、前記第3の表面に向かって指向され、前記第1の表面と略平行な方向に前記第3の表面によって反射されるように、前記入力ビームを第1の回折角における少なくとも第1の回折ビームに変換することと、
空間光変調器を使用して、画像情報を用いて、少なくとも前記反射された第1の回折ビームを変調することであって、前記空間光変調器は、前記空間光変調器に対して垂直である前記反射された第1の回折ビームを受け取ることと、第2の状態を有する変調された光ビームを生成することとを行うように構成される、ことと、
1つ以上の投影光学構成要素を使用して、前記変調された光ビームを受け取ることと、
前記1つ以上の投影光学構成要素を使用して、前記画像情報を前記ユーザに投影することと
を含む、方法。
(項目56)
前記光学デバイスに隣接して配置されるコリメータを用いて、前記入力ビームをコリメートすることをさらに含む、項目55に記載の方法。
(項目57)
前記第2の表面に対する前記第3の表面の角度は、45度未満である、項目55に記載の方法。
(項目58)
前記第2の表面に対する前記第3の表面の角度は、約30度である、項目57に記載の方法。
(項目59)
前記第1の回折角は、0度を上回る、項目55に記載の方法。
(項目60)
前記第1の回折角は、約30度である、項目59に記載の方法。
(項目61)
画像情報をユーザに伝送する方法であって、前記方法は、
光学デバイスを提供することであって、前記光学デバイスは、第1の表面と、前記第1の表面に対して垂直である第2の表面と、前記第2の表面に対してある角度で配列される第3の表面であって、前記第3の表面は、第1の状態の光に対して反射性であり、第2の状態の光に対して透過性である、第3の表面とを備える、ことと、
前記第1の表面上に入射する発散入力ビームを生成することであって、前記発散入力ビームは、第1の状態を有する、ことと、
前記第1の表面上に反射型回折光学要素を提供し、第1のコリメートおよび回折されたビームが、前記第3の表面に向かって指向され、前記第1の表面と略平行な方向に前記第3の表面によって反射されるように、前記発散入力ビームを第1の回折角における少なくとも第1のコリメートおよび回折されたビームに変換することと、
空間光変調器を使用して、画像情報を用いて、少なくとも前記反射された第1の回折ビームを変調することであって、前記空間光変調器は、前記空間光変調器に対して垂直である前記反射された第1の回折ビームを受け取ることと、第2の状態を有する変調された光ビームを生成することとを行うように構成される、ことと、
1つ以上の投影光学構成要素を使用して、前記変調された光ビームを受け取ることと、
前記1つ以上の投影光学構成要素を使用して、前記画像情報を前記ユーザに投影することと
を含む、方法。
(項目62)
前記反射型回折光学要素を使用し、第2のコリメートおよび回折されたビームが、前記第2の表面に向かって指向され、全内部反射を介して前記第3の表面に向かって前記第2の表面によって反射され、前記第1の表面と略平行な方向に前記第3の表面によって反射されるように、前記発散入力ビームを第2の回折角における第2のコリメートおよび回折されたビームに変換することをさらに含む、項目61に記載の方法。
(項目63)
複数の角度または側方分離された発散入力ビームを生成し、前記反射型回折光学要素を使用して、それらを低減された量の角度または側方分離を伴ってコリメートおよび回折されたビームに変換することをさらに含む、項目61に記載の方法。
(項目64)
前記第2の表面に対する前記第3の表面の角度は、45度未満である、項目61に記載の方法。
(項目65)
前記第2の表面に対する前記第3の表面の角度は、約30度である、項目64に記載の方法。
(項目66)
前記第1の回折角は、0度を上回る、項目61に記載の方法。
(項目67)
前記第1の回折角は、約30度である、項目66に記載の方法。
【図面の簡単な説明】
【0012】
図1図1は、いくつかの実施形態による、ARデバイスを通した拡張現実(AR)のユーザのビューを図示する。
【0013】
図2図2は、いくつかの実施形態による、ウェアラブルディスプレイシステムの実施例を図示する。
【0014】
図3図3は、いくつかの実施形態による、ユーザのための3次元画像をシミュレートするためのディスプレイシステムを図示する。
【0015】
図4図4は、いくつかの実施形態による、複数の深度平面を使用して3次元画像をシミュレートするためのアプローチの側面を図示する。
【0016】
図5図5A-5Cは、いくつかの実施形態による、曲率半径と焦点半径との間の関係を図示する。
【0017】
図6図6は、いくつかの実施形態による、画像情報をユーザに出力するための導波管スタックの実施例を図示する。
【0018】
図7図7は、いくつかの実施形態による、導波管によって出力された出射ビームの実施例を図示する。
【0019】
図8図8は、いくつかの実施形態による、各深度平面が、複数の異なる原色を使用して形成される画像を含む、スタックされた導波管アセンブリの実施例を図示する。
【0020】
図9A図9Aは、いくつかの実施形態による、それぞれ、内部結合光学要素を含む、スタックされた導波管のセットの実施例の断面側面図を図示する。
【0021】
図9B図9Bは、いくつかの実施形態による、図9Aのスタックされた導波管の実施例の斜視図を図示する。
【0022】
図9C図9Cは、いくつかの実施形態による、図9Aおよび9Bのスタックされた導波管の実施例の上下平面図を図示する。
【0023】
図10図10は、いくつかの実施形態による、ビームスプリッタ(BS)と、光源と、光変調器とを含む、例示的光プロジェクタシステムを図示する。
【0024】
図11A図11Aは、いくつかの実施形態による、薄型BSと、光源と、光変調器とを含む、例示的光プロジェクタシステムを図示する。
【0025】
図11B図11Bは、いくつかの実施形態による、薄型BSと、光源と、光変調器とを含む、例示的光投影システムを図示する。
【0026】
図12A図12Aおよび12Bは、いくつかの実施形態による、薄型光プロジェクタシステムで使用するための透過型回折光学要素を伴う例示的薄型BSを図示する。
図12B図12Aおよび12Bは、いくつかの実施形態による、薄型光プロジェクタシステムで使用するための透過型回折光学要素を伴う例示的薄型BSを図示する。
【0027】
図13A図13Aは、いくつかの実施形態による、薄型光プロジェクタシステムで使用するための反射型回折光学要素を伴う例示的薄型BSを図示する。
【0028】
図13B図13Bおよび13Cは、それぞれ、いくつかの実施形態による、複数の光源からの発散入力光のコリメーションおよび多重化を示す、図13Aの薄型BSの側面図および上面図を図式的に図示する。
図13C図13Bおよび13Cは、それぞれ、いくつかの実施形態による、複数の光源からの発散入力光のコリメーションおよび多重化を示す、図13Aの薄型BSの側面図および上面図を図式的に図示する。
【0029】
図13D図13Dは、いくつかの実施形態による、空間光変調器の連続的かつ一様な照明を示す、図13Aの薄型BSを図示する。
【発明を実施するための形態】
【0030】
概観
頭部搭載型ディスプレイ(HMD)は、光プロジェクタシステムを使用し、画像情報を用いて入力光を符号化し、次いで、1つ以上の光学要素を介して、結果として生じる変調された光をユーザに反射または透過させ得る、空間光変調器(SLM)に、光源からの入力光を指向することによって、仮想現実(VR)、拡張現実(AR)、または複合現実(MR)コンテンツをユーザに表示してもよい。ビームスプリッタ(BS)が、SLMに向かって入力光を指向するため、かつSLMから変調された光を受け取り、(場合によっては、1つ以上の介在光学構成要素を介して)それをユーザに向かって指向するために、光プロジェクタシステムで使用されてもよい。
【0031】
BSは、光源から入力光を受け取るための入力表面を含んでもよい。入力光は、次いで、その偏光等の光の特性に基づいて、2つの方向のうちの1つに光を再指向する、ビーム分割表面に伝搬してもよい。ビーム分割表面は、BSの出力/入力表面に向かって入力光の少なくとも一部を再指向してもよい。出力/入力表面は、最初に、入力光を、出力/入力表面に隣接して位置するSLM等の別の光学構成要素に出力する。SLMは、画像情報を用いて入力光を変調させ、次いで、BSの出力/入力表面に向かって戻るように変調された光を反射してもよい。変調された光は、次いで、BSの出力/入力表面を通してBSに再入射し、変調された光の少なくとも一部は、次いで、ビーム分割表面を通過し、最終的に出力表面においてBSから出射することができる。いくつかの実施形態では、入力表面の反対側は、それぞれ、直角でBSの出力/入力表面および出力表面に継合される。ビーム分割表面は、これらの表面に対する角度で配列されてもよい。
【0032】
HMD用途に関して、BSが、SLMの入力平面に対して垂直である方向にSLMに向かって入力光を指向することが有利であり得る。さらに、ユーザによる途切れない視認のために最適な画像再現を達成するために、光プロジェクタシステムは、一様な波面を有する入力光(例えば、存在する場合、比較的に小さい波面曲率を有する、コリメートされた光)でSLMの入力平面全体を照明するように設計されてもよい。これらの適格性を満たし得る、BSの1つの実施例は、立方体BSである。立方体BSでは、入力表面および出力/入力表面は、立方体BSの2つの隣接する面であってもよい。その一方で、ビーム分割表面は、45度の角度で入力表面と出力/入力表面との間に延在してもよい。断面では、ビーム分割表面は、他の2つの脚部として入力表面および出力/入力表面を有する、45度の直角三角形の斜辺である。
【0033】
BSのサイズは、光プロジェクタシステムおよび光プロジェクタシステムを利用するHMDのサイズに影響を及ぼし得る。HMDのサイズを縮小する継続的な要求が存在するため、光プロジェクタシステム等のそれらの構成部品のサイズを縮小する要求も存在する。したがって、光プロジェクタシステムで利用されるBSのサイズを縮小することが望ましくあり得る。例えば、縮小されたサイズの少なくとも1つの寸法を伴うBSを提供することが有利であろう。
【0034】
したがって、薄型光プロジェクタシステムの種々の実施形態が、本明細書に説明される。薄型光プロジェクタシステムのいくつかの実施形態は、1つ以上の他の寸法(例えば、出力/入力表面の幅)よりも短い少なくとも1つの寸法(例えば、入力表面の高さ)を伴う薄型BSを含んでもよい。そのような実施形態では、ビーム分割表面は、入力表面および出力/入力表面と45度の角度をもはや形成しなくなる。代わりに、ビーム分割表面は、入力表面または出力/入力表面のいずれかと45度未満の角度を形成する。加えて、薄型BSは、もはや立方体ではなくなる。
【0035】
コリメートされた光でSLMを照明するための立方体BSと類似する能力を維持するために、透過型または反射型回折光学要素が、薄型BSの表面上に、中に、または隣接して提供されてもよい。本明細書に説明される可能性として考えられる機能の中でも、回折光学要素は、光の入力ビームを1つ以上の回折ビームに変換するように構成されてもよい。1つ以上の回折ビームは、場合によっては、法線角度において出力/入力表面および隣接するSLMに向かった、薄型BSの1つ以上の他の表面における1つ以上の介在内部反射後に、ビーム分割表面において最終的に反射されるように、適切な角度において回折されてもよい。ともに、1つ以上の回折ビームは、少なくとも1つのより大きい寸法を有する立方体BSと同等または類似する量のSLMのための照明範囲を提供することができる。本明細書に説明されるような回折光学要素の使用は、ビーム分割平面と、例えば、薄型BSの出力/入力表面との間の角度の縮小を可能にし、それによって、プロジェクタシステム内の薄型BSの光学機能に悪影響を及ぼすことなく、薄型BSの高さ(例えば、薄型BSの入力表面の寸法)の全体的縮小を可能にする。
例示的HMDデバイス
【0036】
図2は、いくつかの実施形態による、ウェアラブルディスプレイシステム60の実施例を図示する。ディスプレイシステム60は、ディスプレイ70と、ディスプレイ70の機能をサポートするための種々の機械および電子モジュールおよびシステムとを含む。ディスプレイ70は、フレーム80に結合されてもよく、これは、ディスプレイシステムユーザ90によって装着可能であって、ディスプレイ70をユーザ90の眼の正面に位置付けるように構成される。いくつかの実施形態では、ディスプレイ70は、アイウェアと見なされてもよい。いくつかの実施形態では、スピーカ100が、フレーム80に結合され、ユーザ90の外耳道に隣接して位置付けられるように構成される。いくつかの実施形態では、ディスプレイシステム60はまた、1つ以上のマイクロホン110または他のデバイスを含み、音を検出してもよい。いくつかの実施形態では、マイクロホン110は、ユーザ90が、入力またはコマンドをディスプレイシステム60に提供することを可能にするように構成され(例えば、音声メニューコマンドの選択、自然言語質問等)、および/または他の人物(例えば、類似ディスプレイシステムの他のユーザ)とのオーディオ通信を可能にしてもよい。マイクロホン110はさらに、オーディオデータ(例えば、ユーザ90および/または環境からの音)を収集するように周辺センサとして構成されてもよい。いくつかの実施形態では、ディスプレイシステム60もまた、周辺センサ120aを含んでもよく、これは、フレーム80と別個であって、ユーザ90の身体(例えば、ユーザ90の頭部、胴体、四肢等上)に取り付けられてもよい。いくつかの実施形態では、周辺センサ120aは、ユーザ90の生理学的状態を特徴付けるデータを取得するように構成されてもよい。
【0037】
ディスプレイ70は、有線導線または無線コネクティビティ等の通信リンク130によって、フレーム80に固定して取り付けられる、ユーザ90によって装着されるヘルメットまたは帽子に固定して取り付けられる、ヘッドホンに内蔵される、または別様にユーザ90に除去可能に取り付けられる(例えば、リュック式構成において、ベルト結合式構成において等)等、種々の構成で搭載され得る、ローカル処理およびデータモジュール140に動作可能に結合される。同様に、周囲センサ120aは、通信リンク120b(例えば、有線導線または無線コネクティビティ)によって、ローカル処理およびデータモジュール140に動作可能に結合されてもよい。ローカル処理およびデータモジュール140は、ハードウェアプロセッサおよび不揮発性メモリ(例えば、フラッシュメモリまたはハードディスクドライブ)等のデジタルメモリを含んでもよく、その両方とも、データの処理、キャッシュ、および記憶を補助するために利用され得る。データは、a)画像捕捉デバイス(例えば、カメラ等)、マイクロホン、慣性測定ユニット、加速度計、コンパス、GPSユニット、無線デバイス、ジャイロスコープ、および/または本明細書に開示される他のセンサ等の(例えば、フレーム80に動作可能に結合される、または別様にユーザ90に取り付けられ得る)センサから捕捉されるデータ、および/またはb)場合によっては処理または読出後にディスプレイ70への通過のために、遠隔処理モジュール150および/または遠隔データリポジトリ160(仮想コンテンツに関連するデータを含む)を使用して取得および/または処理されるデータを含んでもよい。ローカル処理およびデータモジュール140は、これらの遠隔モジュール150、160が相互に動作可能に結合され、ローカル処理およびデータモジュール140に対するリソースとして利用可能であるように、有線または無線通信リンク等を介して、通信リンク170、180によって、遠隔処理モジュール150および遠隔データリポジトリ160に動作可能に結合されてもよい。いくつかの実施形態では、ローカル処理およびデータモジュール140は、画像捕捉デバイス、マイクロホン、慣性測定ユニット、加速度計、コンパス、GPSユニット、無線デバイス、および/またはジャイロスコープのうちの1つ以上のものを含んでもよい。いくつかの他の実施形態では、これらのセンサのうちの1つ以上のものは、フレーム80に取り付けられてもよい、または有線または無線通信経路によってローカル処理およびデータモジュール140と通信する独立デバイスであってもよい。
【0038】
遠隔処理モジュール150は、データおよび/または画像情報を分析および処理するように構成される、1つ以上のプロセッサを含んでもよい。いくつかの実施形態では、遠隔データリポジトリ160は、デジタルデータ記憶設備を備え得、これは、インターネットまたは「クラウド」リソース構成における他のネットワーキング構成を通して利用可能であり得る。いくつかの実施形態では、遠隔データリポジトリ160は、情報(例えば、拡張現実コンテンツを生成するための情報)をローカル処理およびデータモジュール140および/または遠隔処理モジュール150に提供する、1つ以上の遠隔サーバを含んでもよい。いくつかの実施形態では、全てのデータが、記憶され、全ての算出が、ローカル処理およびデータモジュール140において実施され、遠隔モジュールからの完全に自律的な使用を可能にする。
【0039】
「3次元」または「3-D」としての画像の知覚は、ユーザの各眼への画像の若干異なる提示を提供することによって達成され得る。図3は、ユーザに関する3-D画像をシミュレートするためのディスプレイシステムを図示する。眼210、220毎に1つずつ、2つの明確に異なる画像190、200が、ユーザに出力される。画像190、200は、ユーザの視線と平行な光学軸またはz-軸に沿って距離230だけ眼210、220から離間される。画像190、200は、平坦であって、眼210、220は、単一の遠近調節された状態をとることによって、画像上に合焦し得る。そのような3-Dディスプレイシステムは、ヒト視覚系に依拠し、画像190、200を組み合わせ、組み合わせられた画像の深度および/または尺度の知覚を提供する。
【0040】
しかしながら、ヒト視覚系は、複雑であって、深度の現実的知覚を提供することは、困難である。例えば、「3-D」ディスプレイシステムの多くのユーザは、そのようなシステムが不快であることを見出す、または深度の感覚を全く知覚しない場合がある。理論によって限定されるわけではないが、オブジェクトは、輻輳・開散運動(vergence)と遠近調節(accmmodation)の組み合わせに起因して、「3次元」として知覚され得ると考えられる。相互に対する2つの眼の輻輳・開散運動の移動(例えば、瞳孔が、相互に向かって、またはそこから離れるように移動し、眼の視線を収束させ、オブジェクトを固視するような眼の回転)は、眼の水晶体の合焦(または「遠近調節」)と緊密に関連付けられる。通常条件下、焦点を1つのオブジェクトから異なる距離における別のオブジェクトに変化させるための眼の水晶体の焦点の変化または眼の遠近調節は、「遠近調節-輻輳・開散運動反射」として公知である関係下、輻輳・開散運動の整合変化および瞳孔拡張または収縮を自動的に同一距離に生じさせるであろう。同様に、通常条件下、輻輳・開散運動の変化は、水晶体形状および瞳孔サイズの遠近調節の整合変化を誘起するであろう。本明細書に記載されるように、多くの立体視または「3-D」ディスプレイシステムは、3-D視点がヒト視覚系によって知覚されるように、各眼への若干異なる提示(したがって、若干異なる画像)を使用して、場面を表示する。しかしながら、そのようなシステムは、単に、画像情報を単一の遠近調節された状態において提供し、「遠近調節-輻輳・開散運動反射」に対抗して機能するため、多くのユーザにとって不快である。遠近調節と輻輳・開散運動との間のより良好な整合を提供するディスプレイシステムは、3-D画像のより現実的かつ快適なシミュレーションを形成し得る。
【0041】
図4は、複数の深度平面を使用して3-D画像をシミュレートするためのアプローチの側面を図示する。図4を参照すると、眼210、220は、異なる遠近調節された状態をとり、オブジェクトをz-軸上の種々の距離に合焦させる。その結果、特定の遠近調節された状態は、特定の深度平面におけるオブジェクトまたはオブジェクトの一部が、眼210、220がその深度平面に対して遠近調節された状態にあるとき、合焦するように、関連付けられた焦点距離を有する、図示される深度平面240のうちの特定の1つと関連付けられると言え得る。いくつかの実施形態では、3-D画像は、眼210、220毎に、画像の異なる提示を提供することによって、また、複数の深度平面に対応する画像の異なる提示を提供することによってシミュレートされてもよい。例証を明確にするために、眼210、220の視野は、別個であるように示されるが、それらは、例えば、z-軸に沿った距離が増加するにつれて重複し得る。加えて、例証を容易にするために、深度平面は、平坦であるように示されるが、深度平面の輪郭は、深度平面内の全ての特徴が特定の遠近調節された状態における眼と合焦するように、物理的空間内で湾曲され得ることを理解されたい。
【0042】
オブジェクトと眼210または220との間の距離はまた、その眼によって視認されるようなそのオブジェクトからの光の発散の量を変化させ得る。図5A-5Cは、距離と光線の発散との間の関係を図示する。オブジェクトと眼210との間の距離は、減少距離R1、R2、およびR3の順序で表される。図5A-5Cに示されるように、光線は、オブジェクトまでの距離が減少するにつれてより発散する。距離が増加するにつれて、光線は、よりコリメートされる。換言すると、点(オブジェクトまたはオブジェクトの一部)によって生成される光場は、点が眼210から離れている距離の関数である、球状波面曲率を有すると言え得る。曲率は、オブジェクトと眼210との間の距離の減少に伴って増加する。その結果、異なる深度平面では、光線の発散度もまた、異なり、発散度は、深度平面と眼210との間の距離の減少に伴って増加する。単眼210のみが、例証を明確にするために、図5A-5Cおよび本明細書の他の図に図示されるが、眼210に関する議論は、両眼210および220に適用され得ることを理解されたい。
【0043】
理論によって限定されるわけではないが、ヒトの眼は、典型的には、有限数の深度平面を解釈し、深度知覚を提供することができると考えられる。その結果、知覚された深度の高度に真実味のあるシミュレーションが、眼にこれらの限定数の深度平面のそれぞれに対応する画像の異なる提示を提供することによって達成され得る。異なる提示は、ユーザの眼によって別個に集束され、それによって、異なる深度平面上に位置する場面のための異なる画像特徴に合焦させるために要求される眼の遠近調節に基づいて、および/または焦点がずれている異なる深度平面上の異なる画像特徴の観察に基づいて、ユーザに深度合図を提供することに役立ち得る。
導波管スタックアセンブリの実施例
【0044】
図6は、いくつかの実施形態による、画像情報をユーザに出力するための導波管スタックの実施例を図示する。ディスプレイシステム250は、複数の導波管270、280、290、300、310を使用して、3-D知覚を眼/脳に提供するために利用され得る、導波管のスタックまたはスタックされた導波管アセンブリ260を含む。いくつかの実施形態では、ディスプレイシステム250は、図2のディスプレイシステム60であって、図6は、そのディスプレイシステム60のいくつかの部分をより詳細に図式的に示す。例えば、スタックされた導波管アセンブリ260は、図2のディスプレイ70の一部であってもよい。ディスプレイシステム250は、いくつかの実施形態では、明視野ディスプレイと見なされ得ることを理解されたい。
【0045】
スタックされた導波管アセンブリ260はまた、1つ以上の特徴320、330、340、350を導波管270、280、290、300、310の間に含んでもよい。いくつかの実施形態では、特徴320、330、340、350は、1つ以上のレンズであってもよい。導波管270、280、290、300、310および/または1つ以上のレンズ320、330、340、350は、種々のレベルの波面曲率または光線発散を用いて画像情報を眼に送信するように構成されてもよい。各導波管レベルは、特定の深度平面と関連付けられてもよく、その深度平面に対応する画像情報を出力するように構成されてもよい。画像投入デバイス360、370、380、390、400は、導波管270、280、290、300、310のための光源として機能してもよく、画像情報を導波管270、280、290、300、310の中に投入するために利用されてもよく、それぞれ、本明細書に説明されるように、眼210に向かった出力のために各個別の導波管を横断して入射光を分散させるように構成されてもよい。光は、画像投入デバイス360、370、380、390、400の出力表面410、420、430、440、450から出射し、導波管270、280、290、300、310の対応する入力表面460、470、480、490、500の中に投入される。いくつかの実施形態では、入力表面460、470、480、490、500はそれぞれ、対応する導波管の縁であってもよい、または対応する導波管の主要表面の一部(すなわち、世界510または眼210に直接面する導波管表面のうちの1つ)であってもよい。いくつかの実施形態では、光の単一ビーム(例えば、コリメートされたビーム)が、各導波管の中に投入され、特定の導波管と関連付けられた深度平面に対応する特定の角度(および発散量)において眼210に向かって指向される、クローン化されたコリメートビームの全体場を出力してもよい。いくつかの実施形態では、画像投入デバイス360、370、380、390、400のうちの単一のものは、複数(例えば、3つ)の導波管270、280、290、300、310と関連付けられ、その中に光を投入してもよい。
【0046】
いくつかの実施形態では、画像投入デバイス360、370、380、390、400は、それぞれ、対応する導波管270、280、290、300、310の中への投入のための画像情報をそれぞれ生成する、離散ディスプレイである。いくつかの実施形態では、画像投入デバイス360、370、380、390、400は、例えば、1つ以上の光学導管(光ファイバケーブル等)を介して、画像情報を画像投入デバイス360、370、380、390、400のそれぞれに送り得る、単一の多重化されたディスプレイの出力端である。画像投入デバイス360、370、380、390、400によって提供される画像情報は、異なる波長または色(例えば、本明細書に議論されるように、異なる原色)の光を含み得ることを理解されたい。
【0047】
いくつかの実施形態では、導波管270、280、290、300、310の中に投入される光は、光プロジェクタシステム520によって提供され、これは、光モジュール530を含み、これは、発光ダイオード(LED)等の光源または光エミッタを含んでもよい。光モジュール530からの光は、BS550を介して、光変調器540(例えば、SLM)によって指向および修正されてもよい。光変調器540は、導波管270、280、290、300、310の中に投入される光の知覚される強度を空間的および/または時間的に変化させるように構成されてもよい。SLMの実施例は、シリコン上液晶(LCOS)ディスプレイおよびデジタル光処理(DLP)ディスプレイを含む、液晶ディスプレイ(LCD)を含む。
【0048】
いくつかの実施形態では、光プロジェクタシステム520またはその1つ以上の構成要素は、図2のフレーム80に取り付けられてもよい。例えば、光プロジェクタシステム520は、フレーム80の側頭部分(例えば、図2のイヤーステム82)の一部である、またはディスプレイ70の縁に配置されてもよい。いくつかの実施形態では、光モジュール530は、BS550および/または光変調器540と別個であり、それと光学通信してもよい。
【0049】
いくつかの実施形態では、ディスプレイシステム250は、光を種々のパターン(例えば、ラスタ走査、螺旋走査、リサジューパターン等)で1つ以上の導波管270、280、290、300、310の中に、最終的には、眼210に投影するように構成される、1つ以上の走査ファイバを含む、走査ファイバディスプレイであってもよい。いくつかの実施形態では、図示される画像投入デバイス360、370、380、390、400は、光を1つ以上の導波管270、280、290、300、310の中に投入するように構成される、1つ以上の走査ファイバまたは1つ以上の走査ファイバの束を図式的に表し得る。1つ以上の光ファイバは、光を光モジュール530から1つ以上の導波管270、280、290、300、および310に透過させるように構成されてもよい。加えて、1つ以上の介在光学構造が、走査ファイバ(1つまたは複数)と、1つ以上の導波管270、280、290、300、310との間に提供され、例えば、走査ファイバから出射する光を1つ以上の導波管270、280、290、300、310の中に再指向してもよい。
【0050】
コントローラ560は、画像投入デバイス360、370、380、390、400、光モジュール530、および光モジュール540の動作を含む、スタックされた導波管アセンブリ260の動作を制御する。いくつかの実施形態では、コントローラ560は、ローカル処理およびデータモジュール140の一部である。コントローラ560は、例えば、本明細書に開示される種々のスキームのいずれかに従って、導波管270、280、290、300、310への画像情報のタイミングおよび提供を調整する、プログラミング(例えば、非一過性媒体内の命令)を含む。いくつかの実施形態では、コントローラ560は、単一の一体型デバイスまたは有線または無線通信チャネルによって接続される分散型システムであってもよい。いくつかの実施形態では、コントローラ560は、図2の処理モジュール140または150の一部であってもよい。
【0051】
導波管270、280、290、300、310は、全内部反射(TIR)によって、各個別の導波管内で光を伝搬するように構成されてもよい。導波管270、280、290、300、310はそれぞれ、主要上部表面および主要底部表面およびそれらの主要上部表面と主要底部表面との間に延在する縁を伴う、平面である、または別の形状(例えば、湾曲)を有してもよい。図示される構成では、導波管270、280、290、300、310はそれぞれ、光を再指向させ、各個別の導波管内で伝搬させ、導波管から画像情報を眼210に出力することによって、光を導波管から抽出するように構成される、外部結合光学要素570、580、590、600、610を含んでもよい。抽出された光はまた、外部結合光と称され得、外部結合光学要素570、580、590、600、610はまた、光抽出光学要素と称され得る。抽出された光のビームは、導波管によって、導波管内で伝搬する光が光抽出光学要素に衝打する場所において出力され得る。外部結合光学要素570、580、590、600、610は、例えば、本明細書にさらに議論されるような回折光学特徴を含む、格子であってもよい。外部結合光学要素570、580、590、600、610は、説明を容易にし、図面を明確にするために、導波管270、280、290、300、310の底部主要表面に配置されて図示されるが、いくつかの実施形態では、それらは、上部主要表面および/または底部主要表面に配置されてもよい、および/または導波管270、280、290、300、310の容積内に直接配置されてもよい。いくつかの実施形態では、外部結合光学要素570、580、590、600、610は、透明基板に取り付けられ、導波管270、280、290、300、310を形成する、材料の層内に形成されてもよい。いくつかの他の実施形態では、導波管270、280、290、300、310は、モノリシック材料部品であってもよく、外部結合光学要素570、580、590、600、610は、その材料部品の表面上および/または内部に形成されてもよい。
【0052】
各導波管270、280、290、300、310は、光を出力し、特定の深度平面に対応する画像を形成するように構成されてもよい。例えば、眼の最近傍の導波管270は、眼210にコリメートされた光(そのような導波管270の中に投入された)を送達するように構成されてもよい。コリメートされた光は、光学無限遠焦点面を表し得る。次の上方の導波管280は、眼210に到達し得る前に、第1のレンズ350(例えば、負のレンズ)を通して通過する、コリメートされた光を送出するように構成されてもよい。第1のレンズ350は、眼/脳が、その次の上方の導波管280から生じる光を光学無限遠から眼210に向かって内向きにより近い第1の焦点面から生じるとして解釈するように、若干の凸面波面曲率を生成するように構成されてもよい。同様に、第3の上方の導波管290は、眼210に到達する前に、その出力光を第1のレンズ350および第2のレンズ340の両方を通して通過させる。第1のレンズ350および第2のレンズ340の組み合わせられた屈折力は、眼/脳が、第3の導波管290から生じる光が光学無限遠から眼210に向かって内向きにさらに近い第2の焦点面から生じるとして解釈するように、別の漸増量の波面曲率を生成するように構成されてもよい。
【0053】
他の導波管層300、310およびレンズ330、320も同様に構成され、スタックされた導波管アセンブリ260内の最高導波管310は、人物に最も近い焦点面を表す集約焦点力のために、その出力をそれと眼210との間のレンズ320、330、340、350の全てを通して送出する。スタックされた導波管アセンブリ260の他側の世界510から生じる光を視認/解釈するとき、レンズ320、330、340、350のスタックを補償するために、補償レンズ層620が、スタックの上部に配置され、下方のレンズスタック320、330、340、350の集約力を補償してもよい。そのような構成は、利用可能な導波管/レンズ対と同じ数の知覚される焦点面を提供する。導波管270、280、290、300、310の外部結合光学要素570、580、590、600、610およびレンズの集束側面の両方とも、静的であってもよい(すなわち、動的または電気活性ではない)。いくつかの代替実施形態では、一方または両方とも、電気活性特徴を使用して動的であってもよい。
【0054】
いくつかの実施形態では、導波管270、280、290、300、310のうちの2つ以上のものは、同一の関連付けられた深度平面を有してもよい。例えば、複数の導波管270、280、290、300、310は、同一深度平面に設定される画像を出力するように構成されてもよい、または導波管270、280、290、300、310の複数のサブセットは、深度平面毎に1つのセットを伴う、同一の複数の深度平面に設定される画像を出力するように構成されてもよい。これは、それらの深度平面において拡張された視野を提供するようにタイル化された画像を形成するための利点を提供し得る。
【0055】
外部結合光学要素570、580、590、600、610は、導波管と関連付けられた特定の深度平面のために、光をそれらの個別の導波管から再指向し、かつこの光を適切な量の発散またはコリメーションを伴って出力するように構成されてもよい。その結果、異なる関連付けられた深度平面を有する導波管は、外部結合光学要素570、580、590、600、610の異なる構成を有してもよく、これは、関連付けられた深度平面に応じた、異なる発散量を伴う光を出力する。いくつかの実施形態では、外部結合光学要素570、580、590、600、610は、体積特徴または表面特徴であってもよく、これは、具体的角度において光を出力するように構成されてもよい。例えば、外部結合光学要素570、580、590、600、610は、体積ホログラム、表面ホログラム、および/または回折格子であってもよい。いくつかの実施形態では、特徴320、330、340、350は、レンズではなくてもよい。むしろ、それらは、単に、スペーサであってもよい(例えば、クラッディング層および/または空隙を形成するための構造)。
【0056】
いくつかの実施形態では、外部結合光学要素570、580、590、600、610は、回折パターンを形成する回折特徴または「回折光学要素」(また、本明細書では、「DOE」とも称される)である。好ましくは、DOEは、ビームの光の一部のみが、DOEの各交差部で眼210に向かって偏向される一方、残りが、TIRを介して導波管を通して移動し続けるように、十分に低い回折効率を有する。画像情報を搬送する光は、したがって、複数の場所において導波管から出射するいくつかの関連出射ビームに分割され、その結果、導波管内でバウンスする本特定のコリメートされたビームに関して、眼210に向かって非常に均一なパターンの出射放出となる。
【0057】
いくつかの実施形態では、1つ以上のDOEは、能動的に回折する「オン」状態と有意に回折しない「オフ」状態との間で切替可能であってもよい。例えば、切替可能なDOEは、ポリマー分散液晶の層を含んでもよく、その中で微小液滴は、ホスト媒体中に回折パターンを形成し、微小液滴の屈折率は、ホスト材料の屈折率に実質的に整合するように切り替えられてもよい(その場合、パターンは、入射光を著しく回折させない)、または微小液滴は、ホスト媒体のものに整合しない屈折率に切り替えられてもよい(その場合、パターンは、入射光を能動的に回折させる)。
【0058】
いくつかの実施形態では、カメラアセンブリ630(例えば、可視光およびIR光カメラを含む、デジタルカメラ)が、眼210、眼210の一部、または眼210を囲繞する組織の少なくとも一部の画像を捕捉し、例えば、ユーザ入力を検出する、バイオメトリック情報を眼210から抽出する、眼210の注視方向を推定および追跡する、ユーザの生理学的状態を監視する、および同等物のために提供されてもよい。本明細書で使用されるように、カメラは、任意の画像捕捉デバイスであってもよい。いくつかの実施形態では、カメラアセンブリ630は、画像捕捉デバイスと、光(例えば、IRまたは近IR光)を眼210に投影し、その光が、次いで、眼210によって反射され、画像捕捉デバイスによって検出され得る、光源とを含んでもよい。いくつかの実施形態では、光源は、IRまたは近IRを放出する、発光ダイオード(「LED」)を含んでもよい。いくつかの実施形態では、カメラアセンブリ630は、図2に示されるフレーム80に取り付けられてもよく、カメラアセンブリ630からの画像情報を処理し、例えば、ユーザの生理学的状態、ユーザの注視方向、虹彩識別、および同等物に関する種々の決定を行い得る、モジュール140または150と電気通信してもよい。ユーザの生理学的状態に関する情報は、ユーザの挙動または感情状態を決定するために使用され得ることを理解されたい。そのような情報の実施例は、ユーザの移動またはユーザの顔の表情を含む。ユーザの挙動または感情状態は、次いで、挙動または感情状態と、生理学的状態と、環境または仮想コンテンツデータとの間の関係を決定するように、収集された環境または仮想コンテンツデータを用いて三角測量されてもよい。いくつかの実施形態では、1つのカメラアセンブリ630が、眼毎に利用され、各眼を別個に監視してもよい。
【0059】
図7は、導波管によって出力された出射ビームの実施例を図示する。1つの導波管が図示されるが、図6のスタックされた導波管アセンブリ260内の他の導波管も同様に機能し得、スタックされた導波管アセンブリ260は、複数の導波管を含む。光640が、導波管270の入力表面460において導波管270の中に投入され、TIRによって導波管270内を伝搬する。光640が外部結合光学要素(例えば、DOE)570上に衝突する点では、光の一部は、導波管から出射ビーム650として出射する。出射ビーム650は、略平行として図示されるが、本明細書に議論されるように、また、導波管270と関連付けられた深度平面に応じて、ある角度(例えば、発散出射ビーム形成)において眼210に伝搬するように再指向されてもよい。略平行出射ビームは、眼210からの遠距離(例えば、光学無限遠)における深度平面に設定されるように現れる画像を形成するように光を外部結合する、外部結合光学要素を伴う導波管を示し得ることを理解されたい。他の導波管または他の外部結合光学要素のセットは、より発散する、出射ビームパターンを出力してもよく、これは、眼210がより近い距離に遠近調節し、網膜に合焦させることを要求し、光学無限遠より眼210に近い距離からの光として脳によって解釈されるであろう。
【0060】
いくつかの実施形態では、フルカラー画像が、原色、例えば、3つ以上の原色のそれぞれに画像をオーバーレイすることによって、各深度平面において形成されてもよい。図8は、各深度平面が、複数の異なる原色を使用して形成される画像を含む、スタックされた導波管アセンブリの実施例を図示する。図示される実施形態は、深度平面240a-240fを示すが、より多いまたはより少ない深度もまた、検討される。各深度平面は、それと関連付けられた3つ以上の原色画像、すなわち、第1の色Gの第1の画像、第2の色Rの第2の画像、および第3の色Bの第3の画像を含む、3つ以上の原色画像を有してもよい。異なる深度平面は、文字G、R、およびBに続くジオプタ(dpt)に関する異なる数字によって図に示される。単なる実施例として、これらの文字のそれぞれに続く数字は、ジオプタ(1/m)、すなわち、ユーザからの深度平面の逆距離を示し、図中の各ボックスは、個々の原色画像を表す。いくつかの実施形態では、異なる波長の光の眼の集束における差異を考慮するために、異なる原色に関する深度平面の正確な設置は、変動し得る。例えば、所与の深度平面に関する異なる原色画像は、ユーザからの異なる距離に対応する深度平面上に設置されてもよい。そのような配列は、視力およびユーザ快適性を増加させ得る、または色収差を減少させ得る。
【0061】
いくつかの実施形態では、各原色の光は、単一専用導波管によって出力されてもよく、その結果、各深度平面は、それと関連付けられた複数の導波管を有してもよい。そのような実施形態では、文字G、R、またはBを含む、図中の各ボックスは、個々の導波管を表すものと理解され得、3つの導波管は、深度平面毎に提供されてもよく、3つの原色画像が、深度平面毎に提供される。各深度平面と関連付けられた導波管は、本図面では、説明を容易にするために相互に隣接して示されるが、物理的デバイスでは、導波管は全て、レベル毎に1つの導波管を伴うスタックで配列され得ることを理解されたい。いくつかの他の実施形態では、複数の原色が、例えば、単一導波管のみが深度平面毎に提供され得るように、同一導波管によって出力されてもよい。
【0062】
図8を継続して参照すると、いくつかの実施形態では、Gは、緑色であって、Rは、赤色であって、Bは、青色である。いくつかの他の実施形態では、マゼンタ色およびシアン色を含む、光の他の波長と関連付けられた他の色も、加えて使用されてもよい、または赤色、緑色、または青色のうちの1つ以上のものに取って代わってもよい。いくつかの実施形態では、特徴320、330、340、および350は、ユーザの眼まで周囲環境からの光をブロックまたは選択的に通過させるように構成される、能動または受動光学フィルタであってもよい。
【0063】
本開示全体を通した所与の光の色の言及は、その所与の色としてユーザによって知覚される、光の波長の範囲内の1つ以上の波長の光を包含すると理解されるはずである。例えば、赤色の光は、約620~780nmの範囲内である1つ以上の波長の光を含んでもよく、緑色の光は、約492~577nmの範囲内である1つ以上の波長の光を含んでもよく、青色の光は、約435~493nmの範囲内である1つ以上の波長の光を含んでもよい。
【0064】
いくつかの実施形態では、図6の光モジュール530は、ユーザの視覚的知覚範囲外の1つ以上の波長、例えば、IRまたは紫外線波長の光を放出するように構成されてもよい。IR光は、700nm~10μmの範囲内の波長を伴う光を含むことができる。いくつかの実施形態では、IR光は、700nm~1.5μmの範囲内の波長を伴う近IR光を含むことができる。加えて、ディスプレイシステム250の導波管の内部結合、外部結合、および他の光再指向構造は、例えば、結像またはユーザ刺激用途のために、この光をディスプレイからユーザの眼210に向かって指向および放出するように構成されてもよい。
【0065】
ここで図9Aを参照すると、いくつかの実施形態では、導波管に衝突する光は、光を導波管の中に内部結合するために再指向される必要があり得る。内部結合光学要素が、光をその対応する導波管の中に再指向および内部結合するために使用されてもよい。図9Aは、内部結合光学要素をそれぞれ含む、スタックされた導波管のセット660の実施例の断面側面図を図示する。導波管はそれぞれ、1つ以上の異なる波長または1つ以上の異なる波長範囲の光を出力するように構成されてもよい。セット660は、図6のスタックされた導波管アセンブリ260に対応し得、セット660の図示される導波管は、画像投入デバイス360、370、380、390、400のうちの1つ以上のものからの光が、光が内部結合のために再指向されることを要求する位置から導波管の中に投入されることを除いて、1つ以上の導波管270、280、290、300、310の一部に対応し得ることを理解されたい。
【0066】
スタックされた導波管のセット660は、導波管670、680、および690を含む。各導波管は、関連付けられた内部結合光学要素(導波管上の光入力面積とも称され得る)を含み、例えば、内部結合光学要素700は、導波管670の主要表面(例えば、上側主要表面)上に配置され、内部結合光学要素710は、導波管680の主要表面(例えば、上側主要表面)上に配置され、内部結合光学要素720は、導波管690の主要表面(例えば、上側主要表面)上に配置される。いくつかの実施形態では、内部結合光学要素700、710、720のうちの1つ以上のものは、個別の導波管670、680、690の底部主要表面上に配置されてもよい(特に、1つ以上の内部結合光学要素は、反射性偏向光学要素である)。図示されるように、内部結合光学要素700、710、720は、それらの個別の導波管670、680、690の上側主要表面(または次の下側導波管の上部)上に配置されてもよく、特に、それらの内部結合光学要素は、透過性偏向光学要素である。いくつかの実施形態では、内部結合光学要素700、710、720は、個別の導波管670、680、690の本体内に配置されてもよい。いくつかの実施形態では、本明細書に議論されるように、内部結合光学要素700、710、720は、他の光の波長を透過させながら、1つ以上の光の波長を選択的に再指向するように、波長選択的である。それらの個別の導波管670、680、690の片側または角に図示されるが、内部結合光学要素700、710、720は、いくつかの実施形態では、それらの個別の導波管670、680、690の他の面積内に配置され得ることを理解されたい。
【0067】
図示されるように、内部結合光学要素700、710、720は、相互から側方にオフセットされてもよい。いくつかの実施形態では、各内部結合光学要素は、光が別の内部結合光学要素を通して通過することなく、その光を受け取るようにオフセットされてもよい。例えば、各内部結合光学要素700、710、720は、光を異なる画像投入デバイス360、370、380、390、および400から受け取るように構成されてもよく、光を内部結合光学要素700、710、720の他のものから実質的に受け取らないように、他の内部結合光学要素700、710、720から分離されてもよい(例えば、側方に離間される)。
【0068】
各導波管はまた、関連付けられた光分散要素を含み、例えば、光分散要素730は、導波管670の主要表面(例えば、上部主要表面)上に配置され、光分散要素740は、導波管680の主要表面(例えば、上部主要表面)上に配置され、光分散要素750は、導波管690の主要表面(例えば、上部主要表面)上に配置される。いくつかの他の実施形態では、光分散要素730、740、750は、それぞれ、関連付けられた導波管670、680、690の底部主要表面上に配置されてもよい。いくつかの他の実施形態では、光分散要素730、740、750は、それぞれ、関連付けられた導波管670、680、690の上部および底部両方の主要表面上に配置されてもよい、または光分散要素730、740、750は、それぞれ、異なる関連付けられた導波管670、680、690内の上部主要表面および底部主要表面の異なるものの上に配置されてもよい。
【0069】
導波管670、680、690は、例えば、材料のガス、液体、または固体層によって離間および分離されてもよい。例えば、図示されるように、層760aは、導波管670および680を分離してもよく、層760bは、導波管680および690を分離してもよい。いくつかの実施形態では、層760aおよび760bは、低屈折率材料(すなわち、導波管670、680、690の直近のものを形成する材料より低い屈折率を有する材料)から形成される。好ましくは、層760a、760bを形成する材料の屈折率は、導波管670、680、690を形成する材料の屈折率と比較して0.05以上、または0.10以下である。有利には、より低い屈折率層760a、760bは、導波管670、680、690を通して光のTIR(例えば、各導波管の上部主要表面および底部主要表面の間のTIR)を促進する、クラッディング層として機能してもよい。いくつかの実施形態では、層760a、760bは、空気から形成される。図示されていないが、導波管の図示されるセット660の上部および底部は、直近クラッディング層を含み得ることを理解されたい。
【0070】
好ましくは、製造および他の考慮点を容易にするために、導波管670、680、690を形成する材料は、類似または同一であって、層760a、760bを形成する材料は、類似または同一である。いくつかの実施形態では、導波管670、680、690を形成する材料は、1つ以上の導波管間で異なってもよい、および/または層760a、760bを形成する材料は、依然として、上記に記述される種々の屈折率関係を保持しながら、異なってもよい。
【0071】
光線770、780、790が、導波管のセット660に入射する。光線770、780、790は、1つ以上の画像投入デバイス360、370、380、390、400(図6)によって導波管670、680、690の中に投入さ得ることを理解されたい。
【0072】
いくつかの実施形態では、光線770、780、790は、異なる色に対応し得る、異なる性質、例えば、異なる波長または異なる波長範囲を有する。内部結合光学要素700、710、720はそれぞれ、光が、TIRによって、導波管670、680、690のうちの個別の1つを通して伝搬するように、入射光を偏向させる。
【0073】
例えば、内部結合光学要素700は、第1の波長または波長範囲を有する、光線770を選択的に偏向させるように構成されてもよい。同様に、透過された光線780は、第2の波長または波長範囲の光を偏向させるように構成される、内部結合光学要素710に衝突し、それによって偏向される。同様に、光線790は、第3の波長または波長範囲の光を選択的に偏向させるように構成される、内部結合光学要素720によって偏向される。
【0074】
偏向された光線770、780、790は、対応する導波管670、680、690を通して伝搬するように偏向される。すなわち、各導波管の内部結合光学要素700、710、720は、光をその対応する導波管670、680、690の中に偏向させ、光を対応する導波管の中に内部結合する。光線770、780、790は、光をTIRによって個別の導波管670、680、690を通して伝搬させる角度で偏向される。光線770、780、790は、導波管の対応する光分散要素730、740、750に衝突するまで、TIRによって個別の導波管670、680、690を通して伝搬する。
【0075】
ここで図9Bを参照すると、図9Aのスタックされた導波管の実施例の斜視図が、図示される。上記に記述されるように、内部結合された光線770、780、790は、それぞれ、内部結合光学要素700、710、720によって偏向され、次いで、それぞれ、導波管670、680、690内でTIRによって伝搬する。光線770、780、790は、次いで、それぞれ、光分散要素730、740、750に衝突する。光分散要素730、740、750は、それぞれ、外部結合光学要素800、810、および820に向かって伝搬するように、光線770、780、790を偏向させる。
【0076】
いくつかの実施形態では、光分散要素730、740、750は、直交瞳エクスパンダ(OPE)である。いくつかの実施形態では、OPEは、光を外部結合光学要素800、810、820に偏向または分散することと、また、外部結合光学要素に伝搬するにつれて、この光のビームまたはスポットサイズを増加させることの両方を行ってもよい。いくつかの実施形態では、例えば、ビームサイズがすでに所望のサイズである場合、光分散要素730、740、750は、省略されてもよく、内部結合光学要素700、710、720は、光を外部結合光学要素800、810、820に直接偏向させるように構成されてもよい。例えば、図9Aを参照すると、光分散要素730、740、750は、それぞれ、外部結合光学要素800、810、820と置換されてもよい。いくつかの実施形態では、外部結合光学要素800、810、820は、図7に示されるように、光を視認者の眼210に向かって指向させる、射出瞳(EP)または射出瞳エクスパンダ(EPE)である。OPEは、少なくとも1つの軸においてアイボックスの寸法を増加させるように構成され得、EPEは、OPEの軸と交差する(例えば、直交する)軸においてアイボックスを増加させ得ることを理解されたい。
【0077】
故に、図9Aおよび9Bを参照すると、いくつかの実施形態では、導波管のセット660は、原色毎に、導波管670、680、690と、内部結合光学要素700、710、720と、光分散要素(例えば、OPE)730、740、750と、外部結合光学要素(例えば、EP)800、810、820とを含む。導波管670、680、690は、各1つの間に空隙/クラッディング層を伴ってスタックされてもよい。内部結合光学要素700、710、720は、(異なる波長の光を受け取る異なる内部結合光学要素を用いて)入射光をその導波管の中に再指向または偏向させる。光は、次いで、個別の導波管670、680、690内にTIRをもたらすであろう角度で伝搬する。示される実施例では、光線770(例えば、青色の光)は、前述に説明された様式において、第1の内部結合光学要素700によって偏光され、次いで、導波管を辿ってバウンスし続け、光分散要素(例えば、OPE)730、次いで、外部結合光学要素(例えば、EP)800と相互作用する。光線780および790(例えば、それぞれ、緑色および赤色の光)は、導波管670を通して通過し、光線780は、内部結合光学要素710に衝突し、それによって偏向される。光線780は、次いで、TIRを介して、導波管680を辿ってバウンスし、その光分散要素(例えば、OPE)740、次いで、外部結合光学要素(例えば、EP)810に進むであろう。最後に、光線790(例えば、赤色の光)は、導波管690を通して通過し、導波管690の内部結合光学要素720に衝突する。光内部結合光学要素720は、光線が、TIRによって、光分散要素(例えば、OPE)750、次いで、TIRによって、外部結合光学要素(例えば、EP)820に伝搬するように、光線790を偏向させる。外部結合光学要素820は、次いで、最後に、光線790をユーザに外部結合し、ユーザはまた、他の導波管670、680からの外部結合された光も受け取る。
【0078】
図9Cは、図9Aおよび9Bの複数のスタックされた導波管の実施例の上下平面図を図示する。図示されるように、導波管670、680、690は、各導波管の関連付けられた光分散要素730、740、750および関連付けられた外部結合光学要素800、810、820とともに、垂直に整合されてもよい。しかしながら、本明細書に議論されるように、内部結合光学要素700、710、720は、垂直に整合されない。むしろ、内部結合光学要素は、好ましくは、非重複する(例えば、上下図に見られるように、側方に離間される)。本明細書でさらに議論されるように、本非重複空間配列は、1対1ベースで異なるリソースから異なる導波管の中への光の投入を促進し、それによって、具体的光源が具体的導波管に一意に結合されることを可能にする。いくつかの実施形態では、非重複の空間的に分離される内部結合光学要素を含む、配列は、偏移瞳システムと称され得、これらの配列内の内部結合光学要素は、サブ瞳に対応し得る。
例示的光プロジェクタシステム
【0079】
いくつかのディスプレイシステム(例えば、図6のディスプレイシステム250)では、ビームスプリッタ(BS)が、光源(例えば、光モジュール530)からの光を、光を変調させ、(場合によっては1つ以上の介在光学構成要素を介して)BSを通してユーザに後方反射し得る、光変調器(例えば、光変調器540)に指向するために、使用されてもよい。光変調器は、例えば、VR、AR、および/またはMR画像情報を用いて入力光を符号化する、シリコン上液晶(LCOS)パネル等の空間光変調器(SLM)であってもよい。いくつかの実施形態では、SLMは、入力光を変調させ、次いで、「正面照明構成」と称され得る、入力光の入射の方向に向かって少なくとも部分的に戻るように変調された光を反射する。実施形態が、正面照明構成を参照して本明細書に説明されるが、SLMが入力光を変調させ、変調された光を透過させる、背面照明構成等の他の構成も可能である。
【0080】
図10は、ビームスプリッタ(BS)1050と、光源1030と、空間光変調器(SLM)540とを含む、例示的光プロジェクタシステム1020を図示する。光プロジェクタシステム1020の実施形態は、本明細書に説明されるHMDおよびディスプレイシステム(例えば、図2のディスプレイシステム60または図6の光プロジェクタシステム520)と併用されることができる。例えば、光プロジェクタシステム1020は、図6のスタックされた導波管アセンブリ260を介して画像情報をユーザに提供するために使用されてもよい。光源1030は、図6の光モジュール530の一部であってもよく、BS1050は、BS550であってもよく、光プロジェクタシステム1020は、光を投影光学系1080(例えば、画像投入デバイス360、370、380、390、または400、または導波管270、280、290、300、または310のうちの1つ以上のもの)の中に指向するように構成される。
【0081】
図示されるように、光源1030は、BS1050の入力表面1052に向かって伝搬する入力光ビームを生成する。入力光ビームは、そのうちの1つが入力光線1035として図示される、1つ以上の入力光線で構成される。いくつかの実施形態では、光源1030は、白色の光または所与の色の光(例えば、所与の色としてユーザによって知覚される波長の範囲)を放出するように構成されてもよい。いくつかの実施形態では、光源1030は、代替として、ユーザの視覚的知覚範囲外の1つ以上の波長の光(例えば、赤外線または紫外線波長)を放出してもよい。いくつかの実施形態では、光源1030は、(例えば、図13Bおよび13Cに関連して下記に説明されるような)1つ以上の光源で構成されてもよい。
【0082】
BS1050は、入力表面1052と、ビーム分割表面1055と、出力/入力表面1053とを有する。入力表面1052、ビーム分割表面1055、および出力/入力表面1053は、入力ウェッジまたはプリズム1054の表面であってもよい。そのような実施形態では、入力表面1052および出力/入力表面1053は、相互に隣接し、90度の角度で継合されてもよい。その一方で、ビーム分割表面1055は、入力表面1052と出力/入力表面1053との間に45度の角度で配列されてもよい。BS1050はまた、入力ウェッジ1054に隣接して出力ウェッジまたはプリズム1051を含んでもよい。出力ウェッジ1051は、入力ウェッジ1054の出力/入力表面1053と略平行である出力表面1058を含んでもよい。出力ウェッジ1051はまた、出力表面1058に対して垂直である表面1057を含んでもよく、入力ウェッジ1054とビーム分割表面1055を共有してもよい。図10に示される実施例では、表面1052、1053、1057、および1058は、入力表面1052、出力/入力表面1053、および出力表面1058に対して45度の角度でビーム分割表面1055と立方体を形成する、類似寸法を有する。
【0083】
BS1050は、光学グレードガラスまたはプラスチックを含む、任意の光学材料から作製されてもよい。より軽量の材料が、HMD用途のために有利であり得る。いくつかの実施形態では、光の動作波長におけるBS1050の屈折率は、少なくとも約1.5であり得る。
【0084】
ビーム分割表面1055は、それに入射する光を選択的に反射または透過させるように構成されてもよい。ビーム分割表面1055は、第1の状態を有する光に対して反射性であり、第2の状態を有する光に対して透過性であり得る。例えば、BS1050は、そのビーム分割表面1055が、第1の偏光状態(例えば、s-偏光状態)の光を選択的に反射し、第2の偏光状態(例えば、p-偏光状態)の光を選択的に透過させる、偏光BS(PBS)であってもよい。したがって、入力ビーム(入力光線1035によって図示される)が第1の偏光状態(例えば、s-偏光状態)を有する場合、入力光は、SLM540に向かって反射されてもよい。その一方で、第2の偏光状態(例えば、p-偏光状態)を有する、変調された光(変調された光線1075によって図示される)は、ビーム分割表面1055を通して透過されてもよい。ビーム分割表面1055による光の選択的反射および透過が、第1および第2の偏光状態を参照して説明されるが、光の他の特性もまた、入射角度、波長、位相、および同等物に基づき得る、本選択性を達成するために使用されることができる。ビーム分割表面1055は、光学材料から作製される、または所望のビーム分割特性を達成するように設計される光学コーティングを有してもよい。
【0085】
BS1050がPBSである、実施形態では、入力光ビーム(入力光線1035によって図示される)は、第1の偏光状態(例えば、s-偏光状態)を有してもよい。コリメータ1010が、入力表面1052の一様な照明のために入力ビームをコリメートするように、光源1030とBS1050との間に提供されてもよい。入力光線1035を含む、コリメートされた入力光ビームは、入力表面1052に透過され、そこで、BS1050に入射し、次いで、ビーム分割表面1055によって選択的に反射される。これは、ビーム分割表面1055から出力/入力表面1053に透過される反射光ビーム(反射光線1065によって図示される)をもたらし、反射光ビームは、BS1050から出射し、SLM540上に入射する。
【0086】
SLM540または介在光学構成要素は、第1の偏光状態(例えば、s-偏光状態)を有する反射光ビーム(反射光線1065を含む)を受け取るように、かつそれを第2の偏光状態(例えば、p-偏光状態)に変換するように構成されてもよい。SLM540はまた、画像情報を用いて、またはそれに基づいて、反射光ビームを変調させ、次いで、BS1050の出力/入力表面1053に向かって戻るように変調された光ビーム(変調された光線1075によって図示される)を反射する。変調された光ビームは、次いで、その偏光状態(例えば、s-偏光状態またはp-偏光状態)に応じて、ビーム分割表面1055によって透過または反射される。
【0087】
SLM540は、「オン」状態と「オフ」状態との間で個々のピクセルを切り替え、それによって、画像情報を用いて変調された光を符号化するように、例えば、図6のコントローラ560によって制御されてもよい。いくつかの実施形態では、SLM540のピクセルが「オン」であるとき、これは、対応する変調された光線1075がビーム分割表面1055を通して投影光学系1080に透過されるように、反射光線1065の偏光状態を第1の偏光状態から第2の偏光状態に変換してもよい。「オフ」状態では、反射光線1065の偏光状態は、変換されず、対応する変調された光線1075は、光源1030に向かって戻るように反射される、または光プロジェクタシステム1020内の他の場所で処理される。したがって、BS1050は、変調された光ビーム(変調された光線1075によって図示される)を投影光学系1080に選択的に透過させてもよい。投影光学系1080は、次いで、変調された光ビームをユーザの眼に中継する。
【0088】
上記の説明は、第1の偏光状態としてのs-偏光状態および第2の偏光状態としてのp-偏光状態を参照して行われるが、他の構成も可能である。例えば、第1の偏光状態は、p-偏光状態であってもよく、第2の偏光状態は、s-偏光状態であってもよい。さらに、異なるSLM540が、可能であり、本明細書の実施形態は、これらの他のSLM540を往復して光を選択的に反射および透過させることが可能なビームスプリッタおよび光学構成要素を伴って構成されてもよい。例えば、LCOSパネルではなく、SLM540は、第1の角度(例えば、第1の状態)において光を受け取り、異なる角度(例えば、第2の状態)において光を変調および反射し、それによって、画像情報を用いて光を符号化する、デジタル光処理(DLP)パネルであってもよい。
【0089】
HMDアプリケーション等のいくつかのディスプレイシステムに関して、(1)SLM540の完全かつ一様な照明および(2)SLM540に対して垂直である方向への照明を提供することが望ましくあり得る。BS1050は、これらの特性を達成するための光学特性を有するように選択されてもよい。例えば、BS1050は、入力表面1052に対して垂直であるコリメートされた光を受け取り、出力/入力表面1053に対して垂直である方向に光を反射してもよい。故に、図10の実施形態では、BS1050は、入力表面1052の長さ(本明細書ではBS1050の高さとも称される)が、出力/入力表面1053および出力表面1058の長さ(本明細書ではBS1050の幅とも称される)と同一である、立方体である。ビーム分割表面1055は、45度の角度において入力表面1052および出力表面1058の接合点から出力/入力表面1053および表面1057の接合点まで延在する。本構成は、入力光線1035が、入力表面1052に対して垂直に入射し、出力/入力表面1053に対して垂直である方向に反射されることを可能にする。これはまた、SLM540が完全かつ一様に照明されることも可能にする。望ましくないことに、これらの立方体寸法は、光プロジェクタシステム1020または図2のディスプレイシステム60では、BS1050によって占有される容積およびその重量を増加させ得る。故に、コンパクトな軽量ディスプレイ用途で使用するための薄型光プロジェクタシステムを提供することが望ましくあり得る。
薄型光プロジェクタシステムの実施例
【0090】
図11Aは、いくつかの実施形態による、画像情報をユーザに提供するために使用される例示的薄型光プロジェクタシステム1120を図示する。薄型光プロジェクタシステム1120は、薄型BS1150と、光源1030と、SLM540とを含む。薄型光プロジェクタシステム1120は、図10の光プロジェクタシステム1020に類似するが、いくつかの重要な差異を伴う。例えば、薄型光プロジェクタシステム1120は、光学性能(例えば、SLM540の照明範囲、輝度、コントラスト、分解能、および同等物)に悪影響を及ぼすことなく、薄型光プロジェクタシステム1120の全体的高さを縮小するように構成される薄型BS1150を使用する。図11Aを参照して本明細書に説明される薄型光プロジェクタシステム1120の実施形態は、本明細書に説明されるHMDシステム(例えば、図2のディスプレイシステム60または図6の光プロジェクタシステム520)と併用されることができる。例えば、光源1030は、図6の光モジュール530の一部であってもよく、薄型BS1150は、BS550であってもよく、光プロジェクタシステム1120は、光を投影光学系1080(例えば、画像投入デバイス360、370、380、390、または400、または導波管270、280、290、300、または310のうちの1つ以上のもの)の中に指向するように構成される。
【0091】
図11Aに示されるように、光源1030は、入力光線1135を含む、入力ビームを放出するように構成される。単一の入力光線1135のみが、例証目的のためのみに図11Aに示される。図11Aの入力光線1135は、図10の入力光線1035に実質的に類似し得る。
【0092】
薄型BS1150は、入力表面1152と、ビーム分割表面1155と、出力/入力表面1153Aとを有する。入力表面1152、ビーム分割表面1155、および出力/入力表面1153Aは、入力ウェッジまたはプリズム1154の表面であってもよい。そのような実施形態では、入力表面1152および出力/入力表面1153Aは、相互に隣接し、90度の角度で継合されてもよい。BS1150はまた、入力ウェッジ要素1154に隣接して出力ウェッジまたはプリズム1151を含んでもよい。出力ウェッジ1151は、入力ウェッジ1154の出力/入力表面1153Aと略平行である出力表面1158Aを含んでもよい。出力ウェッジ1151はまた、出力表面1158Aに対して垂直である表面1157を含んでもよく、入力ウェッジ1154とビーム分割表面1155を共有してもよい。
【0093】
薄型BS1150は、光学グレードガラスまたはプラスチックを含む、任意の光学材料から作製されてもよい。より軽量の材料が、HMD用途のために有利であり得る。いくつかの実施形態では、光の動作波長における薄型BS1150の屈折率は、少なくとも約1.5であり得る。
【0094】
薄型BS1150は、ビーム分割表面1155が出力/入力表面1153Aに対して45度未満の角度で配列されることを除いて、図10のBS1050と実質的に類似し得る。例えば、出力/入力表面1153Aに対するビーム分割表面1155の角度は、40度以下、35度以下、または30度以下であり得る。出力/入力表面1153Aに対するビーム分割表面1155の角度を縮小することは、入力表面1152(および表面1157)の長さを短縮し、それによって、光プロジェクタシステム1120の全体的サイズを縮小する。SLM540の受光表面に対して垂直である方向におけるSLM540の完全かつ一様な照明を含む、所望の光学性能を維持するために、薄型BS1150は、入力光ビーム(入力光線1135によって表される)を操作するように入力表面1152の上、中、またはそれに隣接して配置される回折光学要素(図12A-13Dに関連して下記に説明される)を有してもよい。
【0095】
図11Aに示されるように、入力光ビームは、コリメータ1010によってコリメートされ、入力表面1152上に直交して入射する。回折光学要素(例えば、図12A-12Bの透過型回折光学要素1256または図13A-13Dの反射型回折光学要素1356)は、入力ビームが、ビーム分割表面1155が入力表面1152と略平行であり、出力/入力表面1153Aに対して垂直である方向に光(例えば、反射光線1165)を選択的に反射するような角度において、(場合によっては薄型BS1150の他の表面における1つ以上の内部反射後に)ビーム分割表面1155に向かって指向される、1つ以上の回折ビームに変換されるように、薄型BS1150の入力表面1152における入力光ビーム(入力光線1135によって表される)の伝搬角度を操作する。反射光線1165は、次いで、垂直にSLM540上に入射する。図10に関連して上記に説明されるように、SLM540は、画像情報を用いて反射光ビーム(反射光線1165によって表される)を変調させ、薄型BS1150を通して投影光学系1080に変調された光ビーム(変調された光線1175によって表される)を反射する。ビーム分割表面1155は、図10に関して上記で議論されるものと同一の方法で、異なる状態の光を選択的に反射および/または透過させることができる。
【0096】
図11Aに示される薄型BS1150の1つの利点は、図10のBS1050に対する薄型BS1150のサイズおよび重量の縮小である。いくつかの実施形態では、薄型BS1150の少なくとも1つの寸法の長さ(例えば、入力表面1052の長さ)は、薄型BS1150の別の寸法のサイズ(例えば、出力/入力表面1153Aの長さ)の0.58倍と同程度に小さく短縮されてもよい。
【0097】
図11Bは、いくつかの実施形態による、画像情報をユーザに提供するために使用される例示的薄型光プロジェクタシステム1120Bを図示する。図11Bに図示される出力/入力表面1153Bおよび出力表面1158Bが、曲面である一方で、図11Aに図示される出力/入力表面1153Aおよび出力表面1158Aは、平面である。図11Bは、出力/入力表面1153Bおよび出力表面1158Bの両方を曲面として図示するが、いくつかの実施形態では、出力/入力表面1153Bまたは出力表面1158Bのいずれか一方は、湾曲され得る。いくつかの構成では、特に大量生産では、出力/入力表面1153Aおよび/または出力表面1158Aよりも出力/入力表面1153Bおよび/または出力表面1158Bを成形することが高速および/または安価であり得る。
【0098】
いくつかの実施形態では、出力/入力表面1153Bおよび/または出力表面1158Bは、レンズとして機能してもよい。例えば、出力/入力表面1153Bは、視野レンズとして使用されてもよい。本実施例では、出力/入力表面1153Bは、光変調器540と投影光学系1080との間にある正の屈折力がある視野レンズである。出力/入力表面1153Bは、光変調器540から生じる画像のサイズを変化させる。SLM540の近位に出力/入力表面1153Bを有することは、視野の平坦性、視野の曲率、および/または画像歪曲等の補正によって、結像性能を増進し得る。例えば、出力/入力表面1153Bは、光変調器540から外に生じる画像をとり、画像の拡散を減少させるように画像の光ビームを内向きに傾転させてもよい。これは、投影光学系1080等の下流光学要素が幅未満である高さを有すること、および/または薄型BS1150からさらに離間されることを可能にする。SLM540の近位に出力/入力表面1153Bを有することはさらに、投影光学系1080がより薄型にされることを可能にし、それによって、薄型光投影システム1120をより薄型にし得る。
【0099】
いくつかの実施形態では、薄型BS1150は、SLM540よりも大きく(例えば、長く、かつ幅広く)あり得る。これらの実施形態では、薄型BS1150から光変調器540に向かって進む光の十分な過充填が存在し得る。
薄型ビームスプリッタの実施例
【0100】
薄型BS1150の種々の実施形態が、図12A-13Dに関連して説明される。例えば、図12Aおよび12Bは、透過型回折光学要素1256を含む、例示的薄型BS1250を図式的に図示する。透過型回折光学要素1256は、対応する反射光ビーム(例えば、反射光ビーム1265)が出力/入力表面1253に対して垂直に進行するように、入力光ビーム(例えば、コリメートされた入力光ビーム1230)を、薄型BS1250の種々の表面から反射される1つ以上の回折光ビームに変換するように構成される。図12Aおよび12Bは、垂直y-軸が水平z-軸に直交し、両方ともページの中および外に延在する水平x-軸(図示せず)に直交する、例証的目的のためのみの例示的座標系を示す。
【0101】
薄型BS1250は、入力表面1252と、ビーム分割表面1255と、出力/入力表面1253とを有する。入力表面1252、ビーム分割表面1255、および出力/入力表面1253は、入力ウェッジまたはプリズム1254の表面であってもよい。そのような実施形態では、入力表面1252および出力/入力表面1253は、相互に隣接し、90度の角度で継合されてもよい。ビーム分割表面1255は、入力表面1252と出力/入力表面1253との間の角度で配列されてもよい。薄型BS1250はまた、入力ウェッジ1254に隣接して出力ウェッジまたはプリズム1251を含んでもよい。出力ウェッジ1251は、入力ウェッジ1254の出力/入力表面1253と略平行である出力表面1258を含んでもよい。出力ウェッジ1251はまた、出力表面1258に対して垂直である表面1257を含んでもよく、入力ウェッジ1254とビーム分割表面1255を共有してもよい。
【0102】
薄型BS1250は、光学グレードガラスまたはプラスチックを含む、任意の光学材料から作製されてもよい。より軽量の材料が、HMD用途のために有利であり得る。いくつかの実施形態では、光の動作波長における薄型BS1250の屈折率は、少なくとも約1.5であり得る。
【0103】
薄型BS1250のビーム分割表面1255は、出力/入力表面1253に対して45度未満、より具体的には、40度以下、35度以下、または30度以下の角度で配列され、それによって、y-軸に沿って薄型BS1250の全体的サイズを縮小し得る。SLM540の受光表面に対して垂直である方向におけるSLM540の完全かつ一様な照明を含む、所望の光学性能を維持するために、薄型BS1250は、入力表面1252の上、中、またはそれに隣接して透過型回折光学要素1256を含む。透過型回折光学要素1256は、光源(例えば、図11の光源1030)と入力表面1252との間に位置付けられてもよい。いくつかの実施形態では、透過型回折光学要素1256は、例えば、入力表面1252に回折特徴をエッチングすることによって、または透過型回折光学要素1256を入力表面1252に取り付けることによって、形成されてもよい。透過型回折光学要素1256は、コリメートされた入力光ビーム1230を操作する。例えば、透過型回折光学要素1256は、入力表面1252に対して垂直である方向にコリメートされた入力光ビーム1230を受け取るように構成されてもよい。透過型回折光学要素1256は、次いで、回折光ビームが、(場合によっては薄型BS1250の他の表面からの1つ以上の介在反射後に)ビーム分割表面1255に向かって指向され、反射ビーム1265として法線角度において出力/入力表面1253に向かって反射されるように、コリメートされた入力光ビーム1230を、1つ以上の対応する回折角において回折される1つ以上の回折光ビームに変換してもよい。反射ビーム1265は、次いで、画像情報を用いて光を変調させ、出力/入力表面1253の中に戻るように、ビーム分割表面1255を通して出力表面1258から外に変調されたビーム1275を反射する、SLM540上に入射する。
【0104】
種々の実施形態では、透過型回折光学要素1256は、回折格子を形成する1つ以上の回折特徴を含む。概して、回折格子は、入射光ビームを異なる方向に進行するいくつかのビームに分割および回折する、周期的構造を有する。これらの回折ビームはそれぞれ、特定の回折次数に対応する。回折ビームの方向は、周期的構造の周期および光の波長を含む、回折格子の種々の特性に依存する。透過型回折光学要素1256は、入射光を、1つ以上の所望の対応する回折角を伴う1つ以上の所望の回折次数に回折するように、公知の方程式および技法に従って設計されることができる。
【0105】
図12Aに示されるように、コリメートされた入力光ビーム1230は、BS1250の入力表面1252上に入射し得る。コリメートされた入力光ビーム1230は、光源(例えば、図11の光源1030)によって放出され、コリメータ(例えば、図11のコリメータ1010)によってコリメートされてもよい。コリメートされた入力光ビーム1230は、薄型BS1250の入力表面1252全体を横断して完全かつ一様に入射し得る、1つ以上の入力光線で構成される。例えば、コリメートされた入力光ビーム1230は、中心入力光線1235と、下側入力光線1233と、上側入力光線1237とを含んでもよい。3つの入力光線1233、1235、および1237のみが、例証目的のために図12Aに示されている。
【0106】
いくつかの実施形態では、薄型BS1250は、偏光ビーム分割表面1255(図10に関連して上記に説明されるような)を有してもよい。ビーム分割表面1255は、z-軸に対して角度θBSで配列されてもよい。第1の偏光状態(例えば、s-偏光状態)を有する、コリメートされた入力光ビーム1230は、透過型回折光学要素1256に対して垂直に入射し、1つ以上の回折ビームに回折される。2つの回折ビームが、それぞれ、第1の偏光状態を有する、法線から上向きに角度θにおいて回折される第1の回折光線1242および法線から下向きに角度θにおいて回折される第2の回折光線1244によって、図12Aに図示されている。角度θは、透過型回折光学要素1256の空間周波数または周期に基づいてもよい。第1および第2の回折光線1242、1244は、それぞれ、正の第1の次数および負の第1の次数の回折光線であってもよい。他の実施形態では、より高い回折次数(例えば、第2の次数、第3の次数等)を利用することが可能であり得る。いくつかの実施形態では、コリメートされた入力光ビーム1230の少なくとも80%、または少なくとも90%、または少なくとも95%を第1および第2の回折次数に回折するように透過型回折光学要素1256を設計することが有利であり得る。
【0107】
第1の回折光線1242は、回折角θにおいてビーム分割表面1255まで進行し、次いで、z-軸に対するビーム分割表面1255の角度に基づいて、z-軸に対して垂直である(また、出力/入力表面1253およびSLM540に対して垂直である)角度において反射された第1の回折光線1262としてSLM540に向かって反射される。第2の回折光線1244は、ビーム分割表面1255に向かって出力/入力表面1253において第2の回折光線1244の全内部反射(TIR)をもたらすように構成される、回折角θにおいて出力/入力表面1253に向かって進行する。ビーム分割表面1255は、次いで、z-軸に対して垂直である(また、出力/入力表面1253およびSLM540に対して垂直である)角度において反射された第2の回折光線1264として、第2の回折光線1244を反射する。上記に説明されるように、SLM540は、次いで、反射された第1および第2の回折光線1262、1264の第1の偏光状態(例えば、s-偏光状態)を第2の偏光状態(例えば、p-偏光状態)に変換し、また、画像データを用いて光を変調させてもよい。
【0108】
図示される実施形態では、反射された第1の回折光ビーム(第1の回折光線1262によって図示される)は、SLM540の左側に入射し、左側照明を提供し、反射された第2の回折光ビーム(第2の回折光線1264によって図示される)は、SLM540の右側に入射し、右側照明を提供する。いくつかの実施形態では、各回折光線1242、1244は、薄型BS1250の中に透過される中心入力光線1235のエネルギーの約半分を有してもよい。故に、BS1250に入射する光の約半分は、SLM540の左側に透過され、BS1250に入射する光の半分は、SLM540の右側に透過される。
【0109】
前述の説明は、主に中心入力光線1235の挙動を参照するが、コリメートされた入力光ビーム1230の中に含まれる光線の全ては、同様に回折および反射される。例えば、下側入力光線1233は、(回折角θにおいて)回折光線1243として回折され、光線1263として反射される。故に、薄型BS1250は、SLM540の表面に対して垂直である方向にSLM540の完全で連続的かつ一様な照明を促進する。
【0110】
いくつかの実施形態では、薄型BS1250内の角度θBSは、45度未満(例えば、40度以下、35度以下、または30度以下)であり得、角度θは、0度を上回り得る(例えば、15度以上、20度以上、25度以上、または30度以上)。いくつかの実施形態では、薄型BS1250内の角度θBSおよび角度θは、同一またはほぼ同一であり得る。例えば、これらの角度の両方は、約30度(例えば、30度の15%以内)であり得る。30度である角度θBSおよびθの1つの非限定的利点は、y-軸に沿った薄型BS1250の高さが図10のBS1050に対して約58%だけ縮小され得ることである。角度θBSは、入力表面1252の所望の長さ(例えば、薄型BS1250の所望の高さ)に基づいて、第2の回折光線1244のTIRを誘発するように選択されてもよい。ビーム分割表面1255の角度θBSが減少すると、回折θの角度が増加する(逆も同様である)。0度の回折角に関して、ビーム分割表面1255は、図10に関連して説明されるように、z-軸に対して45度で配列されるであろう。しかしながら、大きすぎる回折角は、第2の回折光線1244に薄型BS1250内でTIRを失敗させ得る。これは、SLM540の照明の不要な間隙または重複をもたらし得る。
【0111】
図12Bは、薄型BS1250を使用する、SLM540の完全で一様かつ連続的な照明の実施例を図示する。図12Bは、付加的入力光線1234および1236がコリメートされた入力光ビーム1230の一部として図示されることを除いて、図12Aと実質的に類似する。入力光線1233-1237はそれぞれ、透過型回折光学要素1256によって1つ以上の回折光線(例証を容易にするために標識されていない)に回折される。これらの回折光線は、図12Aに関連して上記に説明されるように、ビーム分割表面1255によって反射され(回折光線のうちのいくつかに関して、これは、出力/入力表面1253におけるTIRの後に起こる)、SLM540の受光表面に対して垂直である方向においてSLM540に指向される。上記に説明されるように、第1の回折光線(実線として図示される)はそれぞれ、回折角θにおいてビーム分割表面1255に向かって上向きに回折される。これらの光線は、次いで、反射光線の第1の群1261としてSLM540の左側に反射され、左側連続照明を提供する。同様に、第2の回折光線(点線として図示される)はそれぞれ、回折角-θにおいて出力/入力表面1253に向かって下向きに回折される。これらの光線は、出力/入力表面1253においてTIRを受け、ビーム分割表面1255に向かって上向きに反射し、そこで、それぞれ、反射光線の第2の群1268としてSLM540の右側に下向きに反射され、右側連続照明を提供する。故に、薄型BS1250は、SLM540に対して垂直である方向に完全で連続的かつ一様な照明を提供することが可能である。
【0112】
図12Aおよび12Bは、透過型回折光学要素1256を伴う例示的薄型BS1250を図示するが、他の構成も可能である。例えば、反射型回折光学要素が、図13A-13Dに図示されるように、透過型回折光学要素1256の代わりに使用されてもよい。
【0113】
図13Aは、反射型回折光学要素1356を含む、例示的薄型BS1350を図示する。図12Aおよび12Bに関連して説明されるものに類似する様式で、反射型回折光学要素1356は、対応する反射光ビーム(例えば、反射光ビーム1365)が出力/入力表面1353に対して垂直に進行するように、入力光ビーム(入力光線1335によって表される)を、薄型BS1350の種々の表面から反射する1つ以上の回折光ビームに変換するように構成される。反射型回折光学要素1356はまた、光の1つ以上の発散入力ビームのコリメーション等の付加的機能を果たすように設計されてもよい。反射型回折光学要素1356はまた、複数の光源からの光の角度および/または側方変位された入力ビームを多重化するように設計されてもよい。いくつかの実施形態では、反射型回折光学要素1356は、ホログラフィック光学要素(HOE)等のホログラムである。図13A-13Dは、垂直y-軸が水平z-軸に直交し、両方ともページの中および外に延在する水平x-軸(図示せず)に直交する、例証的目的のためのみの例示的座標系を示す。
【0114】
薄型BS1350は、反射型回折光学要素1356が位置する、表面1352を有する。薄型BS1350はまた、入力表面1357と、ビーム分割表面1355と、出力/入力表面1353とを含む。ビーム分割表面1355、出力/入力表面1353、および表面1352は、入力ウェッジまたはプリズム1354の表面であってもよい。そのような実施形態では、表面1352および出力/入力表面1353は、相互に隣接し、90度の角度で継合されてもよい。ビーム分割表面1355は、z-軸に対して角度θBSで配列されてもよく、ビーム分割表面1355の角度θBSは、図12Aおよび12Bのビーム分割表面1255の角度θBSに類似し得る。BS1350はまた、入力ウェッジ1354に隣接して出力ウェッジまたはプリズム1351を含んでもよい。出力ウェッジ1351は、出力/入力表面1353と略平行である出力表面1358を含んでもよい。出力ウェッジ1351はまた、出力表面1358に対して垂直である入力表面1357も含み、入力ウェッジ1354とビーム分割表面1355を共有してもよい。
【0115】
薄型BS1350は、光学グレードガラスまたはプラスチックを含む、任意の光学材料から作製されてもよい。より軽量の材料が、HMD用途のために有利であり得る。いくつかの実施形態では、光の動作波長における薄型BS1350の屈折率は、少なくとも約1.5であり得る。
【0116】
反射型回折光学要素1356は、表面1352の上、中、またはそれに隣接して配置されてもよい。反射型回折光学要素1356は、例えば、表面1352に回折特徴をエッチングすることによって、または反射型回折光学要素1356を表面1352に取り付けることによって、形成されてもよい。
【0117】
光源(例えば、光源1030)は、第1の偏光状態(例えば、s-偏光状態)を有する光の入力ビームを放出してもよい。光の入力ビームは、ビーム分割表面1355が出力/入力表面1353と交差する、入力ウェッジ1354の角においてBS1350に入射してもよい。光の入力ビーム(入力光線1335によって表される)は、入力ウェッジ1354を通して反射型回折光学要素1356に向かって進行する。光の入力ビームは、非平面的な波面を表す入力光線1335上の重畳曲線によって示されるように、入力ウェッジ1354を通して進行するにつれて発散してもよい。反射型回折光学要素1356は、1つ以上の方法で光の入力ビームを操作するように構成されてもよい。例えば、反射型回折光学要素1356は、光の発散入力ビーム(入力光線1335によって表される)を受け取り、それを1つ以上のコリメートおよび回折されたビームに変換するように構成されてもよい。
【0118】
第1のコリメートおよび回折されたビームは、第1のコリメートおよび回折された光線1342によって表される一方で、第2のコリメートおよび回折されたビームは、第2のコリメートおよび回折された光線1344によって表される。直線が、コリメートされたビームの平面的な波面を表す、第1および第2のコリメートおよび回折された光線1342、1344上に重畳されて示される。第1および第2のコリメートおよび回折された光線1342、1344は、図12Aの回折光線1242、1244に類似する様式で、1つ以上の角度θにおいて回折されてもよい。例えば、第1のコリメートおよび回折された光線1342が、z-軸に対して角度θにおいて上向きに回折されてもよい一方で、第2の回折光線1344は、z-軸に対して角度θにおいて下向きに回折されてもよい。いくつかの実施形態では、第1および第2のコリメートおよび回折されたビームは、正の第1の次数および負の第1の次数に対応し得るが、他の実施形態では、より高い回折次数を使用することが可能であり得る。いくつかの実施形態では、光の入力ビームの少なくとも80%、または少なくとも90%、または少なくとも95%を第1および第2の回折次数に回折するように反射型回折光学要素1356を設計することが有利であり得る。
【0119】
いくつかの実施形態では、薄型BS1350は、偏光ビーム分割表面1355(図10に関連して上記に説明されるような)を有してもよい。ビーム分割表面1355は、z-軸に対して角度θBSで配列されてもよい。第1のコリメートおよび回折された光線1342は、回折角θにおいてビーム分割表面1355まで進行し、次いで、z-軸に対するビーム分割表面1355の角度に基づいて、z-軸に対して垂直である(また、出力/入力表面1353および空間光変調器540に対して垂直である)角度において反射された第1の回折光線1362としてSLM540に向かって反射される。第2のコリメートおよび回折された光線1344は、ビーム分割表面1355に向かって出力/入力表面1353において第2のコリメートおよび回折された光線1344のTIRをもたらすように構成される回折角θにおいて出力/入力表面1353に向かって進行する。ビーム分割表面1355は、次いで、z-軸に対するビーム分割表面1355の角度に基づいて、反射された第2の回折光線1364としてSLM540に向かって第2のコリメートおよび回折された光線1344を反射する。反射光ビーム1365(反射された第1の回折光線1362および反射された第2の回折光線1364を含む)は、次いで、SLM540上に入射する。上記に説明されるように、SLM540は、次いで、反射光ビーム1365の第1の偏光状態(例えば、s-偏光状態)を第2の偏光状態(例えば、p-偏光状態)に変換し、また、画像データを用いて光を変調させてもよい。SLM540は、次いで、出力/入力表面1353の中に戻るように、ビーム分割表面1355を通して出力表面1358から外に変調されたビーム1375を反射することができる。
【0120】
図示される実施形態では、反射された第1の回折光ビーム(反射された第1の回折光線1362によって図示される)は、SLM540の左側に入射し、左側照明を提供する。反射された第2の回折光ビーム(反射された第2の回折光線1364によって図示される)は、SLM540の右側に入射し、右側照明を提供する。いくつかの実施形態では、各コリメートおよび回折された光ビーム(コリメートおよび回折された光線1342、1344によって表される)は、薄型BS1350の中に透過される入力ビームのエネルギーの約半分を有してもよい。故に、BS1350に入射する光の約半分は、SLM540の左側に透過され、BS1350に入射する光の半分は、SLM540の右側に透過される。
【0121】
前述の説明は、主に単一の入力光線1335の挙動を参照するが、発散入力ビームの中に含まれる光線の全ては、同様にコリメート、回折、および反射される。故に、薄型BS1350は、SLM540の表面に対して垂直である方向にSLM540の完全で連続的かつ一様な照明を促進する。
【0122】
図12Aの薄型BS1250と同様に、薄型BS1350内の角度θBSは、45度未満(例えば、40度以下、35度以下、または30度以下)であり得、角度θは、0度を上回り得る(例えば、15度以上、20度以上、25度以上、または30度以上)。いくつかの実施形態では、薄型BS1350内の角度θBSおよび角度θは、同一またはほぼ同一であり得る。例えば、これらの角度の両方は、約30度(例えば、30度の15%以内)であり得る。再度、30度である角度θBSおよびθの1つの非限定的利点は、y-軸に沿った薄型BS1350の高さが図10のBS1050に対して約58%だけ縮小され得ることである。角度θBSは、薄型BS1350の所望の高さに基づいて、第2の回折光線1344のTIRを誘発するように選択されてもよい。ビーム分割表面1355の角度θBSが減少すると、回折θの角度が増加する(逆も同様である)。0度の回折角に関して、ビーム分割表面1355は、図10に関連して説明されるように、z-軸に対して45度で配列されるであろう。しかしながら、大きすぎる回折角は、第2の回折光線1344に薄型BS1350内でTIRを失敗させ得る。これは、SLM540の照明の不要な間隙または重複をもたらし得る。
【0123】
ちょうど議論されたように、反射型回折光学要素1356は、少なくとも2つの機能、すなわち、(1)光源(例えば、光源1030)からの発散入力光をコリメートすることと、(2)回折ビームが、最終的に出力/入力表面1353に対して垂直である方向にSLM540に向かって反射されるように、1つ以上の角度においてコリメートされた光を回折および反射することとを果たしてもよい。図13Aに図示される実施形態の非限定的利点は、別個のコリメータ(例えば、コリメータ1010)が、省略され得、光源(例えば、光源1030)が、薄型BS1350により近く位置付けられ、それによって、よりコンパクトな薄型光プロジェクタシステムを提供し得ることである。反射型回折光学要素1356は、複数の入力ビームが異なる場所からBS1350の中に放出される実施形態において、さらに別の機能を果たしてもよい。
【0124】
光プロジェクタシステム1120は、異なる波長の光(例えば、図9A-9Cの光線770、780、および790)を放出するための複数の光源を含んでもよい。反射型回折光学要素1356は、したがって、異なる位置に位置する1つ以上の光源から異なる波長の1つ以上の角度および/または側方分離された入力ビームを受け取るように、かつこれらの入力ビームを、低減された量の角度および/または側方分離を有する対応するコリメートおよび回折されたビームに変換するように構成されてもよい。本機能性を達成するために、反射型回折光学要素1356は、それらが放出する光の異なる波長またはそれらの入射角度に部分的に基づいて、異なる光源からの光を別個に操作するように構成されてもよい。光源は、相互から側方に分離されてもよい、および/または異なる角度において光のビームを放出してもよい。反射型回折光学要素1356は、光源から受け取られる光を1つ以上の共通多重化光ビームの中に指向するように構成されてもよい。
【0125】
図13Bおよび13Cは、それぞれ、いくつかの実施形態による、薄型BS1350の側面図および上面図を図示する。図13Bおよび13Cは、1つ以上の共通ビームへの複数の光源1330a-cからの光の多重化を示す。3つの光源1330a-cが、入力ウェッジ1354の角において提供される。これら3つの光源1330a-cは、x-軸に沿って相互から側方にオフセットされる。3つの光源1330a-cが図13Bおよび13Cに示されているが、任意の数の光源が、所与の用途のための所望に応じて提供されてもよい(例えば、1、2、4、5個等)。
【0126】
図13Bは、図13Aに関連して上記に説明されるような薄型BS1350の側面図を図示する。薄型BS1350は、3つの対応する入力光ビーム(入力光線1335a-cによって図示される)を生成する、入力ウェッジ1354の角における光源1330a-cを用いて照明される。いくつかの実施形態では、光源1330a-c(例えば、LEDまたはファイバ送達レーザ等)は、入力ウェッジ1354に光学的および/または物理的に結合されることができる。図13Aと同様に、反射型回折光学要素1356は、入力光ビーム(入力光線1335a-cによって図示される)を受け取り、入力光ビームを対応する第1のコリメート、多重化、および回折された光ビーム(第1のコリメート、多重化、および回折された光線1342a-cによって図示される)に変換する。反射型回折光学要素1356はまた、入力光ビーム(入力光線1335a-cによって図示される)を、第2のコリメート、多重化、および回折された光ビーム(第2のコリメート、多重化、および回折された光線1344a-cによって図示される)に変換する。本明細書に説明されるように、第1および第2のコリメート、多重化、および回折された光線1342a-c、1344a-cは、図13Aの第1および第2のコリメートおよび回折された光線1342、1344と実質的に類似する様式で、回折角θにおいて反射される。第1および第2のコリメート、多重化、および回折された光線1342a-c、1344a-cは、(ある場合には、最初に出力/入力表面1353から反射した後に)ビーム分割表面1355に向かって指向され、次いで、反射された多重化ビーム1369としてSLM540に反射される。反射された多重化ビーム1369は、SLM540に対して垂直である方向にSLM540上に入射する、反射された第1および第2の多重化回折光線1362a-c、1364a-cで構成されてもよい。
【0127】
図13Cに示されるように、反射型回折光学要素1356は、角度および/または側方分離された発散入力ビーム(入力光線1335a-cによって表される)を受け取るように構成されてもよい。これらの入力ビームは、x-軸に沿って側方分離され得る、光源1330a-cから生じてもよい。光源1330a-cは、概して、反射型回折光学要素1356が位置する表面1352に向かって指向されてもよい。いくつかの実施形態では、各光源1330a-cは、異なる側方位置から表面1352の表面積を完全に照明するように、z-軸に対して異なる角度で位置付けられてもよい。例えば、各光源1330a-cからの光で表面1352を充填するように、光源1330aが、z-軸に沿って表面1352に対して垂直に指向されてもよい一方で、光源1330bは、z-軸に対してわずかに下向きに角度を付けられてもよく、光源1330cは、z-軸に対してわずかに上向きに角度を付けられてもよい。したがって、3つの入力ビーム(入力光線1335a-cによって表される)は、ある程度の角度分離を有してもよい。
【0128】
いくつかの実施形態では、光源1330a-cは、それぞれ、異なる色または異なる波長の範囲(異なる線の種類で図13Bおよび13Cに表される)の入力光ビーム(入力光線1335a-cによって表される)を放出するように構成されてもよい。したがって、例証目的のために、光源1330aは、緑色の光(破線によって表される)を放出してもよく、光源1330bは、赤色の光(実線によって表される)を放出してもよく、光源1330cは、青色の光(鎖線によって表される)を放出してもよい。他の色および構成も可能であり、例えば、光源1330a-cは、マゼンタ、シアン、または緑色の光を放出してもよい、またはIRまたは近IR光を放出してもよい。
【0129】
図13Cに示されるように、反射型回折光学要素1356は、入力光ビーム(入力光線1335a-cによって表される)を、対応するコリメート、多重化、および回折された光ビーム(コリメート、多重化、および回折された光線1342a-c、1344a-cによって表される)に変換するように構成されてもよい。入力光線1335a-cをコリメートおよび回折された光線1342a-c、1344a-cに変換することは、図13Bに関連して上記に説明される。加えて、反射型回折光学要素1356は、第1のコリメート、多重化、および回折された光線1342a-cが、低減された量の角度または側方分離を伴って、または角度または側方分離を全く伴わずに伝搬するように、入力光線1335a-cを1つ以上の多重化光ビームに多重化する。同じことが、第2のコリメート、多重化、および回折された回折光線1344a-cに当てはまる。いくつかの実施形態では、第1のコリメート、多重化、および回折された光線1342a-cは、実質的に共通する光学経路に沿って伝搬するように多重化されてもよい。同じことが、第2のコリメート、多重化、および回折された回折光線1344a-cに当てはまる。
【0130】
光源1330a-cからの入力ビームを多重化するように構成される反射型回折光学要素1356の非限定的利点は、複数の色の光が画像情報を用いて符号化され、ユーザに提示され、(例えば、光線770、780、および790として)フルカラー画像を提供し得ることである。
【0131】
いくつかの実施形態(例えば、図13Bおよび13Cに関して説明されるもの)では、各光源1330a-cからの光を別個かつ個別に操作し得る、反射型回折光学要素1356を提供することが望ましくあり得る。本機能性を達成するために、反射型回折光学要素1356は、その波長またはその入射角度に応じて、異なるように光と相互作用するように構成されてもよい。例えば、反射型回折光学要素1356は、第1の角度において第1の波長の入力光線1335aによって表される入力光ビームを受け取り、それを、第1の回折角θd1におけるコリメートされた回折光線1342a、1344aによって表される、コリメートされた回折光ビームに変換してもよい。反射型回折光学要素1356は、第2の角において第2の波長の入力光線1335bによって表される入力光ビームを受け取り、それを、第2の回折角θd2におけるコリメートされた回折光線1342b、1344bによって表される、コリメートされた回折光ビームに変換してもよい。反射型回折光学要素1356は、第3の角において第3の波長の入力光線1335cによって表される入力光ビームを受け取り、それを、第3の回折角θd3におけるコリメートされた回折光線1342c、1344cによって表される、コリメートされた回折光ビームに変換してもよい。第1、第2、および第3の回折角θd1、θd2、およびθd3は、それぞれ、異なり得る、または1つ以上のものは、同一であり得る。第1、第2、および第3の回折角θd1、θd2、およびθd3は、それぞれ、コリメートされた回折光線1342a-c、1344a-cを多重化するように選択されてもよい。
【0132】
反射型回折光学要素1356は、例えば、上記に説明されるように動作するように設計されるホログラフィック光学要素(HOE)等の表面または体積ホログラムであってもよい。いくつかの実施形態では、HOEは、選択された波長または波長の範囲および/または選択された入射角度の範囲に作用するようにその中に形成された干渉パターンをそれぞれ有する、1つ以上の層を含んでもよい。例えば、HOEの第1の層は、入力光線1335a(例えば、本実施例では緑色の光)に作用するように構成されてもよく、入力光線1335aの波長に対応する光の波長を使用して記録される干渉パターンを含んでもよい。他の層は、それらの波長および/または入射角度に基づいて他の光線に作用するように構成される干渉パターンを含んでもよい。これらの干渉パターンも、対応する入力光線(例えば、1335bまたは1335c)を使用して記録されてもよい。
【0133】
いくつかの実施形態では、反射型回折光学要素1356の層は、z-軸に沿って異なる深度を有してもよい。例えば、第1の層は、上記に説明されるように入力光線1335c(例えば、本実施例では青色の光)を変換しながら、影響を受けることなく入力光線1335aおよび1335b(例えば、本実施例では、それぞれ、緑色および赤色の光)を通過させるように選択される深度を有してもよい。例えば、より長い光の波長が、所与の層を通過してもよい一方で、より短い波長は、層のために適切な深度を選択することに起因して、同一の層と相互作用してもよい(例えば、青色の光は、緑色の光が通過する層と相互作用してもよく、緑色の光は、赤色の光が通過し得る層と相互作用してもよい)。
【0134】
反射型回折光学要素1356は、したがって、いくつかの実施形態では、3つの機能、すなわち、(1)光源1330a-cのための入力光をコリメートすることと、(2)回折光線が出力/入力表面1353に対して垂直である方向にSLM540に向かって反射されるような角度において光を回折および反射することと、(3)光源1330a-cから角度および/または側方分離された入力ビームを多重化することとを果たしてもよい。
【0135】
図13Dは、いくつかの実施形態による、薄型BS1350を使用する、SLM540の完全で一様かつ連続的な照明の実施例を図示する。図13Dは、付加的入力光線1333および1337が入力ビームの一部として図示されることを除いて、図13Aに実質的に類似する。各入力光線1333、1335、1337は、反射型回折光学要素1356によって回折光線1342(実線)および1344(破線)に回折される。(例証を容易にするために、回折光線1342および1344の全てが標識されているわけではない。)これらの回折光線は、図13Aに関連して上記に説明されるように、ビーム分割表面1355によって反射され(回折光線のうちのいくつかに関して、これは、出力/入力表面1353におけるTIRの後に起こる)、SLM540の受光表面に対して垂直である方向においてSLM540に指向される。第1の回折光線(実線として図示される)はそれぞれ、回折角θにおいてビーム分割表面1355に向かって上向きに回折される。これらの光線は、次いで、反射光線の第1の群1361としてSLM540の左側に反射され、左側連続照明を提供する。同様に、第2の回折光線(点線として図示される)はそれぞれ、回折角-θにおいて出力/入力表面1353に向かって下向きに回折される。これらの光線は、出力/入力表面1353においてTIRを受け、ビーム分割表面1355に向かって上向きに反射し、そこで、それぞれ、反射光線の第2の群1368としてSLM540の右側に下向きに反射され、右側連続照明を提供する。(反射光線の第1および第2の群1361および1368は、反射光線1365と称され得る。)故に、薄型BS1350は、光変調器540に対して垂直である方向に完全で連続的かつ一様な照明を提供することが可能である。
例示的実施形態
【0136】
いくつかの実施形態では、光学デバイスは、透過型回折光学要素を備える、第1の表面と、第1の表面に対して垂直である、第2の表面と、第2の表面に対してある角度で配列される、第3の表面であって、第1の状態の光に対して反射性であり、第2の状態の光に対して透過性である、第3の表面とを備え、透過型回折光学要素は、垂直に第1の表面上に入射する、コリメートされた入力ビームであって、第1の状態を有する光を備える、コリメートされた入力ビームを受け取るように、かつ第1の回折ビームが、第3の表面に向かって指向され、第1の表面と略平行な方向に第3の表面によって反射されるように、コリメートされた入力ビームを第1の回折角における少なくとも第1の回折ビームに変換するように構成される。
【0137】
これらの実施形態では、第1の回折ビームは、第2の表面において光学デバイスから出射することができ、光学デバイスはさらに、第1の回折ビームを受け取るための第2の表面に隣接する空間光変調器を備えることができ、空間光変調器は、第1の回折ビームを、第1の変調されたビームであって、第2の状態を有する光を備える、第1の変調されたビームに変換するように、かつ第2の表面に向かって戻るように第1の変調されたビームを指向するように構成される。
【0138】
これらの実施形態では、空間光変調器は、シリコン上液晶(LCOS)空間光変調器またはデジタル光処理(DLP)空間光変調器であり得る。
【0139】
これらの実施形態では、光学デバイスはさらに、第2の表面の反対側に第4の表面を備えることができ、第4の表面は、第2の表面を通過した後に第1の変調されたビームを受け取り、かつ透過させるように構成され、第4の表面は、湾曲している。
【0140】
これらの実施形態では、透過型回折光学要素はさらに、第2の回折ビームが、第2の表面に向かって指向され、全内部反射を介して第3の表面に向かって第2の表面によって反射され、第1の表面と略平行な方向に第3の表面によって反射されるように、コリメートされた入力ビームを第2の回折角における第2の回折ビームに変換するように構成されることができる。
【0141】
これらの実施形態では、反射された第1の回折ビームおよび反射された第2の回折ビームは、空間光変調器によって受け取られることができ、反射された第1の回折ビームおよび反射された第2の回折ビームは、組み合わせて空間光変調器全体を照明する。
【0142】
これらの実施形態では、第1、第2、および第3の表面は、平面的であり得る。
【0143】
これらの実施形態では、第2の表面は、曲面であり得る。
【0144】
これらの実施形態では、第1、第2、および第3の表面は、ウェッジを形成することができる。
【0145】
これらの実施形態では、ウェッジは、少なくとも約1.5の屈折率を備えることができる。
【0146】
これらの実施形態では、第3の表面は、偏光ビーム分割表面を備えることができる。
【0147】
これらの実施形態では、第2の表面に対する第3の表面の角度は、45度未満であり得る。
【0148】
これらの実施形態では、第2の表面に対する第3の表面の角度は、約30度であり得る。
【0149】
これらの実施形態では、第1の回折角は、0度を上回り得る。
【0150】
これらの実施形態では、第1の回折角は、約30度であり得る。
【0151】
これらの実施形態では、透過型回折光学要素は、複数の回折特徴を備えることができる。
【0152】
これらの実施形態では、第1の回折角は、複数の回折特徴の周期に基づくことができる。
【0153】
いくつかの実施形態では、光学デバイスは、反射型回折光学要素を備える、第1の表面と、第1の表面に対して垂直である、第2の表面と、第2の表面に対してある角度で配列される、第3の表面であって、第1の状態の光に対して反射性であり、第2の状態の光に対して透過性である、第3の表面とを備え、反射型回折光学要素は、発散入力ビームであって、第1の状態を有する光を備える、発散入力ビームを受け取るように、かつ第1のコリメートおよび回折されたビームが、第3の表面に向かって指向され、第1の表面と略平行な方向に第3の表面によって反射されるように、発散入力ビームを第1の回折角における少なくとも第1のコリメートおよび回折されたビームに変換するように構成される。
【0154】
これらの実施形態では、第1のコリメートおよび回折されたビームは、第2の表面において光学デバイスから出射することができ、光学デバイスはさらに、第1のコリメートおよび回折されたビームを受け取るための第2の表面に隣接する空間光変調器を備えることができ、空間光変調器は、第1のコリメートおよび回折されたビームを、第1の変調されたビームであって、第2の状態を有する光を備える、第1の変調されたビームに変換するように、かつ第2の表面に向かって戻るように第1の変調されたビームを指向するように構成される。
【0155】
これらの実施形態では、空間光変調器は、シリコン上液晶(LCOS)空間光変調器またはデジタル光処理(DLP)空間光変調器であり得る。
【0156】
これらの実施形態では、光学デバイスはさらに、第2の表面の反対側に第4の表面をさらに備えることができ、第4の表面は、第2の表面を通過した後に第1の変調されたビームを受け取り、かつ透過させるように構成され、第4の表面は、湾曲している。
【0157】
これらの実施形態では、反射型回折光学要素はさらに、第2のコリメートおよび回折されたビームが、第2の表面に向かって指向され、全内部反射を介して第3の表面に向かって第2の表面によって反射され、第1の表面と略平行な方向に第3の表面によって反射されるように、発散入力ビームを第2の回折角における第2のコリメートおよび回折されたビームに変換するように構成されることができる。
【0158】
これらの実施形態では、反射された第1のコリメートおよび回折されたビームおよび反射された第2のコリメートおよび回折されたビームは、空間光変調器によって受け取られることができ、反射された第1のコリメートおよび回折されたビームおよび反射された第2のコリメートおよび回折されたビームは、組み合わせて空間光変調器全体を照明する。
【0159】
これらの実施形態では、反射型回折光学要素は、複数の角度または側方分離された発散入力ビームを受け取るように、かつそれらを低減された量の角度または側方分離を伴ってコリメートおよび回折されたビームに変換するように構成されることができる。
【0160】
これらの実施形態では、光学デバイスはさらに、複数の角度または側方分離された発散入力ビームを出力するための複数の側方分離された光源を備えることができる。
【0161】
これらの実施形態では、反射型回折光学要素は、第1の角度において複数の角度または側方分離された発散入力ビームのうちの第1の入力ビームを受け取るように、かつ第1の入力ビームを、光学経路に沿って第3の表面に向かって指向される、対応する第1のコリメートおよび回折されたビームに変換するように、かつ第2の角度において複数の角度または側方分離された発散入力ビームのうちの第2の入力ビームを受け取るように、かつ第2の入力ビームを、光学経路に沿って第3の表面に向かって指向される、第2のコリメートおよび回折されたビームに変換するように構成されることができる。
【0162】
これらの実施形態では、第1、第2、および第3の表面は、平面的であり得る。
【0163】
これらの実施形態では、第2の表面は、曲面であり得る。
【0164】
これらの実施形態では、第1、第2、および第3の表面は、ウェッジを形成することができる。
【0165】
これらの実施形態では、ウェッジは、少なくとも約1.5の屈折率を備えることができる。
【0166】
これらの実施形態では、第3の表面は、偏光ビーム分割表面を備えることができる。
【0167】
これらの実施形態では、第2の表面に対する第3の表面の角度は、45度未満であり得る。
【0168】
これらの実施形態では、第2の表面に対する第3の表面の角度は、約30度であり得る。
【0169】
これらの実施形態では、第1の回折角は、0度を上回り得る。
【0170】
これらの実施形態では、第1の回折角は、約30度であり得る。
【0171】
これらの実施形態では、第1の回折角は、反射型回折光学要素の回折特徴の周期に基づくことができる。
【0172】
これらの実施形態では、反射型回折光学要素は、ホログラムを備えることができる。
【0173】
いくつかの実施形態では、ユーザの頭部上に装着されるように構成される、頭部搭載型ディスプレイ(HMD)は、フレームと、フレームによって支持され、画像をユーザの眼に投影するように構成される、投影光学系と、投影光学系と光学通信する光プロジェクタシステムであって、画像を用いて符号化される変調された光を提供するように構成される、光プロジェクタシステムであって、入力ビームを放出するための光源と、回折光学要素を伴う第1の表面と、第1の表面に対して垂直である第2の表面と、第2の表面に対してある角度で配列される、第3の表面であって、第1の状態の光に対して反射性であり、第2の状態の光に対して透過性である、第3の表面とを備え、回折光学要素は、入力ビームであって、第1の状態を有する光を備える、入力ビームを受け取るように、かつ第1の回折ビームが、第3の表面に向かって指向され、第1の表面と略平行な方向に第3の表面によって反射されるように、入力ビームを第1の回折角における少なくとも第1の回折ビームに変換するように構成される、光学デバイスと、光学デバイスによって空間光変調器に送達される入力ビームを使用して、変調された光を生成するように構成される、空間光変調器とを備える、光プロジェクタシステムとを備える。
【0174】
これらの実施形態では、回折光学要素は、透過型回折光学要素を備えることができる。
【0175】
これらの実施形態では、回折光学要素は、反射型回折光学要素を備えることができる。
【0176】
これらの実施形態では、回折光学要素は、回折格子を備えることができる。
【0177】
これらの実施形態では、回折光学要素は、ホログラムを備えることができる。
【0178】
これらの実施形態では、HMDはさらに、光学デバイスと光源との間に配置されるコリメータを備えることができる。
【0179】
これらの実施形態では、投影光学系は、内部結合光学要素と、外部結合光学要素とを備えることができ、内部結合光学要素は、変調された光を受け取り、かつ内部結合するように構成され、外部結合光学要素は、ユーザの眼に向かって内部結合された光を外部結合するように構成される。
【0180】
これらの実施形態では、投影光学系は、導波管のスタックを備えることができる。
【0181】
これらの実施形態では、各導波管は、導波管のスタックのうちの1つ以上の他の導波管と比較して、異なる量の発散を伴って光を外部結合するように構成されることができる。
【0182】
いくつかの実施形態では、光学デバイスは、回折光学要素を備える、第1の表面と、第1の表面に対して垂直である、第2の表面と、第2の表面に対してある角度で配列される、第3の表面であって、第1の状態の光に対して反射性であり、第2の状態の光に対して透過性である、第3の表面とを備え、回折光学要素は、入力ビームであって、第1の状態を有する光を備える、入力ビームを受け取るように、かつ第1の回折ビームが、第3の表面に向かって指向され、第1の表面と略平行な方向に第3の表面によって反射されるように、入力ビームを第1の回折角における少なくとも第1の回折ビームに変換するように構成される。
【0183】
これらの実施形態では、回折光学要素は、透過型回折光学要素を備えることができる。
【0184】
これらの実施形態では、回折光学要素は、反射型回折光学要素を備えることができる。
【0185】
これらの実施形態では、回折光学要素は、回折格子を備えることができる。
【0186】
これらの実施形態では、回折光学要素は、ホログラムを備えることができる。
【0187】
これらの実施形態では、入力ビームは、光学デバイスから分離しているコリメータによってコリメートされることができる。
【0188】
これらの実施形態では、回折光学要素は、入力ビームを第1のコリメートおよび回折されたビームに変換するように構成されることができる。
【0189】
これらの実施形態では、第1および第2の状態は、それぞれ、第1の偏光状態および第2の偏光状態であり得る。
【0190】
いくつかの実施形態では、画像情報をユーザに伝送する方法は、第1の表面と、第1の表面に対して垂直である、第2の表面と、第2の表面に対してある角度で配列される、第3の表面であって、第1の状態の光に対して反射性であり、第2の状態の光に対して透過性である、第3の表面とを備える、光学デバイスを提供するステップと、第1の表面上に入射する入力ビームであって、第1の表面に対して垂直に進行し、第1の状態を有する、入力ビームを生成するステップと、第1の表面上に透過型回折光学要素を提供し、第1の回折ビームが、第3の表面に向かって指向され、第1の表面と略平行な方向に第3の表面によって反射されるように、入力ビームを第1の回折角における少なくとも第1の回折ビームに変換するステップと、空間光変調器を使用して、画像情報を用いて、少なくとも反射された第1の回折ビームを変調するステップであって、空間光変調器は、空間光変調器に対して垂直である反射された第1の回折ビームを受け取るように、かつ第2の状態を有する変調された光ビームを生成するように構成される、ステップと、1つ以上の投影光学構成要素を使用して、変調された光ビームを受け取るステップと、1つ以上の投影光学構成要素を使用して、画像情報をユーザに投影するステップとを含む。
【0191】
これらの実施形態では、本方法はさらに、光学デバイスに隣接して配置されるコリメータを用いて、入力ビームをコリメートするステップを含むことができる。
【0192】
これらの実施形態では、第2の表面に対する第3の表面の角度は、45度未満であり得る。
【0193】
これらの実施形態では、第2の表面に対する第3の表面の角度は、約30度であり得る。
【0194】
これらの実施形態では、第1の回折角は、0度を上回り得る。
【0195】
これらの実施形態では、第1の回折角は、約30度であり得る。
【0196】
いくつかの実施形態では、画像情報をユーザに伝送する方法は、第1の表面と、第1の表面に対して垂直である、第2の表面と、第2の表面に対してある角度で配列される、第3の表面であって、第1の状態の光に対して反射性であり、第2の状態の光に対して透過性である、第3の表面とを備える、光学デバイスを提供するステップと、第1の表面上に入射する発散入力ビームであって、第1の状態を有する、発散入力ビームを生成するステップと、第1の表面上に反射型回折光学要素を提供し、第1のコリメートおよび回折されたビームが、第3の表面に向かって指向され、第1の表面と略平行な方向に第3の表面によって反射されるように、発散入力ビームを第1の回折角における少なくとも第1のコリメートおよび回折されたビームに変換するステップと、空間光変調器を使用して、画像情報を用いて、少なくとも反射された第1の回折ビームを変調するステップであって、空間光変調器は、空間光変調器に対して垂直である反射された第1の回折ビームを受け取るように、かつ第2の状態を有する変調された光ビームを生成するように構成される、ステップと、1つ以上の投影光学構成要素を使用して、変調された光ビームを受け取るステップと、1つ以上の投影光学構成要素を使用して、画像情報をユーザに投影するステップとを含む。
【0197】
これらの実施形態では、本方法はさらに、反射型回折光学要素を使用し、第2のコリメートおよび回折されたビームが、第2の表面に向かって指向され、全内部反射を介して第3の表面に向かって第2の表面によって反射され、第1の表面と略平行な方向に第3の表面によって反射されるように、発散入力ビームを第2の回折角における第2のコリメートおよび回折されたビームに変換するステップを含むことができる。
【0198】
これらの実施形態では、本方法はさらに、複数の角度または側方分離された発散入力ビームを生成し、反射型回折光学要素を使用して、それらを低減された量の角度または側方分離を伴ってコリメートおよび回折されたビームに変換するステップを含むことができる。
【0199】
これらの実施形態では、第2の表面に対する第3の表面の角度は、45度未満であり得る。
【0200】
これらの実施形態では、第2の表面に対する第3の表面の角度は、約30度であり得る。
【0201】
これらの実施形態では、第1の回折角は、0度を上回り得る。
【0202】
これらの実施形態では、第1の回折角は、約30度であり得る。
付加的考慮事項
【0203】
上記に説明される実施形態では、光学配列が、眼結像ディスプレイシステム、より具体的には、拡張現実ディスプレイシステムとの関連で説明されている。しかしながら、光学配列の原理および利点は、他の頭部搭載型ディスプレイ、光学システム、装置、または方法に使用され得ることを理解されたい。前述では、実施形態のうちのいずれか1つの任意の特徴が、実施形態のうちのいずれか他の1つの任意の他の特徴と組み合わせられる、および/または代用されることを理解されたい。
【0204】
文脈によって別様に明確に要求されない限り、説明および請求項全体を通して、単語「~を備える(comprise、comprising)」、「~を含む(include、including)」、「~を有する(have、having)」、および同等物は、排他的または包括的意味とは対照的に、包含的意味、すなわち、「限定ではないが~を含む(including, but not limited to)」の意味で解釈されるべきである。単語「結合される」は、本明細書で概して使用されるように、直接接続されるか、または1つ以上の中間要素を経由して接続されるかのいずれかであり得る、2つ以上の要素を指す。同様に、単語「接続される」は、本明細書で概して使用されるように、直接接続されるか、または1つ以上の中間要素を経由して接続されるかのいずれかであり得る、2つ以上の要素を指す。文脈に応じて、「結合される」または「接続される」は、光が1つの光学要素から別の光学要素に結合または接続されるように、光学結合または光学接続を指し得る。加えて、単語「本明細書で」、「上記で」、「下記で」、「後述の」、「前述の」、および類似意味の単語は、本願で使用されるとき、全体として本願を指すものとし、本願の任意の特定の部分を指すものではない。文脈が許容する場合、単数形または複数形を使用する上記の発明を実施するための形態における単語はまた、それぞれ、複数形または単数形を含んでもよい。2つ以上のアイテムのリストを参照する単語「または」は、(排他的ではなく)包括的な「または」であり、「または」は、以下の単語の解釈の全て、すなわち、リスト内のアイテムのうちのいずれか、リスト内のアイテムの全て、およびリスト内のアイテムの1つ以上のものの任意の組み合わせを網羅し、リストに追加されるべき他のアイテムを除外しない。加えて、本願および添付される請求項で使用されるような冠詞「a」、「an」、および「the」は、別様に規定されない限り、「1つ以上の」または「少なくとも1つ」を意味するように解釈されるべきである。
【0205】
本明細書で使用されるように、項目のリスト「のうちの少なくとも1つ」を指す語句は、単一の部材を含む、それらの項目の任意の組み合わせを指す。ある実施例として、「A、B、またはCのうちの少なくとも1つ」は、A、B、C、AおよびB、AおよびC、BおよびC、およびA、B、およびCを網羅することを意図している。語句「X、Y、およびZのうちの少なくとも1つ」等の接続文は、別様に具体的に記載されない限り、項目、用語等がX、Y、またはZのうちの少なくとも1つであり得ることを伝えるために一般に使用されるような文脈で別様に理解される。したがって、そのような接続文は、概して、ある実施形態が、Xのうちの少なくとも1つ、Yのうちの少なくとも1つ、およびZのうちの少なくとも1つがそれぞれ存在することを要求すると示唆することを意図していない。
【0206】
さらに、とりわけ、「~できる(can)」、「~し得る(could)」、「~し得る(might)」、「~し得る(may)」、「例えば(e.g.)」、「例えば(for example)」、「等(such as)」、および同等物等の本明細書で使用される条件文は、別様に具体的に記載されない限り、または使用されるような文脈内で別様に理解されない限り、概して、ある実施形態が、ある特徴、要素、および/または状態を含む一方、他の実施形態がそれらを含まないことを伝えることを意図していない。したがって、そのような条件文は、概して、特徴、要素、および/または状態が、1つ以上の実施形態に対していかようにも要求されること、またはこれらの特徴、要素、および/または状態が、任意の特定の実施形態において含まれる、または実施されるものであるかどうかを示唆することを意図していない。
【0207】
ある実施形態が、説明されているが、これらの実施形態は、一例としてのみ提示され、本開示の範囲を限定することを意図していない。実際、本明細書に説明される新規の装置、方法、およびシステムは、種々の他の形態で具現化されてもよい。さらに、本明細書に説明される方法およびシステムの形態における種々の省略、代用、および変更が、本開示の精神から逸脱することなく成されてもよい。例えば、ブロックが、所与の配列で提示されるが、代替実施形態は、異なる構成要素および/または回路トポロジを用いて類似機能性を実施してもよく、いくつかのブロックは、削除される、移動される、追加される、細分割される、組み合わせられる、および/または修正されてもよい。これらのブロックはそれぞれ、種々の異なる方法で実装されてもよい。上記に説明される種々の実施形態の要素および作用の任意の好適な組み合わせが、さらなる実施形態を提供するために組み合わせられることができる。上記に説明される種々の特徴およびプロセスは、相互に独立して実装されてもよい、または種々の方法で組み合わせられてもよい。いずれの要素または要素の組み合わせも、全ての実施形態に関して必要または不可欠ではない。本開示の特徴の全ての好適な組み合わせおよび副次的組み合わせが、本開示の範囲内であることを意図している。
図1
図2
図3
図4
図5
図6
図7
図8
図9A
図9B
図9C
図10
図11A
図11B
図12A
図12B
図13A
図13B
図13C
図13D