(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-01-19
(45)【発行日】2024-01-29
(54)【発明の名称】III族窒化物マルチ波長LEDアレイ
(51)【国際特許分類】
H01L 33/08 20100101AFI20240122BHJP
H01L 33/00 20100101ALI20240122BHJP
【FI】
H01L33/08
H01L33/00 J
(21)【出願番号】P 2022538775
(86)(22)【出願日】2020-12-03
(86)【国際出願番号】 US2020063051
(87)【国際公開番号】W WO2021133530
(87)【国際公開日】2021-07-01
【審査請求日】2022-06-22
(32)【優先日】2019-12-23
(33)【優先権主張国・地域又は機関】US
(32)【優先日】2020-07-23
(33)【優先権主張国・地域又は機関】US
(32)【優先日】2020-11-12
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】500507009
【氏名又は名称】ルミレッズ リミテッド ライアビリティ カンパニー
(74)【代理人】
【識別番号】100107766
【氏名又は名称】伊東 忠重
(74)【代理人】
【識別番号】100070150
【氏名又は名称】伊東 忠彦
(74)【代理人】
【識別番号】100135079
【氏名又は名称】宮崎 修
(72)【発明者】
【氏名】アーミテージ,ロバート
(72)【発明者】
【氏名】ワイルドソン,アイザック
【審査官】佐藤 美紗子
(56)【参考文献】
【文献】国際公開第2019/126728(WO,A1)
【文献】特開2006-261207(JP,A)
【文献】特開2011-197152(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01L 33/00-33/46
(57)【特許請求の範囲】
【請求項1】
発光ダイオード(LED)アレイであって、
頂面と、第1のp型層、第1のn型層、及び第1のカラー活性領域を含む少なくとも第1のLEDと、該第1のLED上の第1のトンネル接合と、を有する第1メサであり、当該第1メサの前記頂面は、前記第1のトンネル接合上の第2のn型層を有する、第1メサと、
頂面と、前記第1のLEDと、前記第2のn型層、第2のp型層、及び第2のカラー活性領域を含む第2のLEDと、該第2のLED上の第2のトンネル接合と、該第2のトンネル接合上の第3のn型層と、を有する隣接メサと、
前記第1メサと前記隣接メサとを分離する第1のトレンチと、
前記第1のトレンチ内の
第1のカソードメタライゼーション
層であり、前記第1のカラー活性領域から前記隣接メサの前記第2のカラー活性領域まで連続して延在している第1のカソードメタライゼーション層と、
前記第1メサの前記第2のn型層上及び前記隣接メサの前記頂面上のアノードメタライゼーションコンタクトと、
を有するLEDアレイ。
【請求項2】
V
DDラインに接続される第1電極及び第2電極を持つ駆動トランジスタと、該駆動トランジスタの前記第2電極及び選択トランジスタの第1電極に接続されたキャパシタと、前記第1電極及び第2電極を持つ前記選択トランジスタと、を有する薄膜トランジスタ(TFT)ドライバ、を更に有し、前記選択トランジスタの前記第2電極はデータラインに接続され、前記選択トランジスタは、選択ラインによって制御されるように構成され、前記駆動トランジスタの前記第2電極は、前記アノードメタライゼーションコンタクトのうちの1つに接続される、請求項1に記載のLEDアレイ。
【請求項3】
前記隣接メサの前記頂面は前記第3のn型層を有する、請求項1に記載のLEDアレイ。
【請求項4】
前記隣接メサは更に
、前記第3のn型層上の第3のカラー活性領域と、該第3のカラー活性領域上の第3のp型層とを有し、前記隣接メサの前記頂面は該第3のp型層を有し
、
当該LEDアレイは更に、
前記第1のLED、前記第2のLED、前記第2のトンネル接合、及び前記第2のトンネル接合上の前記第3のn型層、を有する第3メサと、
前記隣接メサと前記第3メサとを分離する第2のトレンチと、
前記第2のトレンチ内の第2のカソードメタライゼーション
層であり、当該第2のカソードメタライゼーション層は、前記第3メサの前記第2のカラー活性領域から前記隣接メサの前記第3のカラー活性領域まで連続して延在し、前記第1のトレンチ内の前記第1のカソードメタライゼーション層は、前記第1のカラー活性領域から前記隣接メサの前記第2のカラー活性領域へ、そして前記第3のカラー活性領域まで連続して延在している、第2のカソードメタライゼーション層と、
前記第3メサの前記第3のn型層上のアノードメタライゼーションコンタクトと、
を有する請求項1に記載のLEDアレイ。
【請求項5】
前記隣接メサの前記第3のp型層は、エッチングされていないp型層である、請求項4に記載のLEDアレイ。
【請求項6】
前記第1のカラー活性領域は青色活性領域であり、前記第2のカラー活性領域は緑色活性領域である、請求項4に記載のLEDアレイ。
【請求項7】
前記第1のカラー活性領域は青色活性領域であり、前記第2のカラー活性領域は緑色活性領域であり、前記第3のカラー活性領域は赤色活性領域である、請求項4に記載のLEDアレイ。
【請求項8】
前記第1のp型層、前記第2のp型層、前記第1のn型層、及び前記第2のn型層は、III族窒化物材料を有する、請求項1に記載のLEDアレイ。
【請求項9】
前記III族窒化物材料はGaNを有する、請求項8に記載のLEDアレイ。
【請求項10】
前記第1のp型層、前記第2のp型層、前記第3のp型層、前記第1のn型層、前記第2のn型層、及び前記第3のn型層は、III族窒化物材料を有する、請求項4に記載のLEDアレイ。
【請求項11】
前記III族窒化物材料はGaNを有する、請求項10に記載のLEDアレイ。
【請求項12】
前記第1メサは側壁を持ち、前記隣接メサは側壁を持ち、前記第1メサの前記側壁及び前記隣接メサの前記側壁は、前記メサが上に形成された基板の頂面と、60度から90度未満までの範囲内の角度を形成する、請求項1に記載のLEDアレイ。
【請求項13】
請求項2に記載のLEDアレイと、
複数のアノードコンタクトのうちの1つ以上に独立した電圧を提供するように構成されたドライバ回路と、
を有するエレクトロニクスシステム。
【請求項14】
当該エレクトロニクスシステムは、LEDベースの照明器具、発光ストリップ、発光シート、光学ディスプレイ、及びマイクロLEDディスプレイからなる群から選択される、請求項13に記載のエレクトロニクスシステム。
【請求項15】
LEDアレイを製造する方法であって、
頂面と、第1のp型層、第1のn型層、及び第1のカラー活性領域を含む少なくとも第1のLEDと、該第1のLED上の第1のトンネル接合と、を有する第1メサを形成し、前記頂面は、前記第1のトンネル接合上の第2のn型層を有し、
前記第1のLEDと、前記第2のn型層、第2のp型層、及び第2のカラー活性領域を含む第2のLEDと、該第2のLED上の第2のトンネル接合と、該第2のトンネル接合上の第3のn型層と、を有する隣接メサを形成し、
前記第1メサと前記隣接メサとを分離する第1のトレンチを形成し、
前記第1のトレンチ内の
第1のカソードメタライゼーション
層を形成し、
該第1のカソードメタライゼーション層は、前記第1のカラー活性領域から前記隣接メサの前記第2のカラー活性領域まで連続して延在し、
前記第1メサの前記第2のn型層上及び前記隣接メサの前記第3のn型層上にアノードメタライゼーションコンタクトを形成する、
ことを有する方法。
【発明の詳細な説明】
【技術分野】
【0001】
本開示の実施形態は、概して、発光ダイオード(LED)デバイスのアレイ及びそれを製造する方法に関する。より具体的には、実施形態は、トンネル接合を有するマイクロLEDを提供するIII族窒化物層をウエハ上に有する発光ダイオードデバイスのアレイに向けられる。
【背景技術】
【0002】
発光ダイオード(LED)は、それを電流が流れるときに可視光を発する半導体光源である。LEDは、P型半導体をN型半導体と組み合わせる。LEDは一般的に、III族化合物半導体を使用する。III族化合物半導体は、安定した動作を、他の半導体を用いるデバイスよりも高い温度で提供する。III族化合物は典型的に、サファイア又は炭化ケイ素(SiC)で形成された基板上に形成される。
【0003】
ウェアラブル装置、ヘッドマウント型、及び大面積ディスプレイを含め、新たに出現した様々なディスプレイアプリケーションは、横方向の寸法が100μm×100μm未満まで小さくされた高密度のマイクロLED(μLED又はuLED)のアレイで構成される小型チップを必要とする。マイクロLED(uLED)は典型的に、直径又は幅で約50μm以下の寸法を持ち、赤、青、及び緑の波長を有するマイクロLEDを近接させて配置することにより、カラーディスプレイの製造に使用される。一般に、個々のマイクロLEDダイから構築されるディスプレイを組み立てるのには、2つのアプローチが利用されてきた。1つ目は、ピックアンドプレースアプローチであり、これは、個別の青、緑、及び赤の波長のマイクロLEDの各々をピックアップし、アライメントしてバックプレーン上に取り付け、続いてバックプレーンをドライバ集積回路に電気接続することを有する。各マイクロLEDの小さいサイズに起因して、この組み立てシーケンスは遅く、製造誤差を被る。さらに、ディスプレイのますます高まる解像度要求を満たすためにダイサイズが小さくなるにつれて、必要な寸法のディスプレイを埋めるには、各ピックアンドプレース操作でますます多くのダイを移さなければならない。
【0004】
代わりに、複雑化するピックアンドプレース物質移動プロセスを回避するために、マイクロLEDディスプレイを実現するために多様なモノリシック製造法が提案されてきた。モノリシック製造法を提供するLEDデバイス及びその製造方法を提供することが望ましい。
【発明の概要】
【0005】
本開示の実施形態は、LEDアレイ、及びLEDアレイを製造する方法に関する。第1の実施形態において、発光ダイオード(LED)アレイは、頂面と、第1のp型層、第1のn型層、及び第1のカラー活性領域を含む少なくとも第1のLEDと、該第1のLED上の第1のトンネル接合と、を有する第1メサであり、当該第1メサの頂面は、第1のトンネル接合上の第2のn型層を有する、第1メサと、頂面と、第1のLEDと、第2のn型層、第2のp型層、及び第2のカラー活性領域を含む第2のLEDと、を有する隣接メサと、隣接メサの第2のLED上の第2のトンネル接合、及び隣接メサの第2のトンネル接合上の第3のn型層と、第1メサと隣接メサとを分離する第1のトレンチと、第1メサの第2のn型層上及び隣接メサの頂面上のアノードコンタクトと、を有する。LEDアレイは更に、VDDラインに接続される第1電極及び第2電極を持つ駆動トランジスタと、該駆動トランジスタの第2電極及び選択トランジスタの第1電極に接続されたキャパシタと、第1電極及び第2電極を持つ選択トランジスタと、を有するTFTドライバを有し、選択トランジスタの第2電極はデータラインに接続され、選択トランジスタは、選択ラインによって制御されるように構成され、駆動トランジスタの第2電極は、アノードコンタクトのうちの1つに接続される。
【0006】
第2の実施形態において、第1の実施形態は、隣接メサの頂面が第3のn型層を有するように変更される。
【0007】
第3の実施形態において、第1の実施形態は更に、隣接メサのn型層上の第3のカラー活性領域であり、隣接メサは、第3のp型層を含む頂面を有する、第3のカラー活性領域と、第1のLED、第2のLED、第2のトンネル接合、及び第2のトンネル接合上の第3のn型層、を有する第3メサと、隣接メサと第3メサとを分離する第2のトレンチと、
隣接メサの第1のカラー活性領域及び第2のカラー活性領域と電気的に接触した、第1のトレンチ内のカソードメタライゼーションと、第3メサの第1のカラー活性領域及び第2のカラー活性領域と電気的に接触し、且つ隣接メサの第1のカラー活性領域、第2のカラー活性領域、及び第3のカラー活性領域と電気的に接触した第1のトレンチ内のカソードメタライゼーションと電気的に接触した、第2のトレンチ内のカソードメタライゼーションと、第3メサの第3のn型層上のアノードメタライゼーションコンタクトと、を有する。
【0008】
第4の実施形態において、第3の実施形態は、隣接メサの第3のp型層がエッチングされていないp型層であるという特徴を含む。第5の実施形態において、第3又は第4の実施形態は、第1のカラー活性領域が青色活性領域であり、第2のカラー活性領域が緑色活性領域であるとして変更される。第6の実施形態において、第3又は第4の実施形態は、第1のカラー活性領域が青色活性領域であり、第2のカラー活性領域が緑色活性領域であり、第3のカラー活性領域が赤色活性領域であるとして変更される。
【0009】
第7の実施形態において、第1乃至第6の実施形態のいずれかが、第1のp型層、第2のp型層、第1のn型層、及び第2のn型層がIII族窒化物材料を有するように変更される。第8の実施形態において、第7の実施形態は、III族窒化物材料がGaNを有するという特徴を含む。第9の実施形態において、第3乃至第6の実施形態のいずれかが、第1のp型層、第2のp型層、第3のp型層、第1のn型層、第2のn型層、及び第3のn型層がIII族窒化物材料を有するという特徴を含む。第10の実施形態において、第9の実施形態が、III族窒化物材料はGaNを有するようにされる。
【0010】
第11の実施形態において、第1乃至第10の実施形態のいずれかが、第1メサが側壁を持ち、隣接メサが側壁を持ち、第1メサの側壁及び隣接メサの側壁が、メサが上に形成された基板の頂面と、60度から90度未満までの範囲内の角度を形成するという特徴を含む。
【0011】
本開示の他の一態様は、エレクトロニクスシステムに関し、第12の実施形態において、エレクトロニクスシステムは、第1乃至第11の実施形態のいずれかのLEDアレイと、
1つ以上のアノードコンタクトに独立した電圧を提供するように構成されたドライバ回路と、を有する。第13の実施形態において、第12の実施形態は、当該エレクトロニクスシステムが、LEDベースの照明器具、発光ストリップ、発光シート、光学ディスプレイ、及びマイクロLEDディスプレイからなる群から選択されるという特徴を含む。
【0012】
他の一態様は、LEDアレイを製造する。第14の実施形態において、方法は、頂面と、第1のp型層、第1のn型層、及び第1のカラー活性領域を含む少なくとも第1のLEDと、該第1のLED上の第1のトンネル接合と、を有する第1メサを形成し、頂面は、第1のトンネル接合上の第2のn型層を有し、第1のLEDと、第2のn型層、第2のp型層、及び第2のカラー活性領域を含む第2のLEDと、を有する隣接メサを形成し、隣接メサの第2のLED上の第2のトンネル接合と、隣接メサの第2のトンネル接合上の第3のn型層とを形成し、第1メサと隣接メサとを分離する第1のトレンチを形成し、そして、第1メサの第2のn型層上及び隣接メサの第3のn型層上にアノードコンタクトを形成する、ことを有する。
【0013】
第15の実施形態において、第14の実施形態は更に、第3のn型層を有する隣接メサの頂面を形成することを有する。第16の実施形態において、第14又は第15の実施形態は更に、隣接メサのn型層上に第3のカラー活性領域を形成することであり、隣接メサは、第3のp型層を含む頂面を有する、形成することと、頂面、第1のLED、第2のLED、第2のトンネル接合、及び該第2のトンネル接合上の第3のn型層、を含む第3メサを形成することであり、該第3メサの頂面は第3のn型層を有する、形成することと、隣接メサと第3メサとを分離する第2のトレンチを形成することと、第1のトレンチ内に、隣接メサの第1のカラー活性領域及び第2のカラー活性領域と電気的に接触したカソードメタライゼーションを形成することと、第3メサの第1のカラー活性領域及び第2のカラー活性領域と電気的に接触し、且つ第2の隣接メサの第1のカラー活性領域、第2のカラー活性領域、及び第3のカラー活性領域と電気的に接触した第1のトレンチ内のn型メタライゼーション並びに第3のカラー活性領域と電気的に接触した第1のトレンチ内のカソードメタライゼーションと電気的に接触した、第2のトレンチ内のカソードメタライゼーションを形成することと、第3メサの第3のn型層上にアノードコンタクトを形成することと、を有する。当該方法は更に、VDDラインに接続される第1電極及び第2電極を持つ駆動トランジスタと、該駆動トランジスタの第2電極及び選択トランジスタの第1電極に接続されたキャパシタと、第1電極及び第2電極を持つ選択トランジスタと、を有するTFTドライバを形成することを有し、選択トランジスタの第2電極はデータラインに接続され、選択トランジスタは、選択ラインによって制御されるように構成され、駆動トランジスタの第2電極は、アノードコンタクトのうちの1つに接続される。
【0014】
第17の実施形態において、第16の実施形態は、第1のLED、第2のLED、及び第3のLEDの各々がエピタキシャル堆積されたIII族窒化物材料を有するようにされる。第18の実施形態において、第1のLED、第2のLED、及び第3のLEDは基板上に形成される。第19の実施形態において、第18の実施形態は、第1のトレンチ及び第2のトレンチが、第1メサ、隣接メサ及び第3メサを形成するようにトレンチをエッチングすることによって形成されるようにされる。第20の実施形態において、第18又は第19の実施形態は、III族窒化物材料がGaNを有するようにされる。
【図面の簡単な説明】
【0015】
本開示の上述の特徴を詳細に理解することができるように、上で簡単に要約した本開示のより具体的な説明が、実施形態を参照して行われ、実施形態の一部が添付の図面に示される。しかしながら、言及しておくことには、添付の図面は、この開示の典型的な実施形態のみを示しており、それ故に、その範囲を制限するものとみなされるべきでなく、本開示は、等しく有効な他の実施形態を認め得るものである。ここに記載される実施形態は、同様の要素を似通った参照符号で指し示す添付図面の図に、限定ではなく例として示される。
【
図1】1つ以上の実施形態に従った多重量子井戸を含む赤色、緑色、及び青色LEDデバイスの断面図を示している。
【
図2】
図1のLEDデバイスの上に形成された犠牲層及びエッチングマスクを示している。
【
図3】LEDアレイを形成する3つのメサを提供するためのエッチングプロセス後の、
図2のデバイスを示している。
【
図4】
図3のLEDアレイの3つのメサ上のコンフォーマル誘電体層を示している。
【
図5】
図4のデバイスの誘電体層内に開口をエッチングした後の、
図4のLEDアレイを示している。
【
図6】開口内へのカソードメタライゼーションの堆積後の、
図5のLEDアレイを示している。
【
図7】導電金属の電着後の、
図6のLEDアレイを示している。
【
図8A】アノード形成後の第1メサ及び第2メサを有するLEDアレイを示している。
【
図8B】pコンタクト形成後の
図7のLEDアレイを示している。
【
図9】バックプレーンに接続された
図7のLEDアレイを示している。
【
図10】一実施形態に従った、2つ以上の色を発するように構成されたLEDアレイを有するエレクトロニクス装置の上面図を示している。
【
図12】一実施形態に従った、LEDアレイ及び1つ以上のTFTドライバを含むエレクトロニクス装置の側面図を示している。
【
図13】LEDアレイ及びTFTドライバを有するエレクトロニクス装置の一実施形態を示している。
【発明を実施するための形態】
【0016】
本開示の幾つかの例示的な実施形態を説明する前に、理解されるべきことには、本開示は、以下の説明に記載される構成又はプロセスステップの詳細に限定されるものではない。本開示は、他の実施形態が可能であり、様々なやり方で実施されたり実行されたりすることができる。
【0017】
1つ以上の実施形態に従ってここで使用される用語“基板”は、プロセスが作用する表面又は表面部分を持つった、中間構造又は最終構造を指す。さらに、一部の実施形態における基板への言及は、文脈が明確に別のことを示さない限り、基板の一部のみも指す。また、一部の実施形態に従った基板上に堆積することへの言及は、ベア基板上に堆積すること、又は1つ以上の層、膜、フィーチャ若しくは材料が上に堆積若しくは形成された基板上に堆積することを含む。
【0018】
1つ以上の実施形態において、“基板”は、製造プロセス中に膜処理が行われる任意の基板又は基板上に形成された材料表面を意味する。例示的な実施形態において、処理が行われる基板表面は、用途に応じて、例えばシリコン、酸化シリコン、シリコン・オン・インシュレータ(SOI)、歪みシリコン、アモルファスシリコン、ドープトシリコン、炭素ドープト酸化シリコン、ゲルマニウム、ガリウム砒素、ガラス、サファイアなどの材料、及び例えば金属、金属窒化物、III族窒化物(例えば、GaN、AlN、InN、及び他の合金)、金属合金、及び他の導電性材料などの、任意の他の好適材料を含む。基板は、限定することなく、発光ダイオード(LED)デバイスを含む。一部の実施形態における基板は、基板表面を研磨、エッチング、還元、酸化、ヒドロキシル化、アニール、UVキュア、電子ビームキュア、及び/又はベークするための前処理プロセスに曝される。基板自体の表面上での直接的な膜処理に加えて、一部の実施形態において、開示される膜処理工程のいずれかはまた、基板上に形成された下地層上も実行され、用語“基板表面”は、文脈が示すような下地層を含むことを意図している。従って、例えば、膜/層又は部分的な膜/層が基板表面上に堆積される場合、新たに堆積された膜/層の露出面が基板表面となる。
【0019】
用語“ウエハ”及び“基板”は、本開示において、相互に交換可能に使用される。従って、ここで使用されるとき、ウエハは、ここに記載されるLEDデバイスの形成のための基板として機能する。
【0020】
ここに記載される実施形態は、LEDデバイスのアレイ、及びLEDデバイスのアレイ(又はLEDアレイ)を形成する方法を記述する。特に、本開示は、複数の色又は波長を放つLEDデバイス、及びそのようなLEDデバイスを単一のウエハから製造する方法を記述する。複数の色又は波長を放つLEDデバイスの位置及びサイズは、LEDデバイスを形成する材料のエピタキシャル堆積後に、リソグラフィ工程及びエッチング深さを調節することによって制御される。一部の実施形態において、複数の色又は波長を放つ隣接し合うLEDが、共通のn型電気コンタクトを使用する。一部の実施形態において、LEDは、基板除去を必要としないプロセスを使用することによって形成されることができる。本開示の1つ以上の実施形態は、マイクロLEDディスプレイの製造に使用されることができる。
【0021】
1つ以上の実施形態において、異なる波長を発する2つ以上の活性領域を単一のウエハ上に集積するLEDデバイス及びその製造のための方法を利用することによって、あまり複雑でないマイクロLED製造プロセスが提供される。1つ以上の実施形態に従って記述されるデバイス及び方法は、例えばAlInGaN材料系の材料といった、青色、緑色、及び赤色LEDを形成するように製造されることができるIII族窒化物材料を利用する。ここに記載される実施形態は、マイクロLEDディスプレイに使用されることができる例えばチップなどのマルチカラーデバイスを提供する。1つ以上の実施形態において、単一のエピタキシャル成長プロセスで複数の層が積層され、それら複数の多層が、異なる波長で発光するように構成される。異なる波長のエミッタ間でそれぞれの発光強度比を変化させることができるように構成されたデバイスが提供される。
【0022】
1つ以上の実施形態によれば、デバイス及び方法は、単一の活性領域内で、すなわち、1つのpn接合のp層及びn層の間で、赤色、緑色、及び青色光を発するように構成された多重量子井戸(MQW)を提供する。1つ以上の実施形態において、同一のエピタキシャルウエハ上に幾つかのpn接合を有した、同一のLEDデバイス内の異なる波長の2つ以上のピクセルが形成される。ここに更に記載されるような複数の工程を用いてメサをエッチングすることにより、実施形態は、それら複数のpn接合の各々への独立した電気コンタクトの形成を提供する。1つ以上の実施形態によれば、異なる波長の1つ以上のエミッタ層が、別々の電流経路を有する別々のpn接合に埋め込まれ、そうして、波長及び放射輝度が独立に制御される。
【0023】
図3は、同一ウエハ上で互いに隣接して2つ以上の異なる色を放つように構成されたLEDアレイの例示的な実施形態を示している。幾つかのpn接合及び活性領域が互いの上に積層されており、それらは、一部の実施形態において、不要な層が成長後エッチングによって除去されるエピタキシャル成長シーケンスによって作製される。1つ以上の実施形態において、ドライエッチングを使用して、埋め込まれた層にコンタクトをとるためのトレンチを開ける方法が提供される。しかしながら、発見されたことには、ドライエッチングのプロセスは、エピタキシャル層のIII族窒化物結晶構造に原子レベルのダメージを導入し、それがp型層の導電型をn型層に変化させてしまう。
【0024】
ドライエッチング中のこの導電型変換に起因して、ドライエッチングによって露出された埋め込みp型窒化物表面に対して低抵抗のオーミックコンタクトを得ることができない。従って、ドライエッチングによって製造される
図3に示すタイプのLEDアレイ109では、p-GaN表面にダメージをもたらし、ドライエッチングされたp-GaN表面への非オーミックコンタクトが、青色及び緑色の活性領域に対して1ボルト以上の順方向電圧ペナルティを生じさせる。たとえ電圧ペナルティがデバイス製造者に受け入れ可能であったとしても、p-GaN層内でエッチングが停止することを確実にすべくエッチング速度を制御する際の誤差に対して十分なマージンを提供するために、p-GaN層を最適よりも遥かに厚く成長されなければならないことになる。
【0025】
1つ以上の実施形態によれば、エピタキシャル層にトンネル接合を組み込むことにより、エッチングされたp-GaN表面に対して電気コンタクトを為すことを試みることに伴う困難さなく、
図3に示す機能が達成される。特定の実施形態において、電気コンタクトは、活性領域にダメージを与えることなく又は光吸収損失を誘起することなく、かなり大きい厚さに成長されることができるものであるn型GaN層に対して為される。ここに記載されるリソグラフィ及びエッチング方法の実施形態は、同一ウエハ上の隣接する位置における、異なる色を発するように構成されたLEDの製造を可能にする。基板除去を必要とすることなく、異なるLED色のグループに共通のn型電気コンタクトが作製される。
【0026】
1つ以上の実施形態によれば、既存の方法と比較して、マイクロLEDディスプレイ用のソースダイを作り出すために製造されなければならない別々のエピタキシレシピの数の削減をもたらすLEDアレイ及びその製造プロセスが提供される。エピタキシレシピの数の削減は、LEDアレイ製造のエピタキシャル製造段階におけるコスト及び複雑さを低減させる。既存の方法は、別々の青色、緑色、及び赤色エピタキシレシピの製造を必要とする。1つ以上の実施形態において、一度に1つのピクセルのみに代えて、ピクセルのアレイを一緒に転写することができるので、ディスプレイを埋めるのに必要なピックアンドプレース操作の数が減少する。より少ないピックアンドプレース操作は、ディスプレイ組み立て段階におけるコスト及びスループットの改善につながる。一部の実施形態では、ピックアンドプレース操作の必要性が完全に排除され、代わりに、各ウエハが3つの必要な色(赤、青、及び緑)の全てを含むことができるので、ウエハレベル全体でのディスプレイ上へのピクセルの転写を可能にする。そのような実施形態では、処理されるウエハの全体又はその大きなピースがディスプレイに直接組み込まれ得る。1つ以上の実施形態によれば、エッチングされたp-GaN表面にオーミック電気コンタクトを為さなければならない問題が回避され、より低い動作電圧及びより高いウォールプラグ(wall-plug)効率を可能にする。一部の実施形態において、トンネル接合内のエッチングによるコンタクトの全てが、高いLED効率を維持しながらp-GaN層よりも遥かに厚く成長させることができるn-GaN層に対して為されるので、エッチング速度の制御に対する制約が緩和される。
【0027】
従って、1つ以上の実施形態は、異なる色を発するように構成された、順に成長されてトンネル接合によって接続された2つ以上の別々の活性領域を含んだ、例えばGaN系LEDウエハなどのIII族窒化物系LEDを提供する。実施形態は、2つ又は3つの異なる色のLEDを互いに近接させて同一ウエハ上に作り出す別々の活性領域の各々に対して独立した電気コンタクトを為すことを可能にするマルチレベルメサエッチングプロセスを提供する。1つ以上の実施形態は、平面状のn型III族窒化物(例えば、GaN)表面に対して為されたコンタクトに代えて、エッチングされたメサの側壁に対して為されたn型電気コンタクトを含む。ウエハの、基板側とは反対側から為された共通のnコンタクトが、赤色、緑色、及び青色LEDメサのアレイ全体に使用され得る。
【0028】
本開示の一態様は、LEDアレイを製造する方法に関する。先ず
図1を参照するに、LEDデバイス100は、基板101上に複数のIII族窒化物層を形成して、基板上に複数のカラー活性領域を含む複数のLEDを形成することによって製造される。それらカラー活性領域は、第1のカラー活性領域124、第2のカラー活性領域114、及び第3のカラー活性領域104を含む。これら異なるカラー活性領域を積層する如何なる順序も本開示の範囲内であるが、特定の実施形態において、そこから層が形成される基板101側に放射するデバイスでは、最も短い発光波長のカラー活性領域が、2つ以上のカラー活性領域を形成する順序で、成長される最初のカラー活性領域である。従って、1つ以上の実施形態において、第1のカラー活性領域124が、最初に基板上に形成され、且つ青色活性領域であり、次いで、第2のカラー活性領域114は形成され、これは緑色活性領域であり、次いで、赤色活性領域である第3のカラー活性領域104が形成される。第1のカラー活性領域124が青色であり、第2のカラー活性領域114が緑色であり、第3のカラー活性領域104が赤色であるこのシーケンスは、青色活性領域124からの発光の、より長い波長のカラー活性領域による内部吸収を回避する。
【0029】
従って、ある一定の特定の実施形態によれば、LEDデバイス100は、基板上に形成された第1のn型層126、第1のn型層126上に形成された第1のp型層122、及び第1のn型層126と第1のp型層122との間の第1のカラー活性領域124を含む第1のLEDを有する。1つ以上の実施形態において、第1のカラー活性領域124は青色活性領域である。図示した実施形態において、特には第1のp型層122上である第1のLED上に、第1のトンネル接合120が存在する。トンネル接合は、逆バイアスにて、p型層の価電子帯からn型層の伝導帯に電子がトンネリングすることを可能にする構造である。p型層とn型層とが互いに接する箇所をp/n接合と呼ぶ。電子がトンネリングするとき、p型層内に正孔が残され、その結果、双方の領域にキャリアが生成される。従って、逆バイアスで小さいリーク電流のみが流れるダイオードのような電子デバイスにおいて、トンネル接合を横切って逆バイアスで大きい電流を運ぶことができる。トンネル接合は、p/nトンネル接合における伝導帯(伝導バンド)と価電子帯(価電子バンド)との特定のアライメントを有する。これは、非常に高いドーピング(例えば、p++/n++接合)を用いることによって達成されることができる。さらに、III族窒化物材料は、異なる合金組成間のヘテロ界面に電場を作り出す固有の分極を持つ。この分極場も、トンネリングのためのバンドアライメントを達成するのに利用されることができる。
【0030】
なおも
図1を参照するに、LEDデバイス100は更に、第1のトンネル接合120上の第2のn型層116、第2のn型層116上に形成された第2のp型層112、及び第2のn型層116と第2のp型層112との間の第2のカラー活性領域114を含む第2のLEDを有する。1つ以上の実施形態において、第2のカラー活性領域114は緑色活性領域である。図示した実施形態において、特には第2のp型層112上である第2のLED上に、第2のトンネル接合110が存在する。LEDデバイス100は更に、第2のトンネル接合110上に形成された第3のn型層106、第3のn型層106上に形成された第3のp型層102、及び第3のn型層106と第3のp型層102との間の第3のカラー活性領域104を含む第3のLEDを有する。1つ以上の実施形態において、第3のカラー活性領域104は赤色活性領域である。
【0031】
基板101は、III族窒化物LEDデバイスの形成に使用されるように構成された、当業者に知られた任意の基板とし得る。1つ以上の実施形態において、基板は、サファイア、炭化ケイ素、シリカ(Si)、石英、酸化マグネシウム(MgO)、酸化亜鉛(ZnO)、スピネル、及びこれらに類するもの、のうちの1つ以上を有する。特定の実施形態において、基板101はサファイアを有する。1つ以上の実施形態において、基板101は、基板101の頂面101t上でのLEDの形成に先立ってパターニングされない。従って、一部の実施形態において、基板101は、パターニングされず、平坦又は実質的に平坦であるとみなされることができる。他の実施形態において、基板101はパターニングされた基板である。
【0032】
1つ以上の実施形態において、第1のLED、第2のLED、及び第3のLEDの各々のn型層及びp型層は各々、III族窒化物材料の層を有する。一部の実施形態において、III族窒化物材料は、ガリウム(Ga)、アルミニウム(Al)、及びインジウム(In)のうち1つ以上を有する。従って、一部の実施形態において、それぞれのLEDのn型層及びp型層は、窒化ガリウム(GaN)、窒化アルミニウム(AlN)、窒化インジウム(InN)、窒化ガリウムアルミニウム(GaAlN)、窒化ガリウムインジウム(GaInN)、窒化アルミニウムガリウム(AlGaN)、窒化アルミニウムインジウム(AlInN)、窒化インジウムガリウム(InGaN)、窒化インジウムアルミニウム(InAlN)、及びこれらに類するもの、のうちの1つ以上を有する。特定の実施形態において、それぞれのLEDのn型層及びp型層は、nドープされたGaN及びpドープされたGaNを有する。
【0033】
1つ以上の実施形態において、第1のLED、第2のLED、及び第3のLEDを形成するIII族窒化物材料の層は、スパッタ堆積、原子層成長(ALD)、化学気相成長(CVD)、物理気相成長(PVD)、プラズマ原子層成長(PEALD)、及びプラズマ化学気相成長(PECVD)のうちの1つ以上によって堆積される。
【0034】
ここで使用される“スパッタ堆積”は、スパッタリングによる薄膜堆積の物理気相成長(PVD)法を指す。スパッタ堆積では、例えばIII族窒化物といった材料が、供給源であるターゲットから基板上へと放出される。この技術は、ソース材料であるターゲットのイオン衝撃に基づく。イオン衝撃は、純物理的プロセス、すなわち、ターゲット材料のスパッタリングによって蒸気を生じさせる。
【0035】
ここでの一部の実施形態に従って使用されるとき、“原子層成長”(ALD)又は“周期的堆積”は、基板表面上に薄膜を堆積させるために使用される気相技術を指す。ALDのプロセスは、基板表面上に材料の層を堆積させるために、基板の表面又は基板の一部が、つまりは2つ以上の反応性化合物である代わる代わるの前駆体に曝されることを伴う。基板が代わる代わるの前駆体に曝されるとき、前駆体が順次又は同時に導入される。処理チャンバの反応ゾーンに前駆体が導入され、基板又はその一部がそれらの前駆体に別々に曝される。
【0036】
一部の実施形態に従ってここで使用されるとき、“化学気相成長”は、材料の膜が、化学物質の分解によって気相から基板表面上に堆積されるプロセスを指す。CVDでは、基板表面が、複数の前駆体及び/又は補助試薬に同時又は実質的同時に曝される。ここで使用されるとき、“実質的同時に”は、共通フロー、又は前駆体の曝露の大部分について重なりがある場合、のいずれかを指す。
【0037】
一部の実施形態に従ってここで使用されるとき、“プラズマ原子層成長(PEALD)”は、基板上に薄膜を堆積させるための技術を指す。PEALDプロセスの一部の例では、熱ALDプロセスに対して、同じ化学的前駆体からではあるが、より高い堆積速度及びより低い温度で材料が形成され得る。PEALDプロセスでは、一般的に、チャンバ内に基板を有するプロセスチャンバに反応性ガス及び反応性プラズマが順次に導入される。第1の反応性ガスがプロセスチャンバ中にパルス状に発せられて基板表面に吸着される。その後、反応性プラズマがプロセスチャンバ中にパルス状に発せられて第1の反応性ガスと反応して、例えば薄膜である堆積材料を基板上に形成する。熱ALDプロセスと同様に、これら反応物質の各々の送達間にパージ工程が行われ得る。
【0038】
1つ以上の実施形態に従ってここで使用されるとき、“プラズマ化学気相成長(PECVD)”は、基板上に薄膜を堆積させるための技術を指す。PECVDプロセスでは、キャリアガスに混入された、例えば気相III窒化物材料又は液相III窒化物材料の蒸気などの、気相又は液相にあるソース材料が、PECVDチャンバに導入される。プラズマ開始ガスもチャンバに導入される。チャンバ内でのプラズマの生成が励起ラジカルを作り出す。チャンバ内に置かれた基板の表面に励起ラジカルが化学的に結合されて、基板上に所望の膜を形成する。
【0039】
1つ以上の実施形態において、LEDアレイを形成することになるLEDデバイス100は、LEDデバイス層がエピタキシャルに成長されるように基板101を有機金属気相エピタキシ(MOVPE)炉内に配置することによって製造される。
第1のn型層126は、異なる組成及びドーパント濃度を含む半導体材料の1つ以上の層を有する。特定の実施形態において、第1のn型層126は、例えばn-GaNといったIII族窒化物のエピタキシャル層を成長させることによって形成される。第1のp型層122は、異なる組成及びドーパント濃度を含む半導体材料の1つ以上の層を有する。特定の実施形態において、第1のp型層122は、例えばp-GaNといったIII族窒化物のエピタキシャル層を成長させることによって形成される。使用時に、第1のカラー活性領域124のpn接合を流れる電流が発生され、第1のカラー活性領域124が、材料のバンドギャップエネルギーによって部分的に決定される第1の波長の光を生成する。一部の実施形態において、第1のn型層126、第1のp型層122、及び第1のカラー活性領域124を有する第1のLEDは、1つ以上の量子井戸を含む。1つ以上の実施形態において、第1のカラー活性領域124は青色光を発するように構成される。
【0040】
特定の実施形態において、青色LEDのp-GaN層を有する第1のp型層122の形成が完了した後、第1のトンネル接合120を成長させるためにエピタキシャル成長条件が変更される。次いで、第2のn型層116、第2のp型層112、及び第2のn型層116と第2のp型層112との間の第2のカラー活性領域114を有する第2のLEDが形成される。第2のn型層116は、例えばn-GaNといったIII族窒化物のエピタキシャル層を成長させることによって形成される。第2のp型層112は、異なる組成及びドーパント濃度を含む半導体材料の1つ以上の層を有する。特定の実施形態において、第2のp型層112は、例えばp-GaNといったIII族窒化物のエピタキシャル層を成長させることによって形成される。使用時に、第2のカラー活性領域114のpn接合を流れる電流が発生され、第2のカラー活性領域114が、材料のバンドギャップエネルギーによって部分的に決定される第2の波長の光を生成する。一部の実施形態において、第2のn型層116、第2のp型層112、及び第2のカラー活性領域114を有する第2のLEDは、1つ以上の量子井戸を含む。1つ以上の実施形態において、第2のカラー活性領域114は緑色光を発するように構成される。一部の実施形態に従った第2のLEDの形成は、第2のn型層116の厚さ及び/又は成長条件に対する変更を含む。
【0041】
特定の実施形態において、緑色LEDのp-GaN層を有する第2のp型層112の形成が完了した後、第2のトンネル接合110を成長させるためにエピタキシャル成長条件が変更される。次いで、第3のn型層106、第3のp型層102、及び第3のn型層106と第3のp型層102との間の第3のカラー活性領域104を有する第3のLEDが形成される。第3のn型層106は、例えばn-GaNといったIII族窒化物のエピタキシャル層を成長させることによって形成される。第3のp型層102は、異なる組成及びドーパント濃度を含む半導体材料の1つ以上の層を有する。特定の実施形態において、第3のp型層102は、例えばp-GaNといったIII族窒化物のエピタキシャル層を成長させることによって形成される。使用時に、第3のカラー活性領域104のpn接合を流れる電流が発生され、第3のカラー活性領域104が、材料のバンドギャップエネルギーによって部分的に決定される第3の波長の光を生成する。一部の実施形態において、第3のn型層106、第3のp型層102、及び第3のカラー活性領域104を有する第3のLEDは、1つ以上の量子井戸を含む。1つ以上の実施形態において、第3のカラー活性領域104は赤色光を発するように構成される。一部の実施形態に従った第3のLEDの形成は、第3のn型層106の厚さ及び/又は成長条件に対する変更を含む。
【0042】
本開示は、第1のトンネル接合120及び第2のトンネル接合110又はLEDカラー活性領域の如何なる特定のエピタキシャル設計にも限定されない。第1のLED、第2のLED、及び第3のLEDのエピタキシャル成長後、
図2-
図8に示すように、一連のフォトリソグラフィ及びドライエッチングプロセスを使用して、1つ以上の実施形態に従ったLEDアレイ109を形成する。フォトリソグラフィ及びドライエッチングプロセスの最終結果は、
図8に示すような異なる高さを有するメサのアレイである。特定の発光色にとって必要でない量子井戸及びpn接合がメサの一部でエッチング除去され、それが、異なる高さを持つメサをもたらす。
【0043】
実施形態によれば、以下に説明するように、フォトリソグラフィ及びドライエッチングプロセスにおいて様々なオプションを使用することができる。例えばフォトレジスト露光、現像、剥離及び洗浄の工程などの通常の処理工程は、
図2-
図8から省略されている。エッチングプロセスの一実施形態において、
図2に示すように、最大の高さを持つメサが望まれる場所の第3のp型層102の部分の上に、第1の犠牲層125aがパターン形成される。第1メサの高さよりも大きい高さを持つ隣接メサの場所の第3のp型層102の部分の上に、第2の犠牲層125bがパターン形成される。第1の犠牲層125aは、第2の犠牲層125bよりも大きい高さを持つ。
【0044】
第1の犠牲層125a及び第2の犠牲層125bの形成後、
図2に示すように、第1の犠牲層125a及び第2の犠牲層125bによって覆われていない第3のp型層102の上と、第1の犠牲層125a及び第2の犠牲層の上とに、エッチングマスク層127が堆積される。図示の実施形態において、エッチングマスク層127を形成する材料も、第1の犠牲層125a及び第2の犠牲層125bを形成する材料も、ドライエッチングケミストリに対して不浸透性ではない。従って、エッチングマスク層127及び/又は犠牲層をエッチングし去るのに十分な長さのエッチング時間に対して、エピタキシャルウエハ内までエッチングされる深さが、エッチングマスク層及び犠牲層の厚さに依存する。そこで、メサの各々の高さを制御すべく、犠牲層、エッチングマスク層、並びに第1のLED、第2のLED、及び第3のLEDのエピタキシャル形成層の間のエッチングレートの差と、犠牲層の厚さとを用いて、相異なる高さの隣接し合うメサを単一のドライエッチング工程で得ることができる。第1メサ103は、Hによって表記する第1の高さを持ち、隣接メサ105は第2の高さを持ち、第3メサ107は第3の高さを持つ。図示の実施形態において、第1メサ103の第1の高さHは、隣接メサ105の第2の高さ及び第3メサ107の第3の高さよりも小さい。隣接メサ105の第2の高さは、第3メサ107の第3の高さよりも大きい。従って、第1メサ103が、3つのメサのうち最も短い。第1のトレンチ111が、第1メサ103と隣接メサ105とを分離し、第2のトレンチ113が、隣接メサ105と第3メサ107とを分離する。第1メサ103は側壁103sを持ち、隣接メサ105は側壁105sを持ち、第3メサ107は側壁107sを持つ。1つ以上の実施形態において、側壁103s、105s、及び107sは、基板の頂面101tに対して角度付けられる。第1メサ103の側壁103s、隣接メサ105の側壁105s、及び第3メサ107の側壁107sは各々、基板101の頂面101tと、75度から90度未満までの範囲内
又は60度から90度未満までの範囲内の角度“a”を形成する。
【0045】
図8Aに関して説明することになる一部の実施形態では、第1メサ103と隣接メサ105とが存在する。従って、そのような実施形態では、製造プロセス中に、第1の犠牲層のみが使用され、第1のトレンチのみが形成される。
【0046】
第1のトレンチ111及び第2のトレンチ113の位置で、このエッチングプロセスは、実効的に基板101で停止する。何故なら、基板は、III族窒化物エピタキシャル層をエッチングするのに使用される条件下のエッチングに対してほぼ不浸透性であるからである。1つ以上の実施形態において、エッチングマスク層127、第1の犠牲層125a、及び第2の犠牲層125bは、同じ材料又は異なる材料で構成される。マスキング及びエッチングプロセスのための好適なエッチングマスク材料として、フォトレジスト又は例えば二酸化シリコンや窒化シリコンなどの誘電体材料を用いることができる。
【0047】
エッチングプロセスの代替実施形態において、各々異なる高さを持つ第1メサ103、隣接メサ105、及び第3メサ107は、別々のドライエッチング工程で処理される。第1のエッチング工程にて、相等しい高さのメサが作製される。第1のエッチング工程が終了され、一部のメサは、それらの高さが後続エッチング工程で減らされるのを防ぐために再マスキングされる。そのマスク層は、プロセス中に完全にはエッチングされず、一部の実施形態において、そのエッチングケミストリに対して不浸透性である材料を有する。この代替実施形態は、前の段落で説明した実施形態よりも遅い製造スループットを示すが、例えばマスク及び犠牲層の厚さ及びエッチングレート選択性などのパラメータの制御があまり厳しくないことを示す。
【0048】
図3に示したメサエッチングプロセスの終了及び好適な洗浄工程に続いて、埋め込まれたp型層の活性化が、それら埋め込みp型層のエッチングされた側壁を通じて水素を横方向に拡散させることによって遂行される。1つ以上の実施形態によれば、メサは、プロセスの初期ではなくメサエッチング後にアニールされる。何故なら、メサ間の空間が、水素の横方向拡散及びp型層からの脱出のための効率的な経路を可能にするからである。このアニールは、従来LEDのアニールと同様であってもよいし、より高い温度及び/又はより長い時間を使用してもよい。
【0049】
次に
図4を参照するに、p型層活性化アニールの後、メサ及びそれらの側壁を覆って、例えば二酸化シリコンといった誘電体層130のコンフォーマルコーティングが、例えばプラズマ化学気相成長、原子層成長、又はスパッタリングなどの方法を用いて堆積される。誘電体層130は、後のプロセス工程で製造されるメタルコンタクトを互いに分離するものである。
【0050】
ここで使用されるとき、用語“誘電体”は、印加される電場によって分極されることができる電気絶縁体材料を指す。1つ以上の実施形態において、誘電体層は、以下に限られないが、例えば酸化シリコン(SiO2)、酸化アルミニウム(Al2O3)といった酸化物、例えば窒化シリコン(Si3N4)といった窒化物を含む。1つ以上の実施形態において、誘電体層は窒化シリコン(Si3N4)を有する。1つ以上の実施形態において、誘電体層は酸化シリコン(SiO2)を有する。一部の実施形態において、誘電体層の組成は、理想的な分子式に対して、化学量論的ではない。例えば、一部の実施形態において、誘電体層は、以下に限られないが、酸化物(例えば、酸化シリコン、酸化アルミニウム)、窒化物(例えば、窒化シリコン(SiN))、酸炭化物(例えば、酸炭化シリコン(SiOC))、及び酸炭窒化物(例えば、酸炭窒化シリコン(SiNCO))を含む。
【0051】
1つ以上の実施形態において、誘電体層130は、スパッタ堆積、原子層成長(ALD)、化学気相成長(CVD)、物理気相成長(PVD)、プラズマ原子層成長(PEALD)、及びプラズマ化学気相成長(PECVD)のうちの1つ以上によって堆積される。
【0052】
次に
図5を参照するに、その後、メサの一部がレジストでマスキングされ、誘電体層130内に開口がドライエッチングされる。
図5に示すように、誘電体層130は、隣接メサ105の側壁105sを、隣接メサ105の第3のp型層102及び第3のカラー活性領域104(赤色活性領域)の位置で覆うのみである。第3メサ107上で、誘電体層130は、第3のn型層106、第2のトンネル接合110、第2のp型層112、及び第2のカラー活性領域114(緑色活性領域)の位置でのみ、側壁107s上に延在する。第1メサ103上で、誘電体層130は、第2のn型層116、第1のトンネル接合120、第1のp型層122、及び第1のカラー活性領域124(青色カラー活性領域)の位置で側壁103sを覆うのみである。
【0053】
次に
図6を参照するに、
図5に示したドライエッチング工程によって残された開口領域内にカソードメタライゼーション層132が堆積される。1つ以上の実施形態において、カソードメタライゼーション層132は、アルミニウム含有金属層を有し、物理気相成長によって堆積され、そして、
図6に示すようにパターニングされる。このnコンタクトメタライゼーション層132は、第1メサ103及び隣接メサ105のn型層126上で側壁を覆う。nコンタクトメタライゼーション層132は、隣接メサ105の第3のn型層106の側壁まで延在して覆う。nコンタクトメタライゼーション層132は、第3メサ107の側壁を第2のn型層116まで延在して覆う。
【0054】
次に
図7を参照するに、先に堆積されたアルミニウム含有金属をシード層として使用して、例えば銅などの金属の溶液ベースの電着を用いて、隣接し合うメサ間の第1のトレンチ111及び第2のトレンチ113が部分的に充填される。必要な場合、電着された金属が、次の処理工程で、化学機械平坦化を用いて平坦化され得る。
【0055】
次に
図8Bを参照するに、洗浄後、LEDアレイ109が再びマスキングされ、アノードメタライゼーションコンタクト用の一組の開口のセットがパターン形成され、別の一組の開口が誘電体層130内にエッチングされる。次いで、
図8Bに示すように、開口部に、例えば銀などの導電金属を有するアノードメタライゼーションコンタクトがパターン形成される。オプションで、第1メサ103上の第3のp型層102(赤色LED)上の電極コンタクトと、第3メサ107の青色LED及び隣接メサ105の緑色LEDのn-GaNトンネル接合コンタクト上のp型メタライゼーションコンタクト136とに、相異なるコンタクトメタルを使用することが望ましい場合に、
図8Bに示すパターン形成は、別々のフォトリソグラフィ及び堆積工程で行われることができる。
【0056】
図8Bにおいて、緑色LED第3メサ107のカソードメタライゼーション層132は、第3メサ107内の青色LEDの層とも接触しており、また、赤色LED第1メサ103のカソードメタライゼーション層132は、そのメサ内の緑色及び青色LEDの層とも接触している。しかしながら、この接触は、共通カソードを共有する隣接し合うLEDの独立した動作を妨げるものではない。典型的な用途におけるバイアス電圧は4Vを超えず、これは、たとえカソードメタルがエピタキシ構造内でより深い層と接触するとしても、アノードに最も近い活性領域を越えて正孔を注入するには不十分である。
図8Bの破線矢印150は、4V未満の典型的なバイアスについての電流の経路を示している。
【0057】
本開示の他の一態様は、
図8A及び8Bに示すLEDアレイに関する。
図8Aに示す第1の実施形態において、LEDアレイ109aは、頂面103tと、第1のp型層122、第1のn型層126、及び第1のカラー活性領域124を含む少なくとも第1のLEDと、該第1のLEDのp型層122上の第1のトンネル接合120と、を含む第1メサ103を有し、第1メサ103の頂面103tは、第1のトンネル接合120上の第2のn型層116を有する。なおも
図8Aを参照するに、頂面105tと、第1のLEDと、第2のn型層116、第2のp型層112、及び第2のカラー活性領域114を含む第2のLEDと、を有する隣接メサ150が存在する。隣接メサ105の第2のLED上の第2のトンネル接合110、及び隣接メサ105の第2のトンネル接合110上の第3のn型層106が存在する。第1メサ103と隣接メサ105とを分離する第1のトレンチ111が存在する。第1のトレンチ111内に、隣接メサ105の第1のカラー活性領域124及び第2のカラー活性領域114と電気的に接触したカソードメタライゼーション134が存在する。第1メサ103の第2のn型層116上及び隣接メサ105の第3のn型層106上に、アノードメタライゼーションコンタクト136が存在する。
図8Aに示す実施形態において、隣接メサ105の頂面105tは、第3のn型層106を有する。
【0058】
図8Aに示すLEDアレイ109aは、従って、第1メサ103によって形成された単色(青色)のLEDと、隣接メサ105によって形成された二色(青色及び緑色)のLEDとを有する。
【0059】
図8Bは、他の一実施形態のLEDアレイ109Bを示しており、これは、頂面103tと、第1のp型層122、第1のn型層126、及び第1のカラー活性領域124を含む少なくとも第1のLEDと、該第1のLEDのp型層122上の第1のトンネル接合120と、を有する第1メサ103を有し、第1メサ103の頂面103tは、第1のトンネル接合120上の第2のn型層116を有する。隣接メサ105が、頂面105tと、第1のLEDと、第2のn型層116、第2のp型層112、及び第2のカラー活性領域114を含む第2のLEDと、を有している。隣接メサ105の第2のLED上、すなわち、p型層112上の第2のトンネル接合110、及び隣接メサ105の第2のトンネル接合110上の第3のn型層106が存在する。第1メサ103と隣接メサ105とを分離する第1のトレンチ111が存在する。第1のトレンチ111内に、隣接メサ105の第1のカラー活性領域124及び第2のカラー活性領域114と電気的に接触したn型メタライゼーション134が存在する。第1メサ103の第2のn型層上及び隣接メサ105の頂面105t上に、p型メタライゼーションコンタクト136が存在する。
【0060】
図8Bに示すLEDアレイ109bは更に、隣接メサ105のn型層106上の第3のカラー活性領域104を有し、隣接メサは、第3のp型層102を含む頂面105tを有する。LEDアレイ109bは更に、第1のLEDと、第2のLEDと、第2のトンネル接合110と、該第2のトンネル接合110上の第3のn型層106と、を有する第3メサ107を有する。隣接メサ105と第3メサ107とを分離する第2のトレンチ113が存在する。第2のトレンチ113内の、第3メサ107の第1のカラー活性領域124及び第2のカラー活性領域114と電気的に接触したカソードメタライゼーション134と、第1のトレンチ111内の、隣接メサ105の第1のカラー活性領域124、第2のカラー活性領域114、及び第3のカラー活性領域104と電気的に接触したカソードメタライゼーション134とが存在する。さらに、第3メサ107の第3のn型層106上のアノードメタライゼーションコンタクト136が存在する。
【0061】
一部の実施形態において、隣接メサ105の第3のp型層102は、エッチングされていないp型層である。一部の実施形態において、第1のカラー活性領域124は青色活性領域であり、第2のカラー活性領域114は緑色活性領域である。一部の実施形態において、第1のカラー活性領域124は青色活性領域であり、第2のカラー活性領域114は緑色活性領域であり、第3のカラー活性領域104は赤色活性領域である。
【0062】
この構造体の基板側に向けて光が放射される実施形態において、メサの高さは、発光波長が長くなる順(この例では、赤>緑>青)に増加する。
【0063】
次に
図9を参照するに、
図8のLEDアレイ109と、第1メサ103、隣接メサ105、及び第3メサのアノードコンタクト136のうちの1つ以上に独立した電圧を提供するように構成されたドライバ回路と、を有するエレクトロニクスシステム又は装置200が示されている。これは、例えば金属はんだバンプなどのメタル192によってアノードコンタクト136に接続される例えばCMOSバックプレーン190などのバックプレーン190によって達成されることができる。1つ以上の実施形態において、当該エレクトロニクスシステムは、LEDベースの照明器具、発光ストリップ、発光シート、光学ディスプレイ、及びマイクロLEDディスプレイからなる群から選択される。
【0064】
次に
図10から
図15を参照するに、1つ以上のTFTドライバ850と集積されたLEDアレイ809を有した、薄膜トランジスタ(TFT)駆動回路を有するエレクトロニクス装置800が示されている。1つ以上の実施形態において、1つ以上のTFTドライバ850を含んだTFT駆動回路は、ここに記載されるLEDアレイの実施形態のいずれかとともに組み込まれる。
【0065】
2つ以上の色を放つように構成されたLEDアレイ809の部分的な上面図が
図10に示されている。
図10の部分的な上面図は、複数のロウ及びカラムを持つTFTマトリクスグリッド802のセクションを含むLEDアレイ809を示している。図示の実施形態において、グリッド802の当該セクションは、合計9個のセルのための3つのロウ及び3つのカラムを有し、各ロウの3つのセルが、LEDの青色(854B)カラム、赤色(854R)カラム、及び緑色(854G)カラムのパターンで配置されて、複数のロウ(上のロウ855A、中央のロウ855B、及び下のロウ855C)を提供している。各セルが、ここに記載される実施形態のいずれかのLEDのメサ上に配置されたアノードメタライゼーションコンタクト836(
図12-
図14の断面に示す)に電気的に接続された電極コンタクト853を有する。これらのセルの各々の各電極コンタクト853は、n型材料852(例えば、n型GaN)によって囲まれている。
【0066】
グリッド802は更に、少なくとも、ロウ855A、855B、855Cの各々に平行に走る複数の選択ライン856と、ロウの各々に垂直に走る複数のVDDライン858及び複数のデータライン860とを有する。複数のVDDライン858及び複数のデータライン860は、更に詳細に後述するように、選択ライン856よりも上の少なくとも1つの層に堆積されている。1つ以上の実施形態において、複数のVDDライン858の各々は、LEDの各々に対して閾値“オン”電圧を超える定電圧を供給する。ディスプレイのロウごとに1つの選択ライン856が存在し、ディスプレイのカラムごとに1つのVDDライン858が存在するが、全てが1つの共通外部電源に接続する。外部のCMOSカラムドライバに(ディスプレイカラムごとに)接続された各カラムドライバに対して1つのデータライン860が存在する。LED共通カソードが、例えばディスプレイなどの装置に対して外部のグランドに接続される。
【0067】
図11は、
図10に点線で示したセクションAによって示されるような、1つ以上のTFTドライバ850の概略図を示している。明瞭さのため、絶縁体材料は描かれていない。図示のように、TFTドライバ850の各々が、少なくとも2つのトランジスタ、キャパシタ、選択ライン856のうちの1つ、V
DDライン858のうちの1つ、及びデータライン860のうちの1つを備える。V
DDライン858は、駆動トランジスタ865の第1の電極868に接続され、駆動トランジスタ865は、デバイスのゲートとして構成される。駆動トランジスタ865はキャパシタ864に接続され、そして、キャパシタ864は、選択トランジスタ863の第1の電極867に接続される。選択トランジスタ863の第2の電極869は、データライン860に接続される。駆動トランジスタ865の第2の電極866は、LEDに電力供給する各メサのアノードメタライゼーションコンタクト836(
図12-
図14に示す)に接続される。
【0068】
1つ以上の実施形態によれば、VDDライン858は、各LEDのターンオン閾値を超える一定の電源電圧を提供するソースとして構成され、選択ライン856は、ドレインとして構成される。データライン860は、キャパシタ864を所望電圧に充電するように構成され、選択ライン856は、駆動トランジスタ865を開くように構成される。動作時、VDDライン858は一定の電源電圧を提供する。選択ライン856へのサイクル電圧が選択トランジスタ863を開き、データライン860への電圧がキャパシタ864を充電する。各LEDを通る電流は、キャパシタ864内に蓄えられた電圧によって制御される。1つ以上の実施形態において、例示的な電圧は3.5Vである。
【0069】
図12は、
図8Bに示したLEDアレイと同様のLEDアレイ809を示しており、これは、頂面803tと、第1のp型層822、第1のn型層826、及び第1のカラー活性領域824を含む少なくとも第1のLEDと、該第1のLEDのp型層822上の第1のトンネル接合820と、を有する第1メサ803を有し、第1メサ803の頂面803tは、第1のトンネル接合820上の第2のn型層816を有する。隣接メサ805が、頂面805tと、第1のLEDと、第2のn型層816、第2のp型層812、及び第2のカラー活性領域814を含む第2のLEDと、を有している。隣接メサ805の第2のLED上、すなわち、p型層812上の第2のトンネル接合810、及び隣接メサ805の第2のトンネル接合810上の第3のn型層806が存在する。第1メサ803と隣接メサ805とを分離する第1のトレンチが存在する。第1のトレンチ内に、隣接メサ805の第1のカラー活性領域824及び第2のカラー活性領域814と電気的に接触したn型メタライゼーション834が存在する。第1メサ803の第2のn型層上及び隣接メサ805の頂面805t上に、アノードメタライゼーションコンタクト836が存在する。第1及び第2のトレンチの上に、カソードメタライゼーション834と接触して共通グランド電極847が堆積される。
【0070】
メサ及びそれらの側壁を覆って、例えば二酸化シリコンといった誘電体層830のコンフォーマルコーティングが、例えばプラズマ化学気相成長、原子層成長、又はスパッタリングなどの方法を用いて堆積される。誘電体層830は、後のプロセス工程で製造されることになるメタルコンタクトを互いに絶縁する。誘電体層830、メサ、及び共通グランド電極847の上に平坦化材料845(これは、一部の実施形態において、誘電体材料を有する)が堆積される。電気コンタクトが、平坦化材料845を貫通して、第1メサ803、隣接メサ805、及び第3メサ807のp型メタライゼーションコンタクト836を、上記1つ以上のTFTドライバ850の駆動トランジスタ865の第2の電極866に接続し、LEDに電力供給する。
【0071】
図13及び
図14は、上記1つ以上のTFTドライバ850を有するレイヤスタックを示しており、
図14は、
図13の点線Bで示されるレイヤスタックをいっそう詳細に示している。参照を容易にするために、
図13及び
図14では、LEDの
図12の細部の全てを繰り返すことはしていない。理解されることには、
図12に示したキャパシタ864は、
図13及び
図14に示す断面図には見えていない。平坦化材料845を覆ってTFT下部誘電体層870が堆積され、これは、一部の実施形態において、キャパシタ及び選択トランジスタ863のゲートのための絶縁体として機能する。また、第1部分872a、第2部分872b、及び第3部分872cを有する下部レベルのTFTメタライゼーション層872も存在している。一部の実施形態において、下部TFTメタライゼーション層872のこれらの第1、第2及び第3部分は、選択トランジスタ863のゲート並びに駆動トランジスタ865のソース及びドレインとして機能する。選択トランジスタ863は、
図13及び
図14に示すように、TFT下部誘電体層870上に半導体材料863Sを有する。駆動トランジスタ865は、下部TFTメタライゼーション層872の第2部分872b及び第3部分872c上に半導体材料865Sを有する。第1部分877a、第2部分877b、及び第3部分877cを有する上部レベルのTFTメタライゼーション層877が存在しており、これらの部分は、一部の実施形態において、それぞれ、選択トランジスタのゲート並びに駆動トランジスタ865のソース及びドレインとして機能する。駆動トランジスタ865の半導体材料865S上にTFT上部誘電体層879が存在し、これは、一部の実施形態において、駆動トランジスタ865のゲート用の絶縁体として機能する。第1部分881a、第2部分881b、及び第3部分881cを有する上部レベルのTFTメタライゼーション層881も存在し、これらの部分は、一部の実施形態において、それぞれ、選択トランジスタ863のソース(881a)及びドレイン(881b)並びに駆動トランジスタ865のゲート(881c)として機能する。
図13及び
図14の断面図には示していないが、下部メタライゼーション層の第3部分872cはキャパシタ864底部に接続され、下部メタライゼーション層の第1部分872aは選択ライン856に接続される。LEDアレイ809とドライバ回路とを有するエレクトロニクス装置800は、第1メサ803、隣接メサ805、及び第3メサ807のアノードメタライゼーションコンタクト836のうちの1つ以上に独立した電圧を提供するように構成される。これは、1つ以上の実施形態に従った、ここに図示して説明したTFT回路によって達成されることができる。1つ以上の実施形態において、エレクトロニクス装置800は、LEDベースの照明器具、発光ストリップ、発光シート、光学ディスプレイ、及びマイクロLEDディスプレイからなる群から選択される。
【0072】
ここに提供される実施形態によれば、CMOSゲート及びカラムドライバは、映像入力信号を取り込み、該映像入力信号を、画像を生成するのに必要な光レベルを放射するようにLEDをプログラムするデータライン上の電圧へと変換する。ここに記載される実施形態において、装置800の動作は、“プログラム”サイクルと“表示”サイクルとに分けられる。“プログラム”サイクルにて、選択ラインへの電圧が、指定されたロウに沿った選択トランジスタを開き、データラインへの電圧が、カラム上の各キャパシタを所望の電圧に充電する。1つ以上の実施形態において、装置800のプログラミングは一度に1つのロウずつ進む。“表示”サイクルにて、各LEDを流れる電流が、“プログラム”サイクルでキャパシタに蓄えられた電圧によって制御される。
【0073】
実施形態によれば、トランジスタは、アモルファスシリコンNチャネルトランジスタである。ソース及びドレインのコンタクトを、高濃度のn型(リン)ドーピングを有するアモルファスシリコン膜上に別々に堆積させることができる。ソース及びドレインではない半導体領域は、僅かなp型導電性を有した、意図せずドープされたアモルファスSiである。一部の実施形態において、印加されたゲート電圧が、ゲート下のp型材料をn型に反転させ、ONに切り換える電流が横方向に流れる。一部の実施形態において、誘電体材料は、プラズマ化学気相成長により作製されたSiNxであり、これはまた、アモルファスSiを堆積するのに使用される方法でもある。一部の実施形態のメタルは典型的にCr又はMoであり、電子ビーム蒸着又はスパッタリングによって堆積される。
【0074】
1つ以上の実施形態において、LEDウエハに適したプロセス温度を有する、TFTを製造するのに使用され得る半導体材料は、アモルファスシリコン、レーザ結晶化多結晶シリコン、例えば酸化インジウムガリウム亜鉛などのアモルファス導電性酸化物、又は例えばCdSなどのII-VI族化合物を含む。TFTは一般的にNチャネル又はPチャネルとすることができるが、アモルファスSiトランジスタは常にNチャネルである(乏しい正孔移動度のため)。一部の実施形態において、多結晶Siは、より小さい物理的寸法のTFTを可能にして、より小さいピクセルピッチを可能にし得る。また、多結晶Siは、より良好な長期信頼性を持ち、ディスプレイの電気効率を改善し得る。
【0075】
本開示のいっそう単純な実施形態は、エピタキシャル成長シーケンスが、(2つのトンネル接合の代わりに)1つのトンネル接合のみであること、及び(3つの色の代わりに)2つの色の活性領域のみであることを特徴とする。図は、完成デバイスにおいて基板が取り付けられたままであるアーキテクチャを示しているが、一部の実施形態では、完成デバイスにおいて基板が除去されるように、レーザリフトオフ又は他のエピタキシャル膜分離プロセスが適用され得る。基板が除去された後に、露出したGaN表面を粗面化して光取り出し効率を改善するために、光電気化学エッチングを適用してもよい。
【0076】
実施形態
様々な実施形態を以下に列挙する。理解されることには、以下に列挙される実施形態は、本発明の範囲に従って、全ての態様及び他の実施形態と組み合わされ得る。
【0077】
実施形態(a). 発光ダイオード(LED)アレイであって、頂面と、第1のp型層、第1のn型層、及び第1のカラー活性領域を含む少なくとも第1のLEDと、該第1のLED上の第1のトンネル接合と、を有する第1メサであり、当該第1メサの前記頂面は、前記第1のトンネル接合上の第2のn型層を有する、第1メサと、頂面と、前記第1のLEDと、前記第2のn型層、第2のp型層、及び第2のカラー活性領域を含む第2のLEDと、を有する隣接メサと、前記隣接メサの前記第2のLED上の第2のトンネル接合、及び前記隣接メサの前記第2のトンネル接合上の第3のn型層と、前記第1メサと前記隣接メサとを分離する第1のトレンチと、前記第1メサの前記第2のn型層上及び前記隣接メサの前記頂面上のアノードメタライゼーションコンタクトと、を有するLEDアレイ。
【0078】
実施形態(b) VDDラインに接続される第1電極及び第2電極を持つ駆動トランジスタと、該駆動トランジスタの前記第2電極及び選択トランジスタの第1電極に接続されたキャパシタと、前記第1電極及び第2電極を持つ前記選択トランジスタと、を有する薄膜トランジスタ(TFT)ドライバ、を更に有し、前記選択トランジスタの前記第2電極はデータラインに接続され、前記選択トランジスタは、選択ラインによって制御されるように構成され、前記駆動トランジスタの前記第2電極は、前記アノードメタライゼーションコンタクトのうちの1つに接続される、実施形態(a)のLEDアレイ。
【0079】
実施形態(c). 前記隣接メサの前記頂面は前記第3のn型層を有する、実施形態(a)又は実施形態(b)のLEDアレイ。
【0080】
実施形態(d). 前記隣接メサの前記n型層上の第3のカラー活性領域であり、前記隣接メサは、第3のp型層を含む頂面を有する、第3のカラー活性領域と、前記第1のLED、前記第2のLED、前記第2のトンネル接合、及び前記第2のトンネル接合上の前記第3のn型層、を有する第3メサと、前記隣接メサと前記第3メサとを分離する第2のトレンチと、前記隣接メサの前記第1のカラー活性領域及び前記第2のカラー活性領域と電気的に接触した、前記第1のトレンチ内のカソードメタライゼーションと、前記第3メサの前記第1のカラー活性領域及び前記第2のカラー活性領域と電気的に接触し、且つ前記隣接メサの前記第1のカラー活性領域、前記第2のカラー活性領域、及び前記第3のカラー活性領域と電気的に接触した前記第1のトレンチ内の前記カソードメタライゼーションと電気的に接触した、前記第2のトレンチ内のカソードメタライゼーションと、前記第3メサの前記第3のn型層上のアノードメタライゼーションコンタクトと、を更に有する実施形態(a)乃至(c)のいずれか一のLEDアレイ。
【0081】
実施形態(e). 前記隣接メサの前記第3のp型層は、エッチングされていないp型層である、実施形態(d)のLEDアレイ。
【0082】
実施形態(f). 前記第1のカラー活性領域は青色活性領域であり、前記第2のカラー活性領域は緑色活性領域である、実施形態(d)のLEDアレイ。
【0083】
実施形態(g). 前記第1のカラー活性領域は青色活性領域であり、前記第2のカラー活性領域は緑色活性領域であり、前記第3のカラー活性領域は赤色活性領域である、実施形態(d)のLEDアレイ。
【0084】
実施形態(h). 前記第1のp型層、前記第2のp型層、前記第1のn型層、及び前記第2のn型層は、III族窒化物材料を有する、実施形態(a)乃至(g)のいずれか一のLEDアレイ。
【0085】
実施形態(i). 前記III族窒化物材料はGaNを有する、実施形態(h)のLEDアレイ。
【0086】
実施形態(j). 前記第1のp型層、前記第2のp型層、前記第3のp型層、前記第1のn型層、前記第2のn型層、及び前記第3のn型層は、III族窒化物材料を有する、実施形態(d)のLEDアレイ。
【0087】
実施形態(k). 前記III族窒化物材料はGaNを有する、実施形態(j)のLEDアレイ。
【0088】
実施形態(l). 前記第1メサは側壁を持ち、前記隣接メサは側壁を持ち、前記第1メサの前記側壁及び前記隣接メサの前記側壁は、前記メサが上に形成された基板の頂面と、60度から90度未満までの範囲内の角度を形成する、実施形態(a)乃至(k)のいずれか一のLEDアレイ。
【0089】
実施形態(m). 実施形態(b)のLEDアレイと、複数のアノードコンタクトのうちの1つ以上に独立した電圧を提供するように構成されたドライバ回路と、を有するエレクトロニクスシステム。
【0090】
実施形態(n). 当該エレクトロニクスシステムは、LEDベースの照明器具、発光ストリップ、発光シート、光学ディスプレイ、及びマイクロLEDディスプレイからなる群から選択される、実施形態(m)のエレクトロニクスシステム。
【0091】
実施形態(o). LEDアレイを製造する方法であって、頂面と、第1のp型層、第1のn型層、及び第1のカラー活性領域を含む少なくとも第1のLEDと、該第1のLED上の第1のトンネル接合と、を有する第1メサを形成し、前記頂面は、前記第1のトンネル接合上の第2のn型層を有し、前記第1のLEDと、前記第2のn型層、第2のp型層、及び第2のカラー活性領域を含む第2のLEDと、を有する隣接メサを形成し、前記隣接メサの前記第2のLED上の第2のトンネル接合と、前記隣接メサの前記第2のトンネル接合上の第3のn型層とを形成し、前記第1メサと前記隣接メサとを分離する第1のトレンチを形成し、前記第1メサの前記第2のn型層上及び前記隣接メサの前記第3のn型層上にアノードメタライゼーションコンタクトを形成する、ことを有する方法。
【0092】
実施形態(p). 当該方法は更に、VDDラインに接続される第1電極及び第2電極を持つ駆動トランジスタと、該駆動トランジスタの前記第2電極及び選択トランジスタの第1電極に接続されたキャパシタと、前記第1電極及び第2電極を持つ前記選択トランジスタと、を有する薄膜トランジスタ(TFT)ドライバを形成することを有し、前記選択トランジスタの前記第2電極はデータラインに接続され、前記選択トランジスタは、選択ラインによって制御されるように構成され、前記駆動トランジスタの前記第2電極は、前記アノードメタライゼーションコンタクトのうちの1つに接続される、実施形態(o)の方法。
【0093】
実施形態(q). 前記第3のn型層を有する前記隣接メサの頂面を形成する、ことを更に有する実施形態(o)又は実施形態(p)の方法。
【0094】
実施形態(r). 前記隣接メサの前記n型層上に第3のカラー活性領域を形成することであり、前記隣接メサは、第3のp型層を含む頂面を有する、形成することと、頂面、前記第1のLED、前記第2のLED、前記第2のトンネル接合、及び前記第2のトンネル接合上の前記第3のn型層、を含む第3メサを形成することであり、当該第3メサの前記頂面は前記第3のn型層を有する、形成することと、前記隣接メサと前記第3メサとを分離する第2のトレンチを形成することと、前記第1のトレンチ内に、前記隣接メサの前記第1のカラー活性領域及び前記第2のカラー活性領域と電気的に接触したカソードメタライゼーションを形成することと、前記第3メサの前記第1のカラー活性領域及び前記第2のカラー活性領域と電気的に接触し、且つ前記第2の隣接メサの前記第1のカラー活性領域、前記第2のカラー活性領域、及び前記第3のカラー活性領域と電気的に接触した前記第1のトレンチ内のカソードメタライゼーション並びに前記第3のカラー活性領域と電気的に接触した前記第1のトレンチ内の前記n型メタライゼーションと電気的に接触した、前記第2のトレンチ内のカソードメタライゼーションを形成することと、前記第3メサの前記第3のn型層上にアノードメタライゼーションコンタクトを形成する、こととを更に有する実施形態(o)乃至(q)のいずれか一の方法。
【0095】
実施形態(s). 前記第1のLED、前記第2のLED、及び前記第3のLEDの各々がエピタキシャル堆積されたIII族窒化物材料を有する、実施形態(r)の方法。
【0096】
実施形態(t). 前記第1のLED、前記第2のLED、及び前記第3のLEDは基板上に形成され、前記第1のトレンチ及び前記第2のトレンチは、前記第1メサ、前記隣接メサ及び前記第3メサを形成するようにトレンチをエッチングすることによって形成される、実施形態(s)の方法。
【0097】
ここで説明される材料及び方法を記述する文脈(特に、以下の請求項の文脈)における用語“a”、“an”及び“the”並びに類似の指し示しの使用は、ここで別段の断りがあったり文脈によって明らかに否定されたりしない限り、単数及び複数の両方をカバーすると解釈されるべきである。ここでの値の範囲の記載は、ここで別段の断りがない限り、その範囲内に入る各々別個の値を個々に言及することの速記法としての役割を果たすことを意図しているに過ぎず、各々別個の値が、あたかもここで個別に記載されたかのように本明細書に組み込まれる。ここに記載された方法は全て、ここで別段の断りがあったり文脈によって明らかに否定されたりしない限り、任意の好適な順序で実行されることができる。ここで提供された任意の及び全ての例、又は例示的言語(例えば、“例えば~など”)の使用は、材料及び方法をいっそう明らかにすることを意図しているに過ぎず、別段の主張がない限り、範囲に対して限定を課すものではない。明細書中のいかなる文言も、請求項にない要素を、開示された材料及び方法の実施に不可欠であると示すものとして解釈されるべきでない。
【0098】
ここでは、様々な要素を説明するために、この明細書を通して第1、第2、第3などの用語への言及は用いられることがあるが、それらの要素は、これらの用語によって限定されるべきでない。これらの用語は、1つの要素を別の要素から区別するために使用され得る。
【0099】
この明細書を通して、他の要素“上に”ある又は他の要素“上に”延びるとして、層、領域、又は基板に言及することは、それが他の要素上に直にあったり他の要素上に直に延びたりし得ること、あるいは介在要素も存在してよいことを意味する。ある要素が他の要素“上に直接”ある又は他の要素“上に直接”延びるとして言及されるとき、介在要素は存在しないとし得る。また、ある要素が他の要素に“接続される”又は“結合される”として言及されるとき、それは、他の要素に直接接続又は結合され及び/又は1つ以上の介在要素を介して他の要素に接続又は結合され得る。ある要素が他の要素に“直接接続される”又は“直接結合される”として言及されるとき、その要素と他の要素との間に介在要素は存在しない。理解されることには、これらの用語は、図に示される向きに加えて、異なる向きでのその要素を包含することを意図している。
【0100】
例えば“の下”、“の上”、“上側の”、“下側の”、“水平”、又は“垂直”などの相対的な用語は、ここでは、図に示されるような、1つの要素、区画、又は領域の、他の要素、区画、又は領域に対する関係を記述するために使用され得る。理解されることには、これらの用語は、図に示される向きに加えて、異なる向きでのそのデバイスを包含することを意図している。
【0101】
この明細書を通して、“一実施形態”、“特定の実施形態”、“1つ以上の実施形態”、又は“ある実施形態”への言及は、その実施形態に関連して記載される特定の機構、構造、材料、又は特性が、本開示の少なくとも1つの実施形態に含まれることを意味する。従って、例えば“1つ以上の実施形態において”、“特定の実施形態において”、“一実施形態において”、又は“ある実施形態において”などの言い回しがこの明細書中の様々な箇所に現れることは、必ずしも本開示の同じ実施形態に言及しているわけではない。1つ以上の実施形態において、特定の機構、構造、材料、又は特性は、任意の好適なやり方で組み合わされる。
【0102】
ここでの開示は特定の実施形態を参照して説明されているが、理解されるべきことには、これらの実施形態は単に本開示の原理及び用途を例示するものに過ぎない。当業者に明らかになることには、本開示の精神及び範囲から逸脱することなく、本開示の方法及び装置に様々な変更及び変形を加えることができる。従って、本開示は添付の請求項の範囲及びそれらの均等範囲の中での変更及び変形を含むことが意図される。