(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-01-18
(45)【発行日】2024-01-26
(54)【発明の名称】半導体パッケージ
(51)【国際特許分類】
H01Q 23/00 20060101AFI20240119BHJP
H01P 5/08 20060101ALI20240119BHJP
H01P 3/08 20060101ALI20240119BHJP
H05K 3/46 20060101ALI20240119BHJP
【FI】
H01Q23/00
H01P5/08 Z
H01P5/08 L
H01P3/08
H05K3/46 Q
(21)【出願番号】P 2020035214
(22)【出願日】2020-03-02
【審査請求日】2022-11-07
(73)【特許権者】
【識別番号】000004260
【氏名又は名称】株式会社デンソー
(73)【特許権者】
【識別番号】304021417
【氏名又は名称】国立大学法人東京工業大学
(74)【代理人】
【識別番号】110000578
【氏名又は名称】名古屋国際弁理士法人
(72)【発明者】
【氏名】廣川 二郎
(72)【発明者】
【氏名】新帯 亮
(72)【発明者】
【氏名】城崎 俊文
(72)【発明者】
【氏名】脇山 悟
【審査官】赤穂 美香
(56)【参考文献】
【文献】国際公開第2019/026595(WO,A1)
【文献】特開2003-133801(JP,A)
【文献】特開2006-245456(JP,A)
【文献】特開2018-093491(JP,A)
【文献】米国特許出願公開第2018/0159203(US,A1)
【文献】特開平05-206729(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01Q 23/00
H01P 5/08
H01P 3/08
H05K 3/46
(57)【特許請求の範囲】
【請求項1】
高周波信号を出力及び入力し、且つ、前記高周波信号を処理するように構成された半導体素子(105)と、
前記半導体素子の集積回路面に設けられ、前記高周波信号が出力及び入力するように構成された接続端子(102)と、
前記集積回路面の上方に配置され、第1の誘電体層(303)と第2の誘電体層(403)とを含む誘電体層(303,403,502)と、
前記誘電体層の上面に配置された少なくとも1つのアンテナ素子(601)と、
前記誘電体層内に配置され、前記少なくとも1つのアンテナ素子と前記接続端子との間を接続し、前記少なくとも1つのアンテナ素子へ前記高周波信号を供給するように構成された給電線路(305,LL,406,504,503)と、を備え、
前記給電線路は、前記接続端子に接続されて前記集積回路面から垂直
な方向に立ち上がった垂直線路(305)と、前記垂直線路に接続され、前記誘電体層
の面に沿って延伸した方形同軸線路(LL)と、を含み、
前記方形同軸線路(LL)は、第1のグランド層(302)と、前記第1の誘電体層と、平面線路(402)と、前記第2の誘電体層と、第2のグランド層(501)とが、順に、前記集積回路面に
前記垂直な方向に積層された積層体と、前記平面線路
の全周囲を囲むように配置された複数のグランドビア(304,405)と、
を備え、
前記複数のグランドビアの各々は、前記垂直な方向に延伸して、前記第1のグランド層と前記第2のグランド層とに接続されて
おり、
前記垂直線路は、前記第1の誘電体層のうち前記複数のグランドビアに囲まれている領域を貫通して、前記平面線路に接続されている、
半導体パッケージ。
【請求項2】
前記第1の誘電体層の上面に、前記平面線路を取り囲むように配置された中間グランド層(401)を更に備え、
前記複数のグランドビアの各々は、前記第1のグランド層と前記中間グランド層とに接続された第1のグランドビア(304)と、前記中間グランド層と前記第2のグランド層とに接続された第2のグランドビア(405)と、を備える、
請求項1に記載の半導体パッケージ。
【請求項3】
前記給電線路は、
線路の全てが銅で構成されている、
請求項1
又は2に記載の半導体パッケージ。
【請求項4】
前記給電線路は、線路の全てが銅と銅との密着性を上げるための密着層とで構成されている、
請求項1又は2に記載の半導体パッケージ。
【請求項5】
前記給電線路は、線路の全てが、錫又はその合金を含まない導電体で構成されている、
請求項1又は2に記載の半導体パッケージ。
【請求項6】
前記少なくとも1つのアンテナ素子は、前記方形同軸線路の上方に配置されており、
前記給電線路は、前記平面線路から前記垂直な方向に立ち上がり、前記平面線路と前記少なくとも1つのアンテナ素子との間に接続された少なくとも1つの接続線路(406,504,503)を含む、
請求項1
~5のいずれか1項に記載の半導体パッケージ。
【請求項7】
前記少なくとも1つの接続線路の各々は、第1ビア(406)と、第2ビア(503)と、接続円板(504)と、を含み、
前記第1ビアと前記第2ビアは、前記接続円板を挟んで積層されている、
請求項
6に記載の半導体パッケージ。
【請求項8】
前記少なくとも1つのアンテナ素子は、第1のアンテナ素子(601)と、第2のアンテナ素子(601)と、を含み、
前記少なくとも1つの接続線路は、前記第1のアンテナ素子に接続される第1の接続線路(406,504,503)と、前記第2のアンテナ素子に接続される第2の接続線路
(406,504,503)と、を含み、
前記平面線路は、前記垂直線路に接続された共通線路(402a)と、前記共通線路から分岐した第1の分岐線路(402b)と第2の分岐線路(402c)とを含み、前記第1の分岐線路は、前記第1の接続線路に接続され、前記第2の分岐線路は、前記第2の接続線路に接続されており、前記第1の分岐線路の長さは、前記第2の分岐線路の長さと等しい、
請求項
6又は7に記載の半導体パッケージ。
【請求項9】
前記垂直線路(305)は、第1垂直ビア(305a)と、第2垂直ビア(305b)と、垂直ビア用接続円板(305c)と、を含み、
前記第1垂直ビアと前記第2垂直ビアは、前記垂直ビア用接続円板を挟んで積層されている、
請求項1~
8のいずれか1項に記載の半導体パッケージ。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、高周波信号を送受信するアンテナ素子を備える半導体パッケージに関する。
【背景技術】
【0002】
引用文献1に記載のセンサパッケージは、集積回路の表面に設けられたパッドがバンプを介して再配線層に接続し、再配線層が樹脂誘電体層を介してアンテナ素子に接続されている。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
上記センサパッケージでは、高周波チップから再配線層に供給された高周波信号が、樹脂誘電体層上のストリップラインを介してアンテナ素子に給電される際に、樹脂誘電体層から漏れることがある。そのため、高周波信号の給電線路間のアイソレーションの低下や高周波信号の伝送損失が生じる。
【0005】
本開示は、高周波信号の伝送損失を抑制可能な半導体パッケージを提供する。
【課題を解決するための手段】
【0006】
本開示の1つの局面は、半導体パッケージ(10,10A,10B)であって、半導体素子(105)と、接続端子(102)と、誘電体層(303,403,502)と、少なくとも1つのアンテナ素子(601)と、給電線路(305,LL,406,504,503)と、を備える。半導体素子は、高周波信号を出力及び入力し、且つ、高周波信号を処理するように構成される。接続端子は、半導体素子の集積回路面に設けられ、高周波信号が出力及び入力するように構成される。誘電体層は、集積回路面の上方に配置され、第1の誘電体層(303)と第2の誘電体層(403)とを含む。少なくとも1つのアンテナ素子は、誘電体層の上面に配置される。給電線路は、誘電体層内に配置され、少なくとも1つのアンテナ素子と接続端子との間を接続し、少なくとも1つのアンテナ素子へ高周波信号を供給するように構成される。また、給電線路は、垂直線路(305)と、方形同軸線路(LL)と、を含む。垂直線路は、接続端子に接続されて集積回路面から垂直方向に立ち上がる。方形同軸線路は、垂直線路に接続される。また、方形同軸線路は、第1のグランド層(302)と、第1の誘電体層と、平面線路(402)と、第2の誘電体層と、第2のグランド層(501)とが、順に、集積回路面に垂直な方向に積層された積層体と、平面線路を囲むように配置された複数のグランドビア(304,405)と、を備える。平面線路は、垂直線路に接続されている。複数のグランドビアの各々は、垂直な方向に延伸して、第1のグランド層と第2のグランド層とに接続されている。
【0007】
本開示の1つの局面によれば、給電線路が垂直線路と方形同軸線路とを含むことにより、高周波信号の伝送に対するグランドの影響が抑制されるとともに、高周波信号の漏れが抑制される。これにより、高周波信号の伝送損失を低減することができる。
【0008】
ここで「垂直」とは、厳密な意味での垂直に限るものではなく、目的とする効果を奏するのであれば厳密に垂直でなくてもよい。
【図面の簡単な説明】
【0009】
【
図1】第1実施形態に係る半導体パッケージの垂直断面図である。
【
図2】第1実施形態にファンアウトウエハレベルパッケージの平面図である。
【
図3】
図2においてIII-III線で切断した垂直断面図である。
【
図4】第1実施形態に係る第1高周波配線層の一部分を示す平面図である。
【
図5】
図4においてV-V線で切断した垂直断面図である。
【
図6】第1実施形態に係る第1高周波配線層の全体を示す平面図である。
【
図7】
図6においてVII-VII線で切断した垂直断面図である。
【
図8】第1実施形態に係る第2高周波配線層の一部分を示す平面図である。
【
図9】
図8においてIX-IX線で切断した垂直断面図である。
【
図10】第1実施形態に係る第2高周波配線層の全体を示す平面図である。
【
図11】
図10においてXI-XI線で切断した垂直断面図である。
【
図12】第1実施形態に係る第3高周波配線層を示す平面図である。
【
図13】
図12においてXIII-XIII線で切断した垂直断面図である。
【
図14】
図12においてXIV-XIV線で切断した垂直断面図である。
【
図15】第1実施形態に係る誘電体の厚さに対する伝送損失を示すグラフである。
【
図16】第1実施形態に係る接続線路を示す図である。
【
図18】第1実施形態に係る接続円板の直径に対する伝送損失を示すグラフである。
【
図19】第2実施形態に係る半導体パッケージの平面図である。
【
図20】
図19においてXX-XX線で切断した垂直断面図である。
【
図21】第3実施形態に係る半導体パッケージの平面図である。
【
図22】
図21においてXXI-XXI線で切断した垂直断面図である。
【発明を実施するための形態】
【0010】
以下、図面を参照しながら、本開示を実施するための形態を説明する。
(第1実施形態)
<1.全体構成>
まず、第1実施形態に係る半導体パッケージ10の構成について、
図1を参照して説明する。本実施形態に係る半導体パッケージ10は、24GHz又は76~81GHzのミリ波レーダに適用されることを想定している。
【0011】
半導体パッケージ10において、ファンアウトウエハレベルパッケージ(以下、FO-WLPと称する)200と、第1高周波配線層300と、第2高周波配線層400と、第3高周波配線層500と、少なくとも1つのモノポールアンテナ601と、を備える。
図1では、4つのモノポールアンテナ601が示されている。FO-WLP200、第1高周波配線層300、第2高周波配線層400、第3高周波配線層500、モノポールアンテナ601は、この順に積層されている。以下では、配線層の積層方向を垂直方向と称し、積層方向に垂直な方向を水平方向と称する。
【0012】
FO-WLP200は、半導体素子105を含む。半導体素子105は、高周波信号を出力及び入力するとともに、高周波信号を処理するように構成された集積回路である。FO-WLP200の詳細は後述する。
【0013】
第1高周波配線層300、第2高周波配線層400、及び第3高周波配線層500は、半導体素子105とモノポールアンテナ601との間を接続し、半導体素子105から出力された高周波信号をモノポールアンテナ601へ供給する給電線路を備える。
【0014】
給電線路は、半導体素子105の集積回路面に設けられた高周波用パッド102から垂直方向に立ち上がった第1高周波用ビア305と、第1高周波用ビア305に接続されて水平方向に延伸した方形同軸線路LLと、方形同軸線路LLから垂直方向に立ち上がりモノポールアンテナ601に接続された第2高周波用ビア406及び第3高周波用ビア503と、を含む。
【0015】
第1高周波用ビア305は、第1高周波配線層300に配置されている。方形同軸線路LLは、第1高周波配線層300、第2高周波配線層400及び第3高周波配線層500に亘って配置されている。第2高周波用ビア406及び第3高周波用ビア503は、第2高周波配線層400及び第3高周波配線層500に配置されている。第1高周波配線層300、第2高周波配線層400及び第3高周波配線層500の詳細は後述する。
【0016】
<2.各配線層の構成>
<2-1.FO-WLP>
次に、FO-WLP200の構成について、
図2及び
図3を参照して説明する。FO-WLP200は、高周波IC100と、モールド樹脂205と、複数のモールド樹脂貫通ビア206と、第1絶縁層208と、複数のはんだボール用パッド207と、複数のはんだボール209と、第2絶縁層202と、複数の再配線層201と、複数の外部接続用ビア203と、を備える。
【0017】
FO-WLP200は、収容するはんだボール209の個数などでサイズが変わるが、例えば、8×8mmから30×30mm程度のサイズを有する。なお、
図2では、FO-WLP200の形状は正方形状であるが、その形状は正方形状に限定されるものではない。
【0018】
高周波IC100は、半導体素子105と、複数の高周波用パッド102と、複数のグランド用パッド103と、複数の信号用パッド104と、保護膜101と、を備える。
【0019】
半導体素子105は、表面に半導体回路が形成され、5×5mmから10×10mm程度のサイズを有する。半導体素子105の表面に形成された集積回路は、高周波信号を出力するとともに、入力した電波信号を処理する。なお、
図2では、半導体素子105の形状は正方形状であるが、その形状は正方形状に限定されるものではない。
【0020】
複数の高周波用パッド102の各々は、半導体素子105の表面に形成された集積回路の上に形成された接続端子であって、高周波信号が出力及び入力される接続端子である。高周波信号の周波数は、24GHz又は76~81GHzである。本実施形態では、
図2に示すように、3個の高周波用パッド102が、集積回路上に形成されている。本実施形態では、
図12に示すように、高周波用パッド102の各々に対してアンテナアレーが設けられており、各アンテナアレーは、4個のモノポールアンテナ601を備える。以下では、水平面上において、高周波用パッド102の並び方向をY軸方向、Y軸方向に垂直な方向をX軸方向と称する。
【0021】
複数のグランド用パッド103の各々は、給電線と対となって電気回路を構成する電気回路の接地線である。複数のグランド用パッド103は、集積回路上に、高周波用パッド102の各々を取り囲むように配置されている。本実施形態では、10個のグランド用パッド103が、1個の高周波用パッド102の周囲を取り囲んでいる。
【0022】
複数の信号用パッド104の各々は、電力信号や機能制御信号が入力されるとともに、処理された受信信号が出力される。電力信号は半導体素子105の駆動用の電源を供給し、機能制御信号は、半導体素子105の動作状態を切り替えるためのものである。受信信号は、モノポールアンテナ601により受信された高周波信号を半導体素子105で処理した信号である。各信号用パッド104には、ミリ波信号のような数十GHzオーダーの高周波信号は流れない。本実施形態では、3個の信号用パッド104が、半導体回路上に配置されている。
【0023】
保護膜101は、無機質膜であり、半導体素子105の集積回路面を覆い、集積路面を保護している。
高周波IC100は、モールド樹脂205に埋め込まれている。モールド樹脂205の底面は、第1絶縁層208で覆われており、モールド樹脂205の上面は、第2絶縁層202で覆われている。第1絶縁層208及び第2絶縁層202は、例えば、ポリイミドで形成された薄い樹脂膜である。
【0024】
複数のはんだボール用パッド207の各々は、第1絶縁層208に開けた穴に形成され、モールド樹脂205の底面に接続されている。複数のはんだボール209は、それぞれ、はんだボール用パッド207に接続されている。各はんだボール209を、図示しないプリント配線基板にはんだ付けすることにより、高周波IC100と外部の電子機器とが電気的に接続される。
【0025】
複数のモールド樹脂貫通ビア206の各々は、モールド樹脂205を垂直方向に貫通するように設けられている。
【0026】
複数の接続用ビア204の各々は、第2絶縁層202に開けた穴に形成されている。各接続用ビア204は、高周波用パッド102、グランド用パッド103、及び信号用パッド104の上に接続されている。
【0027】
複数の外部接続用ビア203の各々は、第2絶縁層202に開けた穴に形成されている。各外部接続用ビア203は、モールド樹脂貫通ビア206に接続するように、モールド樹脂貫通ビア206の上に設けられている。
【0028】
複数の再配線層201の各々は、X軸方向に配線を延伸するための層である。各再配線層201は、信号用パッド104と外部接続用ビア203の上に設けられ、信号用パッド104と外部接続用ビア203を接続している。
【0029】
接続用ビア204、外部接続用ビア203及びモールド樹脂貫通ビア206、後述する第1グランドビア304、第2グランドビア405、第1高周波用ビア305、第2高周波用ビア406、第3高周波用ビア503は、できる限り高周波信号の伝送損失が低い銅めっきや金属導体、及び/又は密着層で形成されることが望ましい。金属導体は、例えば、金、銀などである。密着層は、低誘電率層と銅めっきや金属導体との密着性を上げるための薄い金属層であり、例えば、チタン、タングステン等で構成された1μm以下の層である。
【0030】
<2-2.第1高周波配線層>
次に、第1高周波配線層300の構成について、
図4~
図7を参照して説明する。ここでは、第1高周波配線層300は、第3絶縁層301と、第1グランド層302と、第1低誘電率層303と、複数の第1グランドビア304と、複数の第1高周波用ビア305と、複数のグランド接続用ビア306と、を備える。
【0031】
第3絶縁層301は、第2絶縁層202及び再配線層201の上に積層されている。第3絶縁層301は、例えば、ポリイミドで形成された薄い樹脂膜である。グランド接続用ビア306は、それぞれ、第3絶縁層301に穴を開けて、接続用ビア204を介してグランド用パッド103に接続するように形成されている。また、第3絶縁層301において、高周波用パッド102に接続された接続用ビア204の上側に、高周波接続用の穴が開けられている。
図4に示すように、本実施形態では、Y軸方向に3個の高周波接続用の穴が設けられる。
【0032】
第1グランド層302は、銅めっきなどで形成されており、高周波接続用の穴の部分を除いて、第3絶縁層301及びグランド接続用ビア306を覆うように設けられている。第1グランド層302の厚さは、例えば2μm程度である。第1グランド層302は、グランド接続用ビア306及び接続用ビア204を介して、グランド用パッド103に電気的に接続され、接地される。第1グランド層302は、方形同軸線路LLの下側の面として機能する。
【0033】
第1低誘電率層303は、第1グランド層302の上に設けられ、第1グランド層302の高周波接続用の穴と垂直方向において一致する位置に、高周波接続用の穴が開けられる。第1低誘電率層303は、どのような比誘電率の誘電体で形成されていてもよい。第1低誘電率層303は、T1の厚さを有する。第1低誘電率層303は、方形同軸線路LLにおいて芯線の下側の空間を埋める。
【0034】
複数の第1高周波用ビア305の各々は、第1低誘電率層303の高周波接続用の穴に形成された、垂直方向に延伸するビアである。第1低誘電率層303の厚さT1は、第1グランド層302の厚さよりも十分に大きい。よって、第1高周波用ビア305の長さは、第1低誘電率層303の厚さT1とほぼ等しい。第1高周波用ビア305は、本開示の垂直線路に相当する。
【0035】
複数の第1グランドビア304は、第1低誘電率層303において、後述する複数の高周波平面線路402の各々の周囲を囲むように等間隔で開けられた穴に形成された、垂直方向に延伸するビアである。複数の高周波平面線路402のそれぞれは、複数の第1高周波用ビア305のそれぞれに接続される。複数の第1グランドビア304は、方形同軸線路LLの下側のポスト壁を形成する。
図6に示すように、本実施形態では、1つの第1高周波用ビア305に対して多数(例えば、
図6では60個以上)の第1グランドビア304が設けられている。
【0036】
<2-3.第2高周波配線層>
次に、第2高周波配線層400について、
図8~
図11を参照して説明する。第2高周波配線層400は、第2グランド層401と、複数の高周波平面線路402と、第2低誘電率層403と、複数の第2グランドビア405と、複数の第2高周波用ビア406と、を備える。
【0037】
複数の高周波平面線路402は、第1低誘電率層303の上に設けられる。複数の高周波平面線路402のそれぞれは、複数の第1高周波用ビア305のそれぞれの上端に接続されている。各高周波平面線路402は、4個のモノポールアンテナ601に高周波信号を並列に分配できる形状に形成されている。具体的には、
図8に示すように、各高周波平面線路402は、第1高周波用ビア305に対して左右対称に形成されている。各高周波平面線路402の左側部分は、共通線路402aと、第1分岐線路402bと、第2分岐線路402cと、を含む。共通線路402aは、第1高周波用ビア305に接続され、第1高周波用ビア305からX軸方向に延伸し、且つ、Y軸方向に延伸している。第1分岐線路402bは、共通線路402aから左側に分岐した線路である。第2分岐線路402cは、共通線路402aから右側に分岐した線路である。第1分岐線路402bの長さは、第2分岐線路の長さと等しい。同様に、各高周波平面線路402の右側部分は、共通線路402aと、第1分岐線路402bと、第2分岐線路402cと、を含む。各高周波平面線路402は、方形同軸線路LLの芯線を形成する。
【0038】
第2グランド層401は、複数の高周波平面線路402の各々を取り囲むように、第1低誘電率層303の上に設けられる。第2グランド層401は、銅めっきなどで形成されており、その厚さは例えば2μm程度である。第2グランド層401と、各高周波平面線路402との間には、溝が設けられており、第2グランド層401は、各高周波平面線路402に接続していない。
【0039】
第2低誘電率層403は、複数の高周波平面線路402及び第2グランド層401の上に設けられる。第2低誘電率層403は、どのような比誘電率の誘電体で形成されていてもよい。第2低誘電率層403は、第1低誘電率層303と異なる比誘電率であってもよいし、異なる材質で形成されていてもよい。第2低誘電率層403は、厚さT2を有する。厚さT2は、厚さT1と同じでもよいし異なっていてもよい。第2低誘電率層403は、方形同軸線路LLにおいて芯線の上側の空間を埋める。
【0040】
複数の第2グランドビア405は、第2低誘電率層403において、複数の高周波平面線路402の各々の周囲を囲むように等間隔で開けられた穴に形成され、垂直方向に延伸するビアである。複数の第2グランドビア405は、それぞれ、第2グランド層401を介して、複数の第1グランドビア304の上に配置される。複数の第2グランドビア405は、方形同軸線路LLの上側のポスト壁を形成する。
【0041】
各第2グランドビア405と、各第1グランドビア304の間には、第2グランド層401が挟まれている。そのため、各第2グランドビア405の水平面上の位置が、各第1グランドビア304の水平面上の位置とずれた場合でも、各第2グランドビア405のそれぞれは、第2グランド層401を介して各第1グランドビア304と電気的に接続される。そのため、2段のグランドビアを形成する際における製造上のばらつきがある程度許容される。これにより、半導体パッケージ10の製造が容易になる。なお、本実施形態では、第2グランド層401が、複数の高周波平面線路402の各々を取り囲むように、第1低誘電率層303の全面に設けられているが、複数の第1グランドビア304と、複数の第2グランドビア405との接続部分だけに設けられていてもよい。
【0042】
複数の第2高周波用ビア406の各々は、第2低誘電率層403に開けられた穴に形成され、垂直方向に延伸したビアである。複数の第2高周波用ビア406は、複数の高周波平面線路402に接続されている。具体的には、1つの高周波平面線路402に対して4個の第2高周波用ビア406が接続されている。すなわち、4個の第2高周波用ビア406は、高周波平面線路402の左側部分の第1分岐線路402bの先端及び第2分岐線路402cの先端と、高周波平面線路402の右側部分の第1分岐線路402bの先端及び第2分岐線路402cの先端に接続されている。したがって、第1高周波用ビア305から4個の第2高周波用ビア406のそれぞれまでの距離は互いに等しい。
【0043】
<2-4.第3高周波配線層>
次に、第3高周波配線層500について、
図12~
図16を参照して説明する。第3高周波配線層500は、第3グランド層501と、第3低誘電率層502と、複数の接続円板504と、複数の第3高周波用ビア503と、を備える。
【0044】
第3グランド層501及び複数の接続円板504は、第2低誘電率層403の上に設けられている。第3グランド層501及び複数の接続円板504は、同時に銅めっきなどで形成され、その厚さは例えば2μm程度である。複数の接続円板504のそれぞれは、円形状を有し、複数の第2高周波用ビア406の上端に接続するように形成されている。第3グランド層501は、複数の接続円板504のそれぞれを囲むように、第2低誘電率層403の全面に形成されている。各接続円板504と、第3グランド層501との間には、溝が設けられており、各接続円板504は、第3グランド層501と接続していない。
【0045】
第3グランド層501は、複数の第2グランドビア405の上端に接続されており、方形同軸線路LLの上側の面として機能する。そして、複数の第1グランドビア304、複数の第2グランドビア405、及び複数の第1グランドビア304と複数の第2グランドビア405とを接続する第2グランド層401の一部が、方形同軸線路LLのポスト壁を形成している。すなわち、垂直方向に平行な断面では、高周波平面線路402が、第1グランド層302、第3グランド層501、第1グランドビア304、第2グランドビア405、及び第2グランド層401の一部からなる方形グランドにより囲まれている。
【0046】
第3低誘電率層502は、第3グランド層501の上に設けられる。
複数の第3高周波用ビア503の各々は、第3低誘電率層502に開けられた穴に形成され、垂直方向に延伸したビアである。複数の第3高周波用ビア503のそれぞれは、複数の接続円板504のそれぞれを介して、複数の第2高周波用ビア406のそれぞれに接続されている。本実施形態では、第2高周波用ビア406、接続円板504及び第3高周波用ビア503が接続線路に相当する。
【0047】
そして、各第3高周波用ビア503の上端にはモノポールアンテナ601が接続される。これにより、第3低誘電率層502の上面に、Y軸方向に沿って3個のアンテナアレーが形成される。各アンテナアレーは、X軸方向に並列に接続された4個のモノポールアンテナ601を備える。そして、各アンテナアレーにおいて、高周波用パッド102から4個のモノポールアンテナ601のそれぞれまでの距離は等しい。
【0048】
高周波用パッド102を介して半導体素子105から出力された高周波信号は、第1高周波用ビア305、高周波平面線路402、第2高周波用ビア406、第3高周波用ビア503に沿って伝送し、モノポールアンテナ601に供給され、モノポールアンテナ601から放射される。各アンテナアレーにおいて、4個のモノポールアンテナ601には同位相の高周波信号が供給される。
【0049】
<3.低誘電率層の厚さ>
次に、第1低誘電率層303の厚さT1及び第2低誘電率層403の厚さT2について、
図15を参照して説明する。
図15は、T1=T2、高周波信号の周波数を79GHzとして、第1低誘電率層303及び第2低誘電率層403の比誘電率を3.0とした場合における、厚さT1,T2に対する高周波信号の伝送損失のシミュレーション結果を示す。
【0050】
上述したように、高周波信号は、方形同軸線路LLにおいて、高周波平面線路402に沿って流れる。高周波信号は、高周波平面線路402の中だけを流れるわけではなく、高周波信号の電気力線は、第1低誘電率層303及び第2低誘電率層403を介して、周囲のグランドとの間にも広がっている。そのため、高周波信号の伝送損失は、方形同軸線路LLのサイズや、方形同軸線路LLの内部に充填されている第1低誘電率層303及び第2低誘電率層403の誘電率、高周波平面線路402と第1グランド層302と第3グランド層501と第2グランド層401の一部と第1グランドビア304と第2グランドビア405の導電率の影響を受ける。
【0051】
図15に示すように、厚さT1,T2が大きくなるほど、伝送損失は急激に低減していくため、厚さT1,T2を大きくすることが望ましい。しかしながら、厚さT1,T2を大きくすると、第1グランドビア304,第2グランドビア405及び第2高周波用ビア406を長くする必要がある。一般に、ビアは、感光性レジストで誘電体層に穴を開け、穴の内部を導体で充填する、またはYAGレーザーなどで材料を開口し、内部を導体で充填することで形成される。ビアが長くなると、アスペクト比が大きくなり、直径に対して深い穴になる。感光性レジストを使用する場合は、使用する感光性レジストの種類によって、許容される穴のアスペクト比には限界がある。また、YAGレーザーなどを使用した開口では、深い穴を加工する場合は、開口径が拡大し、所望のビアピッチを確保できない。アスペクト比の限界を超えて、穴を深くするには、ビアの形成工程を2回に分けて積層などする必要があり、製造コストの上昇を招く。又、アスペクト比が大きくなると導体を充填するプロセス(Cuめっきなど)で、十分な充填性を確保できず、充填不足やボイドなどが発生し、製品の信頼性低下を招く恐れがある。
【0052】
さらに、周波数を79GHz、比誘電率を3.0とした場合、厚さT1,T2が500μmを超えると、高周波信号の伝搬モードに高次モードが発生することがシミュレーションにより明らかになった。
【0053】
高次モードが発生すると、所望な基本モードの高周波信号と不要な高次モードの高周波信号とが同時に伝搬するため、高周波信号の伝搬速度に差が生じ、異なる伝搬速度の高周波信号がノイズ成分となる。ひいては、レーダ性能の低下を招く可能性がある。
【0054】
したがって、厚さT1,T2の上限値は、高次モードが生じない範囲で設定する必要がある。なお、厚さT1,T2の上限値は、第1低誘電率層303及び第2低誘電率層403の比誘電率と高周波信号の周波数とにより決まる。厚さT1,T2を、高次モードが生じない範囲の上限値以下にすることで、厚さT1,T2を大きくするほど、伝送損失を低減できる。しかしながら、実際には、厚さT1,T2の最大値は、製造上の容易さから制約を受ける。
【0055】
<4.接続円板のサイズ>
次に、接続円板504のサイズについて、
図16~
図18を参照して説明する。
本実施形態では、第2高周波用ビア406及び第3高周波用ビア503により、高周波平面線路402からモノポールアンテナ601へ垂直に給電することができる。高周波平面線路402からモノポールアンテナ601への接続線路を、方形同軸構造と同時に積層しながら形成していくことで製造を容易にできる。したがって、接続線路は、2個以上のビアを垂直方向に接続して形成する必要がある。
【0056】
本実施形態では、第2高周波用ビア406と第3高周波用ビア503の2個のビアを垂直方向に接続する。この際、
図17に示すように、製造上のばらつきにより、1段目の第2高周波用ビア406の水平面上の位置と、2段目の第3高周波用ビア503の水平面上の位置とにずれが生じる。このため、第2高周波用ビア406と第3高周波用ビア503との接続面積が小さくなり、高周波信号の伝送損失が発生する。
【0057】
そこで、
図16に示すように、本実施形態では、第2高周波用ビア406と第3高周波用ビア503との間に、上下のビアのビア径よりも径が大きな接続円板504を形成した。接続円板504を設けたことにより、製造上のばらつきが生じても、第2高周波用ビア406と第3高周波用ビア503との接続面積を減少させることがない。
【0058】
ただし、接続円板504の径は、上下のビアのビア径よりも大きくする必要があるため、上下のビアの側面から水平方向に突出する。すなわち、第2高周波用ビア406と第3高周波用ビア503との側面から突出する鍔が形成される。この鍔による高周波信号の伝送損失が問題となる。
【0059】
本発明者は、接続円板504の直径に対する接続円板504での伝送損失のシミュレーションを行った。
図18は、高周波信号の周波数を79GHzとし、第2高周波用ビア406及び第3高周波用ビア503のビア径を50μmとした場合のシミュレーション結果である。
【0060】
図18に示すように、概ね接続円板504の直径が150μm以下では、伝送損失は略ゼロに抑制される。このシミュレーションは、第2高周波用ビア406及び第3高周波用ビア503の中心と、接続円板504の中心とが一致したモデルを用いて解析している。そのため、接続円板504の直径が150μmの場合、接続円板504がビアの側面から突出する長さ、すなわち、鍔の長さは、50μmである。
【0061】
一般的に、ウエハレベルパッケージ工程において、ビアの穴は感光性レジスト又はYAGレーザーなどを用いて開けるため、その位置精度は悪くても±25μm以下である。したがって、第2高周波用ビア406及び第3高周波用ビア503のビア径50μmに対して、接続円板504の直径を100μmとすれば、第2高周波用ビア406及び第3高周波用ビア503が接続円板504をはみ出して形成されることはなく、接続面積の減少は生じない。また、接続円板504の直径を100μmよりも小さくすると、製造上のばらつきにより接続面積の減少が生じる。接続円板504の直径の最小値は、使用する製造方法のばらつきにから決まる。
【0062】
またこの時、接続円板504の位置に対してビアの位置が最もずれた場合に、鍔の長さは50μmとなる。すなわち、
図18に示すように、鍔の長さは、伝送損失を略ゼロに抑制することが可能な50μm以内となる。接続円板504の直径をこれ以上大きくすると、接続円板504の位置に対してビアの位置が最もずれた場合に、鍔の長さが50μmを超えて、伝送損失が増大する。接続円板504の直径の最大値は、伝送損失を略ゼロに抑制可能な直径の範囲から決まる。
【0063】
このように、垂直方向に重ねた複数のビアに高周波信号を流す構造では、接続円板504を上下のビアの間に配置し、且つ、接続円板504の鍔部分の長さを所定の範囲に設定する。所定の範囲は、製造上のばらつきによる位置ずれを考慮した値を最小値とし、伝送損失を抑制可能な値を最大値とする範囲である。これにより、製造が容易で且つ低伝送損失な接続線路を形成することができる。なお、接続円板は真円である必要はなく、例えば製造工程上、位置づれ方向が決まっている場合などは、それにあわせて楕円にするなどしてもよい。
【0064】
<5.並列接続配線>
本実施形態では、方形同軸線路LLを用いてモノポールアンテナ601を並列接続している。
図23に、アンテナ素子を直列接続してアンテナアレーを構成した比較例を示す。比較例では、半導体素子105が、パッケージモールド材702で封止されている。SiICチップ105の高周波用パッド102及び信号用パッド104は、銅めっきで形成された再配線層701を介してはんだボール704に接続されている。はんだボール704は、プリント基板703にはんだ付けされ、プリント基板703に設けられたアンテナアレー706に接続されている。
【0065】
はんだボール704とはんだボール704との間隔は、はんだ付け工程においてはんだブリッジを起こさないように、半導体素子105のパッド間隔よりも広げて形成される。この間隔を広げることにより、半導体素子105とプリント基板703との接続部でのインピーダンス整合が取れず、高周波信号の伝送損失を招く。さらに、はんだボール704は錫合金が使われるため、錫合金の導電性の低さから高周波信号の損失が大きくなる。
【0066】
アンテナアレー706は、送信用、受信用で複数形成される。ミリ波レーダでは、複数の受信アンテナで受信された電波の位相差などから反射電波の到来方向を検出する。受信用のアンテナアレー706のアレー間隔Lは、正確な位相差が検出できるよう必要な走査角範囲内において不要な受信がされないように設定する必要がある。各アンテナアレー706は複数のアンテナ素子705を直列に接続して形成される。各アンテナアレー706が複数のアンテナ素子705を備えることにより、電波の強度、分布特性を改良するのに有効である。しかしながら、複数のアンテナ素子705を直列に接続する場合、電波の位相差を合わせるため、アンテナ素子705のピッチPは、波長に合わせて広げなければならならず、大型化する。
【0067】
一方、本実施形態のように、高周波IC105から並列接続で各モノポールアンテナ601へ接続する場合は、各モノポールアンテナ601へ同時に給電されるため、各モノポールアンテナ601の位相がずれることがなく、ピッチPを詰めることが可能となる。
【0068】
ただし、比較例のように、プリント基板703上の同じ面に、高周波IC105とアンテナアレー706とが配置される場合、アンテナアレー706とアンテナアレー706とのすき間に、並列接続するための給電線路を形成する必要がある。高周波信号が流れる給電線路では、その周辺部に電気力線が拡散しているため、アンテナ素子705間のノイズを防止する(すなわち、アイソレーションを確立する)ためには、アンテナ素子705同士を一定の距離以上離す必要がある。加えて特性インピーダンスを整合させるため、給電線は一定の線路幅が必要となる。結果、アレー間隔Lの制約のため、アンテナアレー間のすき間には並列接続のための給電線路を形成することができない。そのため、各アンテナアレー706では、アンテナ素子705が直列に接続されている。
【0069】
一方、本実施形態では、方形同軸線路LLにより並列接続配線を構成しているため、各モノポールアンテナ601に接続される給電線路間のアイソレーションが確立されている。また、モノポールアンテナ601よりも下層で、並列接続するための給電線路が形成されているため、アンテナアレー間に並列接続するための給電線路を形成する必要がない。そのため、アンテナアレーを必要とされるアレー間隔で並べることができる。
【0070】
<6.効果>
以上説明した第1実施形態によれば、以下の(1)~(5)の効果が得られる。
(1)半導体素子105からモノポールアンテナ601までの給電経路が、垂直方向に延伸した第1高周波用ビア305と方形同軸線路LLとを含むことにより、高周波信号の伝送に対するグランドの影響が抑制されるとともに、高周波信号の漏れが抑制される。これにより、高周波信号の伝送損失を低減することができる。
【0071】
(2)半導体素子105からモノポールアンテナ601までの給電線路を導電性が比較的高い銅及び/又はチタン、タングステン等の密着層のみで構成し、はんだのような導電性が比較的低い導体を用いて構成していない。そのため、高周波信号の伝送損失を低減することができる。
【0072】
(3)第2高周波用ビア406及び第3高周波用ビア503を用いて、モノポールアンテナ601を高周波平面線路402に対して垂直方向に配置することができる。これにより、半導体パッケージ10のY軸方向の長さを抑制し、半導体パッケージ10を小型化することができる。
【0073】
(4)接続円板504を挟んで第2高周波用ビア406と第3高周波用ビア503とを積層することにより、製造時に第2高周波用ビア406の水平方向の位置に対して第3高周波用ビア503の水平方向の位置が大きくずれても、高周波信号が接続円板504を介して第2高周波用ビア406及び第3高周波用ビア503の一方から他方へ伝搬するため、高周波信号の伝送損失を抑制することができる。
【0074】
(5)方形同軸線路LLによって高周波信号が分岐されるため、分岐された高周波信号間のアイソレーションを確立することができる。ひいては、モノポールアンテナ601のピッチを狭くすることができる。また、第1分岐線路402bの長さと、第2分岐線路402cの長さが等しいことにより、第1分岐線路402bに接続されたモノポールアンテナ601と第2分岐線路402cに接続されたモノポールアンテナ601に同位相の高周波信号を給電することができる。すなわち、複数のモノポールアンテナ601に並列に給電することができる。また、第1分岐線路402bと第2分岐線路402cを、モノポールアンテナ601の下層に配置したことにより、3個のアンテナアレーを、必要とされるアレー間隔で配置することができる。ひいては、各アンテナアレーの位相差を適切に制御することができる。
【0075】
(第2実施形態)
<1.第1実施形態との相違点>
第2実施形態は、基本的な構成は第1実施形態と同様であるため、共通する構成については説明を省略し、相違点を中心に説明する。なお、第1実施形態と同じ符号は、同一の構成を示すものであって、先行する説明を参照する。
【0076】
<2.全体構造>
第2実施形態に係る半導体パッケージ10Aの構成について、
図19及び
図20を参照して説明する。
【0077】
第2実施形態に係る半導体パッケージ10Aは、第1実施形態に係る半導体パッケージ10の構成の上に、さらに、第4グランド層605、第4低誘電率層604、第5グランド層606、複数の第4グランドビア603、及び複数の共振アンテナ602を備える。
【0078】
第4グランド層605は、モノポールアンテナ601と同時に、第3低誘電率層502の上に形成される。第4低誘電率層604は、モノポールアンテナ601及び第4低誘電率層604の上に設けられる。
【0079】
複数の共振アンテナ602のそれぞれは、第4低誘電率層604の上において、複数のモノポールアンテナ601のそれぞれ合わせた位置に設けられる。すなわち、本実施形態では、12個の共振アンテナ602のそれぞれが、12個のモノポールアンテナ601のそれぞれの上方に設けられる。
【0080】
複数の第4グランドビア603は、複数の共振アンテナ602のアンテナ間でのリーク(すなわち、クロストーク)を押さえるために設けられる、アイソレーション用グランドビアである。複数の第4グランドビア603は、各共振アンテナ602の周囲を囲うように、第4低誘電率層604に開けられた穴に形成される。本実施形態では、16個の第4グランドビア603が1個の共振アンテナ602を囲っている。
【0081】
第5グランド層606は、複数の共振アンテナ602と同時に、第4低誘電率層604の上に形成される。第5グランド層606は、各共振アンテナ602の周囲を囲むように、第4低誘電率層604の全面に形成される。第5グランド層606と各共振アンテナ602との間には溝が設けられ、第5グランド層606は各共振アンテナ602と接続していない。第5グランド層606により、さらに、複数の共振アンテナ602のアンテナ間でのリークを抑制することができる。
【0082】
上述した第2実施形態によれば、第1実施形態と同様の効果を奏するとともに、複数の共振アンテナ602を設けたことにより、広帯域化を実現できる。また、各共振アンテナ602を、第4グランドビア603及び第5グランド層606で囲ったことにより、アンテナのノイズを低減することができる。
【0083】
(第3実施形態)
<1.第1実施形態との相違点>
第3実施形態は、基本的な構成は第1実施形態と同様であるため、共通する構成については説明を省略し、相違点を中心に説明する。なお、第1実施形態と同じ符号は、同一の構成を示すものであって、先行する説明を参照する。
【0084】
<2.全体構造>
第3実施形態に係る半導体パッケージ10Bの構成について、
図21及び
図22を参照して説明する。
【0085】
第3実施形態に係る半導体パッケージ10Bは、複数のモノポールアンテナ601の代わりに、複数のパッチアンテナ607を備える点で、第1実施形態に係る半導体パッケージ10と異なる。
【0086】
すなわち、本実施形態では、第3高周波用ビア503のそれぞれは、パッチアンテナ607のそれぞれに接続されている。本実施形態では、方形同軸線路LLにより構成された給電線路を分岐させた後、各分岐線路から垂直方向に給電線路を延伸している。そのため、第3低誘電率層502の上面に並列接続用の給電線路を設ける必要がない。すなわち、第3低誘電率層502の上面には、アンテナ素子だけを配置すればよいため、用いるアンテナ方式に特に制限がない。よって、モノポールアンテナ601の代わりにパッチアンテナ607を用いることができる。
【0087】
上述した第3実施形態によれば、第1実施形態と同様の効果を奏するとともに、各パッチアンテナ607へ垂直方向から給電できるため、各パッチアンテナ607の全面積をアンテナとして有効利用できる。
【0088】
(他の実施形態)
(a)上記各実施形態では、高周波平面線路402とアンテナ素子とを接続する接続線路を、2個のビアを垂直に接続して構成していたが、3個以上のビアを垂直に接続して構成してもよい。この場合、上下のビア間のそれぞれに、接続円板504を形成すればよい。
【0089】
(b)上記各実施形態では、各第1高周波用ビア305を1つのビアで構成しているが、本開示はこれに限定されるものではない。
図16に示すように、接続線路と同様に、第1高周波用ビア305を、下側高周波用ビア305aと、上側高周波用ビア305bと、垂直ビア用接続円板305cと、から構成されていてもよい。また、第1高周波用ビア305を、3個以上のビアを垂直に接続して構成してもよい。この場合、上下のビア間のそれぞれに、垂直ビア用接続円板305cを形成すればよい。
【符号の説明】
【0090】
10,10A,10B…半導体パッケージ、102…高周波用パッド、105…半導体素子、303…第1低誘電率層、304…第1グランドビア、305…第1高周波用ビア、402…高周波平面線路、403…第2低誘電率層、405…第2グランドビア、406…第2高周波用ビア、503…第3高周波用ビア、504…接続円板、601…モノポールアンテナ、LL…方形同軸線路。