(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-01-22
(45)【発行日】2024-01-30
(54)【発明の名称】光ファイバ歪測定装置及び光ファイバ歪測定方法
(51)【国際特許分類】
G01D 5/353 20060101AFI20240123BHJP
【FI】
G01D5/353 B
(21)【出願番号】P 2020144832
(22)【出願日】2020-08-28
【審査請求日】2023-05-11
(73)【特許権者】
【識別番号】000000295
【氏名又は名称】沖電気工業株式会社
(74)【代理人】
【識別番号】100141955
【氏名又は名称】岡田 宏之
(74)【代理人】
【識別番号】100085419
【氏名又は名称】大垣 孝
(72)【発明者】
【氏名】田中 将規
【審査官】平野 真樹
(56)【参考文献】
【文献】特開2019-174360(JP,A)
【文献】特開2016-53525(JP,A)
【文献】特開2019-52895(JP,A)
【文献】特開平10-132701(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01D 5/353
G01B 11/00-11/30
G01M 11/00-11/08
(57)【特許請求の範囲】
【請求項1】
波長可変光源を備え、プローブ光を生成する光源部と、
前記プローブ光により測定対象となる光ファイバで発生する後方散乱光を検波して測定信号を生成する受光検波部と、
前記測定信号から、前記光ファイバの歪データを含む計測結果データを生成する信号処理部と
を備え、
前記信号処理部は、
前記プローブ光の波長を設定して、前記波長可変光源に指示する波長設定手段と、
前記光ファイバが無い区間に対応する測定信号に基づいてASEノイズの位相を算出し、前記光ファイバが有る区間に対応する計測結果データに基づいてプローブ光の位相を算出し、及び、前記ASEノイズと、前記プローブ光の位相差を算出する、位相差算出手段と
を備えることを特徴とする光ファイバ歪測定装置。
【請求項2】
前記信号処理部は、
前記プローブ光の波長を所定の範囲で順次に変更し、
前記プローブ光の波長と、前記位相差との関係を取得し、及び
最適な位相差が得られる前記プローブ光の波長を取得する
ことを特徴とする請求項1に記載の光ファイバ歪測定装置。
【請求項3】
前記受光検波部は、
前記後方散乱光を、第1光路及び第2光路に2分岐する光分岐器と、
前記第1光路及び前記第2光路のいずれか一方に設けられた、ビート周波数の周波数シフトを与える光周波数シフタと、
前記第1光路及び前記第2光路のいずれか一方に設けられた光遅延器と、
前記第1光路及び前記第2光路を伝播する光を合波して合波光を生成する合波器と、
前記合波光をヘテロダイン検波してビート信号を生成するバランス型フォトダイオードと、
前記測定信号と同じ周波数を持つ局発信号を生成する局発電気信号源と、
前記測定信号と前記局発信号の差周波信号を測定信号として取得するミキサー及びローパスフィルタと
を備えることを特徴とする請求項1又は2に記載の光ファイバ歪測定装置。
【請求項4】
プローブ光を生成するプローブ光生成過程と、
前記プローブ光により測定対象となる光ファイバで発生する後方散乱光を検波して測定信号を生成する受光検波過程と、
前記測定信号から、前記光ファイバの歪データを含む計測結果データを生成する信号処理過程と
を備え、
前記信号処理過程は、
前記光ファイバが無い区間に対応する計測結果データに基づいてASEノイズの位相を算出し、
前記光ファイバが有る区間に対応する計測結果データに基づいてプローブ光の位相を算出し、
前記ASEノイズと、前記プローブ光の位相差を算出し、
前記プローブ光生成過程及び前記受光検波過程は、前記プローブ光の波長を順次に変更して繰り返し行われ、
取得された、前記プローブ光の波長と、前記位相差との関係から、最適な位相差が得ら
れる前記プローブ光の波長を取得する
ことを特徴とする光ファイバ歪測定方法。
【請求項5】
プローブ光を生成するプローブ光生成過程と、
前記プローブ光により測定対象となる光ファイバで発生する後方散乱光を検波して測定信号を生成する受光検波過程と、
前記測定信号から、前記光ファイバの歪データを含む計測結果データを生成する信号処理過程と
を備え、
前記信号処理過程は、
前記光ファイバが無い区間に対応する計測結果データに基づいてASEノイズの位相を算出し、
前記光ファイバが有る区間に対応する計測結果データに基づいてプローブ光の位相を算出し、
前記ASEノイズと、前記プローブ光の位相差を算出し、
前記プローブ光生成過程、前記受光検波過程及び前記信号処理過程は、最適な位相差が得られるまで、前記プローブ光の波長を順次に変更して繰り返し行われる
ことを特徴とする光ファイバ歪測定方法。
【発明の詳細な説明】
【技術分野】
【0001】
この発明は、後方ブリルアン散乱光を用いた、光ファイバ歪測定装置及び光ファイバ歪測定方法に関する。
【背景技術】
【0002】
光ファイバ通信の発展とともに、光ファイバ自体をセンシング媒体とする分布型光ファイバセンシングが盛んに研究されている。特に、散乱光を利用する光ファイバセンシングは、点ごとに計測する電気センサとは異なり、長距離の分布としてのセンシングが可能であるため、被測定対象全体の物理量を計測することができる。
【0003】
分布型光ファイバセンシングでは、光ファイバの片端から光パルス(プローブ光)を入射し、光ファイバ中で後方散乱された光をプローブ光入射からの経過時間に対して測定する時間領域リフレクトメトリ(OTDR:Optical Time Domain Reflectmetry)が代表的である(例えば、非特許文献1参照)。
【0004】
光ファイバ中の後方散乱には、レイリー散乱、ブリルアン散乱及びラマン散乱がある。OTDRの測定対象として自然ブリルアン散乱を用いるものは、ブリルアンOTDR(BOTDR:Brillouin OTDR)と呼ばれる(例えば、非特許文献2参照)。なお、以後の説明において、自然ブリルアン散乱を単にブリルアン散乱と表記することもある。
【0005】
ブリルアン散乱は、光ファイバに入射されるプローブ光の中心周波数に対して、ストークス側及び反ストークス側に数GHz程度周波数シフトした周波数として観測さる。ブリルアン散乱のスペクトルはブリルアン利得スペクトル(BGS:Brillouin Gain Spectrum)と呼ばれる。BGSの周波数シフト量及びスペクトル線幅は、それぞれブリルアン周波数シフト(BFS:Brillouin Frequency
Shift)及びブリルアン線幅と呼ばれる。BFS及びブリルアン線幅は、光ファイバの材質及び光ファイバに入射されるプローブ光の波長(周波数)によって異なる。例えば、石英系のシングルモード光ファイバに波長1.55μmのプローブ光を入射した場合、BFSは約11GHz、ブリルアン線幅は約30MHzとなる。
【0006】
BFSは、光ファイバの歪に対して500MHz/%程度の割合で線形に変化することが知られている。これを引っ張り歪及び温度に換算すると、それぞれ0.058MHz/με、1.18MHz/℃に相当する。
【0007】
このようにBOTDRでは、光ファイバの長手方向に対する歪や温度分布を測定することが可能であり、橋梁やトンネルなど大型建造物のモニタリング技術として注目されている。
【0008】
BOTDRでは、一般的に、光ファイバ中で発生するブリルアン散乱光のスペクトル波形を測定するため、別途用意した参照光とのヘテロダイン検波を行う。ブリルアン散乱光の強度は、一般的なOTDRで用いられるレイリー散乱光の強度に比べて2~3桁程度小さい。このため、ヘテロダイン検波は、最小受光感度を向上させる上で有用となる。
【0009】
BOTDRは、光ファイバの長手方向に対する周波数スペクトル分布の情報を扱うため、時間、振幅及び周波数の3次元の情報を取得する必要がある。ここで、ブリルアン散乱光は、上述の通り非常に微弱なため、ヘテロダイン検波を適用しても十分な信号雑音比(
S/N)を確保できない。その結果、S/N改善のための平均化処理が必要となる。この平均化処理と上述の3次元情報取得のため、従来のBOTDR装置では測定時間の短縮が難しい。
【0010】
BOTDR装置における測定時間を短縮させる方法として、自己遅延干渉計を用いる方法が提案されている(例えば、特許文献1参照)。この方法では、光の周波数変化を、自己遅延干渉計で後方散乱光をコヒーレント検波して得られるビート信号の位相差として測定することにより、時間及び位相の2次元の情報を取得する。このため、3次元の情報の取得が必要な従来のBOTDR装置に比べて測定時間が短縮される。
【先行技術文献】
【特許文献】
【0011】
【非特許文献】
【0012】
【文献】横河技報、Vol.49、No.2 第56~58頁
【文献】T. Kurashima et al.,“Brillouin Optical-Fiber Time Domain Reflectmetry”,IEICE Trans. Commun., VOL. E76-B, NO.4, pp.382-390(1993)
【発明の概要】
【発明が解決しようとする課題】
【0013】
上述の従来例において、後方散乱光を増幅させる光増幅器として、例えば、エルビウムドープ光ファイバ増幅器(EDFA:Erbium Doped Fiber Amplifier)が用いられる。EDFAの出力には、EDFA自身が発生させる自然放出光(ASE:Amprified Spontaneous Emission)のノイズ(以下、ASEノイズとも称する。)が含まれる。
【0014】
このASEノイズは、白色雑音(ランダムノイズ)である。ASEノイズは、自己遅延干渉計を通っても白色雑音のままであり、上述の平均化処理により、近似的に0となることが期待される。
【0015】
しかし、実際には、ASEノイズが自己遅延干渉計を通る際、自己遅延干渉計が有する光周波数シフタで与えられる周波数シフトfAOMと同じ周波数の微弱なノイズが発生してしまう。このASEノイズに起因するノイズは、ブリルアン散乱光によって得られるビート信号と同じ周波数を持つため、フィルタによって除去することは不可能である。
【0016】
測定対象の光ファイバのプローブ光が入力される近端付近で発生する後方散乱光の信号レベルと比べて、近端とは反対側の遠端付近で発生する後方散乱光の信号レベルが小さくなる。このため、光ファイバの長さが長くなると、遠端に対応する信号レベルに対してASEノイズの影響が無視できなくなる可能性がある。
【0017】
この発明は、上述の問題点に鑑みてなされたものである。この発明の目的は、自己遅延干渉計を用いたBOTDRにおいて、ASEノイズの影響を低減することが可能な、光ファイバ歪測定装置及び光ファイバ歪測定方法を提供することにある。
【課題を解決するための手段】
【0018】
上述した目的を達成するために、この発明の光ファイバ歪測定装置は、光源部と、受光検波部と、信号処理部とを備えて構成される。光源部は、波長可変光源を備え、プローブ
光を生成する。受光検波部は、プローブ光により測定対象となる光ファイバで発生する後方散乱光を検波して測定信号を生成する。信号処理部は、測定信号から、光ファイバの歪データを含む計測結果データを生成する。ここで、信号処理部は、プローブ光の波長を設定して、波長可変光源に指示する波長設定手段と、光ファイバが無い区間に対応する計測結果データに基づいてASEノイズの位相を算出し、光ファイバが有る区間に対応する計測結果データに基づいてプローブ光の位相を算出し、ASEノイズと、プローブ光の位相差を算出する位相差算出手段とを備える。
【0019】
この光ファイバ歪測定装置の好適実施形態によれば、信号処理部は、プローブ光の波長を所定の範囲で順次に変更し、プローブ光の波長と、位相差との関係を取得し、最適な位相差が得られるプローブ光の波長を取得する。
【0020】
また、受光検波部は、後方散乱光を、第1光路及び第2光路に2分岐する光分岐器と、第1光路及び第2光路のいずれか一方に設けられた、ビート周波数の周波数シフトを与える光周波数シフタと、第1光路及び第2光路のいずれか一方に設けられた光遅延器と、第1光路及び第2光路を伝播する光を合波して合波光を生成する合波器と、合波光をヘテロダイン検波してビート信号を生成するバランス型フォトダイオードと、測定信号と同じ周波数を持つ局発信号を生成する局発電気信号源と、測定信号と局発信号の差周波信号を測定信号として取得するミキサー及びローパスフィルタとを備えるのが好適である。
【0021】
また、この発明の光ファイバ歪測定方法は、プローブ光を生成するプローブ光生成過程と、プローブ光により測定対象となる光ファイバで発生する後方散乱光を検波して測定信号を生成する受光検波過程と、測定信号から、光ファイバの歪データを含む計測結果データを生成する信号処理過程とを備えて構成される。信号処理過程は、光ファイバが無い区間に対応する計測結果データに基づいてASEノイズの位相を算出し、光ファイバが有る区間に対応する計測結果データに基づいてプローブ光の位相を算出し、ASEノイズと、プローブ光の位相差を算出する。プローブ光生成過程及び受光検波過程は、プローブ光の波長を順次に変更して繰り返し行われ、取得された、プローブ光の波長と、位相差との関係から、最適な位相差が得られるプローブ光の波長を取得する。
【0022】
この発明の光ファイバ歪測定方法の他の実施形態によれば、プローブ光を生成するプローブ光生成過程と、プローブ光により測定対象となる光ファイバで発生する後方散乱光を検波して測定信号を生成する受光検波過程と、測定信号から、光ファイバの歪データを含む計測結果データを生成する信号処理過程とを備えて構成される。信号処理過程は、光ファイバが無い区間に対応する計測結果データに基づいてASEノイズの位相を算出し、光ファイバが有る区間に対応する計測結果データに基づいてプローブ光の位相を算出し、ASEノイズと、プローブ光の位相差を算出する。プローブ光生成過程、受光検波過程及び信号処理過程は、最適な位相差が得られるまで、プローブ光の波長を順次に変更して繰り返し行われる。
【発明の効果】
【0023】
この発明の、光ファイバ歪測定装置並びに光ファイバ歪測定方法によれば、ASEノイズと、プローブ光の位相差を算出し、この位相差が最適となるようにプローブ光の波長を設定できるので、後方散乱光に対するASEノイズの影響を低減することができる。
【図面の簡単な説明】
【0024】
【
図1】光ファイバ歪測定装置の模式的ブロック図である。
【
図2】光ファイバ歪測定装置が備える光源部の模式的ブロック図である。
【
図3】光ファイバ歪測定装置が備える光分離部の模式的ブロック図である。
【
図4】光ファイバ歪測定装置が備える受光検波部の模式的ブロック図である。
【
図5】光ファイバ歪測定装置が備える信号処理部の模式的ブロック図である。
【
図6】プローブ光の周波数と、位相差及び温度ずれの関係を示す模式図である。
【
図7】プローブ光の最適な波長を設定する方法を説明するための処理フロー図である。
【発明を実施するための形態】
【0025】
以下、図を参照して、この発明の実施の形態について説明する。なお各図において、各構成要素の形状、大きさ及び配置関係については、この発明が理解できる程度に概略的に示したものに過ぎない。また、以下、この発明の好適な構成例につき説明するが、各構成要素の数値的条件などは、単なる好適例にすぎない。従って、この発明は以下の構成例や各図に限定されるものではなく、この発明の構成の範囲を逸脱せずにこの発明の効果を達成できる多くの変更又は変形を行うことができる。また、各図において共通する構成要素や同様な構成要素については、同一の符号を付し、それらの重複する説明を省略する。
【0026】
図1~5を参照して、この発明の光ファイバ歪測定装置について説明する。
図1は、光ファイバ歪測定装置の模式的ブロック図である。
図2~5は、それぞれ、光ファイバ歪測定装置が備える、光源部、光分離部、受光検波部及び信号処理部の模式的ブロック図である。ここでは、光ファイバ歪測定装置及び光ファイバ歪測定方法として説明するが、単に、光ファイバの歪を測定するだけでなく、光ファイバの歪に基づいて、温度の測定も可能である。
【0027】
光ファイバ歪測定装置100は、例えば、光源部110、光分離部120、光ファイバ130、受光検波部140、信号処理部150及び出力部160を備えて構成される。
【0028】
光源部110は、例えば、波長可変光源111、光パルス発生器112、プローブ光増幅器113及びタイミング制御器114を備えて構成される。波長可変光源111として、従来公知のレーザダイオード(LD)などの連続光光源を用いることができる。波長可変光源111が生成する連続光の波長は、信号処理部150からの指示で、所定の波長に設定される。また、電気パルスの周波数、プローブ光増幅器113における増幅率などは、必要に応じて、信号処理部150からの指示で調整することができるように構成されていてもよい。
【0029】
波長可変光源111で生成された連続光は、光パルス発生器112に送られる。光パルス発生器112として、任意好適な音響光学変調器(AOM:Acoustic Optical Modulator)又は電気光学変調器(EOM:Electric Optical Modulator)等が用いられる。
【0030】
光パルス発生器112は、タイミング制御器114で生成された、一定の周波数の電気パルスに基づいて、連続光から光パルスを生成する。この光パルスは、プローブ光増幅器113に送られる。プローブ光増幅器113は、光パルスの光パワーを調整してプローブ光を生成する。プローブ光は、光分離部120を経て、測定対象の光ファイバ130に送られる。
【0031】
ここで、可変波長光源111で生成される連続光の波長(周波数)を変更すると、プローブ光の位相が変化する。プローブ光の位相を-180°~+180°変化させる場合は、可変波長光源111の波長の可変範囲は数十nm程度(周波数の可変範囲は数GHz程度)である必要がある。
【0032】
光分離部120は、プローブ光生成部110で生成されたプローブ光をファイバ130に入射する。また、入射されたプローブ光によって光ファイバ130で発生した後方散乱
光を分離抽出し、受光検波部140に送る。
【0033】
光分離部120は、例えば、光サーキュレータ121、後方散乱光増幅器122、光帯域通過フィルタ(OBPF:Optical Band Pass Filter)123を備えて構成される。
【0034】
光サーキュレータ121として、従来公知の3ポート型光サーキュレータを用いることができる。光サーキュレータ121は、プローブ光生成部110から出力されたプローブ光を、測定対象である光ファイバ130に入射するとともに、光ファイバ130で発生した後方散乱光を後方散乱光増幅器122に送る。なお、光サーキュレータ121に換えて、光カプラを用いても良い。
【0035】
後方散乱光増幅器122として、例えば、エルビウム添加光ファイバ増幅器(EDFA)が用いられる。後方散乱光増幅器122は、後方散乱光の光パワーを増幅し、OBPF123に入力する。
【0036】
OBPF123は、入力された後方散乱光から自然ブリルアン散乱光のストークス成分及び反ストークス成分の一方、この例では、低周波数側のストークス成分のみを分離抽出して通過させ、受光検波部140に送る。なお、自然ブリルアン散乱光の他方、この例では、高周波数側の反ストークス成分は利用しない。
【0037】
上述のように、ブリルアン散乱光の周波数は、光ファイバ130に入射されたプローブ光の周波数とは異なることが知られている。光ファイバ130として一般的なシングルモードファイバを用い、波長可変光源111の周波数が193.4THz(波長1.55μm相当)とすると、波長可変光源111の周波数とOBPF123の通過帯域中心周波数fBPFとの差は約11GHzである。すなわち、この構成例では、OBPF123の通過帯域中心周波数は波長可変光源111の周波数より11GHz低く設定されている。
【0038】
一方、他の後方散乱光であるレイリー散乱光の周波数は、プローブ光の周波数とほぼ等しいことが知られている。この発明の光ファイバ歪測定装置100において、レイリー散乱光は測定の阻害要因となる。上述のように、レイリー散乱光とブリルアン散乱光との周波数差は約11GHzであるため、レイリー散乱光を除去するため、OBPF123は、前記の通り通過帯域幅が10GHz程度であることに加え、通過帯域の立ち上がり(立ち下り)が急峻であることが望ましい。
【0039】
受光検波部140は、プローブ光により測定対象となる光ファイバで発生する後方散乱光を検波して測定信号を生成する。
【0040】
受光検波部140は、例えば、光分岐器141、光遅延器142、光周波数シフタ143、局発電気信号源144、合波器145、バランス型フォトダイオード(PD:Photo Diode)146、ビート信号増幅器147、ミキサー148及びローパスフィルタ(LPF:Low Pass Filter)149を備えて構成される。特に、光分岐器141、光遅延器142、光周波数シフタ143、局発電気信号源144、合波器145及びバランス型PD146は、自己遅延ヘテロダイン干渉計を構成する。
【0041】
光分岐器141は、OBPF123で分離抽出された自然ブリルアン散乱光を第1光路及び第2光路に2分岐する。この構成例では、第1光路に、光遅延器142が設けられている。また、第2光路には、光周波数シフタ143が設けられている。
【0042】
光遅延器142は、第1光路を伝搬する第1伝搬光に時間τの遅延を与える。また、光
周波数シフタ143は、局発電気信号源144で生成される周波数fLOの局発電気信号に基づいて、第2光路を伝搬する第2伝搬光に周波数シフトを与える。光周波数シフタ143として、例えば、任意好適なAOMが用いられる。
【0043】
局発電気信号源144は、上述の通り周波数fLOの局発電気信号を生成する。生成された局発電気信号は2分岐され、一方は光周波数シフタ143に送られ、他方はミキサー148に送られる。
【0044】
合波器145は、光遅延器142で遅延を与えられた第1伝搬光、及び、光周波数シフタ143で周波数シフトを与えられた第2伝搬光を合波して合波光を生成する。合波光は、バランス型PD146に送られる。
【0045】
バランス型PD146は、入力された合波光をヘテロダイン検波してビート信号を生成する。ビート信号は、ビート信号増幅器147に送られる。ビート信号増幅器147は、入力されたビート信号を増幅する。増幅されたビート信号は、ミキサー148に送られる。
【0046】
ミキサー148は、増幅されたビート信号と局発電気信号とをホモダイン検波してホモダイン信号を生成する。LPF149は、ホモダイン信号から増幅されたビート信号と局発電気信号との和周波成分を除去して、差周波成分である測定信号を生成する。測定信号は、信号処理部150に送られる。
【0047】
信号処理部150は、例えば、平均化処理手段151、ノイズ信号生成手段152、計測結果データ生成手段153、位相差算出手段154及び波長設定手段155を備えて構成される。信号処理部150は、受光検波部140から受け取った測定信号に基づいて、光ファイバの歪データを含む計測結果データを生成する。
【0048】
信号処理部150は、例えば、FPGA(Field Programmable Gate Array)で構成できる。また、ソフトウェアを実行することにより、信号処理部150を実現する構成にしても良い。なお、各処理の内容を記憶する記憶手段については、任意好適な従来公知の構成にできるので、ここでは説明を省略する。
【0049】
平均化処理手段151で、M回分(Mは2以上の整数)の平均化、すなわち、平均化処理が行われる。この平均化の回数は、タイミング制御器114で生成される電気パルスの数に対応する。平均化の回数Mは、任意好適な数に設定されるが、例えば、光ファイバ130の長さが5kmの場合、4000回程度にすることができる。
【0050】
ノイズ信号生成手段152は、平均化処理手段151で得られた平均化データに基づいてノイズ信号を生成する。ノイズ信号は、後方散乱光が後方散乱光増幅器122に入力されている状態での、光ファイバが無い区間に対応する平均化データから取得される。
【0051】
光ファイバが無い区間では、平均化データは、後方散乱光増幅器122で生成されるASEノイズのみとなる。このASEノイズは、信号レベルが低いため、光ファイバが無い区間での平均化データをさらにN回(Nは2以上の整数)平均してノイズデータを得る。ノイズデータから、ASEノイズの初期位相と振幅を算出する。その後、算出した初期位相と振幅を用いて、ノイズ信号が生成される。
【0052】
計測結果データ生成手段153は、光ファイバが有る区間に対応する平均化データからノイズ信号を減算した後、光ファイバの歪データを含む計測結果データを生成する。計測結果データ生成手段153における処理は、例えば、特許文献1に開示されている従来公
知の処理を利用することができる。このとき、プローブ光の入射から歪検出までの経過時間tと光ファイバ130内の光の伝搬速度vから、歪が発生した光ファイバ130の光の伝搬方向に沿った位置を算定することができる。
【0053】
ここで、波長可変光源11の周波数(波長)を変化させると、プローブ光及び後方散乱光の位相は変化するが、ASEノイズの位相は変化しない。このため、波長可変光源の周波数(波長)を変化させることで、プローブ光とASEノイズの位相差を変化させることができる。なお、波長可変光源の周波数と波長とは、一対一に対応する。また、プローブ光の位相が変化すると、同じだけ後方散乱光の位相も変化する。
【0054】
図6を参照して、波長可変光源の周波数(波長)を変化させたときの、プローブ光とASEノイズの位相差及び温度ずれについて説明する。
図6は、波長可変光源の周波数と、位相差及び温度ずれの関係を示す模式図である。
図6では、横軸に、波長可変光源の周波数をとって示し、左軸に温度ずれ(℃)、及び、右軸に位相差(°)をとって示している。ここで、温度ずれは、光ファイバ歪測定装置で得られる温度と、別途得られる正確な温度の差である。また、温度ずれの算出においては、後方散乱光からノイズ信号を減算している。
【0055】
図6に示されるように、波長可変光源111の周波数(波長)が変化すると、位相差(図中、Iで示す。)及び温度ずれ(図中、IIで示す。)が変化する。温度ずれは、ノイズ信号を減算した場合であっても残っている。しかし、プローブ光とASEノイズの位相差が+90°のとき、温度ずれが0℃となり最適となる。このように、プローブ光とASEノイズには最適な位相差があるので、ノイズ信号を減算する場合であっても、最適な位相差となるように、波長可変光源111の周波数(波長)を設定するのがよい。
【0056】
位相差算出手段154は、後方散乱光とASEノイズの位相差を算出する機能を有する。なお、計測結果データ生成手段153では、後方散乱光からノイズ信号を減算するが、位相差算出手段154では、後方散乱光からノイズ信号を減算しなくてもよい。
【0057】
波長設定手段155は、プローブ光の波長を設定して、波長可変光源に指示する機能を有する。プローブ光の位相、すなわち、位相差を-180°~+180°変化させるために、可変波長光源111の波長を数十nm程度(周波数を数GHz程度)変化させる。波長設定手段155は、プローブ光の波長を所定の範囲で順次に変化、いわゆる、スイープさせる。波長の変化量を大きくすると、最適な位相差が得にくくなり、波長の変化量を小さくすると、スイープにかかる時間が長くなる。このため、波長設定の許容時間、及び、要求される測定精度に応じて、適宜公的な変化量で波長を変化させるのがよい。波長設定手段は、設定した波長と、設定した波長に対して得られた、
図6中、Iで示される位相差から、最適な位相差(
図6の例では+90°)を取得し、その位相差が得られたときの波長に、可変波長光源111を設定する。
【0058】
出力部160は、信号処理部150で生成した計測結果データを出力する。出力部160における計測結果データの出力形態は特に限定するものではなく、例えばディスプレイ等の表示装置への出力(表示)、記録媒体への出力(保存)、及びアラーム等の警報手段への出力などとすることができる。出力部160は、このような出力形態に対応する例えばディスプレイ等の機能部を必ずしも備える必要はなく、それぞれの出力形態に合わせた出力端子を備えていれば良い。
【0059】
図7を参照して、プローブ光の最適な波長を取得する処理を説明する。
図7(A)及び(B)は、プローブ光の最適な波長を取得する処理を説明するためのフロー図である。
図7(A)は、第1実施例を示し、
図7(B)は、第2実施例を示している。
【0060】
図7(A)に示す第1実施例では、まず、波長を設定して、プローブ光を生成する(S10)。次に、プローブ光により測定対象となる光ファイバ130で発生する後方散乱光を検波して測定信号を取得する(S20)。次に、波長スイープが完了したか否かを判定する(S30)。波長スイープが完了していない場合(No)、波長を変化させて改めて設定し(S10)、再び、測定信号を取得する(S20)。この処理を、所定の範囲の波長スイープが完了するまで繰り返す。
【0061】
S30の判定において、波長スイープが完了した場合(Yes)、取得された測定信号に対して、設定された波長ごとに、ASEノイズとプローブ光の位相差を算出する(S40)。
【0062】
その後、得られた、波長と位相差の関係から、最適な波長を取得する(S50)。
【0063】
最適な波長を取得した後、波長可変光源111の波長を、最適な波長に設定し、通常の測定が行われる。
【0064】
なお、S40において行われる、取得された測定信号に対して、設定された波長ごとに位相差を算出する過程は、時間を要する。このため、上述の第1実施例のように、波長をスイープさせて、複数の波長に対して測定信号を取得した後、一度に、位相差計算を行うのが好ましい。しかし、この構成に限定されない。
【0065】
図7(B)に示す第2実施例では、まず、波長を設定して、プローブ光を生成する(S10)。次に、プローブ光により測定対象となる光ファイバ130で発生する後方散乱光を検波して測定信号を取得する(S20)。次に、取得された測定信号から、ASEノイズと、プローブ光の位相差を算出する(S40)。
【0066】
次に、算出された位相差が、最適な位相差であるか否かを判定する(S45)。最適な位相差である場合(Yes)、その時の波長を、最適な波長として取得する(S50)。ここで、最適な位相差とは、+90°であるので、+90°の前後数度の範囲にある場合、最適な位相差と判断する構成にすることができる。
【0067】
最適な位相差でない場合(No)、波長を変化させて改めて設定し(S10)、再び、測定信号を取得する(S20)。この処理を、算出された位相差が最適な位相差になるまで繰り返す。最適な波長を取得した後、波長可変光源111の波長を、最適な波長に設定し、通常の測定が行われる。
【0068】
以上説明したように、この発明の光ファイバ歪測定装置及び光ファイバ歪測定方法によれば、プローブ光とASEノイズの位相差が適切な位相差となるように、プローブ光の波長(周波数)を設定することにより、単にASEノイズに基づくノイズ信号を減算するよりも、より高精度の測定を行うことができる。
【符号の説明】
【0069】
100 光ファイバ歪測定装置
110 光源部
111 波長可変光源
112 光パルス発生器
113 プローブ光増幅器
114 タイミング制御器
120 光分離部
121 光サーキュレータ
122 後方散乱光増幅器
123 光帯域通過フィルタ(OBPF)
130 光ファイバ
140 受光検波部
141 光分岐器
142 光遅延器
143 光周波数シフタ
144 局発電気信号源
145 合波器
146 バランス型フォトダイオード(PD)
147 ビート信号増幅器
148 ミキサー
149 ローパスフィルタ(LPF)
150 信号処理部
151 平均化処理手段
152 ノイズ信号生成手段
153 計測結果データ生成手段
154 位相差算出手段
155 波長設定手段
160 出力部