IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ マイティ ビルディングス インコーポレーテッドの特許一覧

特許7423756アディティブ製造法のための二重媒介重合可能複合物
<>
  • 特許-アディティブ製造法のための二重媒介重合可能複合物 図1
  • 特許-アディティブ製造法のための二重媒介重合可能複合物 図2
  • 特許-アディティブ製造法のための二重媒介重合可能複合物 図3
  • 特許-アディティブ製造法のための二重媒介重合可能複合物 図4
  • 特許-アディティブ製造法のための二重媒介重合可能複合物 図5
  • 特許-アディティブ製造法のための二重媒介重合可能複合物 図6
  • 特許-アディティブ製造法のための二重媒介重合可能複合物 図7
  • 特許-アディティブ製造法のための二重媒介重合可能複合物 図8
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-01-19
(45)【発行日】2024-01-29
(54)【発明の名称】アディティブ製造法のための二重媒介重合可能複合物
(51)【国際特許分類】
   B29C 64/314 20170101AFI20240122BHJP
   B29C 64/106 20170101ALI20240122BHJP
【FI】
B29C64/314
B29C64/106
【請求項の数】 20
(21)【出願番号】P 2022509066
(86)(22)【出願日】2020-06-26
(65)【公表番号】
(43)【公表日】2022-10-19
(86)【国際出願番号】 US2020039997
(87)【国際公開番号】W WO2021029975
(87)【国際公開日】2021-02-18
【審査請求日】2023-06-23
(31)【優先権主張番号】16/541,027
(32)【優先日】2019-08-14
(33)【優先権主張国・地域又は機関】US
【早期審査対象出願】
(73)【特許権者】
【識別番号】521473077
【氏名又は名称】マイティ ビルディングス インコーポレーテッド
(74)【代理人】
【識別番号】100109896
【弁理士】
【氏名又は名称】森 友宏
(72)【発明者】
【氏名】コルシコフ,ワシリー
(72)【発明者】
【氏名】トルーシナ,アナ
(72)【発明者】
【氏名】スタロドゥプツェフ,ドミトリー
(72)【発明者】
【氏名】ソロニーツィン,スラヴァ
(72)【発明者】
【氏名】コワリョフ,イゴール
(72)【発明者】
【氏名】ダボフ,アレクセイ
(72)【発明者】
【氏名】イワノワ,アナ
【審査官】関口 貴夫
(56)【参考文献】
【文献】米国特許出願公開第2007/0241482(US,A1)
【文献】米国特許出願公開第2011/0187022(US,A1)
【文献】特表2003-531220(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B29C 64/00-64/40
B33Y 10/00-99/00
(57)【特許請求の範囲】
【請求項1】
3D印刷システム用の光ポリマ複合材料のための配合物であって、
前記配合物の約10.0~30.0w%の範囲のアクリル酸塩モノマ及びアクリル酸塩オリゴマのうち少なくとも一方と、
記配合物の約5.0~30.0w%の範囲の四ホウ酸二ナトリウム十水和物と、
前記配合物の約50.0~80.0w%の範囲の補強充填剤と、
前記配合物の約0.001~0.2w%の範囲の紫外光(UV)開始剤と、
前記配合物の約0.001~0.05w%の範囲の熱開始剤と、
前記配合物の約0.001~0.05w%の範囲の共開始剤と
を含む、配合物。
【請求項2】
前記配合物の約0.001~0.05w%の範囲の染料又は顔料をさらに含む、請求項1の配合物。
【請求項3】
前記アクリル酸塩オリゴマは、トリエチレングリコールジメタクリレート(TEGDMA)である、請求項1の配合物。
【請求項4】
前記TEGDMAは、前記配合物の約10.0~30.0w%の範囲である、請求項3の配合物。
【請求項5】
前記補強充填剤は、少なくとも酸化アルミニウム三水和物又は炭酸カルシウム、滑石、シリカ、ウォラストナイト、硫酸カルシウム繊維、雲母、ガラスビーズ、ガラス繊維、又はこれらの組み合わせのうち少なくとも1つとの酸化アルミニウム三水和物混合物を含む、請求項1の配合物。
【請求項6】
前記UV開始剤は、ビスアシルフォスフィンオキサイド(BAPO)である、請求項1の配合物。
【請求項7】
前記熱開始剤は、過酸化ベンゾイルである、請求項1の配合物。
【請求項8】
前記共開始剤は、N,N-ビス-(2-ヒドロキシエチル)-パラ-トルイジンである、請求項1の配合物。
【請求項9】
3D印刷システムにおいて使用される光ポリマ複合材料の配合物を生成する方法であって、
ブレンダ内の前記配合物の約10.0~30.0w%の範囲のアクリル酸塩モノマ及びアクリル酸塩オリゴマのうち少なくとも一方と、前記配合物の約0.001~0.2w%の範囲の紫外光(UV)開始剤と、前記配合物の約0.001~0.05w%の範囲の共開始剤と、記配合物の約5.0~30.0w%の範囲の四ホウ酸二ナトリウム十水和物と、前記配合物の約50.0~80.0w%の範囲の補強充填剤と、
第1の期間中、前記ブレンダの作用により前記アクリル酸塩オリゴマ、前記UV開始剤、前記四ホウ酸二ナトリウム十水和物、前記共開始剤、及び前記補強充填剤を混ぜ合わせることにより樹脂プレミックスを生成し、
前記樹脂プレミックスを前記ブレンダ内で前記配合物の約0.001~0.05w%の範囲の熱開始剤と化合させ、
第2の期間中、前記ブレンダの作用により前記熱開始剤及び前記樹脂プレミックスを混ぜ合わせることにより光ポリマ複合樹脂を生成する、
方法。
【請求項10】
さらに、
前記ブレンダから前記3D印刷システムの混合タンクに前記光ポリマ複合樹脂を充填する、
請求項9の方法。
【請求項11】
さらに、
前記樹脂プレミックスを前記ブレンダ内で前記配合物の約0.001~0.05w%の範囲の染料又は顔料と化合させる、
請求項10の方法。
【請求項12】
前記アクリル酸塩オリゴマは、トリエチレングリコールジメタクリレート(TEGDMA)であり、前記配合物の約10.0~30.0w%の範囲である、請求項9の方法。
【請求項13】
前記アクリル酸塩オリゴマは、トリメチロールプロパントリメタクリラート(TMPTMA)であり、前記配合物の約10.0~30.0w%の範囲である、請求項9の方法。
【請求項14】
前記アクリル酸塩オリゴマは、トリメチロールプロパントリメタクリラート(TMPTMA)とトリエチレングリコールジメタクリレート(TEGDMA)の混合物であり、前記配合物の約10.0~30.0w%の範囲である、請求項9の方法。
【請求項15】
前記アクリル酸塩オリゴマは、ポリエチレングリコールジメタクリレート(PEGDMA)であり、前記配合物の約10.0~30.0w%の範囲である、請求項9の方法。
【請求項16】
前記補強充填剤は、少なくとも酸化アルミニウム三水和物又は炭酸カルシウム、滑石、シリカ、ウォラストナイト、硫酸カルシウム繊維、雲母、ガラスビーズ、ガラス繊維、又はこれらの組み合わせのうち少なくとも1つとの酸化アルミニウム三水和物混合物を含む、請求項9の方法。
【請求項17】
前記UV開始剤は、ビスアシルフォスフィンオキサイド(BAPO)である、請求項9の方法。
【請求項18】
前記第1の期間は、約5から20分の範囲である、請求項9の方法。
【請求項19】
前記熱開始剤は、少なくとも部分的にアクリル酸塩モノマに溶解して液体熱開始剤を形成し、前記樹脂プレミックスは、前記液体熱開始剤と化合し、前記第2の期間は、約5秒から60秒の範囲である、請求項9の方法。
【請求項20】
前記熱開始剤は粉体であり、前記第2の期間は、約30秒から5分の範囲である、請求項9の方法。
【発明の詳細な説明】
【関連出願】
【0001】
本出願は、2018年2月14日に提出された米国仮特許出願第62/630,725号の利益を主張する、2019年2月14日に提出された米国特許出願第16/276,521号の一部継続出願である。すべての先行する出願の内容は、その全体が参照により本明細書に組み込まれる。
【背景】
【0002】
アディティブ製造法としても知られる三次元(3D)印刷は、必要される場所にのみ材料を積層していく手法であり、このため、典型的には大きな材料から材料を削減又は除去することにより部品を形成する、これまでの製造手法よりも材料の消耗が著しく少ない。3D印刷された物は一般的に模型であったが、ヒンジや工具、構造的な要素のような、より複雑なシステムにおける機能的部品になり得る3D印刷物を生成することにより産業界が急速に進歩している。
【0003】
既存の3D印刷プロセスにおいては、型込めすることなくコンピュータ制御の下で材料層を形成することにより3Dの物体が生成される。例えば、コンピュータ3Dモデリングフラグメンテーションを用いて、ある構造の3D情報が決定され、調製された混合物を機械制御によってノズルから供給してその構造を印刷することができる。
【0004】
3D印刷における1つの大きな問題及び課題は、ある用途における条件を満たす印刷材料が非常に乏しいことがある点である。例えば、既存の印刷材料は主に有機材料である。有機材料が高温で溶融した状態で1層ごとの積層によって印刷される。有機材料のキュアリングは酸化分解の傾向があり、調製及び印刷プロセスにおいては、環境や人間の健康を害する、好ましくない有害ガスが生じ得る。加えて、有機材料は、高コストな要求の多い条件下で印刷されることがある。有機材料を用いて印刷された構造は、機械的特性に劣ることがあるため、住居の建築のような用途には適しておらず、このため、3D印刷技術の用途をある程度制限するものとなっている。
【0005】
印刷材料の他の例は、コンクリートのようなセメント系材料である。セメント系材料は、一般的に固化するのに長い時間を必要とする。このため、そのような材料は、一般的に、短期間で材料を急速に固化させることを求める性能条件を満たすことができない。配合物を変えることにより固化の速度を上げることができるが、そのような上昇は通常限られているか、制御することが難しく、建設現場で建物を建てるときのような状況に対して3D印刷は不可能なものとなっている。
【0006】
上記の観点から、改良及び/又は3D印刷材料及びプロセスを改良するための別の解決法又は追加の解決法に対する需要が存在する。
【0007】
従来のアディティブ又は三次元製造法においては、三次元物体の構築が段階的に又は一層ごとに行われる。特に、可視光又はUV光照射の作用の下での光硬化性樹脂の固化を通じて層の形成が行われる。以下の2つの手法が知られている。1つは、成長する物体の上面に新しい層が形成される方法であり。もう1つは、成長する物体の底面に新しい層が形成される方法である。光重合としても知られる光化学キュアリングは、アディティブ製造において安価で効率的な方法である。
【0008】
光キュアリングの主な欠点は、照射される材料への光の照射の透過が制限されることである。これは、材料に機能的な特性を与えるためによく用いられる色の付いた添加物、半透明の添加物、又は不透明な添加物が存在する場合にはもっと制限される。ポリマ材料を用いる公知の層積層印刷プロセスにおいては、フィラーの組成に埋め込まれるポリママトリクスは、完全な層の固化を行うためにUV光透過深さを十分にできるものでなければならない。
【0009】
光重合に関連する他の問題は、重合の際に不均一な体積収縮が生じ、これにより、印刷されたサンプルにおける残留応力が高くなり、好ましくない反りや曲がりが生じ得る。光重合における大きな体積収縮は、ファンデルワールス力を介した新しい共有結合の形成の結果であり、避けられないものである。結果として、3D印刷中に重合歪みが一層ごとに漸次的に導入され、これにより残留応力が増加する。応力がシステムの構成要素の接着力を超えると、印刷中及び印刷後にミクロ変形又はマクロ変形(クラッキングや層剥離など)が生じる。
【0010】
Retailleau、Ibrahim及びAllonas著「Polymer Chemistry 5」6503(2014年)は、熱重合により促進されるアクリル酸塩のUV硬化重合について述べているが、ここで提案されているシステムは、表面での硬化のために相当な時間を必要とする。このため、これは、アディティブ製造法、特に押出型アディティブ製造法には適するものではない。また、これらの材料をアディティブ製造法にどのように適合できるかについての示唆はない。
【0011】
Rolland及びMenioによる特許出願WO2017040883 Alは、アディティブ製造のための二重硬化シアン酸エステル樹脂について述べている。McCallによる特許出願WO2017112521 Alは、アディティブ製造のための二重硬化ポリウレタン/ポリ尿素含有樹脂について述べている。上記の両出願は、積層光重合、DLP又はCLIP方法と、これに続く熱硬化とを組み合わせて2つの貫入重合体網目構造を形成することについて述べている。この方法の欠点は、2つの連続する段階でアディティブ製造を行う必要があることであり、これにより、製造時間が長くなり、必要とされる作業が多くなり、付加的な設備コストが増加する。
【0012】
したがって、上述した既存の配合物の欠点を解決する新しい複合物を開発する必要がある。
【概要】
【0013】
本開示は、3D印刷システム用の光ポリマ複合材料のための配合物であって、上記配合物の約10.0~30.0w%の範囲のアクリル酸塩モノマ及びアクリル酸塩オリゴマのうち少なくとも一方を含む配合物に関するものである。上記配合物は、上記配合物の約5.0~30.0w%の範囲の無機水和物をさらに含む。上記配合物は、上記配合物の約50.0~80.0w%の範囲の補強充填剤をさらに含む。上記配合物は、上記配合物の約0.001~0.2w%の範囲の紫外光(UV)開始剤をさらに含む。上記配合物は、上記配合物の約0.001~0.05w%の範囲の熱開始剤をさらに含む。最後に、上記配合物は、上記配合物の約0.001~0.05w%の範囲の共開始剤を含む。
【0014】
また、本開示は、3D印刷システムにおいて使用される光ポリマ複合材料の配合物を生成する方法に関するものである。この方法は、上記配合物の約10.0~30.0w%の範囲のアクリル酸塩モノマ及びアクリル酸塩オリゴマのうち少なくとも一方と、上記配合物の約0.001~0.2w%の範囲の紫外光(UV)開始剤と、上記配合物の約0.001~0.05w%の範囲の共開始剤と、上記配合物の約5.0~30.0w%の範囲の無機水和物と、上記配合物の約50.0~80.0w%の範囲の補強充填剤とをブレンダ内に添加することを含む。上記方法は、さらに、第1の期間中、上記ブレンダの作用により上記アクリル酸塩オリゴマ、上記UV開始剤、上記無機水和物、上記共開始剤、及び上記補強充填剤を混ぜ合わせることにより樹脂プレミックスを生成することを含む。上記方法は、さらに、上記樹脂プレミックスを上記ブレンダ内で上記配合物の約0.001~0.05w%の範囲の熱開始剤と化合させることを含む。最後に、上記方法は、第2の期間中、上記ブレンダの作用により上記熱開始剤及び上記樹脂プレミックスを混ぜ合わせることにより光ポリマ複合樹脂を生成することを含む。
【図面の簡単な説明】
【0015】
特定の要素又は作用の議論を簡単に特定するために、参照番号における最上位の数字は、その要素が最初に言及される図番を意味している。
【0016】
図1図1は、一実施形態による最終材料100を示すものである。
【0017】
図2図2は、一実施形態による最終材料200を示すものである。
【0018】
図3図3は、一実施形態による方法300を示すものである。
【0019】
図4図4は、一実施形態によるシステム400を示すものである。
【0020】
図5図5は、一実施形態による方法500を示すものである。
【0021】
図6図6は、一実施形態によるシステム600を示すものである。
【0022】
図7図7は、一実施形態による方法700を示すものである。
【0023】
図8図8は、一実施形態によるセル状構造の概念800を示すものである。
【詳細な説明】
【0024】
光ポリマ複合材料の建築材料は、ポリママトリクスと気孔率が低いモノリシック非晶構造を有する微晶質の無機充填剤の特性を組み合わせる。この材料は、ベースとなる光ポリマを含んでおり、これにより印刷プロセス中に層が互いに化学的に付着することが保証される。3D印刷プロセスにおける材料の1層ごとの堆積により、液体とキュアリングされたポリママトリクスとの間の化学的付着によってそれぞれの新しい硬化可能な層が前層にしっかりと固定される。実験中、光ポリマ複合材料は、1層ごとのキュアリングにより固体のモノリシック構造を形成する。化合物のポリマ及び無機部分が相乗的に作用し、ポリママトリクスは、充填剤粒子をコーティングし、攻撃的な環境曝露(湿気、酸、アルカリなど)から保護するとともに、高い圧縮強さを提供する。また、無機成分の存在により、光ポリマ複合物の塑性が低下し、より高い引っ張り強さが得られる。
【表1】
【0025】
表1を参照すると、3D印刷システム用の光ポリマ複合材料のための配合物は、アクリル酸塩オリゴマ、無機水和物、補強充填剤、及び紫外光(UV)開始剤を含み得る。配合物の一実施形態においては、アクリル酸塩オリゴマは、配合物の約20.0~60.0w%の範囲にあり得る。無機水和物は、配合物の約20.0~70.0w%の範囲にあり得る。補強充填剤は、配合物の5.0~60.0w%の範囲にあり得る。そして、UV開始剤は、配合物の約0.001~0.5w%の範囲にあり得る。
【0026】
構成によっては、アクリル酸塩オリゴマは、トリエチレングリコールジメタクリレート(TEGDMA)であり得る。TEGDMAの一部の特性が表2に記載されている。
【表2】
【0027】
TEGDMAは、架橋剤として用いられる、親水性の低粘度二官能性メタクリルモノマである。TEGDMAは、配合物の約20から60w%の範囲であり得る透明な液体である。
【0028】
構成によっては、有機マトリクスはトリメチロールプロパントリメタクリラート(TMPTMA)であり得る。TMPTMAの一部の特性が表3に記載されている。
【表3】
【0029】
TMPTMAは、広範な数のポリマ架橋機能において好適に使用される親水性の低粘度反応性三官能性メタクリル酸塩である。TMPTMAは、配合物の約10から30w%の範囲であり得る透明な液体である。
【0030】
構成によっては、有機マトリクスは、ポリエチレングリコールジメタクリレート(PEGDMA)であり得る。PEGDMAの一部の特性が表4に記載されている。
【表4】
【0031】
PEGDMAは、親水性長鎖架橋モノマである。PEGDMAは、配合物の約10から30w%の範囲であり得る透明な液体である。
【0032】
構成によっては、無機水和物は四ホウ酸二ナトリウム十水和物であり得る。四ホウ酸二ナトリウム十水和物の一部の特性が表5に記載されている。
【表5】
【0033】
無機水和物は、ホウ酸ナトリウム十水和物のような四ホウ酸二ナトリウム十水和物であり得る。四ホウ酸二ナトリウム十水和物は、工業用の大型袋で提供され得る固体の白い粉体である。四ホウ酸二ナトリウム十水和物は、酸化アルミニウム三水和物と組み合わされる場合には、配合物の約22.0から25.0w%の範囲であり得るが、これに限定されるわけではない。ある実施形態においては、四ホウ酸二ナトリウム十水和物は、配合物の20.0から45.0w%の範囲であり得る。
【0034】
構成によっては、補強充填剤は、少なくとも酸化アルミニウム三水和物又は炭酸カルシウム、滑石、シリカ、ウォラストナイト、硫酸カルシウム繊維、雲母、ガラスビーズ、ガラス繊維、又はこれらの組み合わせのうち少なくとも1つとの酸化アルミニウム三水和物混合物を含んでいる。酸化アルミニウム三水和物混合物と共有され得る酸化アルミニウム三水和物の一部の特性が表6に記載されている。
【表6】
【0035】
酸化アルミニウム三水和物、(水酸化アルミニウム(Al(OH)3))は、アクリル酸塩オリゴマに溶解する固体の白い粉体として提供される。酸化アルミニウム三水和物は、配合物の約52.0から55.0w%の範囲であり得る。
【0036】
構成によっては、UV開始剤は、ビスアシルフォスフィンオキサイド(BAPO)であり得る。BAPOの一部の特性が表7に記載されている。
【表7】
【0037】
UV開始剤は、特定の波長のUV光の下で重合を開始する構成要素である。
【0038】
構成によっては、染料は、配合物の約0.01から0.05w%の範囲であり得る。光ポリマ複合樹脂の特性は、配合物において使用される成分の量に依存し得る。キュアリングされていないときは、材料は揺変性液である。材料は、ポンプにより供給ルートを通って移送された後、押し出され得る。その後、材料はUV光の下で固化する。UV光で露光されると、開始剤と呼ばれる物質が、発熱反応である重合反応を開始する。表8は、光ポリマ複合樹脂の一部の特性を示している。
【表8】
【0039】
構成によっては、液体ポリマ樹脂の濃度は、供給システムの制限を受け得るので、液体ポリマ樹脂の濃度の上限がより高くてもよい。場合によっては、濃度の上限が、配合物に用いられる充填剤の総重量により決定されてもよい。
【0040】
3D印刷システムにおいて用いられる光ポリマ複合材料の配合物を生成する方法は、配合物の約20.0から60.0w%の範囲のアクリル酸塩オリゴマ、配合物の約0.001から0.5w%の範囲の紫外光(UV)開始剤、及び配合物の5.0から60.0w%の範囲の補強充填剤をブレンダ内で化合させることを含み得る。この方法では、約5から20分の範囲にわたる第1の期間中、ブレンダの作用によりアクリル酸塩オリゴマ、UV開始剤、及び補強充填剤を混ぜ合わせることにより樹脂プレミックスが生成され得る。この方法では、樹脂プレミックスは、ブレンダ内の配合物の約20.0から70.0w%の範囲の無機水和物と化合し得る。この方法では、光ポリマ複合樹脂は、約10から14時間の範囲にわたる第2の期間中、ブレンダの作用により無機水和物と樹脂プレミックスを混ぜ合わせることにより生成され得る。
【0041】
場合によっては、ブレンダから3D印刷システムの混合タンクに光ポリマ複合樹脂を充填する。場合によっては、ブレンダから貯留用の第2のドラムに光ポリマ複合樹脂を充填してもよい。その後、光ポリマ複合樹脂は、3時間から7日の範囲の時間の後、第2のドラム内でミキサにより混合されてもよい。その後、混合された光ポリマ複合樹脂は、第2のドラムから3D印刷システムの混合タンクに移送され得る。構成によっては、光ポリマ複合樹脂は、ミキサの作用により第2のドラム内で配合物の約0.01~0.05w%の範囲の染料と化合する。
【0042】
構成によっては、アクリル酸塩オリゴマは、トリエチレングリコールジメタクリレート(TEGDMA)であり、配合物の約23.0から27.0w%の範囲であり得る。構成によっては、無機水和物は、四ホウ酸二ナトリウム十水和物であり、配合物の約22.0から25.0w%の範囲であり得る。構成によっては、補強充填剤は、少なくとも酸化アルミニウム三水和物又は炭酸カルシウム、滑石、シリカ、ウォラストナイト、硫酸カルシウム繊維、雲母、ガラスビーズ、ガラス繊維、又はこれらの組み合わせのうち少なくとも1つとの酸化アルミニウム三水和物混合物を含んでいる。構成によっては、酸化アルミニウム三水和物は、配合物の約52.0から55.0w%の範囲であり得る。構成によっては、UV開始剤は、ビスアシルフォスフィンオキサイド(BAPO)であり得る。
【0043】
本発明は、ポリママトリクス、無機充填剤、及び重合開始剤の錯体を含む新しい組成に関し、安定した一段式3D印刷プロセスを提供するものである。ある実施形態においては、本発明に係る組成は、柔軟な種々の印刷速度を含み得るものであり、ポリママトリクス、半透明の、不透明の、及び着色された粒子を含む異なる性質の鉱物充填剤に埋め込まれ得る。
【0044】
既存の問題を解決するために、光開始剤、熱開始剤及びその他のものを使用することを含む共開始反応システムの使用により二重キュアリングプロセスを行うことができる。二重開始反応システムの適用は、ポリマ材料のオンデマンドのキュアリングの機会を与え得るものである。複合材料は、ポリママトリクスと微晶質の無機充填剤の特性を組み合わせることができる。この材料は、ベースのアクリル酸塩モノマ及び/又はアクリル酸塩オリゴマと、充填剤組成と、光及び熱重合の共開始剤の系とを含み得る。これにより、安定的な印刷プロセスを実現するモノマ/オリゴマの二重キュアリング反応が誘引され得る。
【0045】
3D印刷プロセスにおける材料の1層ごとの堆積により、新たに堆積された層のそれぞれに一貫した光及び熱重合キュアリングがなされ得る。光ポリマ複合樹脂の特性は、配合物において使用される成分の量に依存し得る。キュアリングされていないときは、材料は揺変性液であり得る。材料は、ポンプにより供給ルートを通って移送された後、押し出され得る。UV光で露光されると、光開始剤又はUV開始剤が重合反応を始めて、コアはキュアリングされないままであるが、堆積された層の表面にキュアリングされた外皮が形成され得る。外皮のUVキュアリングを介して、新しく堆積した層のそれぞれが前層にしっかりと付着し、層の寸法と形態が保持され得る。
【0046】
熱開始剤と適切な促進剤(共開始剤)を組み合わせることで熱重合が比較的低い温度で進行することが可能になり得る。光重合は、発熱プロセスであるので、熱開始反応の連続プロセスを誘引し得る。これにより重合時間(重合応力緩和時間)が長くなり得る。この重合時間が長くなることで、変形が少なくなるか、あるいは変形がなくなり、体積収縮がより均一になり制御可能なものとなり得る。この結果、層間の付着力が高く、異方性が低減され、結果的に、機械的性能が高められた状態で1層ごとの構造が形成され得る。このため、この二重キュアリング方法は、光重合による3D印刷中に生じる最も重要な問題を解決し得るものである。
【表9】
【0047】
表9を参照すると、二重キュアリング3D印刷において使用される複合材料の配合物は、アクリル酸塩モノマ及びアクリル酸塩オリゴマのうちの少なくとも一方を含む有機マトリクスを含み得る。この配合物は、無機水和物、補強充填剤、UV開始剤、及び熱開始剤と共開始剤(活性剤)の組み合わせをさらに含み得る。配合物の一実施形態においては、有機マトリクスは、配合物の約10.0から30.0w%の範囲にあり得る。無機水和物は、配合物の約5.0から30.0w%の範囲にあり得る。補強充填剤は、配合物の約50.0から80.0w%の範囲にあり得る。UV開始剤は、配合物の約0.001から0.2w%の範囲にあり得る。様々な割合での共開始剤との関係における熱開始剤は、配合物の約0.002から0.1w%の範囲(それぞれの成分の合計は約0.011から0.05w%の範囲にある)にあり得る。
【0048】
構成によっては、有機マトリクスは、トリエチレングリコールジメタクリレート(TEGDMA)であり得る。TEGDMAの一部の特性が上記表2に記載されている。TEGDMAは、架橋剤として用いられる、親水性の低粘度二官能性メタクリルモノマである。TEGDMAは、配合物の約10から30w%の範囲であり得る透明な液体である。代表的なマトリクスは、異なる高分子材料を含み得る。別の高分子材料は、表3に記載したTMPTMA及び表4に記載したPEGDMAを含み得る。一実施形態においては、高分子材料は、1以上のアクリル酸オリゴマを含み得る。代表的な実施形態においては、アクリル酸塩オリゴマは、トリメチロールプロパントリメタクリラート(TMPTMA)とトリエチレングリコールジメタクリレート(TEGDMA)との混合物であり、配合物の約10.0~30.0w%の範囲である。他の実施形態においては、代表的なマトリクス材料は、複合物の粘度を高めるために半重合され得る。
【0049】
構成によっては、少なくとも1つの補強充填剤を含む無機充填剤と無機水和物との組み合わせが用いられ得る。無機水和物は、複合物を印刷中に自己触媒閾値よりも低い温度に維持するために必要とされる初期脱水温度範囲と、キュアリングされた有機マトリクスの屈折率に一致する屈折率とを有する無機鉱物であり得る。開示される配合物においては、温度制御は、マトリクスと充填剤の組み合わせにより実現される。無機添加剤(無機水和物)は、印刷中に材料の最高温度が自己触媒閾値よりも低くなるように維持する、ある種の熱物理的性質(分解温度、熱容量、熱伝導率)によって特徴付けられる。
【0050】
構成によっては、無機水和物は四ホウ酸二ナトリウム十水和物であり得る。四ホウ酸二ナトリウム十水和物の一部の特性が上記表5に記載されている。四ホウ酸二ナトリウム十水和物は、工業用の大型袋で提供され得る固体の白い粉体である。四ホウ酸二ナトリウム十水和物は、機能性充填剤と組み合わされる場合には、配合物の約5.0から30.0w%の範囲であり得るが、これに限定されるわけではない。
【0051】
構成によっては、補強充填剤は、酸化アルミニウム三水和物又は炭酸カルシウム、滑石、シリカ、ウォラストナイト、硫酸カルシウム繊維、雲母、ガラスビーズ、及びガラス繊維のうち少なくとも1つとの酸化アルミニウム三水和物混合物を含み得る。酸化アルミニウム三水和物と酸化アルミニウム三水和物混合物の一部の特性が上記表6に記載されている。酸化アルミニウム三水和物は、工業用の大型袋で提供され得る固体の白い粉体である。酸化アルミニウム三水和物は、ポリママトリクス用の難燃剤及び補強充填剤として使用され得る。
【0052】
構成によっては、UV開始剤は、ビスアシルフォスフィンオキサイド(BAPO)であり得る。BAPOの一部の特性が上記表7に記載され得る。UV開始剤は、特定の波長のUV光の下で有機マトリクスの重合を誘引し得る。
【0053】
構成によっては、熱開始剤は、過酸化ベンゾイル(BPO)であり得る。BPOの一部の特性が表10に記載され得る。
【表10】
【0054】
熱開始反応は、アミン活性剤を触媒としたBPOの分解により始まり得る。
【0055】
共開始剤は、ビソメルPTEであり得る。共開始剤の一部の特性が表11に記載されている。
【表11】
【0056】
構成によっては、予め配合物に共開始剤を追加してもよく、あるいは組成混合物とは別に好適な有機溶媒に共開始剤を溶解させ、押出の直前に配合物に追加してもよい。上述した成分を含む複合樹脂プレミックスからアディティブ製造プロセス、典型的には積層押出アディティブ製造法により三次元物体が形成される。
【0057】
配合物は、本明細書に開示される方法に従って生成され得る。樹脂プレミックスは、ブレンダの作用によりアクリル酸塩モノマ及び/又はアクリル酸塩オリゴマ、UV開始剤、熱開始剤、熱共開始剤、及び充填剤を第1の時間中混ぜ合わせることにより生成され得る。光ポリマ複合樹脂は、その後、第2の時間中、熱開始剤及び樹脂プレミックスを混ぜ合わせることにより生成され得る。配合物を生成する方法は、図6及び図7に関連してさらに詳細に述べられる。
【0058】
図1は、3D印刷を介して生成し得る代表的な最終材料100を示している。最終材料100は、マトリクス材料102を含むものとして示されている。このマトリクス材料102は3D印刷を介して形成され得る。
【0059】
代表的なマトリクス材料102は、高分子材料を含み得る。一実施形態においては、高分子材料は1以上のアクリルポリマを含み得る。代表的なアクリルポリマは、アクリル酸、アクリル酸塩(又はアクリル酸のエステル)及び/又はその誘導体の重合生成物であるポリマを含み得る。
【0060】
最終材料100は、任意の好適な方法により形成され得る。代表的な方法は重合を含み得る。代表的な重合は、ラジカル光重合のような光重合を含み得る。一実施形態においては、最終材料100は、光重合に基づく3D印刷プロセスにより形成され得る。代表的な3D印刷プロセスは、ステレオリソグラフィ(又はSLA、SL、光学製造法、光固化、樹脂印刷)、バインダ噴射、有向エネルギー付与、材料噴射、粉体層溶融、シート積層、バット光重合、又はこれらの組み合わせを含み得る。
【0061】
図2を参照すると、最終材料200は、それぞれ選択された濃度でマトリクス材料202内に埋め込まれ、さらに/あるいは混合された少なくとも1つの添加剤を含むものとして示されている。それぞれの添加剤は、1以上の選択された特性を有する粒子及び/又は化合物を含み得る。好都合なことに、添加剤の特性は最終材料200に付与され得る。図2に例示的に示されているように、一実施形態における添加剤は、第1の添加剤204及び第2の添加剤206を含み得る。第1の添加剤204及び第2の添加剤206のそれぞれは、最終材料200にそれぞれの機能を与え得る。
【0062】
一実施形態においては、添加剤は補強添加剤を含み得る。補強添加剤は、最終材料200の機械的特性を改善し得る。例えば、補強添加剤は、3D印刷の前後で最終材料200の引っ張り強さ、曲げ強さ、及び圧縮強さを増加し、さらに/あるいは、最終材料200の収縮を低減し得る。代表的な補強添加剤は、炭酸カルシウム、滑石、シリカ、ウォラストナイト、粘土、硫酸カルシウム繊維、雲母、ガラスビーズ、ガラス繊維、又はこれらの組み合わせを含み得る。補強添加剤は、粒子の形態で最終材料200に混合され得る。補強添加剤の粒子は、丸い粒剤及び自由形状の粒剤、様々な形状の微結晶、繊維、糸、又はこれらの組み合わせの形態であり得る。補強添加剤は、任意の好適な濃度で最終材料200に埋め込まれ得る。例えば、最終材料200における補強添加剤の質量百分率(又は重量百分率)は、最終材料200の約5から70w%、又は30から50w%の範囲になり得る。
【0063】
追加的に、さらに/あるいは代替的に、少なくとも1つの添加剤は、難燃添加剤を含み得る。一実施形態においては、難燃添加剤は、鉱物ベースのもの及び/又は鉱物に含有されているものであり得る。少し異なる言い方をすれば、難燃添加剤は、自然由来のものであり得る。例えば、難燃添加剤は鉱物に由来し得る。代表的な難燃添加剤は、酸化アルミニウム三水和物、四ホウ酸ナトリウム十水化和物、ホウ酸、リン酸ナトリウム、硫酸アンモニウム、四ホウ酸ナトリウム、水酸化アルミニウム、又はこれらの組み合わせを含み得る。一般的なハロゲンベースの難燃剤とは対照的に、鉱物ベースの難燃添加剤を利用すると、燃焼生成物に有毒物質が存在しなくなり、好都合なことに環境的に恩恵を与え得る。
【0064】
追加的に、さらに/あるいは代替的に、鉱物ベースの難燃添加剤は、リン酸エステル、ポリリン酸アルミニウム、赤リンをはじめとする非鉱物ベースの難燃剤及び他のハロゲンを含まない難燃剤に比べてブルーミングに対する耐性がより高い場合がある。好都合なことに、最終材料200の機能的安定性は、時間の経過とともに悪化しない。難燃添加剤は、粒子の形態で最終材料200に埋め込まれ得る。補強添加剤の粒子は、丸い粒剤及び自由形状の粒剤、様々な形状の微結晶、又はこれらの組み合わせの形態であり得る。難燃添加剤は、任意の好適な濃度で最終材料200内に混合され得る。例えば、最終材料200における難燃添加剤の質量百分率は、最終材料200の約35から75w%の間、あるいは約45から65w%の範囲になり得る。
【0065】
追加的に、さらに/あるいは代替的に、少なくとも1つの添加剤は、最終材料200を着色するための着色剤を含み得る。代表的な着色剤は、顔料、染料、又はこれらの組み合わせを含み得る。追加的に、さらに/あるいは代替的に、少なくとも1つの添加剤は、最終材料200の外観に輝きのある効果を与えるための光沢剤を含み得る。追加的に、さらに/あるいは代替的に、少なくとも1つの添加剤は、最終材料200から良い香りを生じさせるための芳香剤を含み得る。好都合なことに、最終材料200は、気孔率が低いモノリシック非晶構造を有し得る。最終材料200は、コンクリートやレンガよりも強くて軽く、水分及び薬品に対する耐久力がある場合がある。代表的な最終材料200は、無毒のアクリルベースのオリゴマ及び最小限の量の光開始剤をキュアリングすることにより製造され得る。このため、最終材料200の製造は、健康上より安全であり得る。
【0066】
図2は、最終材料200が説明のためだけに第1の添加剤204と第2の添加剤206とを含んでいるものとして示しているが、最終材料200は、添加剤を含んでいなくてもよく、あるいは、任意の数の均一な及び/又は異なる添加剤を含んでいてもよく、限定されるものではない。最終材料200において様々な添加剤の組み合わせとともに同一のマトリクス材料202を使用することにより、広い範囲にわたる用途のための最終材料200を得ることができる。
【0067】
図3は、3D印刷システムにおいて使用される光ポリマ複合樹脂を生成するためのシステム300の実施形態を示している。システム300は、ドラム302と、バレルポンプ304と、流量計328と、リボンブレンダ306と、吐出弁308と、ポンプ310と、3D印刷システム332の混合タンク316とを備えている。
【0068】
アクリル酸塩オリゴマ320を含むドラム302は、バレルポンプ304の位置に移動され得る。ドラム302の蓋は、塵を除去するために洗浄され得る。バレルキャップ(ドラムの蓋の上の2つのもののうち大きい方)を取り外すための特別な工具が用いられ、ドラムの蓋の上に載置される。ドラム内部のアクリル酸塩オリゴマ320のレベルが上部から約1~3”の範囲で測定され、その範囲にする必要がある。バレルポンプ304は、垂直姿勢でバレルのキャップ孔に取り付けられる。バレルポンプ304は、空のリボンブレンダ306と流体的に連通して配置され、吐出弁308は「閉」位置とされる。バレルポンプ304が駆動され、アクリル酸塩オリゴマ320のリボンブレンダ306への流量が流量計328を介してモニタリングされる。必要とされる量のアクリル酸塩オリゴマ320がリボンブレンダ306内に至るとすぐに、バレルポンプ304がオフに切り替えられる。ポンピング工程中にドラム302が空になった場合には、バレルポンプ304がオフに切り替えられ、ポンピングを継続するために次のドラムに再度取り付けられる。
【0069】
アクリル酸塩オリゴマがリボンブレンダ306に追加された後、粉末状成分318がリボンブレンダ内に追加され得る。粉末状成分318は、UV開始剤326、無機水和物322、及び補強充填剤324を含み得る。
【0070】
UV開始剤326は、配合物の約0.001から0.2w%の範囲でリボンブレンダ306内でアクリル酸塩オリゴマ320に添加され得る。UV開始剤326がリボンブレンダ306に充填される。所望量のUV開始剤326がリボンブレンダ306に添加されたことを保証するためにUV開始剤の空の容器の重量が測定される。一部のUV開始剤がリボンブレンダ306内に充填されていない場合には、充填工程を繰り返す必要がある。UV開始剤326が添加された後、粉末を日光と湿気から保護するために容器が密閉される。
【0071】
補強充填剤324は、UV開始剤326の後に添加され得る。場合によっては、補強充填剤324が55ポンドの袋に入っている。正しい量の補強充填剤324が添加されることを保証するために、補強充填剤324の袋がフロアスケール上に置かれ、総充填質量を得るためにその重量が測定される。リボンブレンダ306内に安全格子が設置され、補強充填剤324の袋が開けられ、安全格子を通じてリボンブレンダ306内に充填される。充填後に袋が空になると、空袋の重量が測定される。リボンブレンダ306内部の補強充填剤の質量は、最初に測定された総重量から空袋の重量を差し引くことにより計算される。配合物の約5.0から60.0w%の量を満たすように付加的な補強充填剤がリボンブレンダ306に添加される。無機水和物を添加する前に成分からプレミックス樹脂を形成するために、その後、約10分間リボンブレンダ306がオンに切り替えられる。
【0072】
補強充填剤324の後に無機水和物322が添加され得る。場合によっては、無機水和物322が55ポンドの袋に入っている。正しい量の無機水和物322が添加されることを保証するために、無機水和物322の袋がフロアスケール上に置かれ、総充填質量を得るためにその重量が測定される。リボンブレンダ306内に安全格子が設置され、無機水和物322の袋が開けられ、安全格子を通じてリボンブレンダ306内に充填される。充填後に袋が空になると、空袋の重量が測定される。リボンブレンダ306内部の無機水和物の質量は、最初に測定された総重量から空袋の重量を差し引くことにより計算され得る。配合物の約20.0から70.0w%の量を満たすように付加的な無機水和物がリボンブレンダ306に添加される。所望量がリボンブレンダ306に充填されると、リボンブレンダ306の電源が投入され、成分を混合するために12時間運転される。
【0073】
リボンブレンダ306がオフに切り替えられ、約12時間の連続運転後に停止される。ポンプ310は、リボンブレンダ306の吐出弁308の下に配置され得る。一実施形態においては、ポンプ310は、ホース330を用いることにより大型ガントリ3D印刷システム332の混合タンク316に接続される。任意の適切な3D印刷システムが使用され得る。本開示は、大型ガントリ3Dシステムに限定されるものではない。ガントリシステム(GS)の混合タンク316は、これが動作可能であって、樹脂としての混合成分を受け入れ可能であることを確実にするために検査される。吐出弁308が「開」位置に移動される前にポンプがオンに切り替えられる。その後、GS混合タンクは、光ポリマ複合樹脂を収集することを確実にするために検査される。リボンブレンダ306から流れ出る樹脂の流量が減少し始めるとすぐに、樹脂の残余物をポンプのホッパに押し出すためにリボンブレンダ306がオンに切り替えられる。ポンピング工程は、リボンブレンダ306が空になった時点で終了する。その時点で、ブレンダ及びポンプがオフに切り替えられる。
【0074】
場合によっては、GS混合タンク316が、光ポリマ複合樹脂を受け入れることができない場合があり、樹脂は、貯留ドラム312内に充填され得る。ポンプからのホースは、GS混合タンクに代えて貯留ドラム312内に位置し、固定される。吐出弁308が「開」位置に移動される前にポンプがオンに切り替えられる。リボンブレンダ306から流れ出る樹脂の流量が減少し始めるとすぐに、樹脂の残余物をポンプのホッパに押し出すためにリボンブレンダ306がオンに切り替えられる。リボンブレンダ306からの光ポリマ複合樹脂は、ブレンダ内の樹脂の総体積により少なくとも1つの貯留ドラム312に汲み上げられ得る。ポンプが使用できない場合には、空のドラムが吐出弁308の下方に置かれ、吐出弁308が開かれて光ポリマ複合樹脂がドラムに流し込まれる。ドラムが満杯になると、吐出弁308が閉じられる。
【0075】
貯留ドラム312内に貯留された光ポリマ複合樹脂で印刷する前に樹脂を混ぜなければならない。樹脂をGS混合タンクに移送する前に樹脂を混ぜるために手動ミキサのようなミキサ314が利用され得る。貯留ドラム312の蓋が開けられ、ミキサのパドルがドラム内でドラムの中央と内壁との間に配置され得る。パドルをオンにしつつ時計回りに移動させることにより樹脂の上層が混ぜられ得る。ドラムの上層が均質になるまで樹脂の上層が混ぜられる。その後、パドルは、ドラムの底部に押し付けられ得る。その後、パドルを中心から外側に移動させることにより底層が混ぜられ得る。そしてドラムの内壁近くで樹脂の上層に向かってパドルを上方に持ち上げ、ドラムの中心周りに反時計回りに移動させつつドラムの底部に向かって押し付けられ得る。樹脂が均質になるまで混合が継続される。
【0076】
リボンブレンダの内面が染料で汚染されると、着色されていない樹脂の生成に影響を与えるため、そのような汚染を防止するために、貯留ドラム内の樹脂に対して着色工程が行われ得る。その後、貯留ドラムは、使用された染料の色によりラベルが付けられ得る。
【0077】
染料の必要な量が測定され、ドラム内の樹脂の層中に配置され得る。染料を光ポリマ複合樹脂に混ぜるために手動ミキサが利用され得る。染料が添加された後、3D印刷での使用のためにGS混合タンクに移送可能となる前に、約24時間の貯留の後にドラム内の樹脂が再び混ぜられ得る。
【0078】
連続混合の約12時間後、光ポリマ複合樹脂は使用可能になると考えることができる。貯留中に光ポリマ複合樹脂を取り扱わなければならないことがある。樹脂がGS混合タンクに汲み上げられる場合には、樹脂は、すべて消費されるまで連続的に混合され得る。約3時間までは混合しなくても許容され得る。樹脂がドラム内で長期貯留のために保持される場合には、以下の基準が満たされる必要がある。
・ドラムは常に密閉されていなければならない
・樹脂を光及び湿気に曝すことを避ける
・ドラムに不純物が入ってはならない
・7日ごとに1回樹脂を手動で混ぜることができる
・混ぜられないまま約3時間経った後の樹脂を使った印刷はできない
【0079】
場合によっては、樹脂に対して品質保証プロセスを行う。連続して約12時間、樹脂が混合された後、500mLのバッチが試験のために取り出される。リボンブレンダからバッチを汲み上げて3つのサンプルが取得される。すべてのサンプルは、GS混合タンクへのホース端又は第2のドラム内から取り出され得る。
【0080】
ポンピング工程の開始後10から15秒で約150から200mLの第1のサンプルが取得され得る。ポンピング工程の途中で約150から200mLの第2のサンプルが取得され得る。ポンピングの終了前10から15秒で約150から200mLの第3のサンプルが取得され得る。
【0081】
ドラム貯留の場合、以下のようなサンプリング工程である。
・約150から200mLの第1のサンプルが第1のドラムから取得され得る。
・約150から200mLの第2のサンプルが第2のドラムから取得され得る。
・約150から200mLの第3のサンプルが第3のドラムから取得され得る。
【0082】
ミキサの1回の充填が3つのドラムの容量に等しくなり得るので、貯留工程は、3つの異なるドラムを使用した。それぞれのサンプルから約100mLが、QA工程のために、ガラス又はPEの容器に入れられ、十分に混合され、封止され得る。
【0083】
図4は、光ポリマ系複合材料配合物を生成するための工業システム400の実施形態例を示している。システム400は、配合物の生成に用いられる大量の初期化合物を取り扱うための構成の例である。システム400においては、振動スリーブ406が、制御された速度で開始剤オリゴマ混合物446をホッパ412に供給する。フィーダ、重量ホッパ、及びバルブを含み、アクリル酸塩オリゴマ410を含むドラム402に開始剤オリゴマ混合物446を供給する投入器422に開始剤オリゴマ混合物446を供給するためにホッパ412内の撹拌器420が利用される。ミキサ428が、ドラム402内に配置され、アクリル酸塩オリゴマ410及び開始剤オリゴマ混合物446を混合する。開始剤オリゴマ混合物446及びアクリル酸塩オリゴマ410が混合された後、ドラムポンプ430が、混合物(開始剤オリゴマ混合物446)をドラム402からホッパ434に移送する。ホッパ434は、開始剤オリゴマ混合物446が分離しないようにする撹拌器432を含んでいる。同時に、振動スリーブ404は、補強充填剤438をホッパ436に充填するために使用され、振動スリーブ408は、無機水和物440をホッパ452に充填するために使用される。
【0084】
ホッパ434、ホッパ436、及びホッパ452の充填に続いて、ポンプ448が、流量計450により開始剤オリゴマ混合物446の流れをモニタリングしつつ、開始剤オリゴマ混合物446をホッパ434から複数のリボンブレンダ414に移送する。投入器426は、補強充填剤438をホッパ436から複数のリボンブレンダ414に移送し、投入器424は、無機水和物440をホッパ452から複数のリボンブレンダ414に移送する。複数のリボンブレンダ414は、配合物442がバルブ444を通って、配合物442を少なくとも1つの GS 混合タンク416に充填するフィーダ418に放出されるまでの時間、開始剤オリゴマ混合物446を無機水和物440及び補強充填剤438と混ぜ合わせる。
【0085】
図5を参照すると、3D印刷システムに使用される光ポリマ複合材料の配合物を生成する方法500は、ブレンダ内の配合物の約20.0から60.0w%の範囲のアクリル酸塩オリゴマ、配合物の約0.001から0.5w%の範囲の紫外光(UV)開始剤、及び配合物の約5.0から60.0w%の範囲の補強充填剤を化合させること(ブロック502)を含んでいる。ブロック504では、方法500は、約5から20分±0.5分の範囲にわたる第1の期間中、ブレンダの作用によりアクリル酸塩オリゴマ、UV開始剤、及び補強充填剤を混ぜ合わせることにより樹脂プレミックスを生成する。ブロック506では、方法500は、樹脂プレミックスをブレンダ内の配合物の約20.0から70.0w%の範囲の無機水和物と化合させる。ブロック508においては、方法500は、約10から14時間±0.1時間の範囲にわたる第2の期間中、ブレンダの作用により無機水和物と樹脂プレミックスを混ぜ合わせることにより光ポリマ複合樹脂を生成する。
【0086】
構成によっては、方法500は、ブレンダから3D印刷システムの混合タンクに光ポリマ複合樹脂を充填する(ブロック510)。
【0087】
場合によっては、混合タンクが利用できず、方法500は、ブレンダから貯留用の第2のドラムに光ポリマ複合樹脂を充填する(ブロック512)。第2のドラムに貯留された光ポリマ複合樹脂は、約3時間から7日±0.2時間の範囲の時間の後、第2のドラムから3D印刷システムの混合タンクに移送される前にミキサにより混合されてもよい。
【0088】
図6は、3D印刷システムにおいて使用される光ポリマ複合樹脂を生成するためのシステム600の実施形態を示している。システム600は、ドラム602と、バレルポンプ604と、流量計606と、リボンブレンダ608と、吐出弁610と、ポンプ612と、ホース614と、3D印刷システム618の混合タンク616とを備えている。
【0089】
有機マトリクス624を含むドラム602は、バレルポンプ604の位置に移動され得る。有機マトリクス624は、アクリル酸塩モノマ及びアクリル酸塩オリゴマのうち少なくとも一方1を含み得る。ドラム602の蓋は、塵を除去するために洗浄され得る。バレルキャップ(ドラムの蓋の上の2つのもののうち大きい方)を取り外すための特別な工具がドラムの蓋の上に載置され得る。ドラム内部の有機マトリクス624のレベルが上部から約1~3”の範囲で測定され得る。バレルポンプ604は、垂直姿勢でバレルのキャップ孔に取り付けられ得る。バレルポンプ604は、空のリボンブレンダ608と流体的に連通して配置され得る。ブレンダの吐出弁610は「閉」位置とされ得る。バレルポンプ604が駆動され、有機マトリクス624のリボンブレンダ608への流量が流量計606を介してモニタリングされ得る。必要とされる量の有機マトリクス624がリボンブレンダ608に移送されるとすぐに、有機マトリクス624が配合物の約10.0から30.0w%の範囲となり得るように、バレルポンプ604がオフに切り替えられ得る。ポンピング工程中にドラム602が空になった場合には、バレルポンプ604がオフに切り替えられ、ポンピングを継続するために次のドラムに再度取り付けられ得る。
【0090】
有機マトリクス624がリボンブレンダ608に追加された後、粉末状成分626がリボンブレンダ内に追加され得る。粉末状成分626は、UV開始剤632、無機水和物628、及び補強充填剤630を含み得る。
【0091】
UV開始剤632は、配合物の約0.001から0.2w%の範囲でリボンブレンダ608内で有機マトリクス624に添加され得る。所望量のUV開始剤632がリボンブレンダ608に添加されたことを保証するためにUV開始剤632の空の容器の重量が測定され得る。一部のUV開始剤632がリボンブレンダ608内に充填されていない場合には、充填工程を繰り返してもよい。UV開始剤632が添加された後、粉末を日光と湿気から保護するために容器が密閉され得る。
【0092】
共開始剤634が、配合物の約0.001から0.05w%の範囲でリボンブレンダ608内で有機マトリクス624に添加され得る。所望量の共開始剤634がリボンブレンダ608に添加されたことを保証するために共開始剤634の空の容器の重量が測定され得る。一部の共開始剤634がリボンブレンダ608内に充填されていない場合には、充填工程を繰り返してもよい。構成によっては、前もって共開始剤を配合物に添加してもよい。構成によっては、共開始剤を配合物混合物とは別に好適な有機溶媒636に溶解させてもよく、3D印刷システム618による押出の直前に配合物に添加してもよい。
【0093】
一部の配合物においては、限定量の光開始剤と組み合わせたアクリルモノマ/オリゴマの短時間照射によりアクリルプレポリマが生成され得る。この作用は、充填剤粒子が沈殿することを防止するようにアクリルモノマ/オリゴマの粘度を上昇させ得るものであり、得られる混合物の反応性を調整することを可能とし得るものである。
【0094】
補強充填剤630は、UV開始剤632の後に添加され得る。場合によっては、補強充填剤630が55ポンドの袋に入っていることがある。正しい量の補強充填剤630が添加されることを保証するために、補強充填剤630の袋がフロアスケール上に置かれ、総充填質量を得るためにその重量が測定され得る。リボンブレンダ608内に安全格子が設置されることがあり、補強充填剤630の袋が開けられ、安全格子を通じてリボンブレンダ608内に充填され得る。充填後に袋が空になると、空袋の重量が測定され得る。リボンブレンダ608内部の補強充填剤630の質量は、最初に測定された総重量から空袋の重量を差し引くことにより計算され得る。配合物の約50.0から80.0w%の量を満たすように付加的な補強充填剤630がリボンブレンダ608に添加され得る。無機水和物628を添加する前に成分からプレミックス樹脂を形成するために、その後、約10分間リボンブレンダ608がオンに切り替えられ得る。
【0095】
補強充填剤630の後に無機水和物628が添加され得る。場合によっては、無機水和物628が55ポンドの袋に入っていることがある。正しい量の無機水和物628が添加されることを保証するために、無機水和物628の袋がフロアスケール上に置かれ、総充填質量を得るためにその重量が測定され得る。リボンブレンダ608内に安全格子が設置されることがあり、無機水和物628の袋が開けられ、安全格子を通じてリボンブレンダ608内に充填され得る。充填後に袋が空になると、空袋の重量が測定され得る。リボンブレンダ608内部の無機水和物628の質量は、最初に測定された総重量から空袋の重量を差し引くことにより計算され得る。配合物の約5.0から30.0w%の量を満たすように付加的な無機水和物628がリボンブレンダ608に添加され得る。その後、成分を混合するためにリボンブレンダ608が12時間運転され得る。
【0096】
配合物によっては、樹脂プレミックスは、5分から20分の範囲の第1の時間中、リボンブレンダ608を動作させることにより有機マトリクス624、UV開始剤632、熱共開始剤634、及び充填剤を混ぜ合わせた後、5秒から60秒の範囲の第2の時間中、液体の形態の熱開始剤638と混ぜ合わせることにより生成され得る。熱開始剤638は、液体の熱開始剤を形成するために少なくとも部分的にアクリル酸塩モノマに溶解され得る。
【0097】
配合物によっては、樹脂プレミックスは、約5から20分の範囲の第1の時間中、リボンブレンダ608を動作させることにより有機マトリクス624、UV開始剤632、熱共開始剤634、及び充填剤を混ぜた後、30秒から5分の範囲の第2の時間中、粉末の形態の熱開始剤638と混ぜることにより生成され得る。熱開始剤638は、配合物の約0.001から0.05w%の範囲の量となり得るように添加され得る。
【0098】
ポンプ612は、リボンブレンダ608の吐出弁610の下に配置され得る。一実施形態においては、ポンプ612は、ホース614を用いることにより大型ガントリ3D印刷システム618の混合タンク616に接続され得る。任意の適切な3D印刷システムが使用され得る。本開示は、大型ガントリ3Dシステムに限定されるものではない。ガントリシステム(GS)の混合タンク616は、これが動作可能であって、樹脂としての混合成分を受け入れ可能であることを確実にするために検査され得る。吐出弁610が「開」位置に移動される前にポンプがオンに切り替えられ得る。GS混合タンク616は、光ポリマ複合樹脂を収集することを確実にするために検査され得る。リボンブレンダ608からの樹脂の流量が減少し始めると、樹脂の残余物をポンプのホッパに押し出すためにリボンブレンダ608がオンに切り替えられ得る。ポンピング工程は、リボンブレンダ608が空になった時点で終了し得る。その時点で、リボンブレンダ608及びポンプがオフに切り替えられ得る。
【0099】
ある実施形態においては、約5から20分の範囲の第1の時間中、リボンブレンダ608を動作させることにより有機マトリクス624、UV開始剤632、熱共開始剤634、及び充填剤を混ぜ合わせることにより生成された樹脂プレミックスは、樹脂プレミックスが堆積されキュアリングされる前に、3D印刷システム618の押出機内で直接第2の時間中、熱開始剤638と混ぜ合わされ得る。
【0100】
場合によっては、GS混合タンク616が、光ポリマ複合樹脂を受け入れることができない場合があり、樹脂は、貯留ドラム620内に充填され得る。ポンプ612からのホース614は、GS混合タンク616に代えて貯留ドラム620内に位置し、固定され得る。吐出弁610が「開」位置に移動される前にポンプがオンに切り替えられ得る。リボンブレンダ608からの樹脂の流量が減少し始めると、樹脂の残余物をポンプのホッパに押し出すためにリボンブレンダ608がオンに切り替えられ得る。リボンブレンダ608からの光ポリマ複合樹脂は、リボンブレンダ608内の樹脂の総体積に基づいて1以上のドラムに汲み上げられ得る。ポンプ612が使用できない場合には、空のドラムが吐出弁610の下方に置かれ、吐出弁610が開かれて光ポリマ複合樹脂がドラムに流し込まれ得る。ドラムが満杯になると、吐出弁610が閉じられ得る。
【0101】
ある実施形態においては、約5から20分の範囲の第1の時間中、ブレンダを動作させることにより有機マトリクス624、UV開始剤632、熱共開始剤634、及び充填剤を混ぜ合わせることにより生成された樹脂プレミックスは、第2の時間中、熱開始剤638と混ぜ合わされる前に、12ヶ月までの期間中、貯留され得る。
【0102】
貯留ドラム620内に貯留された光ポリマ複合樹脂で印刷する前に樹脂を混ぜなければならない場合がある。樹脂をGS混合タンク616に移送する前に樹脂を混ぜるために手動ミキサのようなミキサ622が利用され得る。貯留ドラム620の蓋が開けられ、ミキサ622のパドルがドラム内でドラムの中央と内壁との間に配置され得る。ドラムの上層が均質になるまで、パドルを時計回りに移動させることによりミキサにより樹脂の上層が混ぜられ得る。その後、パドルは、ドラムの底部に押し付けられ得る。その後、パドルを中心から外側に、そしてドラムの内壁近くで樹脂の上層に向かって上方に移動させることにより下層が混ぜられ、その後、ドラムの中心周りに反時計回りに移動させつつドラムの底部に向かって下方に押し付けられ得る。樹脂が均質になるまで混合が継続され得る。
【0103】
リボンブレンダ608の内面が染料/顔料640で汚染されると、着色されていない樹脂の生成に影響を与え得るため、そのような汚染を防止するために、貯留ドラム内の光ポリマ複合樹脂に対して着色工程が行われ得る。その後、貯留ドラムは、使用された染料/顔料640の色によりラベルが付けられ得る。染料/顔料640の必要な量が測定され、ドラム内の樹脂の層中に配置され得る。染料/顔料640を光ポリマ複合樹脂に混ぜるために手動ミキサが利用され得る。染料/顔料640が添加された後、3D印刷での使用のためにGS混合タンクに移送可能となる前に、約24時間の貯留の後にドラム内の樹脂が再び混ぜられ得る。
【0104】
連続混合の約12時間後、光ポリマ複合樹脂は使用可能になると考えることができる。貯留中に光ポリマ複合樹脂を取り扱わなければならないことがある。樹脂はGS混合タンクに汲み上げられるので、樹脂は、すべて消費されるまで連続的に混合され得る。約3時間までは混合しなくても許容され得る。樹脂がドラム内で長期貯留のために保持される場合には、以下の基準が満たされる必要があり得る。
・常にドラムを密閉する
・樹脂を光及び湿気に曝すことを避ける
・ドラムに不純物が入らないようにする
・7日ごとに1回樹脂を手動で混ぜる
・3時間を超えて混ぜられていない樹脂を使って印刷しようとしない
【0105】
場合によっては、樹脂に対して品質保証プロセスを行い得る。連続して約12時間、樹脂が混合された後、500mLのバッチが試験のために取り出され得る。リボンブレンダからバッチを汲み上げて3つのサンプルが取得され得る。すべてのサンプルは、GS混合タンクへのホース端又は第2のドラムから取り出され得る。
【0106】
ポンピングの開始後10から15秒で約150から200mLの第1のサンプルが取得され得る。ポンピング工程の途中で約150から200mLの第2のサンプルが取得され得る。ポンピングの停止前10から15秒で約150から200mLの第3のサンプルが取得され得る。
【0107】
ドラムに貯留された樹脂に関して、以下のようなサンプリング工程であり得る。
・約150から200mLの第1のサンプルが第1のドラムから取得され得る。
・約150から200mLの第2のサンプルが第2のドラムから取得され得る。
・約150から200mLの第3のサンプルが第3のドラムから取得され得る。
【0108】
この実施形態における貯留では、ミキサの1回の充填が3つのドラムの容量に等しくなり得るので、3つの異なるドラムが使用され得る。それぞれのサンプルから約100mLが、品質保証工程のために、ガラス又はPEの容器に入れられ、十分に混合され、封止され得る。
【0109】
図7を参照すると、3D印刷システムに使用される光ポリマ複合材料の配合物を生成する方法700は、ブレンダ内の配合物の約10.0から30.0w%の範囲のアクリル酸塩モノマとアクリル酸塩オリゴマのうち少なくとも一方を、配合物の約0.001から0.2w%の範囲の紫外光(UV)開始剤、配合物の約0.001から0.05w%の範囲の共開始剤、配合物の約50.0から80.0w%の範囲の補強充填剤、及び配合物の約5.0から30.0w%の範囲の無機水和物と化合させること(ブロック702)を含んでいる。ブロック704では、方法700は、約5から20分±0.5分の範囲にわたる第1の期間中、ブレンダの作用によりアクリル酸塩モノマ/アクリル酸塩オリゴマ、UV開始剤、共開始剤、補強充填剤、及び無機水和物を混ぜ合わせることにより樹脂プレミックスを生成する。
【0110】
ブロック706では、方法700は、樹脂プレミックスをブレンダ内の配合物の約0.001から0.05w%の範囲の熱開始剤と化合させる。ブロック708においては、方法700は、約5秒から5分の範囲にわたる第2の期間中、ブレンダの作用により熱開始剤と樹脂プレミックスを混ぜ合わせることにより光ポリマ複合樹脂を生成する。
【0111】
構成によっては、方法700は、ブレンダから3D印刷システムの混合タンクに光ポリマ複合樹脂を充填する(ブロック710)。場合によっては、ブロック704の後、熱開始剤を充填する前の動作において、混合タンクが利用できない場合があり、方法700は、ブレンダから貯留用の第2のドラムに光ポリマ複合樹脂を充填する(ブロック712)。このシナリオの場合、ブロック712は、熱開始剤の添加のためにブロック706に戻る。ある実施形態においては、樹脂プレミックスと熱開始剤の組み合わせは約1時間を超えて一緒に貯留しておくことができないので、この方法を行ってもよい。他の実施形態においては、第2のドラムに貯留された熱開始剤のない光ポリマ複合樹脂は、約3時間から7日±0.2時間の範囲の時間の後、第2のドラムから3D印刷システムの混合タンクに移送される前にミキサにより混合されてもよい。
【0112】
図8は、構造壁806は、充填パターン808だけを含んでいるが、構造壁802、中空部804、及び充填パターン808を含むセル状構造の概念800を示している。特別な充填パターンを有する壁構造を利用して、追加の補強材を用いることなく材料の耐荷重を増加させ得る。構造層は、引っ張り強さを高くし、一貫性を高めるためにセル状構造を用いて印刷される。3D印刷方法により、現在建設で一般的に用いられている多くの材料に比べて、ずっと良好に荷重を支持することが可能な、異なる幾何寸法を有する構造要素を構築することが可能となる。
【0113】
(補強糸やセル状構造のない)固体状態の構造的な光ポリマ系複合物を用いたところ、内部試験は、その材料がB25及び他の一般的に使用されるコンクリートよりも強いことを示している。これにより、従来の方法(いわゆる自由形式建築)よりも材料効率がずっと良く、設計の可能性がずっと広い、固体構造の建築が可能となる。
【0114】
セル状構造を用いることにより、光ポリマ複合物の固有強さを補強することが可能になり得る。スラブ(天井板)の寸法構造を用いることで、曲げ軸周りの慣性モーメントが、同一面積の固体部分と比較して10倍大きくなった。このため、スラブの変形は同じく10倍減少した。
【0115】
ポリマは、コンクリート又は積みレンガのいずれよりも大きな圧縮強さ及び大きな弾性を有している。これにより、より軽く崩れにくい建物の建設が可能となり得る。つまり、弾性によって、過負荷又は(地震のような)予期しない環境的な衝撃により引き起こされる変形に構造が耐えるのを助け、より大きな圧縮強さにより、より耐負荷荷重能力の高い壁及び床が提供される。軽量の建築物は基礎に与える負荷を減らし、建築コストを低減する。
【表12】
【0116】
印刷された光ポリマ複合材料は、約3から10mmの範囲の層高さを有する多くの平坦な水平層からなる物体である。印刷された物体の全体構造は、1層ごとの堆積によって、機械的特性にある程度の異方性を有している。光ポリマ複合材料の一部の特性が表12に示され得る。
【0117】
25を下回る防火等級(FSR)を達成するため、以下の添加剤が配合物に含められる。四ホウ酸ナトリウム、ホウ酸、及び酸化アルミニウム三水和物。これらは、膨張性を有する無機添加剤である(すなわち、加熱されると膨張する)。光ポリマ複合材料が燃えるときに、水と耐火性アルミナからなる保護外皮を生成する。簡単に説明すると、ポリマは、自己消火性を有する。異なる厚さの層により、配合物は、NFPA(全国防火協会)255の規格の下で FSR<25という目標とする特性を達成することが可能となり、材料は、不燃性/自己消火特性を有し得る。
【0118】
光ポリマ複合材料に対して、石膏ボード、配向性ストランドボード(OSB)、及び断熱フォームを有する最新の構造断熱パネル(SIP)を有する壁の性能を比較するオープンファイヤ試験を行った。
【0119】
光ポリマ複合材料は、独立型材料としてのその優れた耐火特性を確かめるために、幅12mmの石膏ボードに対して同じ幅で試験された。20分及び60分のオープンファイヤ試験の後、光ポリマ複合材料から製造されたボードが受けたダメージは、石膏ボードよりもずっと少なかった。その結果、光ポリマ複合材料を用いた壁パネルは、多くのパラメータにわたってずっと良い性能を発揮した。設計された耐火特性は、米国で最も一般的に使用されている断熱材である石膏カートンボードより非常に優れている。
【0120】
加えて、発泡樹脂は、(モジュール建設方式では避けられない)空洞や継ぎ目のない防雨性を提供し得る。これは、材料の疎水性の性質だけではなく、独特な印刷方法によるものであり得る。光ポリマ複合物の性質により、システムは、構造の外面にわたって耐水性の壁を生成することが可能であり得る。湿気は別として、構造の外部障壁は、風、埃、及びUV光のような他の外部的影響から内部壁構造を保護することも可能であり得る。他の重要な気候的特性は、R値として表現される耐熱性(熱伝導率の逆数)である。
【0121】
表13は、3D印刷システムで使用される光ポリマ複合材料用の配合物の実施形態の例を示している。
【表13】
【0122】
表14は、3D印刷された光ポリマ複合材料の一部の機械的特性を示している。
【表14】
【0123】
表15は、試験配合物#1の成分と量を示している。試験配合物#1は、補強充填剤が石英粉末である点で表13の配合物と異なっている。
【表15】
【0124】
表16は、試験配合物#1の一部の機械的特性を示している。
【表16】
【0125】
試験配合物#1と配合物例の機械的特性を比較すると、配合物例は、高い極限圧縮強さ、2倍高い圧縮弾性率、及び少し高い圧縮変形を有しているが、引っ張り弾性率は著しく低い値を有している。試験配合物#1は、配合物例と比較して高い極限曲げ強さと高い相対曲げ変形を有しているが、低い曲げ弾性率を有している。
【0126】
表17は、試験配合物#2の成分と量を示している。試験配合物#2は、四ホウ酸二ナトリウム十水和物の量が少なく、補強充填剤としての石英粉末の量が多い点で表13における配合物例と異なっている。
【表17】
【0127】
表18は、試験配合物#2の一部の機械的特性を示している。
【表18】
【0128】
試験配合物#2と配合物例の機械的特性を比較すると、試験配合物#2は、高い極限圧縮強さを有しているが、圧縮弾性率値及び相対圧縮変形値は低い。また、試験配合物#2は、高い極限引っ張り強さ値と相対引っ張り変形値を有しているが、引っ張り弾性率値は16倍である。さらに、試験配合物#2は、極限曲げ強さ、曲げ弾性率、相対曲げ変形については高い値を有している。
【0129】
表19は、試験配合物#3の成分と量を示している。試験配合物#3は、補強充填剤を完全に省略している点で表13の配合物例と異なっている。
【表19】
【0130】
表20は、試験配合物#3の一部の機械的特性を示している。
【表20】
【0131】
試験配合物#3と配合物例の機械的特性を比較すると、試験配合物#3は、低い極限圧縮強さ値と2.4倍低い圧縮弾性率値を有しているが、わずかに高い相対圧縮変形値を有している。また、試験配合物#3は、1.5倍低い極限引っ張り強さ値と3.4倍低い引っ張り弾性率値を有しているが、わずかに高い相対引っ張り変形値を有している。さらに、試験配合物#3は、高い極限曲げ強さ値と低い曲げ弾性率を有している。試験配合物#3及び配合物例は、同一の相対曲げ変形値を有しているようである。
【0132】
表21は、試験配合物#4の成分と量を示している。試験配合物#4は、有機マトリクスがTMPTMAである点で表13における配合物と異なっている。
【表21】
【0133】
表22は、試験配合物#4の一部の機械的特性を示している。
【表22】
【0134】
試験配合物#4と配合物例の機械的特性を比較すると、配合物例は、高い機械的性能を有している。配合物例の極限圧縮強さは、試験配合物#4の極限圧縮強さの43%まで高く、圧縮弾性率は、試験配合物#4の圧縮弾性率値の2倍を上回っている。配合物例の引っ張り特性は、極限引っ張り強さについては1.5倍、引っ張り弾性率については3倍試験配合物#4の特性を上回っている。試験配合物#4は、高い極限曲げ強さと配合物例に相当する曲げ弾性率を有している。試験配合物#4は、配合物例と比較して低い剛性を有している。
【0135】
表23は、試験配合物#5の成分と量を示している。試験配合物#5は、有機マトリクスがTEGDMAとTMPTMAの混合物を含む点で表13における配合物と異なっている。
【表23】
【0136】
表24は、試験配合物#5の一部の機械的特性を示している。
【表24】
【0137】
試験配合物#5と配合物例の機械的特性を比較すると、配合物例は、高い機械的性能を有している。配合物例の極限圧縮強さは、試験配合物#5の極限圧縮強さの16%まで高く、圧縮弾性率は、試験配合物#5の圧縮弾性率値の1.6倍を上回っている。配合物例の引っ張り特性は、試験配合物#5の特性と同等である。試験配合物#4に10~12w%のTEGDMAを追加することにより、複合物の機械的性能が改善される。
【0138】
表25は、試験配合物#6の成分と量を示している。試験配合物#6は、有機マトリクスがPEGDMAである点で表13における配合物と異なっている。
【表25】
【0139】
表26は、試験配合物#6の一部の機械的特性を示している。
【表26】
【0140】
試験配合物#6と配合物例の機械的特性を比較すると、試験配合物#6は、配合物例よりも2.5倍高い極限圧縮強さ及び極限引っ張り強さを有している。配合物例の引っ張り弾性率は、試験配合物#6の特性の4~10倍を上回っている。試験配合物#6は、最も高い弾性特性を有している。
【0141】
3D印刷部品の全体構造は、1層ごとの積層であることにより、機械的特性において何らかの異方性を有し得る。異方性の影響は、堆積された層に沿う方向及び横切る方向における印刷部品の特性における百分率の差に表れ得る。しかしながら、開始剤の二重キュアリングシステムは、印刷部品の全体的な異方性を減少させ得る。熱開始剤を含む組成及び含まない組成から得られた製品を示す比較例が表27に示される。
【表27】
【0142】
光重合複合物は、20分間のブレンダの作用により表28に示されるアクリル酸塩モノマ、UV開始剤、及び充填剤を混ぜ合わせることにより生成され得る。二重キュアリング複合物は、20分間のブレンダの作用により表28に示されるアクリル酸塩モノマ、UV開始剤、熱共開始剤、及び充填剤を混ぜ合わせることにより生成され得る。熱開始剤は、複合物が押し出される直前にプレミックスに添加され得る。
【表28】
【0143】
UV LED光源を備えた押出型3Dプリンタを印刷に使用してもよい。417nmのピーク波長を有するLEDが選択され得る。堆積された層の上面におけるUV LED光源の最大光強度は、約20mmのスポットサイズ径で42から43W/cm2であり得る。ノズル(内径10mm)への複合物の供給速度が2×103から2.5×1O3mm3/秒で40mm/秒のノズル流路速度を適用し得る。これにより、幅16mm及び高さ4mmの層を形成し得る。光重合材料は、UV LED光源の100%の強度を付与することにより印刷され得る。二重キュアリング重合プロセスの場合、光源の最大強度の3から6%を用いることができる。付与された光照射により、表面での重合反応の開始を制御が可能となり得る。選択されたBAPOの濃度及び光強度は、透過深さを制限し、反応を堆積した層の上面近傍に蓄積させ得る。これにより、素早い固化と体積収縮によって固体外皮の形成をサポートし、表面の変形を避けることができる。この結果、固体外皮が、層の形状を保持し得る0.5から1mmの厚さで形成され得る。
【0144】
二重キュアリングシステムを適用することにより重合された複合物と比較すると、光重合複合物の機械的性能はより低くなり得る。二重キュアリング複合物に関して、極限引っ張り強さに関して33%の差が見られる。印刷された層に沿う方向及び横切る方向における極限圧縮強さの値は等しくなり得る。堆積された層に沿う方向及び横切る方向における印刷部品の特性の差の減少は、3D印刷部品についての層付着の改善による異方性の減少により生じ得る。光重合複合物は、極限圧縮強さの値に14%の差があり、極限引っ張り強さに45%の差があり得る。二重キュアリングされた配合物がより堅いのは、連続光重合及び熱重合内で材料の変換の度合いが高いことが考えられる。
【0145】
本開示における方法及び配合物が、いくつかの好ましい実施形態を基礎として上記で述べられている。本文書を基礎とする分野における当業者が読んだときに、本発明の概念内にあると読めるすべての組み合わせのように、異なる変形例の異なる側面が互いに組み合わせたものとして述べられているものと考えられる。好ましい実施形態は、本文書の保護の範囲を制限するものではない。
【0146】
本出願の本発明の実施形態を詳細に、また例示的な実施形態を参照して述べてきたが、本発明の範囲を逸脱することなく、改良及び変形が可能であることは明らかであろう。
図1
図2
図3
図4
図5
図6
図7
図8