IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 古河機械金属株式会社の特許一覧

特許7422496構造体、光デバイス、光デバイスの製造方法、構造体の製造方法
<>
  • 特許-構造体、光デバイス、光デバイスの製造方法、構造体の製造方法 図1
  • 特許-構造体、光デバイス、光デバイスの製造方法、構造体の製造方法 図2
  • 特許-構造体、光デバイス、光デバイスの製造方法、構造体の製造方法 図3
  • 特許-構造体、光デバイス、光デバイスの製造方法、構造体の製造方法 図4
  • 特許-構造体、光デバイス、光デバイスの製造方法、構造体の製造方法 図5
  • 特許-構造体、光デバイス、光デバイスの製造方法、構造体の製造方法 図6
  • 特許-構造体、光デバイス、光デバイスの製造方法、構造体の製造方法 図7
  • 特許-構造体、光デバイス、光デバイスの製造方法、構造体の製造方法 図8
  • 特許-構造体、光デバイス、光デバイスの製造方法、構造体の製造方法 図9
  • 特許-構造体、光デバイス、光デバイスの製造方法、構造体の製造方法 図10
  • 特許-構造体、光デバイス、光デバイスの製造方法、構造体の製造方法 図11
  • 特許-構造体、光デバイス、光デバイスの製造方法、構造体の製造方法 図12
  • 特許-構造体、光デバイス、光デバイスの製造方法、構造体の製造方法 図13
  • 特許-構造体、光デバイス、光デバイスの製造方法、構造体の製造方法 図14
  • 特許-構造体、光デバイス、光デバイスの製造方法、構造体の製造方法 図15
  • 特許-構造体、光デバイス、光デバイスの製造方法、構造体の製造方法 図16
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-01-18
(45)【発行日】2024-01-26
(54)【発明の名称】構造体、光デバイス、光デバイスの製造方法、構造体の製造方法
(51)【国際特許分類】
   H01L 33/18 20100101AFI20240119BHJP
   H01L 33/32 20100101ALI20240119BHJP
   H01S 5/343 20060101ALI20240119BHJP
   H01L 21/205 20060101ALI20240119BHJP
   C23C 16/34 20060101ALI20240119BHJP
【FI】
H01L33/18
H01L33/32
H01S5/343 610
H01L21/205
C23C16/34
【請求項の数】 15
(21)【出願番号】P 2019115255
(22)【出願日】2019-06-21
(65)【公開番号】P2021002575
(43)【公開日】2021-01-07
【審査請求日】2022-05-10
(73)【特許権者】
【識別番号】000165974
【氏名又は名称】古河機械金属株式会社
(74)【代理人】
【識別番号】100110928
【弁理士】
【氏名又は名称】速水 進治
(72)【発明者】
【氏名】船戸 充
(72)【発明者】
【氏名】川上 養一
(72)【発明者】
【氏名】後藤 裕輝
(72)【発明者】
【氏名】住田 行常
【審査官】大西 孝宣
(56)【参考文献】
【文献】国際公開第2015/190171(WO,A1)
【文献】特開2002-084037(JP,A)
【文献】特開2013-045932(JP,A)
【文献】特開2009-054616(JP,A)
【文献】特開2005-311072(JP,A)
【文献】特開2009-071127(JP,A)
【文献】国際公開第2012/060299(WO,A1)
【文献】特開2010-192594(JP,A)
【文献】特開2009-259864(JP,A)
【文献】国際公開第2013/042297(WO,A1)
【文献】米国特許出願公開第2013/0322481(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H01L 33/00 - 33/64
H01S 5/00 - 5/50
(57)【特許請求の範囲】
【請求項1】
半極性面を第1主面とするIII族窒化物半導体の基板と、
前記基板の、前記第1主面上または、前記第1主面とは反対側の第2主面上に積層された、III族窒化物半導体からなる多層構造とを備える構造体であって、
前記多層構造は量子井戸構造を含み、
c軸を前記第1主面へ投影した軸をc投影軸として、フォトルミネッセンスで発せられる光の偏光比RpはRp=(m軸偏光成分の強度-c投影軸偏光成分の強度)/(m軸偏光成分の強度+c投影軸偏光成分の強度)で表され、
フォトルミネッセンススペクトルの、360nm以上560nm以下の範囲における最大ピークのピーク波長λp[nm]が横軸であり、偏光比Rpが縦軸であるグラフにおいて、励起波長を325nmとした前記構造体のフォトルミネッセンスで得られる結果のプロットは、第1の平行四辺形の内部に位置し、
前記第1の平行四辺形は、直線λp=360、直線λp=560、直線Rp=-0.005λp+2.2、および直線Rp=-0.005λp+1.4で構成され、
励起波長を325nmとした当該構造体のフォトルミネッセンスで得られる偏光比Rpは0未満であり、
m軸偏光成分は、電場の振動方向がm軸に平行な成分であり、
c投影軸偏光成分は、電場の振動方向がc投影軸に平行な成分であり、
前記第1主面は{11-23}面、または{11-23}面からのオフ角がm軸方向に-0.06°以内かつc投影軸方向に0.16°以内の面である構造体。
【請求項2】
請求項1に記載の構造体において、
当該構造体の少なくとも一の劈開面と、前記第1主面との成す角度が75°以上105°以下である構造体。
【請求項3】
請求項1または2に記載の構造体において、
前記量子井戸構造はGaN層とInGaN層の交互積層構造を有する構造体。
【請求項4】
請求項3に記載の構造体において、
前記InGaN層の組成はInGa(1-x)Nで表され、
0.28≦x≦0.5が成り立つ構造体。
【請求項5】
請求項1から4のいずれか一項に記載の構造体において、
励起波長を325nmとした前記構造体のフォトルミネッセンスで得られるλpは500nm以上560nm以下である構造体。
【請求項6】
請求項1から5のいずれか一項に記載の構造体において、
励起波長を325nmとした前記構造体のフォトルミネッセンススペクトルの、360nm以上700nm以下の範囲における最大ピークの半値幅が100nm以下である構造体。
【請求項7】
請求項1から6のいずれか一項に記載の構造体において、
前記多層構造はAlGa(1-y)Nで表される組成のAlGaNからなるクラッド層を含み、
yは0.1以上である構造体。
【請求項8】
請求項1から7のいずれか一項に記載の構造体と、
前記多層構造に電気的に接続された第1の電極および第2の電極を備える光デバイス。
【請求項9】
請求項8に記載の光デバイスにおいて、
前記構造体の劈開面をミラー面としたレーザーである光デバイス。
【請求項10】
請求項1から7のいずれか一項に記載の構造体に、前記多層構造に電気的に接続された第1の電極および第2の電極を形成する光デバイスの製造方法。
【請求項11】
構造体の製造方法であって、
{11-23}面、または{11-23}面からのオフ角がm軸方向に-0.06°以内かつc投影軸方向に0.16°以内の半極性面を第1主面とするIII族窒化物半導体の基板の、前記第1主面上または、前記第1主面とは反対側の第2主面上に、III族窒化物半導体を成長させて多層構造を形成する形成工程を含み、
前記多層構造は量子井戸構造を含み、
c軸を前記第1主面へ投影した軸をc投影軸として、フォトルミネッセンスで発せられる光の偏光比RpはRp=(m軸偏光成分の強度-c投影軸偏光成分の強度)/(m軸偏光成分の強度+c投影軸偏光成分の強度)で表され、
フォトルミネッセンススペクトルの、360nm以上560nm以下の範囲における最大ピークのピーク波長λp[nm]が横軸であり、偏光比Rpが縦軸であるグラフにおいて、励起波長を325nmとした前記構造体のフォトルミネッセンスで得られる結果のプロットは、第1の平行四辺形の内部に位置し、
前記第1の平行四辺形は、直線λp=360、直線λp=560、直線Rp=-0.005λp+2.2、および直線Rp=-0.005λp+1.4で構成され、
励起波長を325nmとした当該構造体のフォトルミネッセンスで得られる偏光比Rpは0未満であり、
m軸偏光成分は、電場の振動方向がm軸に平行な成分であり、
c投影軸偏光成分は、電場の振動方向がc投影軸に平行な成分である構造体の製造方法。
【請求項12】
請求項11に記載の構造体の製造方法において、
前記形成工程における成長温度は500℃以上1000℃以下である構造体の製造方法。
【請求項13】
請求項11または12に記載の構造体の製造方法において、
前記形成工程は、少なくとも一の層間において成長を中断させる工程を含む構造体の製造方法。
【請求項14】
請求項11に記載の構造体の製造方法において、
前記形成工程は、層と層の少なくとも一の境界部を形成する時に、水素を供給しながら原料ガスの種類を切り替える工程を含む構造体の製造方法。
【請求項15】
請求項11から13のいずれか一項に記載の構造体の製造方法において、
前記形成工程において、原料ガスによる、V族原子の供給数は、III族原子の供給数の5000倍以上20000倍以下である構造体の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は構造体、光デバイス、光デバイスの製造方法、構造体の製造方法に関する。
【背景技術】
【0002】
レーザー等の光デバイスにおいては、省電力化が求められている。III族窒化物半導体では、半極性面上にデバイスを形成することにより、内部電界が低減され、内部量子効率が向上することが期待される。
【0003】
特許文献1には、窒化ガリウム系半導体領域の、半極性面である主面上に、量子井戸構造を設けることが記載されている。ここで、井戸層の厚さを4nm以上とすることが記載されている。
【0004】
特許文献2には、窒化物半導体の半極性面である(20-2-1)面上に形成された量子井戸構造において、井戸層に波打ち部分を設けることが記載されている。また、このような井戸層により、偏光したルミネッセンスを放射し得ることが記載されている。
【0005】
特許文献3には、主面が{11-22}面であるu-GaN層の上に、多重量子井戸層等を積層することが記載されている。
【0006】
特許文献4には、主面を有する基板上に、窒化物半導体層をエピタキシャル成長させることが記載されている。ここで、基板として、主面の法線が、窒化物半導体の[11-22]軸から+c軸方向に、5度以上17度以下の範囲の角度で傾斜している窒化物半導体基板が挙げられている。
【0007】
非特許文献1には、半極性面である{20-21}面上に形成されたLDおよびLEDから発せられる光の偏光比、および{11-22}面上に形成された単一量子井戸構造から発せられる光の偏光比等が記載されている。
【先行技術文献】
【特許文献】
【0008】
【文献】特開2012-109624号公報
【文献】特開2013-258275号公報
【文献】国際公開第2013/128894号
【文献】特開2016-12717号公報
【非特許文献】
【0009】
【文献】Takashi Kyono、外7名、「Optical Polarization Characteristics of InGaN Quantum Wells for Green Laser Diodes on Semi-Polar {2021} GaN Substrates」、Applied Physics Express、公益社団法人応用物理学会、2010年1月8日、第3巻、第1号、p.011003.1-011003.3
【発明の概要】
【発明が解決しようとする課題】
【0010】
しかし、デバイスの製造コストを抑えつつ、高効率で駆動可能なデバイスを得ることについては未だ検討の余地があった。
【0011】
本発明は、デバイスの製造コストを抑えつつ、高効率で駆動可能なデバイスを得る技術を提供する。
【課題を解決するための手段】
【0012】
本発明によれば、
半極性面を第1主面とするIII族窒化物半導体の基板と、
前記基板の、前記第1主面上または、前記第1主面とは反対側の第2主面上に積層された、III族窒化物半導体からなる多層構造とを備える構造体であって、
前記多層構造は量子井戸構造を含み、
c軸を前記第1主面へ投影した軸をc投影軸として、フォトルミネッセンスで発せられる光の偏光比RpはRp=(m軸偏光成分の強度-c投影軸偏光成分の強度)/(m軸偏光成分の強度+c投影軸偏光成分の強度)で表され、
フォトルミネッセンススペクトルの、360nm以上560nm以下の範囲における最大ピークのピーク波長λp[nm]が横軸であり、偏光比Rpが縦軸であるグラフにおいて、励起波長を325nmとした前記構造体のフォトルミネッセンスで得られる結果のプロットは、第1の平行四辺形の内部に位置し、
前記第1の平行四辺形は、直線λp=360、直線λp=560、直線Rp=-0.005λp+2.2、および直線Rp=-0.005λp+1.4で構成され、
励起波長を325nmとした当該構造体のフォトルミネッセンスで得られる偏光比Rpは0未満である構造体
が提供される。
【0013】
本発明によれば、
上記の構造体と、
前記多層構造に電気的に接続された第1の電極および第2の電極を備える光デバイス
が提供される。
【0014】
本発明によれば、
上記の構造体に、前記多層構造に電気的に接続された第1の電極および第2の電極を形成する光デバイスの製造方法
が提供される。
【0015】
本発明によれば、
構造体の製造方法であって、
半極性面を第1主面とするIII族窒化物半導体の基板の、前記第1主面上または、前記第1主面とは反対側の第2主面上に、III族窒化物半導体を成長させて多層構造を形成する形成工程を含み、
前記多層構造は量子井戸構造を含み、
c軸を前記第1主面へ投影した軸をc投影軸として、フォトルミネッセンスで発せられる光の偏光比RpはRp=(m軸偏光成分の強度-c投影軸偏光成分の強度)/(m軸偏光成分の強度+c投影軸偏光成分の強度)で表され、
フォトルミネッセンススペクトルの、360nm以上560nm以下の範囲における最大ピークのピーク波長λp[nm]が横軸であり、偏光比Rpが縦軸であるグラフにおいて、励起波長を325nmとした前記構造体のフォトルミネッセンスで得られる結果のプロットは、第1の平行四辺形の内部に位置し、
前記第1の平行四辺形は、直線λp=360、直線λp=560、直線Rp=-0.005λp+2.2、および直線Rp=-0.005λp+1.4で構成され、
励起波長を325nmとした当該構造体のフォトルミネッセンスで得られる偏光比Rpは0未満である構造体の製造方法
が提供される。
【発明の効果】
【0016】
本発明によれば、デバイスの製造コストを抑えつつ、高効率で駆動可能なデバイスを得る技術を提供できる。
【図面の簡単な説明】
【0017】
図1】第1の実施形態に係る構造体の構成を例示する図である。
図2】偏光に関する条件を説明するための図である。
図3】フォトルミネッセンスで発せられる光のc投影軸偏光成分の強度およびm軸偏光成分の強度を測定する装置の構成を例示する図である。
図4】量子井戸構造として多重量子井戸構造を有する構造体を例示する図である。
図5】第2の実施形態に係る構造体の構成を例示する図である。
図6】第2の実施形態に係る光デバイスの構成を例示する図である。
図7】実施例1に係る構造体の構成を示す図である。
図8】実施例1に係る形成工程での表面温度を示す図である。
図9】実施例2から実施例5に係る構造体の構成を示す図である。
図10】実施例2から実施例5に係る形成工程での表面温度を示す図である。
図11】実施例1の構造体に対しフォトルミネッセンス測定を行った結果を示す図である。
図12】実施例2の構造体に対しフォトルミネッセンス測定を行った結果を示す図である。
図13】実施例3の構造体に対しフォトルミネッセンス測定を行った結果を示す図である。
図14】実施例4の構造体に対しフォトルミネッセンス測定を行った結果を示す図である。
図15】実施例5の構造体に対しフォトルミネッセンス測定を行った結果を示す図である。
図16】実施例1から実施例5の構造体のフォトルミネッセンスの結果をプロットしたグラフである。
【発明を実施するための形態】
【0018】
以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。
【0019】
図1は、第1の実施形態に係る構造体10の構成を例示する図である。構造体10は、基板100および多層構造200を備える。基板100は、半極性面を第1主面101とするIII族窒化物半導体の基板である。多層構造200は、基板100の、第1主面101上または、第2主面102上に積層された、III族窒化物半導体からなる構造である。ここで第2主面102は、基板100の第1主面101とは反対側の主面である。また、多層構造200は量子井戸構造220を含む。そして、フォトルミネッセンススペクトルのピーク波長λp[nm]が横軸であり、フォトルミネッセンスで発せられる光の偏光比Rpが縦軸であるグラフにおいて、励起波長を325nmとした構造体10のフォトルミネッセンスで得られる結果のプロットは、第1の平行四辺形の内部に位置する。ここで、ピーク波長λpは360nm以上560nm以下の範囲における最大ピークのピーク波長である。また、c軸を第1主面101へ投影した軸をc投影軸として、偏光比RpはRp=(m軸偏光成分の強度-c投影軸偏光成分の強度)/(m軸偏光成分の強度+c投影軸偏光成分の強度)で表される。第1の平行四辺形は、直線λp=360、直線λp=560、直線Rp=-0.005λp+2.2、および直線Rp=-0.005λp+1.4で構成される。そして、励起波長を325nmとした構造体10のフォトルミネッセンスで得られる偏光比Rpは0未満である。以下に詳しく説明する。
【0020】
なお、光の電場の振動方向がm軸に平行な成分をm軸偏光成分と呼ぶ。光の電場の振動方向がc軸投影軸に平行な成分をc投影軸偏光成分と呼ぶ。また、上記のグラフにおいて、励起波長を325nmとした構造体のフォトルミネッセンスで得られる結果のプロットが、第1の平行四辺形の内部に位置することを、「偏光に関する条件」とも呼ぶ。
【0021】
III族窒化物半導体結晶の極性面であるc面上にデバイス(例:光デバイス、電子デバイス等)を形成した場合、内部電界に起因して内部量子効率が低下する。特に極性面上の量子井戸構造では、長波長化のためにIn組成を大きくするにつれ、内部電界が増大するため問題となる。そこで、いわゆる半極性面(極性面及び無極性面と異なる面)上にデバイスを形成する試みがなされている。半極性面上にデバイスを形成すれば、c面上にデバイスを形成する場合よりも、内部電界を大幅に低減でき、内部量子効率を上げることができると考えられる。
【0022】
また、レーザーを製造する際、劈開面をミラー面として機能させることにより、デバイスの製造コストを削減することができる。III族窒化物半導体においては、たとえばm面が劈開面であり、m面をミラー面とすることが考えられる。そしてその場合、m軸方向にキャビティを設けることとなる。
【0023】
本実施形態に係る構造体10では、上記した偏光に関する条件を満たす。そうすることにより、劈開面をミラー面としてレーザーを作製した場合に、キャビティ方向に大きな利得を確保できる。詳しくは、量子井戸構造から発せられる光において、c投影軸偏光成分の割合を増大させることにより、キャビティ方向の利得を大きくすることができる。その結果、高効率で省エネルギー駆動のデバイスを得ることができる。
【0024】
なお、構造体10はレーザーの作製に好適に用いられるが、構造体10の用途は特に限定されない。構造体10はレーザー以外の光デバイスの作製に用いられても良い。
【0025】
図2は、偏光に関する条件を説明するための図である。本図に示すグラフの横軸はピーク波長λpであり、縦軸は偏光比Rpである。また、グラフ中には直線λp=360、直線λp=560、直線Rp=-0.005λp+2.2、直線Rp=-0.005λp+1.4、および、直線Rp=-0.005λp+1.6の各一部が描かれている。第1の平行四辺形の4辺は、λp=360、直線λp=560、直線Rp=-0.005λp+2.2、および直線Rp=-0.005λp+1.4にそれぞれ重なる。すなわち、第1の平行四辺形の頂点は、(λp,Rp)=(360,0.4),(560,-0.6),(560,-1.4),(360,-0.4)の4点である。
【0026】
偏光に関する条件は、本グラフにおいて、励起波長を325nmとした構造体10のフォトルミネッセンスで得られる結果のプロットが、第1の平行四辺形の内部に位置し、かつ、励起波長を325nmとした構造体10のフォトルミネッセンスで得られる偏光比Rpは0未満であることである。構造体10が発する光のうち、c投影軸偏光成分の強度が、m軸偏光成分の強度より大きくなる。その結果、m面をミラー面とした場合のキャビティ方向の光学利得をより向上させることができ、高効率の発光デバイスを実現できる。
【0027】
本グラフにおいて、励起波長を325nmとした構造体10のフォトルミネッセンスで得られる結果のプロットは、さらに以下の第2の平行四辺形の内部に位置してもよい。第2の平行四辺形は直線λp=360、直線λp=560、直線Rp=-0.005λp+2.2、および、直線Rp=-0.005λp+1.6で構成される平行四辺形である。第2の平行四辺形の頂点は、(λp,Rp)=(360,0.4),(560,-0.6),(560,-1.2),(360,-0.2)の4点である。
【0028】
図3は、フォトルミネッセンスで発せられる光のc軸偏光成分の強度およびm軸偏光成分の強度を測定する装置40の構成を例示する図である。本図において、光の経路を実線矢印および破線で示している。
【0029】
光源420はレーザー光源であり、具体的には325nmの波長で発光するHe-Cdレーザーである。光源420から発せられた光はミラー421、輝線カットフィルタ422、ミラー423、ミラー424、レンズ425を介して測定対象500(たとえば構造体10)に入射する。そして、フォトルミネッセンスにより測定対象500から発せられた光はレンズ431で平行光化され、一部が偏光子432に入射する。偏光子432では、その角度を変更することにより、透過させる偏光成分を切り替えることができる。偏光子432を透過した光はレンズ433により受光部434へ集光され、受光部434で受光される。受光器435は分光器およびCCDディテクタで構成される。受光部434で受光された光は受光器435の分光器で分光され、CCDディテクタで受光される。そして、CCDディテクタで各波長の強度が検出される。
【0030】
また、受光器435で得られるデータに対しては、通常のフォトルミネッセンス測定で行われるCCD受光器の感度補正に加え、偏光子透過強度の角度依存性の補正を例えば以下の様に行う。まず、無偏光の光を発するc面上のInGaN量子井戸構造(発光波長450nm)を用い、偏光子の角度を0°とした場合の強度Pと90°とした場合の強度P90とを測定する。その上で、各波長についてP90/Pの値を算出し、算出された値の平均値を求める。そして、平均値を、偏光子の角度を90°とした場合の測定対象500の測定データに乗じることにより、補正後の強度を得る。
【0031】
構造体10の構造について以下に詳しく説明する。基板100としてはたとえばGaN基板が挙げられる。基板100は自立基板である。基板100の厚さは特に限定されないが、ハンドリングのしやすさの観点から、100μm以上であることが好ましい。また、構造体10の小型化の観点から、基板100の厚さは1.5mm以下であることが好ましい。基板100は、アンドープの基板であっても良いし、n型またはp型の半導体基板であっても良い。
【0032】
基板100の第1主面101は{11-2n}面、または{11-2n}面からのオフ角が10°以内の面であり、nは0以上の数である。nは0≦n≦4が成り立つ整数であることが好ましく、中でもn=3であることが好ましい。多層構造200は基板100の第1主面101側に形成されても良いし、第2主面102側に形成されても良い。第1主面101はたとえば(11-2n)面、または(11-2n)面からのオフ角が10°以内である面である。この場合、第2主面102は(-1-12-n)面、または(-1-12-n)面からのオフ角が10°以内である面である。構造体10において多層構造200は、基板100の第1主面101または第2主面102に接している。多層構造200には互いに積層された複数の層が含まれる。
【0033】
基板100は、ある程度高い結晶性を有することが好ましい。具体的には、基板100の第1主面101および第2主面102のうち、多層構造200側の面に対して測定したX線ロッキングカーブ(XRC)の(112)のωの半値幅が以下のm軸入射測定において500arcsec.以下であることが好ましく、200arcsec.以下であることがより好ましい。また、基板100の第1主面101および第2主面102のうち、多層構造200を形成する側の面に対して測定したX線ロッキングカーブ(XRC)の(112)のωの半値幅が以下のc投影軸入射測定において500arcsec.以下であることが好ましく、200arcsec.以下であることがより好ましい。なお、m軸入射測定およびc投影軸入射測定における半値幅はそれぞれたとえば30arcsec.以上であってもよい。
【0034】
X線ロッキングカーブ測定について以下に説明する。III族窒化物半導体は単位格子の空間群がP63mcであることから、消滅則により、たとえば{11-23}面からのX線回折を得ることができない。そこで、たとえば{11-23}面に比較的近い面である{11-22}面に関するロッキングカーブ測定を行う。
【0035】
特に、III族窒化物半導体の半極性面は、主面に対しm軸方向とc投影軸方向に結晶性の異方性が生じることが多い。そこで、たとえばこれらの2軸方向にX線ロッキングカーブの測定を行う。具体的には、XRC(112)ω半値幅の評価は、X線を測定対象の主面に対しm軸に平行に入射させ、X線の入射方向とその主面のなす角度を走査するm軸入射測定と、X線を測定対象の主面のc投影軸に平行に入射させ、X線の入射方向とその主面のなす角度を走査するc投影軸入射測定の2通りの測定を行う。そうすることで、各方向の結晶性を評価できる。
【0036】
たとえば{11-23}面からのオフ角は、{11-22}面に対するロッキングカーブ測定の結果から算出することができる。具体的には、測定対象の主面における{11-23}面からのm軸方向およびc投影軸方向のオフ角を算出するため、上記したX線ロッキングカーブの測定のm軸入射測定とc投影軸入射測定のそれぞれについて基板100をその主面の面内方向に180°回転させた測定を実施する。これらの測定の結果から得られるm軸方向およびc投影軸方向のオフ角に基づいて、最終的なオフ角、すなわち{11-23}面と測定対象の主面とのなす角が算出できる。
【0037】
また、基板100の第1主面101および第2主面102のうち、多層構造200側の面の暗点密度は1×10cm-2以下であることが好ましく、3×10cm-2以下であることがより好ましい。なお、暗点密度はたとえば1×10cm-2以上であってもよい。暗点密度はカソードルミネッセンス(CL)測定により導出できる。
【0038】
基板100の第1主面101および第2主面102のうち、多層構造200を形成する側の面の曲率半径の大きさは、m軸方向において0.5m以上であることが好ましく、2m以上であることがより好ましい。また、基板100の第1主面101および第2主面102のうち、多層構造200を形成する側の面の曲率半径の大きさは、c投影軸方向において0.5m以上であることが好ましく、2m以上であることがより好ましい。なお、多層構造200を形成する側の面の曲率半径の大きさは、たとえば100m以下であってもよい。各方向の曲率半径はたとえば、上記したX線ロッキングカーブ測定の結果から算出することができる。
【0039】
多層構造200には量子井戸構造220が含まれる。量子井戸構造220はGaN層222とInGaN層224の交互積層構造を有する。量子井戸構造220は単一量子井戸構造であってもよいし、多重量子井戸構造であっても良い。量子井戸構造220と基板100との間には、他の層が存在してもよいし、存在しなくてもよい。
【0040】
図1は量子井戸構造220として単一量子井戸構造を有する構造体10を例示する図である。図4は、量子井戸構造220として多重量子井戸構造を有する構造体10を例示する図である。量子井戸構造220では、InGaN層224がGaN層222に挟まれており、InGaN層224は井戸層として機能し、InGaN層224は障壁層として機能する。InGaN層224とGaN層222との界面は平坦であることが好ましく、InGaN層224とGaN層222との界面にはInGaN層224の膜厚より大きな高さの凹凸は生じていないことが好ましい。量子井戸構造220が多重量子井戸構造である場合、量子井戸構造220に含まれるInGaN層224の数はたとえば2以上5以下であることが好ましい。
【0041】
InGaN層224の厚さは3nm以下であることが好ましく、3nm未満であることがより好ましく、2.5nm以下であることがさらに好ましい。そうすることにより、格子破綻や欠陥発生を抑え、良好な220を形成できる。また、より均一な膜を得るために、InGaN層224の厚さは1.5nm以上であることが好ましい。
【0042】
III窒化物半導体の量子井戸構造では、InGaN層のIn組成を増やすことにより、発光波長を緑色等に長波長化することができる。ただし、半極性面上の場合、極性面上の場合よりも、高いIn組成が求められる。一方、In組成を増やすとInGaNの結晶の格子定数が大きくなりGaN層との不整合が大きくなる、その結果、格子緩和や格子破綻等により結晶構造が非常に壊れやすいものとなる。
【0043】
ここで、InGaN層の膜厚に着目すると、均一な膜を形成するためにはある程度の厚さが必要である。一方、膜厚が厚くなりすぎると、格子破綻を生じる。なお、量子井戸の数が増えれば、さらに良好な結晶構造を得ることが難しくなる。したがって、半極性面上に長波長で発光可能な量子井戸構造を形成するためにはIn組成と膜厚を高度に制御する必要がある。
【0044】
本実施形態に係る構造体10では、InGaN層224の厚さをある程度薄く、たとえば3nm以下とすることにより、高品質な量子井戸構造220を実現できる。また、InGaN層224の厚さを3nm以下とすることにより、InGaN層224のIn組成を高めることができ、長波長での発光が可能となる。さらに、薄いInGaN層224ではInの組成揺らぎが小さくなり、同じ準位間で遷移を生じさせることができると考えられる。そのため、たとえば構造体10を用いてレーザーを作製する場合、レーザー発振をさせやすくなるとも推測される。
【0045】
InGaN層224の組成はInGa(1-x)Nで表される。ここで、たとえば0.1≦x≦0.75が成り立つことが好ましい。ただし、緑色波長領域で高効率の発光を可能とするためには、0.28≦x≦0.5が成り立つことがより好ましく、0.3≦x≦0.4が成り立つことがさらに好ましい。
【0046】
GaN層222の厚さは特に限定されないが、たとえば10nm以上100nm以下である。量子井戸構造220が多重量子井戸構造である場合、特に2つのInGaN層224の間に位置するGaN層222の厚さは10nm以上50nm以下であることが好ましい。なお、量子井戸構造220において複数のGaN層222の厚さは互いに同じであっても良いし、同じでなくても良い。また、GaN層222には、Siがドープされてしても良い。GaN層222にSiがドープされる場合、GaN層222におけるSiの濃度は、5×1017cm-3以上1×1019cm-3以下であることが好ましい。
【0047】
基板100とInGaN層224との間にはホモエピタキシャルGaN層が含まれることが好ましい。そうすることで、良質な量子井戸構造220を形成できる。ホモエピタキシャルGaN層は、障壁層であるGaN層222を兼ねても良い。ホモエピタキシャルGaN層の膜厚は10nm以上10000nm以下であることが好ましい。
【0048】
多層構造200における量子井戸構造220の有無はたとえば透過型電子顕微鏡(Transmission Electron Microscope:TEM)を用いる方法またはX線回折測定を行う方法により確認できる。これらの方法のうち少なくとも一方で量子井戸構造220の存在が確認できれば、多層構造200に量子井戸構造220が含まれると判断できる。具体的には、TEMを用いる方法では、InGaN層およびGaN層の各膜厚を確認する。X線回折測定を行う方法では、GaN層からの主回折、InGaN層からの主回折、およびそのフリンジ(周期的な振動)を確認する。
【0049】
励起波長を325nmとした構造体10のフォトルミネッセンスで得られるピーク波長λpは500nm以上560nm以下とすることができる。このような構造体10によれば、緑色発光のデバイスを実現することができる。また、励起波長を325nmとした構造体10のフォトルミネッセンススペクトルの、360nm以上700nm以下の範囲における最大ピークの半値幅はたとえば100nm以下とすることができ、さらには60nm以下とすることができる。
【0050】
励起波長を325nmとした構造体10のフォトルミネッセンススペクトルに現れる第1のピークのピーク強度は、第2のピークのピーク強度の1倍以上であることが好ましく、1.5倍以上であることがより好ましい。ここで、第1のピークは、500nm以上560nm以下の波長範囲において最大のピーク強度を有するピークである。第1のピークはたとえばピーク波長をλpとするピークであってもよい。第2のピークは、350nm以上400nm以下の波長範囲において最大のピーク強度を有するピークである。第2のピークはたとえばGaNの発光ピークである。すなわち構造体10は、緑色発光する場合、このような強度の第1のピークを有する程度に、充分な構造精度の量子井戸構造220を含むことが好ましい。
【0051】
なお、構造体10のフォトルミネッセンススペクトルのピーク波長λpは、InGaN層224のIn組成等を調整することにより設定することができる。構造体10の発光色は緑色に限らず、赤色、青色等であってもよい。ピーク波長λpはたとえば360nm以上700nm以下の範囲内でありえ、または360nm以上560nm以下の範囲内であり得る。
【0052】
構造体10の少なくとも一の劈開面と、第1主面101との成す角度は75°以上105°以下であることが好ましく、80°以上100°以下であることがより好ましく、85°以上95°以下であることがさらに好ましい。そうすることで、構造体10を用い、劈開面をミラー面とするレーザーを容易に作製することができる。この劈開面はたとえばm面である。
【0053】
また、構造体10はデバイスであっても良い。構造体10は電極をさらに備えても良い。
【0054】
本実施形態に係る構造体10は、形成工程を含む製造方法により、製造可能である。形成工程では、基板100の第1主面101上または第2主面102上にIII族窒化物半導体を成長させて多層構造200を形成する。基板100は半極性面を第1主面101とするIII族窒化物半導体の基板である。第2主面102は、基板100の第1主面101とは反対側の主面である。多層構造200は量子井戸構造220を含む。そして、フォトルミネッセンススペクトルのピーク波長λp[nm]が横軸であり、フォトルミネッセンスで発せられる光の偏光比Rpが縦軸であるグラフにおいて、励起波長を325nmとした構造体10のフォトルミネッセンスで得られる結果のプロットは、第1の平行四辺形の内部に位置する。ここで、ピーク波長λpは360nm以上560nm以下の範囲における最大ピークのピーク波長である。また、c軸を第1主面101へ投影した軸をc投影軸として、偏光比RpはRp=(m軸偏光成分の強度-c投影軸偏光成分の強度)/(m軸偏光成分の強度+c投影軸偏光成分の強度)で表される。第1の平行四辺形は、直線λp=360、直線λp=560、直線Rp=-0.005λp+2.2、および直線Rp=-0.005λp+1.4で構成される。そして、励起波長を325nmとした構造体10のフォトルミネッセンスで得られる偏光比Rpは0未満である。以下に詳しく説明する。
【0055】
多層構造200の形成は、たとえばMOCVD法を用いて行える。また、多層構造200の形成に用いるV族原料ガスはたとえばNHガスであり、III族原料ガスは有機金属ガスである。有機金属ガスとしてたとえばトリメチルGa(TMGa)、トリエチルGa(TEGa)、トリメチルIn(TMIn)、トリメチルAl(TMAl)、トリエチルAl(TEAl)が挙げられる。V族原料ガスおよびIII族原料ガスは互いに反応する反応性ガスである。また、形成工程ではMOCVD装置の成長室にキャリアガスをさらに供給しても良い。キャリアガスはたとえば水素(H)ガスおよび窒素(N)ガスであり、原料ガスとは反応しない。III族原料ガスとしてTMGaガスを用いる場合、供給するTMGaガスの温度は-5℃以上25℃以下であることが好ましく、0℃以上20℃以下であることがより好ましい。また、III族原料ガスとしてTMInガスを用いる場合、供給するTMInガスの温度は25℃以上55℃以下であることが好ましく、30℃以上50℃以下であることがより好ましい。ただし、各ガスの温度は、MOCVD装置の構成や、多層構造200の作製に必要な蒸気圧等に応じて適宜設定することができる。供給する各ガスは、たとえば恒温槽を用いて所望の温度にすることができる。
【0056】
MOCVD装置の成長室に基板100を配置し、Gaを含むIII族原料ガスとV族原料ガスとを供給することにより、GaN層222等、GaNからなる層を成長させることができる。また、Gaを含むIII族原料ガス、Inを含むIII族原料ガス、およびV族原料ガスを供給することにより、InGaN層224等、InGaNからなる層を成長させることができる。
【0057】
形成工程では、表面温度、成長圧力、および各ガスの供給量を制御することができる。ここで、表面温度とは、その上に結晶成長させようとする表面の温度であり、すなわち原料ガスが供給される面の温度である。表面温度は、基板100の主面の温度および基板100上に積層された結晶表面の温度のうちのいずれかでありうる。表面温度はたとえばパイロメータを用いて測定できる。なお、結晶成長中の表面温度を特に成長温度とも呼ぶ。
【0058】
構造体10を製造する際の第1条件から第3条件について以下に説明する。形成工程において第1条件から第3条件の全てを満たすことにより、高品質な多層構造200を含み、偏光に関する条件を満たす構造体10を得ることができる。特に、少なくとも量子井戸構造220を形成する際に第1条件から第3条件が満たされることが好ましい。ただし、偏光に関する条件を満たす限り、構造体10の作製方法は特に限定されない。第1条件から第3条件を満たす方法は、構造体10の製造方法の一例である。
【0059】
第1条件は、形成工程が、以下に説明する成膜の中断工程または水素ガス供給工程を含むことである。
【0060】
中断工程は、少なくとも一の層間において成長を中断させる工程である。具体的にはたとえば、中断工程においてIII族原料ガスおよびV族原料ガスの少なくとも一方の供給を停止することにより、結晶成長を停止させる。中断工程の間に、上記した表面温度を上げる、または下げるよう変化させてもよい。なお、中断工程において、III族原料ガスおよびV族原料ガスの一方の供給は継続されていても良い。たとえば、中断工程において、III族原料ガスの供給を行わず、V族原料ガスの供給を行う。中断工程は、表面温度を変化させる際には毎回行われることが好ましい。また、中断工程は、量子井戸構造220に含まれる層の全ての層間で行われることが好ましく、多層構造200に含まれる層の全ての層間で行われることがより好ましい。各中断工程は、30秒以上180秒以下であることが好ましい。
【0061】
水素ガス供給工程は、層と層の境界部を形成する時に、水素を供給する工程である。水素ガス供給工程は少なくとも一の境界部の形成時に行われることが好ましい。中断工程と水素ガス供給工程とは、同時に行われる必要は無い。水素ガス供給工程では、結晶成長が継続された状態で基板100に向けてHガスを供給する。すなわち、水素ガスを供給しながら原料ガスの種類を切り替えたり、表面温度を変化させたりする。そうすることにより、水素フローによるエッチング効果が得られ、境界部の余分な原子を除去することができ、層間の急峻な界面を得ることができる。また、薄い層を均一に成長させることができる。水素ガス供給工程における水素ガスの供給量はたとえば0.5slm以上10slm以下であることが好ましい。
【0062】
第2条件は、適切な温度調整を行うことである。具体的には、形成工程における成長温度は500℃以上1000℃以下であることが好ましく、700℃以上1000℃以下であることがより好ましい。特に、GaN層222の成長温度をInGaN層224の成長温度よりも高くすることが好ましい。InGaN層224の成長温度は700℃以上850℃以下であることが好ましい。成長温度をある程度低く抑えることにより、Inの取り込み効率を高めることができる。また、成長温度を低くしすぎないことにより、良好な結晶構造および界面を得られる。
【0063】
第3条件は、原料ガスにおいてV/III比を適切に設定することである。V/III比は、III族原子の供給数に対するV族原子の供給数の比率を示す。なお、各供給数は、原料ガスによる供給数である。形成工程におけるV/III比は、5000以上20000以下であることが好ましい。すなわち。V族原子の供給数は、III族原子の供給数の5000倍以上20000倍以下であることが好ましい。また、形成工程において、V族原子の供給数は、III族原子の供給数の6000倍以上17000倍以下であることがより好ましい。
【0064】
なお、InGaNを成長させる際の、In原子の供給数は、III族原子の供給数全体の0.4倍以上0.8倍以下であることが好ましく、0.5倍以上0.7倍以下であることがより好ましい。こうすることで、発光ピークの半値幅を抑えたり、発光強度を高めたり、全体にわたって安定に発光させたりすることができる。
【0065】
なお、形成工程において、成長室内の圧力は100Torr以上500Torr以下であることが好ましい。
【0066】
また、構造体10の製造方法では、形成工程に先立ち基板100表面のサーマルクリーニングを行っても良い。サーマルクリーニングでは、たとえば基板100の表面温度を900℃以上1100℃以下で5分以上維持する。なお、サーマルクリーニングの時間は60分以下とすることができる。
【0067】
次に、本実施形態の作用および効果について説明する。本実施形態によれば、構造体10が偏光に関する条件を満たすことにより、デバイスの製造コストを抑えつつ、高効率で駆動可能なデバイスを得ることができる。
【0068】
(第2の実施形態)
図5は、第2の実施形態に係る構造体10の構成を例示する図である。本実施形態に係る構造体10は、多層構造200が、量子井戸構造220に加え、ガイド層、クラッド層、電子ブロック層、およびコンタクト層の少なくともいずれかを備える点を除いて第1の実施形態に係る構造体10と同じである。
【0069】
本図の例において、多層構造200は、n型クラッド層251、n-GaNガイド層233、InGaNガイド層231、量子井戸構造220、InGaNガイド層231、電子ブロック層240、p-GaNガイド層234、p型クラッド層252、およびp型コンタクト層260を基板100側からこの順に含む。また、基板100はn型GaNである。このような構造体10を用いることにより、良好なレーザー素子を作製できる。
【0070】
InGaNガイド層231はInGaNからなり、量子井戸構造220は二つのInGaNガイド層231の間に位置する。また、n-GaNガイド層233はn型GaNからなり、p-GaNガイド層234はp型GaNからなる。量子井戸構造220は、n-GaNガイド層233とp-GaNガイド層234の間に位置する。さらに、InGaNガイド層231とp-GaNガイド層234との間には電子ブロック層240が位置する。電子ブロック層240はたとえばp型AlGaNからなる。
【0071】
クラッド層はたとえばAlGa(1-y)Nで表される組成のAlGaNからなる。具体的にはn型クラッド層251はn型AlGaNからなり、p型クラッド層252はp型AlGaNからなる。ここで、yは0.1以上であることが好ましく、0.15以上であることがより好ましい。また、yは0.25以下であることが好ましい。量子井戸構造220は、n型クラッド層251とp型クラッド層252の間に位置する。多層構造200のうち基板100側とは反対側の端にはp型コンタクト層260が位置する。p型コンタクト層260はたとえばp型GaNからなる。
【0072】
多層構造200に含まれる層のうち、n型のIII族窒化物半導体からなる層は、たとえば、成長時にn型ドーパントを含むドーピングガスをさらに供給することにより形成できる。n型ドーパントはたとえばSi、Ge、およびOからなる群から選択される一以上である。
【0073】
多層構造200に含まれる層のうち、p型のIII族窒化物半導体からなる層は、たとえば、成長時にp型ドーパントを含むドーピングガスをさらに供給し、活性化処理を行うことにより形成できる。活性化処理は熱処理または電子線照射である。p型ドーパントはたとえばMg、Zn、Cd、およびBeからなる群から選択される一以上である。
【0074】
多層構造200に含まれる層のうち、AlGaNからなる層は、成長時に、Gaを含むIII族原料ガス、Alを含むIII族原料ガス、およびV族原料ガスを供給することにより形成することができる。
【0075】
図6は、第2の実施形態に係る光デバイス30の構成を例示する図である。光デバイス30は、構造体10、第1の電極310、および第2の電極320を備える。第1の電極310および第2の電極320は多層構造200に電気的に接続されている。本図の例において第1の電極310は基板100に接し、第2の電極320は多層構造200のうち基板100とは反対側の端の層に接している。
【0076】
光デバイス30は、構造体10に、第1の電極310および第2の電極320を形成することにより製造できる。具体的には、基板100の多層構造200側とは反対側の面を必要に応じてエッチング等を施し、第1の電極310を成膜する。また、p型コンタクト層260の基板100側とは反対側の面に第2の電極320を成膜する。各電極はPd、Pt、Au、およびIn等の少なくともいずれかの金属で構成される。なお、各電極は複数の金属層の積層構造を有していても良い。また、構造体10を必要に応じて劈開やダイシング等することで、形状を加工しても良い。
【0077】
光デバイス30はたとえばレーザーである。ここで、構造体10の側面である劈開面がミラー面として機能することが好ましい。そうすることで、光デバイス30を高効率のレーザーとして動作させることができる。ひいては、低コストでレーザーの製造が可能である。ミラー面として用いる劈開面としてはたとえばm面が好ましい。
【0078】
本実施形態に係る構造体10および光デバイス30の構造はそれぞれ図5および図6の例に限定されない。また、光デバイス30はレーザーに限定されず、波長変換素子、発光ダイオード、またはセンサ等であっても良い。光デバイス30がレーザーや発光ダイオード等の発光デバイスである場合、光デバイス30の発光波長をたとえば500nm以上560nm以下とすることができる。すなわち、構造体10を用いて緑色発光のデバイスを作製することができる。なお、光デバイス30の発光波長は、InGaN層224のIn組成等を調整することにより設定することができる。光デバイス30の発光色は緑色に限らず、赤色、青色等であってもよい。
【0079】
次に、本実施形態の作用および効果について説明する。本実施形態によれば、第1の実施形態と同様の作用および効果が得られる。くわえて、構造体10を用いて容易にデバイスを得ることができる。
【実施例
【0080】
以下、本実施形態を、実施例を参照して詳細に説明する。なお、本実施形態は、これらの実施例の記載に何ら限定されるものではない。
【0081】
実施例1では、単一量子井戸構造(SQW)を含む構造体を作製した。実施例2から実施例5では、多重量子井戸構造(MQW)を含む構造体を作製した。ここで、実施例1から実施例5においてIn組成を変化させた。そして、各実施例の構造体の偏光特性を評価した。
【0082】
図7は、実施例1に係る構造体の構成を示す図であり、図8は、実施例1に係る形成工程での表面温度を示す図である。また、実施例1に係る構造体の製造条件を表1に示す。
【0083】
【表1】
【0084】
本実施例ではまず、10mm×10mmの正方形状であり、第1主面が(11-23)面であるGaN自立基板を準備し、基板の評価を行った。その後、基板を2mm×3mmの矩形の基板に分割し、多層構造の形成に用いた。
【0085】
10mm×10mmの正方形状の基板に対し行った評価の結果は以下の通りである。まず、基板の厚さと第1主面におけるCL暗点密度について評価を行った。評価の結果は下記の通りであった。
厚さ:408μm
CL暗点密度:1.53×10cm-2
【0086】
次いで、第1の実施形態に説明した方法で、第1主面のXRC(112)ω半値幅、{11-23}面からのオフ角、および曲率半径を評価した。
XRC(112)ω半値幅:m軸入射測定138arcsec.、c投影軸入射測定66.4arcsec.
{11-23}面からの各軸方向のオフ角:m軸方向-0.06°、c投影軸方向0.16°({11-23}面と測定対象の主面とのなす角が10°以内であることが確認された。)
曲率半径:m軸方向-2.69m、c投影軸方向+8.79m
なお、曲率半径の+は測定対象の主面において凸方向に結晶軸の曲率半径を有していることを、-は凹方向に結晶軸の曲率半径を有していることを示す。
【0087】
分割された基板をMOCVD装置に取り付け、表1に示す通りの条件で、単一量子井戸構造を作製した。まず、表面温度を室温(RT)から昇温し、980℃で20分間維持することで、基板表面のサーマルクリーニングを行った。サーマルクリーニング中は、NHガス、HガスおよびNガスをそれぞれ表1に示す流量で成長室に供給した。
【0088】
次いで、基板の第1主面上にホモエピタキシャルGaN層(HT-GaN)、InGaN層(GaInN)、およびcap-GaN層をこの順に成長させて、実施例1の構造体を得た。各層の成長条件は、表1に示す通りである。なお、表1中、「原子数比率」は、原料ガスに含まれる、V族とIII族との原子数比(V/III比)またはInとIII族との原子数比(In/III比)を示す。「圧力」は、MOCVD装置の成長室内の圧力を示す。
【0089】
表1に示すように、ホモエピタキシャルGaN層の成長と、InGaN層の成長との間には、結晶成長をさせずに表面温度を下げる中断工程を設けた。また、形成工程における成長温度を700℃以上1000℃以下の範囲で設定した。そして、供給する原料ガスのV/III比を6000以上17000以下の範囲で設定した。
【0090】
図9は、実施例2から実施例5に係る構造体の構成を示す図であり、図10は、実施例2から実施例5に係る形成工程での表面温度を示す図である。また、実施例2から実施例5に係る構造体の製造条件を表2に示す。本表中Aに示す表面温度を、実施例2において830℃、実施例3において750℃、実施例4において770℃、実施例5において800℃とした。
【0091】
【表2】
【0092】
実施例2から実施例5では、実施例1と同じGaN自立基板を2mm×3mm程度の矩形に分割したものを基板として用いた。そして、基板の第1主面である(11-23)面上に多層構造を形成し構造体を得た。なお、多層構造の形成は、実施例2から実施例5で互いに別々に行った。
【0093】
実施例1と同様、分割された基板をMOCVD装置に取り付け、表2に示す通りの条件で、多重量子井戸構造を作製した。まず、実施例1と同様に、基板表面のサーマルクリーニングを行った。
【0094】
次いで、基板上にホモエピタキシャルGaN層(HT-GaN)を形成し、さらに、バリアGaN層(barrier GaN)およびInGaN層(GaInN)を三層ずつ交互に形成した。その後、cap-GaN層を形成し、実施例2から実施例5の構造体を得た。なお、表2中、「原子数比率」は、原料ガスに含まれる、V族とIII族との原子数比(V/III比)またはInとIII族との原子数比(In/III比)を示す。
【0095】
表2に示すように、層と層の成長の間には、結晶成長をさせない中断工程を設けた。なお、各中断工程は、30秒以上180秒以下の範囲内であった。また、形成工程における成長温度を700℃以上1000℃以下の範囲で設定した。そして、供給する原料ガスのV/III比を6000以上17000以下の範囲で設定した。
【0096】
図11から図15は、実施例1から実施例5の構造体に対し図3に示したような装置を用いてフォトルミネッセンス測定を行った結果をそれぞれ示す図である。図11から図14において、c投影軸偏光成分を実線で、m軸偏光成分を点線で示している。フォトルミネッセンス測定は、室温で行った。励起波長は325nmとした。
【0097】
さらに、実施例1から実施例5に係る構造体の、励起波長を325nmとしたフォトルミネッセンス測定の結果を表3に示す。また、図16は、実施例1から実施例5の構造体のフォトルミネッセンスの結果をプロットしたグラフである。このグラフは横軸をピーク波長λp、縦軸を偏光比Rpとした、第1の実施形態で説明した通りのグラフである。本グラフには直線λp=360、直線λp=560、直線Rp=-0.005λp+2.2、直線Rp=-0.005λp+1.4、および、直線Rp=-0.005λp+1.6の各一部が合わせて描かれている。くわえて、本グラフには比較例として、非特許文献1に記載された、{11-22}面上に形成された単一量子井戸構造から発せられる光の偏光比をプロットした。
【0098】
【表3】
【0099】
実施例1から実施例5に係る構造体のフォトルミネッセンス測定の結果、ピーク波長λpはいずれも360nm以上560nm以下の範囲内であった。また、フォトルミネッセンススペクトルの、360nm以上700nm以下の範囲における最大ピークの半値幅はいずれも100nm以下であった。
【0100】
図11から図15より分かる通り、いずれの構造体においてもc投影軸偏光成分の強度がm軸偏光成分の強度よりも高かった。すなわち、偏光比Rpは0未満であった。そして、図16から分かるように、実施例のいずれのプロットも、第1の実施形態で説明した第1の平行四辺形の内部、さらには第2の平行四辺形の内部に位置した。一方、比較例のプロットはいずれも第1の平行四辺形より上に位置していた。すなわち、実施例に係る構造体のc投影軸偏光成分の比率は比較例に係る構造体のc投影軸偏光成分の比率よりも高かった。したがって、実施例に係る構造体を用いた場合に、比較例に係る構造体を用いた場合よりも、キャビティ方向の利得を高められることが確かめられた。したがって、実施例に係る構造体によれば、高効率のデバイスを実現できると考えられる。
【0101】
なお、実施例および比較例のいずれも、発光波長が大きくなるほど偏光比Rpが小さくなる傾向があった。
【0102】
以上、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。
以下、参考形態の例を付記する。
1. 半極性面を第1主面とするIII族窒化物半導体の基板と、
前記基板の、前記第1主面上または、前記第1主面とは反対側の第2主面上に積層された、III族窒化物半導体からなる多層構造とを備える構造体であって、
前記多層構造は量子井戸構造を含み、
c軸を前記第1主面へ投影した軸をc投影軸として、フォトルミネッセンスで発せられる光の偏光比RpはRp=(m軸偏光成分の強度-c投影軸偏光成分の強度)/(m軸偏光成分の強度+c投影軸偏光成分の強度)で表され、
フォトルミネッセンススペクトルの、360nm以上560nm以下の範囲における最大ピークのピーク波長λp[nm]が横軸であり、偏光比Rpが縦軸であるグラフにおいて、励起波長を325nmとした前記構造体のフォトルミネッセンスで得られる結果のプロットは、第1の平行四辺形の内部に位置し、
前記第1の平行四辺形は、直線λp=360、直線λp=560、直線Rp=-0.005λp+2.2、および直線Rp=-0.005λp+1.4で構成され、
励起波長を325nmとした当該構造体のフォトルミネッセンスで得られる偏光比Rpは0未満である構造体。
2. 1.に記載の構造体において、
前記第1主面は{11-2n}面、または{11-2n}面からのオフ角が10°以内の面であり、
nは0以上の数である構造体。
3. 2.に記載の構造体において、
n=3である構造体。
4. 1.から3.のいずれか一つに記載の構造体において、
当該構造体の少なくとも一の劈開面と、前記第1主面との成す角度が75°以上105°以下である構造体。
5. 1.から4.のいずれか一つに記載の構造体において、
前記量子井戸構造はGaN層とInGaN層の交互積層構造を有する構造体。
6. 5.に記載の構造体において、
前記InGaN層の組成はIn Ga (1-x) Nで表され、
0.28≦x≦0.5が成り立つ構造体。
7. 1.から6.のいずれか一つに記載の構造体において、
励起波長を325nmとした前記構造体のフォトルミネッセンスで得られるλpは500nm以上560nm以下である構造体。
8. 1.から7.のいずれか一つに記載の構造体において、
励起波長を325nmとした前記構造体のフォトルミネッセンススペクトルの、360nm以上700nm以下の範囲における最大ピークの半値幅が100nm以下である構造体。
9. 1.から8.のいずれか一つに記載の構造体において、
前記多層構造はAl Ga (1-y) Nで表される組成のAlGaNからなるクラッド層を含み、
yは0.1以上である構造体。
10. 1.から9.のいずれか一つに記載の構造体と、
前記多層構造に電気的に接続された第1の電極および第2の電極を備える光デバイス。
11. 10.に記載の光デバイスにおいて、
前記構造体の劈開面をミラー面としたレーザーである光デバイス。
12. 1.から9.のいずれか一つに記載の構造体に、前記多層構造に電気的に接続された第1の電極および第2の電極を形成する光デバイスの製造方法。
13. 構造体の製造方法であって、
半極性面を第1主面とするIII族窒化物半導体の基板の、前記第1主面上または、前記第1主面とは反対側の第2主面上に、III族窒化物半導体を成長させて多層構造を形成する形成工程を含み、
前記多層構造は量子井戸構造を含み、
c軸を前記第1主面へ投影した軸をc投影軸として、フォトルミネッセンスで発せられる光の偏光比RpはRp=(m軸偏光成分の強度-c投影軸偏光成分の強度)/(m軸偏光成分の強度+c投影軸偏光成分の強度)で表され、
フォトルミネッセンススペクトルの、360nm以上560nm以下の範囲における最大ピークのピーク波長λp[nm]が横軸であり、偏光比Rpが縦軸であるグラフにおいて、励起波長を325nmとした前記構造体のフォトルミネッセンスで得られる結果のプロットは、第1の平行四辺形の内部に位置し、
前記第1の平行四辺形は、直線λp=360、直線λp=560、直線Rp=-0.005λp+2.2、および直線Rp=-0.005λp+1.4で構成され、
励起波長を325nmとした当該構造体のフォトルミネッセンスで得られる偏光比Rpは0未満である構造体の製造方法。
14. 13.に記載の構造体の製造方法において、
前記形成工程における成長温度は500℃以上1000℃以下である構造体の製造方法。
15. 13.または14.に記載の構造体の製造方法において、
前記形成工程は、少なくとも一の層間において成長を中断させる工程を含む構造体の製造方法。
16. 13.または14.に記載の構造体の製造方法において、
前記形成工程は、層と層の少なくとも一の境界部を形成する時に、水素を供給する工程を含む構造体の製造方法。
17. 13.から16.のいずれか一つに記載の構造体の製造方法において、
前記形成工程において、原料ガスによる、V族原子の供給数は、III族原子の供給数の5000倍以上20000倍以下である構造体の製造方法。
【符号の説明】
【0103】
10 構造体
30 光デバイス
40 装置
100 基板
101 第1主面
102 第2主面
200 多層構造
220 量子井戸構造
222 GaN層
224 InGaN層
231 InGaNガイド層
233 n-GaNガイド層
234 p-GaNガイド層
240 電子ブロック層
251 n型クラッド層
252 p型クラッド層
260 p型コンタクト層
310 第1の電極
320 第2の電極
420 光源
421,423,424 ミラー
422 輝線カットフィルタ
425,431,433 レンズ
432 偏光子
434 受光部
435 受光器
500 測定対象
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16