(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-01-18
(45)【発行日】2024-01-26
(54)【発明の名称】モジュール式積層型アンテナ・アレイ
(51)【国際特許分類】
H01Q 3/34 20060101AFI20240119BHJP
H01Q 21/06 20060101ALI20240119BHJP
【FI】
H01Q3/34
H01Q21/06
(21)【出願番号】P 2022517239
(86)(22)【出願日】2020-09-03
(86)【国際出願番号】 US2020049268
(87)【国際公開番号】W WO2021055175
(87)【国際公開日】2021-03-25
【審査請求日】2022-05-10
(32)【優先日】2019-09-17
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】503455363
【氏名又は名称】レイセオン カンパニー
(74)【代理人】
【識別番号】100107766
【氏名又は名称】伊東 忠重
(74)【代理人】
【識別番号】100070150
【氏名又は名称】伊東 忠彦
(74)【代理人】
【識別番号】100135079
【氏名又は名称】宮崎 修
(72)【発明者】
【氏名】マッコーディック,クレイグ エイチ.
(72)【発明者】
【氏名】エルズワース,ジョセフ アール.
(72)【発明者】
【氏名】モリオンド,ダグラス ジェイ.
(72)【発明者】
【氏名】デルジェニオ,ジョセフ アンジェロ
(72)【発明者】
【氏名】ホワイト,クリストファー ロバート
(72)【発明者】
【氏名】リッキス,アダム カール
(72)【発明者】
【氏名】マンテイガ,キャロライン マーガレット
【審査官】岸田 伸太郎
(56)【参考文献】
【文献】特表2010-507929(JP,A)
【文献】特開平09-260930(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01Q 3/34
H01Q 21/06
(57)【特許請求の範囲】
【請求項1】
モジュール式フェイズド・アレイ・アンテナであって:
単一のアンテナ・アレイとして一緒に組み立てられた複数のモジュラ・アンテナ・アレイ・ブロック;及び
アレイ・プレートと、単一のモノリシック・アレイ面を生成するようにインターロックかつ整列された各モジュラ・アンテナ・アレイ・ブロックのための
複数の放射器とを含むアレイ面;
を含み、
各前記モジュラ・アンテナ・アレイ・ブロックは、
複数の送信/受信統合マルチチャネルモジュール(TRIMM)カードであり、各TRIMMカードは、電力及びビーム形成信号を含み、前記電力及びビーム形成信号は、各
前記モジュラ・アンテナ・アレイ・ブロックに並列に接続される、TRIMMカード;
放射器面を有し、アンテナ信号を放射するための
前記複数の放射器;
前記複数の放射器と一体化され、前記放射器面に直接インターフェースされるレードームであり、当該レードームが前記放射器面を越えて延在しない、レードーム;及び
前記TRIMMカードを
支持するフレーム;
を含む、モジュール式フェイズド・アレイ・アンテナ。
【請求項2】
各
前記モジュラ・アンテナ・アレイ・ブロックは、他の
前記モジュラ・アンテナ・アレイ・ブロックの冷却に依存しない冷却を受ける、請求項1に記載のモジュール式フェイズド・アレイ・アンテナ。
【請求項3】
前記フレームは、アルミニウム製であり
、鋼製の背面構造に取り付けられ、
前記フレームの後面は前記背面構造の前面にインターフェースする、請求項1又は2に記載のモジュール式フェイズド・アレイ・アンテナ。
【請求項4】
前記電力及びビーム形成信号のための電子回路は、前記背面構造内に存在し、さらに、
前記モジュラ・アンテナ・アレイ・ブロックを、別の
前記モジュラ・アンテナ・アレイ・ブロックの頂部又は隣に組み立てて、単一のより大きなアンテナ・アレイを生成することが可能である、請求項3に記載のモジュール式フェイズド・アレイ・アンテナ。
【請求項5】
各前記モジュラ・アンテナ・アレイ・ブロックは、熱膨張係数によるアレイ面の歪みを最小にするために、前記フレームと前記背面構造との間に中間アルミニウムフレームをさらに含む、請求項3に記載のモジュール式フェイズド・アレイ・アンテナ。
【請求項6】
各前記モジュラ・アンテナ・アレイ・ブロックが、前記電力及びビーム形成信号のための前記電子回路を、前記背面構造内に収容するためのモジュラー式交換可能ラックを更に備える、請求項4に記載のモジュール式フェイズド・アレイ・アンテナ。
【請求項7】
各前記モジュラ・アンテナ・アレイ・ブロックが、前記フレームと前記背面構造との間の物理的インターフェースを提供するためのフランジ付きインターフェースをさらに含み、モジュラ・アンテナ・アレイ構築ブロックを支持し整合するモジュラ・アンテナ・アレイ構築ブロック・ハウジングへの前方アクセスを可能にする、請求項3に記載のモジュール式フェイズド・アレイ・アンテナ。
【請求項8】
各前記モジュラ・アンテナ・アレイ・ブロックが、各前記モジュラ・アンテナ・アレイ構築ブロックを6自由度で調整するための複数の調整機構をさらに含む、請求項7に記載のモジュール式フェイズド・アレイ・アンテナ。
【請求項9】
各前記モジュラ・アンテナ・アレイ・ブロックが、各前記モジュラ・アンテナ・アレイ・ブロックを隣接するすべての
前記モジュラ・アンテナ・アレイ・ブロックに確実に固定することを可能にするために、前記フレームの垂直側面及び底部に沿ってネジ付きボスをさらに含む、請求項1乃至8のいずれか一項に記載のモジュール式フェイズド・アレイ・アンテナ。
【請求項10】
前記ネジ付きボスが、全ての隣接する
前記モジュラ・アンテナ・アレイ・ブロックの
前記フレームにぴったりと当接するまで回転されるように構成され、前記全ての隣接するモジュラアンテナ・アレイ・ブロックにねじ込まれた各
前記ネジ付きボス内の中心孔に配置されたボルトを含んで、前記全ての隣接するモジュラアンテナ・アレイ・ブロックを確実に取り付ける、請求項9に記載のモジュール式フェイズド・アレイ・アンテナ。
【請求項11】
各前記モジュラ・アンテナ・アレイ・ブロックが、各前記モジュラ・アンテナ・アレイ・ブロックの位置を調整するように構成された複数のアクチュエータをさらに含む、請求項1乃至10のいずれか一項に記載のモジュール式フェイズド・アレイ・アンテナ。
【請求項12】
各前記モジュラ・アンテナ・アレイ・ブロックは、各前記モジュラ・アンテナ・アレイ・ブロックの前部に取り付けられたアレイ・プレートと、各前記モジュラ・アンテナ・アレイ・ブロックの調整及び整合を可能にするように構成された前記アレイ・プレートの頂部及び底部に配置された複数のインターロックジョイントとをさらに含む、請求項1乃至11のいずれか一項に記載のモジュール式フェイズド・アレイ・アンテナ。
【請求項13】
上方モジュラ・アンテナ・アレイ・ブロック・フレーム(上方フレーム)と下方モジュラ・アンテナ・アレイ・ブロック・フレーム(下方フレーム)との間にボルト・インターフェースをさらに備え、前記ボルト・インターフェースは、圧縮ボルトと引っ張りボルトとを含み、前記圧縮ボルトは、前記上方フレームのタップ孔にねじ込み、前記上方フレームと前記下方フレームを貫通する負荷経路を提供し、底部構造と頂部構造との間の必要なギャップを維持し、前記引っ張りボルトは、前記上方フレームのクリアランス孔と、前記上方フレームと前記下方フレームとを一緒に保持するための前記下方フレーム内のタップ孔とを含む、請求項1乃至12のいずれか一項に記載のモジュール式フェイズド・アレイ・アンテナ。
【請求項14】
各前記モジュラ・アンテナ・アレイ・ブロックが、各前記モジュラ・アンテナ・アレイ・ブロック内に分散されたデジタル受信機エキサイタ(DREX)をさらに備える、請求項1乃至13のいずれか一項に記載のモジュール式フェイズド・アレイ・アンテナ。
【請求項15】
各前記モジュラ・アンテナ・アレイ・ブロックは、熱膨張係数によるアレイ面の歪みを最小限にするために、前記フレームと前記背面構造との間に中間アルミニウムフレームをさらに含む、請求項
3に記載のモジュール式フェイズド・アレイ・アンテナ。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、概して、フェイズド・アレイ・アンテナ設計に関し、より具体的には、モジュール式かつ積層型フェイズド・アレイ・アンテナに関する。
【発明の概要】
【発明が解決しようとする課題】
【0002】
アンテナ・アレイは、単一のアンテナとして作用し、指向性放射パターンを生成するために、共通のソース又は負荷に結合された複数の接続されたアンテナのグループである。通常、個々のアンテナの空間的関係もアンテナ・アレイの指向性に寄与する。
図1は、従来のアンテナ・アレイ100の図を示す。アンテナ・アレイ100は、(非金属)レードーム(redome)102に収容されるいくつかの線形アレイ104を含む。ここで、各線形アレイ104は、アンテナ・アレイ100の所望の動作周波数の波長によって決定される、互いに等しい間隔で垂直に配置される。各線形アレイ104は、アンテナフィード106を介して、外部RF電子モジュール108に含まれるその関連する無線周波数電子回路に接続される。RF電子モジュール108は、電力接続、制御接続及び通信接続のために接続110を介して外部システムに接続され、レードーム102内に物理的に取り付けられてもよく、又はアンテナ・アレイ100の遠隔又は外部に配置されてもよい。
【0003】
電子的にスキャンされたアレイ(ESA)はフェイズド・アレイ・アンテナの一種であり、トランシーバは多数のソリッドステート送信/受信モジュールを含む。ESAでは、アンテナの前方の一定の角度で建設的に干渉する無線周波数エネルギーを放送することによって電磁ビームが放射される。アクティブ電子走査アレイ(AESA)は、送信機と受信機(トランシーバ)の機能が多数の小さな固体送信/受信モジュール(TRM)又はコンポーネントで構成されているフェイズド・アレイ・アンテナの一種である。AESAアンテナは、各モジュールからの複数の電波がアンテナの前方のある角度において建設的に干渉するように、各モジュールから位相シフト又は時間遅延された個々の電波を放射することにより、それらのビームをめざす。
【0004】
典型的には、従来のAESAの基本的な構成ブロックは、送受信モジュール又はTRモジュールであり、これは、AESAアンテナ素子を形成するようにパッケージ化することができ、放射器、受信機低雑音増幅器(LNA)、送信電力増幅器(PA)、及びデジタル制御された位相又は遅延及び利得コンポーネントを含むことができる。これらのTRモジュールのいくつかは、レーダ信号を送受信するためのグリッド形式でアンテナパネル上に配置される。送信/受信利得及び位相のデジタル制御により、AESAアンテナは、アンテナパネルを物理的に移動させることなく、得られるアンテナビームを操縦又はポイントすることができる。典型的な現代の低コストAESAアンテナパネルは、LNA、PA及び位相/利得制御回路をすべて単一のプリント回路基板(PCB)上に含む、表面実装のモノリシックマイクロ波集積回路(MMIC)に接続されたプリント回路放射器を使用する。
【0005】
典型的には、アンテナ・アレイは、プラットフォーム又はハウジング内で設計され、プラットフォームの構造要素を変更することによって、周波数及び利得のためにサイズを決めなければならない。例えば、より大きなアンテナ素子がより低い周波数に必要であり、より小さなアンテナ素子がより高い周波数に必要であり、一方、アンテナ素子の数を増加させることが、アンテナ利得を増加させるために必要である。しかしながら、アンテナプラットフォームは、一般に固定構造であり、一般に、設計のそのような変更又は改良に対応するように修正することができず、したがって、周波数範囲及びゲインの調整を容易に行うことができない。さらに、これらのアンテナ・アレイは、特に特定の周波数、利得、偏波、ビーム幅、及び他の要件のために構築されるので、設計変更又は性能改善を行うためのリードタイムは非常に長い。
【0006】
図2は、従来のレーダ・アンテナ・アレイの典型的なアーキテクチャを示す。図示のように、複数の電力及びビーム形成構築ブロック204/206は、行及び列でアレイ200として配置される。各モジュール構築ブロック(Modular Building Block, MBB)206は、多数の送信/受信統合マルチチャネルモジュールカード(TRIMM)、並びにそれらの関連電力及び信号電子カードを含むことができ、例えば、24個のTRIMM、シンセサイザカード、DREX(Digital Receiver Exciter)カード、及び補助電力制御カードを含む。これらのアーキテクチャでは、各個々のTRIMMカードは、モジュラー構築ブロック、この例では、24個のライン交換可能ユニット(LRU)レベルにおいて、モジュール式であると同様に、交換可能であってもよい。その結果、これらの設計は、各レーダのサイズと性能のために新しいユニークなアレイ構造と背面構造を必要とし、大規模なリワークなしには後日容易にサイズをアップグレードすることができない。(24個のTRIMMの)各LRUブロックに対する電力及びビーム形成ネットワークは、既存の電力、信号及び熱管理システムに対して、既存のアンテナシステムに追加のモジュール構成ブロックを追加するために、広範な修正を必要とする。
【0007】
さらに、これらのアーキテクチャは、アクティブアンテナ領域及びアレイのエッジ202を越えて延在する構造、サポート電子機器及び熱管理サブシステムを特徴とし、従って、広範な再設計なしに、追加のアレイ構築ブロックを追加することができない。
【0008】
これらの従来のアンテナアーキテクチャは、アンテナのアクティブ領域を越えて延在する構造及び支持エレクトロニクスを有するので、これは、レーダ性能に悪影響を及ぼす放射素子格子パターンの混乱を生じさせるので、あるアンテナを別のアンテナの上又は隣に積層することは実用的ではない。加えて、多くのレガシーシステムでは、電力及びビーム形成は、1つの構築ブロックから別の構築ブロックへ重複するため、アンテナをスタックすることが不可能である。その結果、構造、相互接続、及び熱管理インフラストラクチャは、アンテナのサイズを変更するために広範に再設計される必要がある。
【課題を解決するための手段】
【0009】
いくつかの実施形態において、開示された発明は、単一のアンテナ・アレイとして一緒に組み立てられた複数のモジュラ・アンテナ・アレイ・ブロックと、アレイ・プレートを含むアレイ面と、単一のモノリシック・アレイ面を形成するようにインターロックかつ整列された各モジュラブロックのための放射器とを含むモジュール式フェイズド・アレイ・アンテナである。各モジュラ・アンテナ・アレイ・ブロックは、複数の送信/受信統合マルチチャネルモジュール(TRIMM)カードを含み、各TRIMMカードは、電力及びビーム形成信号を含み、ここで、電力及びビーム形成信号は、各モジュラ・アンテナ・アレイ・ブロックに並列に接続される。各モジュラ・アンテナ・アレイ・ブロックはさらに、複数の放射器であって、放射器面を有するアンテナ信号を放射するための放射器と、複数の放射器と一体化され、放射器面に直接インターフェースするためのレードームであり、放射器面を越えて延びないレードームと、TRIMMカードを支持するためのフレームとを含む。
【0010】
いくつかの実施形態において、開示された発明は、単一のアンテナ・アレイとして一緒に組み立てられた複数のモジュラ・アンテナ・アレイ・ブロックを含むモジュール式フェイズド・アレイ・アンテナである。各モジュラ・アンテナ・アレイ・ブロックは、複数の送信/受信統合マルチチャネルモジュール(TRIMM)カードを含み、各TRIMMカードは、電力及びビーム形成信号を含み、ここで、電力及びビーム形成信号は、各モジュラ・アンテナ・アレイ・ブロックに並列に接続される。複数の放射器であって、放射器面を有するアンテナ信号を放射するため放射器を含む。複数の放射器と一体化され、放射器面に直接インターフェースするためのレードームであり、放射器面を越えて延びないレードームと、TRIMMカードを支持するためのフレームとを含む。さらに、各モジュラ・アンテナ・アレイ・ブロックは、それ自体の電力カード及び電子カードを含み、スタンドアロンのレーダ・アンテナ・アレイとして構成することができる。
【0011】
いくつかの実施形態において、各モジュラ・アンテナ・アレイ・ブロックは、他のモジュラ・アンテナ・アレイ・ブロックの冷却に関して独立して冷却を受ける。
【0012】
いくつかの実施態様において、フレームは、アルミニウムで作られ、その背面にある鋼で作られた背面構造に取り付けられ、各モジュラ・アンテナ・アレイ・ブロックは、熱膨張係数によるアレイ面の歪みを最小限にするために、フレームと背面構造との間に中間アルミニウムフレームをさらに含む。
【0013】
いくつかの実施形態において、各モジュラ・アンテナ・アレイ・ブロックは、各モジュラ・アンテナ・アレイ構築ブロックを6自由度で調整するために、前記各モジュラ・アンテナ・アレイ構築ブロックの角に配置された複数の調整機構をさらに含む。
【0014】
いくつかの実施形態において、各モジュラ・アンテナ・アレイ・ブロックは、さらに、前記各モジュラ・アンテナ・アレイ・ブロックが、隣接するすべてのモジュラ・アンテナ・アレイ・ブロック及び/又は各前記モジュラ・アンテナ・アレイ・ブロックの位置を調整するように構成された複数のアクチュエータに確実に固定されることを可能にするために、フレームの垂直側及び底部に沿ってネジを切ったボスを含むことができる。
【0015】
本発明のこれら及び他の特徴、態様、及び利点は、以下の説明、添付の特許請求の範囲、及び添付の図面に関してよりよく理解されるであろう。
【図面の簡単な説明】
【0016】
【
図2】従来のレーダ・アンテナ・アレイの典型的なアーキテクチャを示す。
【
図3】開示された本発明のいくつかの実施形態に従った、モジュール式で積層可能なアンテナ・アレイの例示的なアーキテクチャを示す。
【
図4】開示された本発明のいくつかの実施形態に従った、単一のレーダ・アンテナ・アレイとして一緒に組み立てられた複数のモジュール式レーダアセンブリを示す。
【
図5】開示された本発明のいくつかの実施形態に従った、レードーム断面図を有するモジュール式で積層可能なアンテナ・アレイを示す。
【
図6A】開示された本発明のいくつかの実施形態に従った、モジュール式で積層可能なアンテナ・アレイの構築ブロックを示す。
【
図6B】開示された本発明のいくつかの実施形態に従った、モジュール式で積層可能なアンテナ・アレイの構築ブロックを示す。
【
図6C】開示された本発明のいくつかの実施形態に従った、モジュール式で積層可能なアンテナ・アレイの構築ブロックを示す。
【
図7】開示された本発明のいくつかの実施形態に従った、一緒に組み立てられたモジュール式で積層可能なアンテナ・アレイ・ブロックのための例示的なファスナを示す。
【
図8A】開示された本発明のいくつかの実施形態に従った、積み重ねられたMRAを、ベースMRAに対して位置決めするためのいくつかの例示的なアクチュエータを示す。
【
図8B】開示された本発明のいくつかの実施形態に従った、積み重ねられたMRAを、ベースMRAに対して位置決めするためのいくつかの例示的なアクチュエータを示す。
【
図8C】開示された本発明のいくつかの実施形態に従った、積み重ねられたMRAを、ベースMRAに対して位置決めするためのいくつかの例示的なアクチュエータを示す。
【
図9A】開示された本発明のいくつかの実施形態に従った、MRAの整合のためのガイドとしてのボアスコープを示す。
【
図9B】開示された本発明のいくつかの実施形態に従った、MRAの整合のためのガイドとしてのボアスコープを示す。
【
図10A】開示された本発明のいくつかの実施形態に従った、放射器を取り付けたアレイ・プレート800内のインターロック接合部を示す。
【
図10B】開示された本発明のいくつかの実施形態に従った、放射器を取り付けたアレイ・プレート800内のインターロック接合部を示す。
【
図11A】開示された本発明のいくつかの実施形態に従った、積層レーダ構造の重量を支持するための熱支持ブロックを示す図である。
【
図11B】開示された本発明のいくつかの実施形態に従った、積層レーダ構造の重量を支持するための熱支持ブロックを示す図である。
【
図12A】開示された本発明のいくつかの実施形態に従った、ずれ補償のためのファスナを示す。
【
図12B】開示された本発明のいくつかの実施形態に従った、ずれ補償のためのファスナを示す。
【
図13A】開示された本発明のいくつかの実施形態に従った、背面構造のサイズ及び構成の一例を示す。
【
図13B】開示された本発明のいくつかの実施形態に従った、背面構造のサイズ及び構成の一例を示す。
【
図14】開示された本発明のいくつかの実施形態に従った、スライドを容易にするために垂直調整アクチュエータの下に取り付けられたパッドを示す。
【
図15】開示された本発明のいくつかの実施形態に従った、上部レーダ構成ブロック構造と下部レーダ構成ブロック構造との間のボルト接続されたインターフェースを示す。
【発明を実施するための形態】
【0017】
いくつかの実施形態では、開示された発明は、モジュール式で積層可能なの1つ以上のアンテナである。
図3は、開示された本発明のいくつかの実施形態による、モジュール式で積層可能なアンテナ・アレイ又はモジュール式フェイズド・アレイ・アンテナ300のアーキテクチャを示す。図示のように、アンテナ・アレイ300は、4つのモジュール式及び積層型アンテナ・アレイ・ブロック306を含む。各モジュラアンテナ・アレイ・ブロック306は、モジュラブロック306によって示されるように、複数のアンテナ素子(例えば、302)を含む。各モジュール式で積層可能なアンテナ・アレイ構築ブロック306は、多数の送信/受信統合マルチチャネルモジュール(TRIMM)カード、及びそれらの関連する電力及び信号電子カードを含むことができる、電力及び信号電子カードは、それ自身の自己支持構造を有する、完全に機能するスタンドアロンのレーダ・アンテナ・アレイである。
【0018】
いくつかの実施形態では、モジュール式アンテナ構造及び支持電子機器302は、アクティブアンテナ領域306の背後の空間内に存在し、アンテナ・アレイ・ブロックの1つを別のアンテナ・アレイ・ブロックの頂部又は隣に積み重ねて、アンテナ・アレイの格子間隔を中断することなく、単一のより大きなモノリシックアンテナを生成することを可能にする。電力、冷却及びビーム形成304は、各モジュラアンテナ・アレイ・ブロックに並列に接続され、従って、隣接するアンテナ・アレイ・ブロックに対する1つのアンテナ・アレイ・ブロックの依存性を排除する。換言すれば、各構成ブロックは、並列に冷却剤、電力、及び制御信号を受け取り、従って、電力及びビーム形成回路は、各ブロックに対して内部であり、モジュール構成ブロック間の任意のビーム形成RF相互接続を排除する。
【0019】
モジュール式アンテナブロック及び積層可能なアンテナブロックは、異なる用途によって要求されるように、任意の所望のサイズのアンテナ・アレイ300を生成し、従って、アンテナ・アレイのサイズ及び感度を容易に増加させ、従って、アンテナ・アレイの能力を維持しつつ、初期投資コストを最小化するために、一緒に組み合わせられてもよい。モジュール式及び積層可能なアンテナブロックは、アセンブルされたアレイサイズに関係なく、同一の動作を行う。このようにして、追加のアンテナブロックを、既存のシステムの構造、支援電子機器、又は熱管理に影響を与えることなく、後に追加することができる。
【0020】
図4は、開示された本発明のいくつかの実施形態に従った、単一のレーダ・アンテナ・アレイ400として一緒に組み立てられた複数のモジュール式レーダアセンブリ(Modular
Radar Assemblies, MRA)を示す。図示されるように、各MRA 402は、他のMRAと同じ構造を有し、同じように動作し、結果として、アンテナ構築ブロック・レベルでモジュール化され、スケーラブルである単一アンテナ・アレイ400を生じる。いくつかの実施形態では、単一アンテナ・アレイ400全体のアレイ構造は、各基本MRA構築ブロックの構造に固有の構造から構成され、従って、単一アンテナ・アレイ400を作成するためにMRA構築ブロック402を組み立てるために追加の構造は必要とされない。さらに、各MRAは、(他のMRAに関して)並列に、冷却、電力及び制御信号を受信する。アレイ面404は、各MRA構造402に固有のアライメントフィーチャを使用して、各MRA 406の面をアライメントすることによって生成され、単一の均一なアンテナ・アレイ面を生成する。
【0021】
図5は、開示された本発明のいくつかの実施形態に従った、レードーム断面図を有するモジュール式で積層可能なアンテナ・アレイ500を示す。図示のように、モジュール式で積層可能なアンテナ・アレイ500は、各モジュール式構築ブロック内の放射器506
(の一部分)と一体化され
た新しいレードーム設計を利用する。
図示されているように、各放射器506及びその一体化されたレードーム502は、アレイ面504上に取り付けられている。アレイの活性面を越えて延在する構造的取付具を有するレードーム設計とは異なり、開示された本発明の新規なレードーム設計は、各MRA (ここでは、3つのMRAが示されている)について
放射器506の面、すなわち放射器面に直接インターフェースし、MRAの格子間隔内に適合するので、MRAは、全体のアレイの格子間隔又はRF性能に影響を及ぼすことなく、互いに隣接して積み重ねられ又は配置され得る。
【0022】
集積化されたレードーム502は、放射器の周囲の余分な構造に取り付けるのではなく、複数の放射要素から成る放射器組立体506と同じサイズであり、放射器組立体に直接取り付ける。集積化されたレードームは、アレイ構造が、活性アレイ面504のエッジを越えて延在するのではなく、活性アレイ面504と同じサイズであることを可能にする。MRA構造は、アレイ面504の活性領域を越えて延在しないので、モジュール式構築ブロックは、隣接する積み重ねられたモジュール式構築ブロック間のブロック間隔に中断がなく積み重ねることができる。すべてのモジュール式の構築ブロックは、アレイのサイズに関係なく、同じ方法で動作できる。
【0023】
対照的に、多くの従来のアンテナ・アレイは、
図2に示すように、放射器から独立したレードームを使用し、従って、放射器組立体ボルトを構成し、能動的放射領域のエッジを越えて延在する。構造は、アクティブ放射領域をはるかに越えて広がる必要があるので、一方のアレイが他方のアレイの上に積み重ねられるとき、一方のアレイのアクティブエレメントと他方のアレイのアクティブエレメントとの間に大きなギャップが生じる。一体レードームは、隣接する積み重ねられたモジュラー構築ブロック間の単位セル間隔に中断無しに、モジュラー積層アプローチを可能にし、これは、システムのRF性能に有害である。
【0024】
図6A、6B及び6Cは、開示された本発明のいくつかの実施形態に従った、モジュール式で積層可能なアンテナ・アレイの
構築ブロック600を示す。
構築ブロック600は、放射器、ビーム形成器、TRIMM、DREX、及びAC/DC電力変換を含む、アンテナの電子ハードウェア及び機能の全てを含む。これらの構成要素は並列に動作し、レーダの感度、性能、及びサイズを調整するために一緒に加えることができる独立した(より小さい)レーダである。従って、従来のアンテナアレイシステムとは対照的に、DREXは、モジュール式で積層可能なレーダ・アンテナ・アレイ内に分散される。この例では、アンテナ・アレイ構築ブロック600は、そのレーダ面に30MBB 602を含む。
中間アルミニウムフレーム604は、30MBB 602と、背面構造606とのインターフェースとを支持し、位置合わせする。いくつかの実施態様において、フレーム604は、アレイ面602とシステムの残りの部分との間の熱膨張の問題に対処するためにアルミニウムで構成される。典型的には鋼製の背面構造606は、MBBを追加的に支持し、後端電子回路608及び各モジュール
構築ブロック600を駆動するために使用される熱管理システムのための位置を提供する。
【0025】
いくつかの実施態様において、アルミニウムフレーム610と鋼背面構造606との間の熱膨張係数(CTE)不整合によるアレイ面の歪みを最小限にするために、中間アルミニウムフレーム604が2つの間に嵌合する。この中間構造は、アレイ面に対する偏向バッファとして作用し、この場合、中間フレームは、熱膨張中に必要なだけ偏向するように、アレイ面にこれらの偏向を伝達する(システム性能に影響を与え得る)ことのないような方法で構成され、取り付けられる。ビーム形成器、TRIMM、DREX、及びAC/DC電力変換を含むアンテナの電子ハードウェア及び機能は、モジュール式で容易に交換可能なラック609に収容される。モジュラー構築ブロック600のコーナーに配置された複数の調整機構612は、構築ブロックの6自由度の調整を可能にする。フランジ付きインターフェース614は、(フロント)フレームと背面構造との間の物理的インターフェースを提供し、一方、MBBを支持し整列させるMBBハウジング(アルミニウムフレーム)610への前方アクセスを可能にし、メンテナンスのために各個々のMBBにアクセスする。
【0026】
レーダ構築ブロック600は、
図6Cに示すように、複数の前方調整/整列機構612a及び後方調整機構612bによって、より大きなレーダーアレイ面を形成するために垂直及び/又は水平に積み重ねることができる。いくつかの実施形態では、開示された本発明は、各アンテナモジュールを設置するために、独特の三次元(3D)位置合わせ機構を利用する。背面構造の各コーナーに配置された3D整合機構612a及び612bは、6自由度(x、y、z及び回転)すべての調整を可能にし、適切な位置決めを確実にする。セクション整列は、手動又は自動で実施することができる。
【0027】
図7は、開示された本発明のいくつかの実施形態に従った、一緒に組み立てられたモジュール式で積層可能なアンテナ・アレイ・ブロックのための例示的なファスナを示す。図示のように、各レーダ構成ブロックは、構造MBBハウジング/フレーム704の垂直側に沿って、及びその底部に沿って、ネジ付きボス702を有する。ネジ付きボス702は、各レーダ構成ブロックが互いにしっかりと固定されることを可能にし、一方、アレイ面にわたる許容差の増加を排除する。いくつかの実施態様において、ネジ付きボス702は、レーダ構成ブロックの構造MBBハウジング704に隣接するところにぴったりと当接するまで回転され、ボルトが、ボス706の中心孔を通して配置され、隣接するレーダ構成ブロックにねじ込まれ、各レーダ構成ブロックを隣接するすべての構成ブロックに確実に取り付ける。
【0028】
図8A、8B及び8Cは、開示された本発明のいくつかの実施形態に従った、XY平面及びZ平面内の積層MRAの操作に使用される多数のアクチュエータを示す。図示のように、2つのアクチュエータ801(例えば、ジャッキ)が、y軸に沿った位置を調整するために、ベースMRA 800のスパイン(spine)に沿って配置される。4つのジャッキ802が、MRAの側壁に対して垂直に配置され、x軸に沿った位置を調整し、重心の周りの不要なモーメント誘導を緩和する。ジャッキは、下部MRAの屋根に溶接された表面に固定される。水平に固定された端子を延ばすことにより、積み重ねられたMRAを移動させる。
図8Cに示す4つのジャック、805が、位置合わせ手順の間、積み重ねられたMRAを昇降させるために垂直に取り付けられている。垂直ジャッキとMRAとの間のデルリンパッド(Delrin pads)が、積み重ねられたMRAを容易にXY平面に沿ってスライドさせることを可能にする。
【0029】
図8Aに示すように、MRAの床梁(floor joists)803が、位置合わせ手順中にジャッキに干渉しないように配向される。床及びアクチュエータ(例えばジャッキ)のレイアウトは、MRAの構造的完全性を維持しつつ、アクセスを容易にする。いくつかの実施態様において、MRA背面構造の周囲は、ジャッキフットに反応する大きな表面積を提供するために、Wフランジビームと反対側に、角管ストック(square tube stock)で作られる。また、
図8Cに示されるように、複数のパッド1401(
図14により詳細に説明される)が、1つのMRAの他のMRAに対するスライドを容易にするために取り付けられる。
【0030】
図9A及び9Bは、開示された本発明のいくつかの実施形態に従った、整列または位置合わせのためのボアスコープの適用を示す。図示のように、ボアスコープのレンズハウジングが、底部MRA 902のターゲット孔と同心である上部MRA 901の孔にねじ込まれる。MRAの位置がずれている場合、穴は同心円状ではない。MRA位置は、上下の穴が同心円状になるまで調整できる。次に、例えばBluetoothボアスコープを用いて、リモートモニタからライブビデオが表示される。オペレータは、
図9Bに示すように、ボアスコープとベースMRA上のターゲット孔との間の同心円を画像が示すまで、適切なジャッキを操作することによって、積み重ねられたMRAを位置合わせするために、その画像を使用することができる。
【0031】
図10A及び10Bは、開示された本発明のいくつかの実施形態に従った、放射器1002が取り付けられたアレイ・プレート1000内のインターロック(interlock)接合部を示す。アレイ・プレート1000は、放射器とアンテナ電子ハードウェアとの間で、アンテナ・アレイ
構築ブロック600の前面に取り付けられる。アレイ・プレートの上部及び下部に配置されたジョイント1003は、整合(整列)を達成するために調整を可能にし、頑丈な構造ジョイントを作り出し、放射器電子ハードウェアを保護するように作用する特徴の組み合わせで構成される。
【0032】
放射器が取り付けられているアレイ・プレート1000の平坦度は、RF波が放射される角度を決定し、各アレイ・プレートを所定の平坦度許容値まで「平坦」に保持し、RF波がアンテナ・アレイの前方の所定の角度で建設的に干渉することを確実にする。複数のレーダ構成ブロックを積み重ねることは、この平坦度要件に対するさらなる挑戦をもたらす。なぜなら、個々のアレイ面は、1つの均一なコプラナー(coplanar)アレイ面を形成するために、互いの面と正確に整列する必要があるからである。アレイ・プレートは、各モジュラアンテナ・アレイ・ブロックの正面に取り付けられており、複数のインターロックジョイント、例えば、アレイ・プレートの上部及び下部に配置された重ね継手(lap joint)又は舌状部及び溝(tongue and groove feature)のような複数のインターロックジョイントが、前記各モジュラアンテナ・アレイ・ブロックの調整及び位置合わせを可能にするように構成されている。例えば、内蔵の舌状部及び溝ジョイント1003が、この整列の調整を可能にする。いくつかの実施形態では、レーダ構成ブロックの背面を操作して、上方アレイ・プレートを下方アレイ・プレート上に旋回(pivot)させ、整合を達成することができる。
【0033】
電子ハードウェアの近接性のために、アレイの前面にはかなりの量の重量負荷があり、アレイ・プレート1000は、この重量負荷に対する負荷経路として機能する。このジョイントの舌状部及び溝の特徴は、各アレイ・プレートをその上下のものにインターロックするように作用する。これは、相互接続されたアレイ・プレートが、ファスナを使用することなく、負荷がスムーズに通過することができるモノリシック構造のように作用するのを助ける。さらに、このジョイントの舌状溝特徴は、
図10Bに示すように、アレイがかなりの角度で後ろに傾いているにもかかわらず、上部アレイ1010が下部アレイ1012に対して垂直に組み立てられるように設計される。
【0034】
舌と溝の特徴に加えて、アレイ・プレート接合部は、放射器キャステレイション(castellation)にマッチするようにキャステレイト(castellate)される。アレイ・プレートは、アレイ・プレートが常に放射器から突き出るように位置するように設計され、組立及び整列の間に放射器と放射器との接触を防止し、放射器を損傷するリスクを大幅に低減する。
【0035】
図11A及び11Bは、開示された本発明のいくつかの実施形態に従った、温度変動及び構造を構成する材料の異なる熱特性による歪み又は偏向(deflection)を許容する一方で、積層レーダ構造の重量を支持する熱支持ブロック1100を示す。アルミニウム、鋼及びコンクリート構造物は、それぞれ異なる熱膨張係数(CTE)を有する。これは、外部環境による温度変化や、メンテナンスのためにレーダが停止した場合には、それぞれの材料が異なる速度で成長し、収縮することを意味する。従って、これらのボルト接合部は、これらの熱的歪みによって誘発される応力に耐えられないので、構造は、地面に単純にボルト接合することはできない。
【0036】
熱支持ブロックは、一方向に沿って柔軟(compliant)であり、他方の2方向に剛性があるように設計される。それらは、各ブロックの柔軟方向が、構造内の単一の「熱中心」に直接向けられるように配置される。いくつかの実施形態では、2つのタイプの熱支持ブロック、すなわち、第1の設計1100は、アレイ・プレートを通る負荷経路を完成するためにアレイ傾斜角を組み込んでおり、第2の設計1101は、積み重ねられたレーダ構造の平坦な領域の下に位置するより単純な格子構造である。これらのブロックは、構造を維持しながら、最悪の場合の熱シナリオにおいて、積層レーダ構造の自由な歪みを許容する。
【0037】
図12A及び12Bは、開示された本発明のいくつかの実施形態に従った、MRA間の整合公差を補償するために、3つの自由度を受容するように構成されたブラケットを示す。ブラケット位置は、
図6Cにおいて612a及び612bとして示される。3個の部分アセンブリが、タップ付きブロック1202、スロット付きcチャネル1204、及び二軸スロット付き角度ブラケット1206を含む。スロット付きcチャンネル1204は、積み重ねられたMRAのバックエンドトラス加工品に溶接される。タップ付きブロック1202は、cチャネル1204のスロット1205内で垂直運動を提供する。水平運動は、角度ブラケット1206内の2つのスロット1207を使用して達成される。加えて、角度ブラケット1206は、その方向の非整合に対処するために、ベースにスロット1208を有する。
【0038】
図13A及び13Bは、開示された本発明のいくつかの実施形態に従った、背面構造のサイズ及び構成の例を示す。
図13Aはベース(底部)スタックを示し、
図13Bは、頂部スタックを示す。いくつかの実施態様において、両方のスタックは、構造用鋼で構成され、全てのジョイント及びシーム(seams)は、連続的に溶接される。これは、EMI及び高高度電磁パルス(HEMP)シールドだけでなく、環境シールドを提供する。構造は、必要な整合(ジャッキング)及び固定ポイントへのアクセス(設置後)を可能にし、静的(積み重ねられるなど)及び動的(地震や風などの)負荷要件を満たすように設計されている。
【0039】
図14は、開示された本発明のいくつかの実施形態に従った、スライドを容易にするために垂直調整ジャッキの下に取り付けられたパッドを示す。図示のように、Delrin(商標)のような低摩擦材料で作製され得るパッド1401は、垂直調整ジャッキの下に取り付けられ、1つのMRAの他のMRAに対するスライドを容易にする。この低摩擦インターフェースは、1つのレーダ構成ブロック構造を別のレーダ構成ブロックに対して移動させるのに必要な力を著しく減少させるので、より正確な調整が可能になる。
【0040】
図15は、開示された本発明のいくつかの実施形態に従った、上方レーダ構築ブロック構造/フレームと下方レーダ構築ブロック構造/フレームとの間のボルト接続されたインターフェースを示す。図示のように、ボルト・インターフェースは、圧縮ボルト1501及び引っ張りボルト1502を含む。圧縮ボルト1501は、上方MRA構造1503のタップ孔を貫通してねじ込み、下方MRA構造1504のハードポイントの底部を突き抜ける。このボルトは、レーダ構造を通る負荷経路を提供し、下方構造と上方構造との間に必要なギャップを維持する。引張ボルト1502は、上方構造1503内にクリアランス孔を有し、下方構造1504内にタップ孔を有する。このボルトは、構造物/フレームを一緒に引き出して保持し、構造物/フレームが分離しないように構成される。
【0041】
開示された本発明のアーキテクチャは、レーダ構成ブロックを垂直方向及び/又は水平方向に積み重ね、組み立てて、大型で高性能のレーダシステムを形成することを可能にし、これは、追加的構成ブロックを追加することによって、後日、能力を増大させ、レーダー・ダウン・タイムを最小化し、大型化し、レーダシステムを迅速に展開し、利用可能な重要機器を可能な限り速やかに取得することによって、大型化することができる。
【0042】
開示された本発明のアプローチは、レーダシステムをモジュール化し、アレイレベルでスケーラブルにすることを可能にする。レーダモジュールアセンブリセクションは、基本的な構成ブロックとなり、放射器、ビーム形成器、TRIMM、DREX、及び電力変換を含む、アンテナの電子ハードウェア及び機能のすべてを含む。いったん組み立てられると、それらは組み合わされてフルサイズのレーダ・アンテナ・アレイとなり、自立的な構造の構成ブロックとなる。各モジュール構成ブロックは、冷却剤、電力、及び制御信号を並列に受信し、スタンドアロンのミニレーダである。個々の構築ブロックは、エレクトロニクスと統合され、敷地外で試験され、その後、設置のために展開領域に搬送され得る。
【0043】
展開現場に到着すると、構築ブロックは、到着時に垂直方向及び水平方向に組み立てられ、適切な位置に位置合わせされて、フルサイズのレーダ・アンテナ・アレイを作成することができる。これは、必要なときに能力をアップグレードする能力を維持しながら、初期コストを最小限に抑える。また、このアプローチは、戦術的に重要な機器の重要な要件である、より大きなサイズに成長させている間のレーダーダウン時間を最小限に抑える。また、レーダシステムは、すべてのエレクトロニクスがオンサイトで統合されているシステムよりも速く配備することができ、したがって、構成要素がテスト済みの優れた機器として配備サイトに配布されるため、重要な機器が利用可能となるのに要する時間を短縮することができる。
【0044】
当業者であれば、本発明の広範な進歩性から逸脱することなく、上述の本発明の図示の実施形態及び他の実施形態に種々の修正を加えることができることを理解するであろう。従って、本発明は、開示された特定の実施形態又は構成に限定されるものではなく、添付の図面及び特許請求の範囲によって定義される本発明の範囲内の任意の変更、適合又は修正をカバーすることを意図するものであることが理解されるであろう。