IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ JSR株式会社の特許一覧

<>
  • 特許-メッキ造形物の製造方法 図1
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-01-22
(45)【発行日】2024-01-30
(54)【発明の名称】メッキ造形物の製造方法
(51)【国際特許分類】
   G03F 7/004 20060101AFI20240123BHJP
   G03F 7/40 20060101ALI20240123BHJP
   G03F 7/09 20060101ALI20240123BHJP
   G03F 7/20 20060101ALI20240123BHJP
【FI】
G03F7/004 501
G03F7/40
G03F7/40 521
G03F7/09 501
G03F7/20 521
【請求項の数】 7
(21)【出願番号】P 2020560047
(86)(22)【出願日】2019-12-06
(86)【国際出願番号】 JP2019047828
(87)【国際公開番号】W WO2020121968
(87)【国際公開日】2020-06-18
【審査請求日】2022-06-14
(31)【優先権主張番号】P 2018232869
(32)【優先日】2018-12-12
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000004178
【氏名又は名称】JSR株式会社
(74)【代理人】
【識別番号】110001070
【氏名又は名称】弁理士法人エスエス国際特許事務所
(72)【発明者】
【氏名】西口 直希
(72)【発明者】
【氏名】松本 朋之
(72)【発明者】
【氏名】石井 亮
(72)【発明者】
【氏名】遠藤 彩子
【審査官】塚田 剛士
(56)【参考文献】
【文献】特開2011-075864(JP,A)
【文献】特開2014-106306(JP,A)
【文献】特開2016-194691(JP,A)
【文献】特開2018-151491(JP,A)
【文献】特開2015-184389(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G03F 7/004
G03F 7/40
G03F 7/09
G03F 7/20
CAplus/REGISTRY(STN)
(57)【特許請求の範囲】
【請求項1】
金属膜を有する基板の前記基板上に、メルカプト基、スルフィド結合およびポリスルフィド結合から選ばれる少なくとも1種を有する硫黄含有化合物と、酸解離性基を有する重合体(A)とを含有する感光性樹脂組成物の樹脂膜を形成する工程(1)と、
前記樹脂膜を露光する工程(2)と、
露光後の前記樹脂膜を現像してレジストパターン膜を形成する工程(3)と、
前記レジストパターン膜を金属膜上に有する基板に対して、酸素含有ガスのプラズマ処理を行う工程(4)と、
前記プラズマ処理後、前記レジストパターン膜を型としてメッキ処理を行う工程(5)と
を有する、メッキ造形物の製造方法であって、
前記硫黄含有化合物が、下記式(C1)に示す化合物(C1)、下記式(C2)に示す化合物(C2)、前記化合物(C2)の多量体、および下記式(C3)に示す化合物(C3)から選ばれる少なくとも1種であり、
前記硫黄含有化合物の含有量が、前記感光性樹脂組成物中に含まれる前記重合体(A)を含む重合体成分を100質量部として、0.2~2.0質量部である、メッキ造形物の製造方法。
【化1】
(式(C1)中、R31は、それぞれ独立に1価の炭化水素基、または前記1価の炭化水素基中の少なくとも1つの水素原子をメルカプト基に置換した基であり、pは、1以上の整数である。)
【化2】
(式(C2)中、R32は、2価の炭化水素基であり、R33は、2価の炭化水素基、または前記2価の炭化水素基中の少なくとも1つの-CH2-基(両末端を除く)を-S-もしくは-O-に置換した基であり、R34は、グリコールウリル環構造またはイソシアヌル環構造を示し、mは、1または0であり、pは、1~4の整数である。)
【化3】
(式(C3)中、R35およびR36は、それぞれ独立に水素原子またはアルキル基であり、R37は、単結合またはアルカンジイル基であり、R38は、炭素原子以外の原子を含んでいてもよいr価の脂肪族基であり、rは、2~10の整数である。)
【請求項2】
前記感光性樹脂組成物が、光酸発生剤(B)をさらに含有する、請求項1に記載のメッキ造形物の製造方法。
【請求項3】
前記レジストパターン膜の厚さが1~100μmである、請求項1または2に記載のメッキ造形物の製造方法。
【請求項4】
前記金属膜が銅膜である、請求項1~のいずれか1項に記載のメッキ造形物の製造方法。
【請求項5】
前記メッキ処理が銅メッキ処理である、請求項1~のいずれか1項に記載のメッキ造形物の製造方法。
【請求項6】
前記工程(5)の前に、プラズマ処理が施されたレジストパターン膜を金属膜上に有する基板を、酸により洗浄する工程を有する、請求項1~のいずれか1項に記載のメッキ造形物の製造方法。
【請求項7】
前記工程(5)の前に、プラズマ処理が施されたレジストパターン膜を金属膜上に有する基板を、過マンガン酸カリウム水溶液または硫酸水溶液により洗浄する工程を有する、請求項1~のいずれか1項に記載のメッキ造形物の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、メッキ造形物の製造方法に関する。
【背景技術】
【0002】
スマートフォンおよびタブレット端末等のモバイル機器の高性能化は、異なる機能を有する半導体チップを、FO-WLP(Fan-Out Wafer Level Package)、FO-PLP(Fan-Out Panel Level Package)、TSV(Through Silicon Via)、シリコンインターポーザー等の高密度パッケージング技術を用いてパッケージングすることにより行われている。
【0003】
このようなパッケージング技術では、半導体チップ間の電気的接続に用いられる配線およびバンプも高密度になってきている。したがって、配線およびバンプの形成に用いられるレジストパターン膜も、微細かつ高密度のものが求められている。
【0004】
通常、配線およびバンプはメッキ造形物であり、銅膜等の金属膜を有する基板上に感光性樹脂組成物を塗布してレジスト塗膜を形成し、そのレジスト塗膜に対してマスクを用いて露光および現像を行ってレジストパターン膜を形成し、そのレジストパターン膜を型にして基板上にメッキ処理を行うことで製造される(特許文献1~2参照)。
【0005】
このように、金属膜上にレジストパターン膜を形成し、その後メッキ処理を行うことから、感光性樹脂組成物には、例えば、レジストパターン膜と金属膜との接着性や、メッキ造形物の形状に影響を及ぼすレジストパターン形状の矩形性等が求められる。メッキ造形物の接着性に影響を及ぼす因子の一つには、金属膜とレジストパターン膜との界面のすそ引き形状(フッティングともいう)がある。特に接着性をよくするために、メルカプト基やスルフィド結合を有する化合物を含有する感光性樹脂組成物が知られている(特許文献3参照)。
【先行技術文献】
【特許文献】
【0006】
【文献】特開2010-008972号公報
【文献】特開2006-330368号公報
【文献】特表2016-502142号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
本発明者らの検討によれば、例えば特許文献3のようにメルカプト基を有する化合物を含有する感光性樹脂組成物を用いてレジストパターン膜を形成し、前記レジストパターン膜を型としてメッキ処理を行うと、形成されたメッキ造形物が基板から剥がやすいなど、メッキ造形物を良好に製造できない場合があることが判明した。本発明の課題は、メッキ造形物を良好に製造することができるメッキ造形物の製造方法を提供することを目的とする。
【課題を解決するための手段】
【0008】
本発明者らは前記課題を解決すべく検討を行った。その結果、以下の工程を有するメッキ造形物の製造方法により前記課題を解決できることを見出し、本発明を完成するに至った。すなわち本発明は、例えば以下の[1]~[8]に関する。
【0009】
[1]金属膜を有する基板の前記基板上に、メルカプト基、スルフィド結合およびポリスルフィド結合から選ばれる少なくとも1種を有する硫黄含有化合物を含有する感光性樹脂組成物の樹脂膜を形成する工程(1)と、前記樹脂膜を露光する工程(2)と、露光後の前記樹脂膜を現像してレジストパターン膜を形成する工程(3)と、前記レジストパターン膜を金属膜上に有する基板に対して、酸素含有ガスのプラズマ処理を行う工程(4)と、前記プラズマ処理後、前記レジストパターン膜を型としてメッキ処理を行う工程(5)とを有する、メッキ造形物の製造方法。
【0010】
[2]前記感光性樹脂組成物が、酸解離性基を有する重合体(A)および光酸発生剤(B)をさらに含有する、前記[1]に記載のメッキ造形物の製造方法。
[3]前記硫黄含有化合物の含有量が、感光性樹脂組成物中に含まれる酸解離性基を有する重合体(A)を含む重合体成分を100質量部として、0.2~2.0質量部である、前記[2]に記載のメッキ造形物の製造方法。
[4]前記レジストパターン膜の厚さが1~100μmである、前記[1]~[3]のいずれかに記載のメッキ造形物の製造方法。
[5]前記金属膜が銅膜である、前記[1]~[4]のいずれかに記載のメッキ造形物の製造方法。
[6]前記メッキ処理が銅メッキ処理である、前記[1]~[5]のいずれかに記載のメッキ造形物の製造方法。
【0011】
[7]前記工程(5)の前に、プラズマ処理が施されたレジストパターン膜を金属膜上に有する基板を、酸により洗浄する工程を有する、前記[1]~[6]のいずれかに記載のメッキ造形物の製造方法。
[8]前記工程(5)の前に、プラズマ処理が施されたレジストパターン膜を金属膜上に有する基板を、過マンガン酸カリウム水溶液または硫酸水溶液により洗浄する工程を有する、前記[1]~[6]のいずれかに記載のメッキ造形物の製造方法。
【発明の効果】
【0012】
本発明によれば、メッキ造形物を良好に製造することができるメッキ造形物の製造方法を提供することができる。
【図面の簡単な説明】
【0013】
図1図1は、フッティングを説明する図である。
【発明を実施するための形態】
【0014】
以下、本発明を実施するための形態について説明する。
〔メッキ造形物の製造方法〕
本発明のメッキ造形物の製造方法は、
金属膜を有する基板の前記金属膜上に、メルカプト基、スルフィド結合およびポリスルフィド結合から選ばれる少なくとも1種を有する硫黄含有化合物(以下「化合物(C)」ともいう)を含有する感光性樹脂組成物の樹脂膜を形成する工程(1)と、
前記樹脂膜を露光する工程(2)と、
露光後の前記樹脂膜を現像してレジストパターン膜を形成する工程(3)と、
前記レジストパターン膜を金属膜上に有する基板に対して、酸素含有ガスのプラズマ処理を行う工程(4)と、
前記プラズマ処理後、前記レジストパターン膜を型としてメッキ処理を行う工程(5)と
を有する。
【0015】
本発明のメッキ造形物の製造方法によれば、金属膜に対する接着性が高いレジストパターン膜を形成でき、このレジストパターン膜を型としてメッキ造形物を良好に製造することができる。
【0016】
本発明が前記効果を発現する理由は、以下のように推測される。
感光性樹脂組成物に化合物(C)を含有させることにより、前記感光性樹脂組成物から形成されるレジストパターン膜と金属膜との接着性を向上させることができる。化合物(C)に含まれるメルカプト基、スルフィド結合またはポリスルフィド結合が、金属膜に対するレジストパターン膜の接着性の向上に寄与していると考えられる。
【0017】
前記レジストパターン膜を金属膜上に有する基板に対して、酸素含有ガスを用いたプラズマ処理を行うことで、金属膜から剥がれ難く、形状良好なメッキ造形物を製造することができる。前記製造方法において、前記現像後、レジストパターン膜開口部の金属膜表面には、現像で除去されなかった化合物(C)含有膜が形成されていると考えられる。化合物(C)に含まれる硫黄原子は、メッキムラおよび腐食の原因になりえる。そこで、レジストパターン膜形成後、メッキ処理前に、レジストパターン膜開口部の金属膜表面の化合物(C)含有膜をプラズマ処理により除去することで、金属膜表面とメッキ液との親和性を高めることができ、メッキ処理を良好に行える。
【0018】
なお、以上の説明は推測であって、本発明を何ら限定するものではない。
[工程(1)]
工程(1)では、金属膜を有する基板の前記金属膜上に、化合物(C)を含有する感光性樹脂組成物の樹脂膜を形成する。
【0019】
前記基板としては、例えば、半導体基板、ガラス基板が挙げられる。基板の形状には特に制限はなく、表面形状は平板状および凸凹状が挙げられ、基板の形状としては円形および正方形が挙げられる。また、基板の大きさに制限はない。
【0020】
前記金属膜としては、例えば、アルミニウム、銅、銀、金およびパラジウム等の金属、ならびに前記金属を含む2種以上の合金を含む膜が挙げられ、銅膜、すなわち銅および/または銅合金を含む膜が好ましい。金属膜の厚さは、通常、100~10,000Å、好ましくは500~2,000Åである。金属膜は、通常、前記基板の表面に設けられている。金属膜は、スパッタ法等の方法により形成することができる。
【0021】
前記樹脂膜は、通常、金属膜を有する基板の前記金属膜上に前記感光性樹脂組成物を塗布して形成される。前記組成物の塗布方法としては、例えば、スピンコート法、ロールコート法、スクリーン印刷法、アプリケーター法が挙げられ、これらの中でもスピンコート法、スクリーン印刷法が好ましい。
【0022】
前記感光性樹脂組成物を塗布した後、有機溶剤を揮発させる等の目的のため、塗布された当該組成物に対して加熱処理を行うことができる。前記加熱処理の条件は、通常、50~200℃で0.5~20分間である。
【0023】
前記樹脂膜の厚さは、通常、1~100μm、好ましくは5~80μmである。
以下、工程(1)で用いる感光性樹脂組成物について説明する。前記感光性樹脂組成物は、メルカプト基、スルフィド結合およびポリスルフィド結合から選ばれる少なくとも1種を有する化合物(C)を含有する。
【0024】
本明細書において、ポリスルフィド結合とは、2以上の硫黄原子間で形成される結合を意味し、例えば、ジスルフィド結合(-S-S-)、トリスルフィド結合(-S-S-S-)が挙げられる。ポリスルフィド結合における硫黄原子数は、通常、2以上、好ましくは2~3である。
【0025】
化合物(C)の詳細については、<化合物(C)>欄に記載する。
前記感光性樹脂組成物は、化合物(C)を含有すれば、従来公知の感光性樹脂組成物を用いることができ、また、ポジ型およびネガ型のいずれであってもよいが、ポジ型感光性樹脂組成物が好ましく、ポジ型の化学増幅型感光性樹脂組成物がより好ましい。
【0026】
ネガ型感光性樹脂組成物としては、例えば、アルカリ可溶性樹脂、光重合性不飽和二重結合含有化合物(例:(メタ)アクリル化合物)、光ラジカル重合開始剤および化合物(C)を含有する樹脂組成物が挙げられる。アルカリ可溶性樹脂、光重合性不飽和二重結合含有化合物および光ラジカル重合開始剤を含有するネガ型感光性樹脂組成物としては、例えば、特開2015-143813号公報、特開2015-043060号公報、国際公開第2013/084886号に記載された樹脂組成物が挙げられ、例えば、この樹脂組成物に化合物(C)を添加すればよい。前記公報に記載の樹脂組成物は、本明細書に記載されているものとする。
【0027】
ポジ型の化学増幅型感光性樹脂組成物(以下「ポジ型組成物」ともいう)としては、例えば、酸解離性基を有する重合体(A)(以下「重合体(A)」ともいう)、光酸発生剤(B)および化合物(C)を含有する樹脂組成物が挙げられる。以下、各成分について説明する。
【0028】
本明細書中で例示する各成分、例えば感光性樹脂組成物中の各成分や、重合体(A)中の各構造単位は、特に言及しない限り、それぞれ1種単独で含まれてもよく、2種以上が含まれてもよい。
【0029】
<化合物(C)>
化合物(C)は、メルカプト基、スルフィド結合およびポリスルフィド結合から選ばれる少なくとも1種を有する。一実施態様において、これらの基または結合を有する光酸発生剤(B)を用いる場合は、当該光酸発生剤以外の化合物(C)を選択して使用することができる。
【0030】
化合物(C)中のメルカプト基数、スルフィド結合数およびポリスルフィド結合数の合計は、特に限定されないが、通常1~10、好ましくは1~6、より好ましくは2~4である。
【0031】
化合物(C)としては、以下に説明する、式(C1)に示す化合物(C1)、式(C2)に示す化合物(C2)、前記化合物(C2)の多量体、式(C3)に示す化合物(C3)が挙げられる。メッキ処理中のレジストパターン膜の基板からの剥がれを抑制できることから、前記化合物(C1)および前記化合物(C2)が好ましく、前記化合物(C2)がより好ましい。
【0032】
化合物(C)は、一実施態様において、疎水性が高い傾向にある。化合物(C)の疎水性については、分配係数が指標となる。化合物(C)の分配係数は、好ましくは2~10、より好ましくは3~7である。分配係数は、ClogP法により算出したオクタノール/水分配係数(logP)の値であり、数値が大きいほど疎水性(脂溶性)が高いことを意味する。
【0033】
前記ポジ型組成物は、1種又は2種以上の化合物(C)を含有することができる。
前記ポジ型組成物中の化合物(C)の含有量は、重合体(A)を含む重合体成分100質量部に対して、その含有量の下限としては、通常、0.01質量部、好ましくは0.05質量部、より好ましくは0.1質量部、特に好ましくは0.2質量部であり、その含有量の上限としては、通常、10質量部、好ましくは3.0質量部、より好ましくは2.0質量部、特に好ましくは1.0質量部である。このような態様であると、前記ポジ型組成物は前述した効果をより発揮することができる。例えば化合物(C)の含有量が0.2質量部以上であれば、矩形性がより高いレジストパターン膜を形成できる傾向にある。また、例えば化合物(C)の含有量が2.0質量部以下であれば、金属膜を有する基板に対するメッキ造形物の密着性がより高くなる傾向にある。
【0034】
≪化合物(C1)≫
化合物(C1)は、式(C1)に示す化合物である。
【0035】
【化1】
【0036】
式(C1)中、R31は、それぞれ独立に1価の炭化水素基、または前記1価の炭化水素基中の少なくとも1つの水素原子をメルカプト基に置換した基(以下「メルカプト置換基」ともいう)である。pは、1以上の整数、好ましくは1~4の整数、より好ましくは2~3の整数である。例えばpが3の場合、化合物(C1)はトリスルフィド結合を有する。pが1である場合は、少なくとも1つのR31は前記1価の炭化水素基中の少なくとも1つの水素原子をメルカプト基に置換した基であることが好ましい。
【0037】
31の1価の炭化水素基は、通常、炭素数1~12の1価の炭化水素基である。前記1価の炭化水素基としては、例えば、アルキル基、アリール基、アリールアルキル基が挙げられる。
【0038】
31のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、ペンチル基、デシル基等の炭素数1~10のアルキル基が挙げられる。
31のアリール基としては、例えば、フェニル基、メチルフェニル基、ナフチル基等の炭素数6~10のアリール基が挙げられる。
【0039】
31のアリールアルキル基としては、例えば、ベンジル基、フェネチル基等の炭素数7~12のアリールアルキル基が挙げられる。
メルカプト置換基としては、例えば、4-メルカプトフェニル基が挙げられる。
【0040】
化合物(C1)において、スルフィド結合(p=1の場合)、ポリスルフィド結合(p=2以上の整数の場合)またはメルカプト基(R31がメルカプト置換基の場合)は、炭化水素構造に結合している。このため、化合物(C1)は疎水性が高くなっていると推測される。
【0041】
化合物(C1)としては、例えば、下記式(C1-1)~(C1-3)に示す化合物が挙げられる。
【0042】
【化2】
【0043】
≪化合物(C2)およびその多量体≫
化合物(C2)は、式(C2)に示す化合物である。
【0044】
【化3】
【0045】
式(C2)中の各記号の意味は以下のとおりである。
32は、2価の炭化水素基であり、好ましくはアルカンジイル基、アリーレン基またはアリーレンアルカンジイル基であり、これらの中では、メッキ造形物を良好に製造することができることから、アルカンジイル基がより好ましい。
【0046】
33は、2価の炭化水素基、または前記2価の炭化水素基中の少なくとも1つの-CH2-基(両末端を除く)を-S-もしくは-O-に置換した基であり、好ましくはアルカンジイル基、前記アルカンジイル基中の少なくとも1つの-CH2-基(両末端を除く)を-S-もしくは-O-に置換した基(以下「置換アルカンジイル基」ともいう)、アリーレン基またはアリーレンアルカンジイル基であり、これらの中では、メッキ造形物を良好に製造することができることから、アルカンジイル基がより好ましい。
【0047】
前記アルカンジイル基の炭素数は、通常、1~12、好ましくは2~12である。前記アルカンジイル基としては、例えば、メチレン基、エチレン基、プロパン-1,3-ジイル基、ブタン-1,4-ジイル基、ペンタン-1,5-ジイル基、ヘキサン-1,6-ジイル基、オクタン-1,8-ジイル基、デカン-1,10-ジイル基、ドデカン-1,12-ジイル基等の直鎖状アルカンジイル基;1-メチルプロパン-1,3-ジイル基、2-メチルプロパン-1,3-ジイル基、1-メチルブタン-1,4-ジイル基、2-メチルブタン-1,4-ジイル基等の分岐状アルカンジイル基が挙げられる。これらの中でも、直鎖状アルカンジイル基が好ましい。
【0048】
置換アルカンジイル基としては、例えば、-CH2-CH2-S-CH2-CH2-で表される基、-CH2-CH2-O-CH2-CH2-O-CH2-CH2-で表される基が挙げられる。
【0049】
前記アリーレン基としては、例えば、フェニレン基、メチルフェニレン基、ナフチレン基等の炭素数6~10のアリーレン基が挙げられる。
前記アリーレンアルカンジイル基は、1つ以上のアリーレン基と1つ以上のアルカンジイル基とが任意の順序で結合した2価の基である。各々のアリーレン基およびアルカンジイル基としては、上記した具体例が挙げられる。
【0050】
34は、グリコールウリル環構造またはイソシアヌル環構造を示す。なお、グリコールウリル環構造およびイソシアヌル環構造は、疎水性を低下させうる結合を有しているが、その構造対称性が高いため、化合物(C2)の疎水性を悪化させるほどではないと推測される。
【0051】
mは、1または0である。
qは、1~4の整数である。R34がグリコールウリル環構造である場合、qは1~4の整数である。R34がイソシアヌル環構造である場合、qは1~3の整数である。qが2以上の整数の場合、式(C2)中の-(R32-S)m-R33-SHで表される基は同一でも異なってもよい。
【0052】
化合物(C2)において、メルカプト基またはスルフィド結合(mが1の場合)は、炭化水素構造、または炭化水素構造において一部に-S-もしくは-O-を有する構造に結合している。このため、化合物(C2)は疎水性が高くなっていると推測される。
【0053】
化合物(C2)としては、式(C2-1)に示す化合物(C2-1)、および式(C2-2)に示す化合物(C2-2)が好ましく、前記化合物(C2-1)がより好ましい。
【0054】
【化4】
【0055】
式(C2-1)および(C2-2)中、Xは、それぞれ独立に水素原子または式(g2)に示す1価の基である。ただし、式(C2-1)において少なくとも1つのXは式(g2)に示す1価の基であり、好ましくは、全てのXが式(g2)に示す1価の基である。また、式(C2-2)において少なくとも1つのXは式(g2)に示す1価の基であり、好ましくは、全てのXが式(g2)に示す1価の基である。
【0056】
【化5】
【0057】
式(g2)中、R32、R33およびmは、それぞれ式(C2)中のR32、R33およびmと同義であり、*は、式(C2-1)または(C2-2)中の窒素原子との結合手である。
化合物(C2-1)としては、例えば、1,3,4,6-テトラキス[2-メルカプトエチル]グリコールウリル、1,3,4,6-テトラキス[3-(2-メルカプトエチルスルファニル)プロピル]グリコールウリル、1,3,4,6-テトラキス[3-(3-メルカプトプロピルスルファニル)プロピル]グリコールウリル、1,3,4,6-テトラキス[3-(4-メルカプトブチルスルファニル)プロピル]グリコールウリル、1,3,4,6-テトラキス[3-(5-メルカプトペンチルスルファニル)プロピル]グリコールウリル、1,3,4,6-テトラキス[3-(6-メルカプトヘキシルスルファニル)プロピル]グリコールウリル、1,3,4,6-テトラキス[3-(8-メルカプトオクチルスルファニル)プロピル]グリコールウリル、1,3,4,6-テトラキス[3-(10-メルカプトデシルスルファニル)プロピル]グリコールウリル、1,3,4,6-テトラキス[3-(12-メルカプトドデシルスルファニル)プロピル]グリコールウリル、1,3,4,6-テトラキス{3-[2-(2-メルカプトエチルスルファニル)エチルスルファニル]プロピル}グリコールウリル、1,3,4,6-テトラキス(3-{2-[2-(2-メルカプトエトキシ)エトキシ]エチルスルファニル}プロピル)グリコールウリルが挙げられる。
【0058】
化合物(C2-2)としては、例えば、1,3,5-トリス[2-メルカプトエチル]イソシアヌレート、1,3,5-トリス[3-(2-メルカプトエチルスルファニル)プロピル]イソシアヌレート、1,3,5-トリス[3-(3-メルカプトプロピルスルファニル)プロピル]イソシアヌレート、1,3,5-トリス[3-(4-メルカプトブチルスルファニル)プロピル]イソシアヌレート、1,3,5-トリス[3-(5-メルカプトペンチルスルファニル)プロピル]イソシアヌレート、1,3,5-トリス[3-(6-メルカプトヘキシルスルファニル)プロピル]イソシアヌレート、1,3,5-トリス[3-(8-メルカプトオクチルスルファニル)プロピル]イソシアヌレート、1,3,5-トリス[3-(10-メルカプトデシルスルファニル)プロピル]イソシアヌレート、1,3,5-トリス[3-(12-メルカプトドデシルスルファニル)プロピル]イソシアヌレート、1,3,5-トリス{3-[2-(2-メルカプトエチルスルファニル)エチルスルファニル]プロピル}イソシアヌレート、1,3,5-トリス(3-{2-[2-(2-メルカプトエトキシ)エトキシ]エチルスルファニル}プロピル)イソシアヌレートが挙げられる。
【0059】
化合物(C2)は、例えば、特開2016-169174号公報、特開2016-164135号公報、および特開2016-164134号公報に記載された方法により合成することができる。
【0060】
化合物(C2)は、多量体を形成していてもよい。前記多量体は、複数の化合物(C2)がメルカプト基のカップリングによりジスルフィド結合を形成することで得られる多量体である。前記多量体は、例えば、化合物(C2)の2~5量体である。
【0061】
≪化合物(C3)≫
化合物(C3)は、式(C3)に示す化合物である。
【0062】
【化6】
【0063】
式(C3)中、R35およびR36は、それぞれ独立に水素原子またはアルキル基である。R37は、単結合またはアルカンジイル基である。R38は、炭素原子以外の原子を含んでいてもよいr価の脂肪族基である。rは2~10の整数である。
【0064】
35およびR36のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、ペンチル基、デシル基等の炭素数1~10、好ましくは1~4のアルキル基が挙げられる。R35およびR36としては、一方が水素原子であり他方がアルキル基である組合せが好ましい。
【0065】
37のアルカンジイル基の炭素数は、通常、1~10、好ましくは1~5である。前記アルカンジイル基としては、例えば、メチレン基、エチレン基、プロパン-1,3-ジイル基、ブタン-1,4-ジイル基、ペンタン-1,5-ジイル基、デカン-1,10-ジイル基等の直鎖状アルカンジイル基;1-メチルプロパン-1,3-ジイル基、2-メチルプロパン-1,3-ジイル基、1-メチルブタン-1,4-ジイル基、2-メチルブタン-1,4-ジイル基等の分岐状アルカンジイル基が挙げられる。これらの中でも、直鎖状アルカンジイル基が好ましい。
【0066】
38は、炭素原子以外の原子を含んでいてもよいr価(2~10価)の脂肪族基である。炭素原子以外の原子としては、例えば、窒素原子、酸素原子、硫黄原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。前記脂肪族基の構造は、直鎖状であってもよく、分岐鎖状であってもよく、環状であってもよく、これらの構造を組み合わせた構造であってもよい。
【0067】
前記脂肪族基としては、例えば、炭素数2~10のr価の炭化水素基、炭素数2~10のr価の酸素含有脂肪族基、イソシアヌル環構造を有する炭素数6~10の3価の基が挙げられる。
【0068】
化合物(C3)としては、下記式(C3-1)~(C3-4)に示す化合物が挙げられる。
【0069】
【化7】
【0070】
<重合体(A)>
重合体(A)は、酸解離性基を有する。
酸解離性基とは、光酸発生剤(B)から生成する酸の作用により解離可能な基である。前記解離の結果として重合体(A)中にカルボキシ基およびフェノール性水酸基等の酸性官能基が生成する。その結果、重合体(A)のアルカリ性現像液に対する溶解性が変化し、前記ポジ型組成物は、レジストパターン膜を形成することができる。
【0071】
重合体(A)は、酸解離性基により保護された酸性官能基を有する。酸性官能基としては、例えば、カルボキシ基、フェノール性水酸基が挙げられる。重合体(A)としては、例えば、カルボキシ基が酸解離性基により保護された(メタ)アクリル樹脂、フェノール性水酸基が酸解離性基により保護されたポリヒドロキシスチレン樹脂が挙げられる。
【0072】
重合体(A)のゲルパーミエーションクロマトグラフィーで測定したポリスチレン換算の重量平均分子量(Mw)は、通常、1,000~500,000、好ましくは3,000~300,000、より好ましくは10,000~100,000、さらに好ましくは20,000~60,000である。
【0073】
重合体(A)のMwとゲルパーミエーションクロマトグラフィーで測定したポリスチレン換算の数平均分子量(Mn)との比(Mw/Mn)は、通常、1~5、好ましくは1~3である。
【0074】
前記ポジ型組成物は、1種又は2種以上の重合体(A)を含有することができる。
前記ポジ型組成物中の重合体(A)の含有割合は、前記組成物の固形分100質量%中、通常、70~99.5質量%、好ましくは80~99質量%、より好ましくは90~98質量%である。前記固形分とは、後述する有機溶剤以外の全成分をいう。
【0075】
≪構造単位(a1)≫
重合体(A)は、通常、酸解離性基を有する構造単位(a1)を有する。
構造単位(a1)としては、例えば、式(a1-10)に示す構造単位、式(a1-20)に示す構造単位が挙げられ、式(a1-10)に示す構造単位が好ましい。
【0076】
【化8】
【0077】
式(a1-10)および(a1-20)中の各記号の意味は以下のとおりである。
11は、水素原子、炭素数1~10のアルキル基、または前記アルキル基中の少なくとも1つの水素原子を、フッ素原子および臭素原子等のハロゲン原子、フェニル基等のアリール基、水酸基、およびアルコキシ基等の別の基に置換した基(以下「置換アルキル基」ともいう)である。
【0078】
12は、炭素数1~10の2価の有機基である。
Arは、炭素数6~10のアリーレン基である。
13は、酸解離性基である。
【0079】
mは、0~10の整数、好ましくは0~5、より好ましくは0~3の整数である。
前記炭素数1~10のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、ペンチル基、デシル基が挙げられる。
【0080】
前記炭素数1~10の2価の有機基としては、例えば、メチレン基、エチレン基、プロパン-1,3-ジイル基、プロパン-1,2-ジイル基、デカン-1,10-ジイル基等の炭素数1~10のアルカンジイル基;前記アルカンジイル基中の少なくとも1つの水素原子を、フッ素原子および臭素原子等のハロゲン原子、フェニル基等のアリール基、水酸基、およびアルコキシ基等の別の基に置換した基が挙げられる。
【0081】
前記炭素数6~10のアリーレン基としては、例えば、フェニレン基、メチルフェニレン基、ナフチレン基が挙げられる。
前記酸解離性基としては、酸の作用により解離し、前記解離の結果として重合体(A)中にカルボキシ基およびフェノール性水酸基等の酸性官能基が生成する基が挙げられる。具体的には、式(g1)に示す酸解離性基、ベンジル基が挙げられ、式(g1)に示す酸解離性基が好ましい。
【0082】
【化9】
【0083】
式(g1)中、Ra1~Ra3は、それぞれ独立にアルキル基、脂環式炭化水素基、または前記アルキル基もしくは前記脂環式炭化水素基中の少なくとも1つの水素原子を、フッ素原子および臭素原子等のハロゲン原子、フェニル基等のアリール基、水酸基、およびアルコキシ基等の別の基に置換した基であり、Ra1およびRa2が相互に結合して、Ra1およびRa2が結合する炭素原子Cとともに脂環構造を形成していてもよい。
【0084】
a1~Ra3の前記アルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、ペンチル基、デシル基等の炭素数1~10のアルキル基が挙げられる。
【0085】
a1~Ra3の前記脂環式炭化水素基としては、例えば、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基等の単環式飽和環状炭化水素基;シクロブテニル基、シクロペンテニル基、シクロヘキセニル基等の単環式不飽和環状炭化水素基;ノルボルニル基、アダマンチル基、トリシクロデシル基、テトラシクロドデシル基等の多環式飽和環状炭化水素基が挙げられる。
【0086】
a1、Ra2および炭素原子Cにより形成される前記脂環構造としては、例えば、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル等の単環式飽和環状炭化水素構造;シクロブテニル、シクロペンテニル、シクロヘキセニル等の単環式不飽和環状炭化水素構造;ノルボルニル、アダマンチル、トリシクロデシル、テトラシクロドデシル等の多環式飽和環状炭化水素構造が挙げられる。
【0087】
式(g1)に示す酸解離性基としては、式(g11)~(g15)に示す基が好ましい。
【0088】
【化10】
【0089】
式(g11)~(g15)中、Ra4は、それぞれ独立に、メチル基、エチル基、イソプロピル基、n-ブチル基等の炭素数1~10のアルキル基であり、nは、1~4の整数である。式(g11)~(g14)中の各環構造は、炭素数1~10のアルキル基、フッ素原子および臭素原子等のハロゲン原子、水酸基、およびアルコキシ基等の置換基を1つまたは2つ以上有していてもよい。*は結合手を示す。
【0090】
構造単位(a1)としては、式(a1-10)および(a1-20)に示す構造単位の他にも、特開2005-208366号公報、特開2000-194127号公報、特開2000-267283号公報、および特開2004-348106号公報に記載のアセタール系酸解離性基を有する構造単位;特開2013-101321号公報に記載のスルトン環を有する構造単位;特開2000-214587号公報、および特開2000-199960号公報等に記載の架橋型酸解離性基を有する構造単位が挙げられる。
【0091】
上記公報に記載の構造単位は、本明細書に記載されているものとする。
重合体(A)は、1種又は2種以上の構造単位(a1)を有することができる。
重合体(A)中の構造単位(a1)の含有割合は、通常、10~50モル%、好ましくは15~45モル%、より好ましくは20~40モル%である。
【0092】
なお、本明細書において、重合体(A)中の各構造単位の含有割合は、重合体(A)を構成する全ての構造単位の合計を100モル%とした場合の値である。前記各構造単位は、通常、重合体(A)合成時の単量体に由来する。各構造単位の含有割合は、1H-NMRにより測定することができる。
【0093】
≪構造単位(a2)≫
重合体(A)は、アルカリ性現像液への溶解性を促進する基(以下「溶解性促進基」ともいう)を有する構造単位(a2)をさらに有することができる。重合体(A)が構造単位(a2)を有することで、前記ポジ型組成物から形成される樹脂膜の解像性、感度および焦点深度等のリソ性を調節することができる。
【0094】
構造単位(a2)としては、例えば、フェノール性水酸基、カルボキシ基、アルコール性水酸基、ラクトン構造、環状カーボネート構造、スルトン構造およびフッ素アルコール構造から選ばれる少なくとも1種の基または構造を有する構造単位(ただし、構造単位(a1)に該当するものを除く)が挙げられる。これらの中でも、メッキ造形物形成時のメッキからの押し込みに対して強いレジストパターン膜を形成できることから、フェノール性水酸基を有する構造単位が好ましい。
【0095】
フェノール性水酸基を有する構造単位としては、例えば、2-ヒドロキシスチレン、4-ヒドロキシスチレン、4-イソプロペニルフェノール、4-ヒドロキシ-1-ビニルナフタレン、4-ヒドロキシ-2-ビニルナフタレン、4-ヒドロキシフェニル(メタ)アクリレート等のヒドロキシアリール基を有する単量体由来の構造単位が挙げられる。ヒドロキシアリール基としては、例えば、ヒドロキシフェニル基、メチルヒドロキシフェニル基、ジメチルヒドロキシフェニル基、ジクロロヒドロキシフェニル基、トリヒドロキシフェニル基、テトラヒドロキシフェニル基等のヒドロキシフェニル基;ヒドロキシナフチル基、ジヒドロキシナフチル基等のヒドロキシナフチル基が挙げられる。
【0096】
カルボキシ基を有する構造単位としては、例えば、(メタ)アクリル酸、クロトン酸、マレイン酸、フマル酸、ケイ皮酸、2-カルボキシエチル(メタ)アクリレート、2-カルボキシプロピル(メタ)アクリレート、3-カルボキシプロピル(メタ)アクリレート等の単量体由来の構造単位、および特開2002-341539号公報に記載の構造単位が挙げられる。
【0097】
アルコール性水酸基を有する構造単位としては、例えば、2-ヒドロキシエチル(メタ)アクリレート、3-(メタ)アクリロイロオキシ-4-ヒドロキシテトラヒドロフラン等の単量体由来の構造単位、および特開2009-276607号公報に記載の構造単位が挙げられる。
【0098】
重合体(A)は、1種又は2種以上の構造単位(a2)を有することができる。
重合体(A)中の構造単位(a2)の含有割合は、通常、10~80モル%、好ましくは20~65モル%、より好ましくは25~60モル%である。構造単位(a2)の含有割合が前記範囲内であれば、アルカリ性現像液に対する溶解速度を上げることができ、その結果、前記ポジ型組成物の厚膜での解像性を向上させることができる。
【0099】
重合体(A)は、構造単位(a1)を有する重合体と同一のまたは異なる重合体中に構造単位(a2)を有することができるが、同一の重合体中に構造単位(a1)~(a2)を有することが好ましい。
【0100】
≪構造単位(a3)≫
重合体(A)は、構造単位(a1)~(a2)以外の他の構造単位(a3)をさらに有することができる。構造単位(a3)としては、例えば、アルキル(メタ)アクリレート、アルコキシアルキル(メタ)アクリレート、アルコキシ(ポリ)アルキレングリコール(メタ)アクリレート等の脂肪族(メタ)アクリル酸エステル化合物、脂環式(メタ)アクリル酸エステル化合物、芳香環含有(メタ)アクリル酸エステル化合物、スチレン系ビニル化合物、不飽和ニトリル化合物、不飽和アミド化合物、不飽和イミド化合物等の単量体に由来する構造単位が挙げられる。
【0101】
重合体(A)は、1種又は2種以上の構造単位(a3)を有することができる。
重合体(A)中の構造単位(a3)の含有割合は、通常、40モル%以下である。
重合体(A)は、構造単位(a1)および/または構造単位(a2)を有する重合体と同一のまたは異なる重合体中に構造単位(a3)を有することができるが、同一の重合体中に構造単位(a1)~(a3)を有することが好ましい。
【0102】
<光酸発生剤(B)>
光酸発生剤(B)は、露光により酸を発生する化合物である。この酸の作用により、重合体(A)中の酸解離性基が解離して、カルボキシ基およびフェノール性水酸基等の酸性官能基が生成する。その結果、前記ポジ型組成物から形成された樹脂膜の露光部がアルカリ性現像液に易溶性となり、ポジ型のレジストパターン膜を形成することができる。
【0103】
光酸発生剤(B)としては、例えば、特開2004-317907号公報、特開2014-157252号公報、特開2002-268223号公報、特開2017-102260号公報、特開2016-018075号公報、および特開2016-210761号公報に記載の化合物が挙げられる。これらは本明細書に記載されているものとする。光酸発生剤(B)としては、具体的には、オニウム塩化合物、ハロゲン含有化合物、スルホン化合物、スルホン酸化合物、スルホンイミド化合物、ジアゾメタン化合物が挙げられる。
【0104】
前記ポジ型組成物は、1種又は2種以上の光酸発生剤(B)を含有することができる。
前記ポジ型組成物中の光酸発生剤(B)の含有量は、重合体(A)100質量部に対して、通常、0.1~20質量部、好ましくは0.3~15質量部、より好ましくは0.5~10質量部である。光酸発生剤(B)の含有量が前記範囲内であると、解像性により優れたレジストパターン膜が得られる傾向にある。
【0105】
<その他成分>
前記ポジ型組成物は、その他成分をさらに含有することができる。
前記その他成分としては、例えば、光酸発生剤(B)から露光により生成した酸が樹脂膜中で拡散することを制御するクエンチャー(例えば、後述する式(D-1)または(D-2)に示す化合物)、前記ポジ型組成物の塗布性、消泡性等を改良する作用を示す界面活性剤、露光光を吸収して光酸発生剤の酸発生効率を向上させる増感剤、前記ポジ型組成物から形成した樹脂膜のアルカリ性現像液への溶解速度を制御するアルカリ可溶性樹脂や低分子フェノール化合物、露光時の散乱光の未露光部への回り込みによる光反応を阻止する紫外線吸収剤、前記ポジ型組成物の保存安定性を高める熱重合禁止剤、その他、酸化防止剤、接着助剤、無機フィラーが挙げられる。前述した重合体成分には、重合体(A)の他、アルカリ可溶性樹脂等が含まれえる。
【0106】
<有機溶剤>
前記ポジ型組成物は、有機溶剤をさらに含有することができる。有機溶剤は、例えば、前記ポジ型組成物中に含まれる各成分を均一に混合するために用いられる成分である。
【0107】
有機溶剤としては、例えば、アルコール溶剤、エステル溶剤、ケトン溶剤、アルキレングリコールジアルキルエーテル、アルキレングリコールモノアルキルエーテルアセテートが挙げられる。
【0108】
前記ポジ型組成物は、1種又は2種以上の有機溶剤を含有することができる。
前記ポジ型組成物中の有機溶剤の含有割合は、通常、40~90質量%である。
<ポジ型組成物の製造>
前記ポジ型組成物は、前述した各成分を均一に混合することにより製造することができる。また、異物を取り除くために、前述した各成分を均一に混合した後、得られた混合物をフィルターで濾過することができる。
【0109】
[工程(2)]
工程(2)では、工程(1)で形成した樹脂膜を露光する。
前記露光は、通常、所定のマスクパターンを有するフォトマスクを介して、等倍投影露光または縮小投影露光で、樹脂膜に選択的に行う。露光光としては、例えば、波長150~600nm、好ましくは波長200~500nmの紫外線または可視光線が挙げられる。露光光の光源としては、例えば、低圧水銀灯、高圧水銀灯、超高圧水銀灯、メタルハライドランプ、レーザーが挙げられる。露光量は、露光光の種類、感光性樹脂組成物の種類、および樹脂膜の厚さによって適宜選択でき、通常、100~20,000mJ/cm2である。
【0110】
前記樹脂膜に対する露光後、現像前に、前記樹脂膜に対して加熱処理を行うことができる。前記加熱処理の条件は、通常、70~180℃で0.5~10分間である。前記ポジ型組成物を用いる場合、前記加熱処理により、重合体(A)において酸解離性基の酸による解離反応を促進することができる。
【0111】
[工程(3)]
工程(3)では、工程(2)で露光した樹脂膜を現像して、レジストパターン膜を形成する。現像は、通常、アルカリ性現像液を用いて行う。現像方法としては、例えば、シャワー法、スプレー法、浸漬法、液盛り法、パドル法が挙げられる。現像条件は、通常、10~30℃で1~30分間である。
【0112】
アルカリ性現像液としては、例えば、アルカリ性物質を1種または2種以上含有する水溶液が挙げられる。アルカリ性物質としては、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、ケイ酸ナトリウム、アンモニア水、エチルアミン、n-プロピルアミン、ジエチルアミン、トリエチルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、テトラメチルアンモニウムハイドロオキサイド、テトラエチルアンモニウムハイドロオキサイド、コリン、ピロール、ピペリジンが挙げられる。アルカリ性現像液におけるアルカリ性物質の濃度は、通常、0.1~10質量%である。アルカリ性現像液は、例えば、メタノール、エタノール等の有機溶剤および/または界面活性剤をさらに含有することができる。
【0113】
現像により形成されたレジストパターン膜を水等により洗浄することができる。その後、前記レジストパターン膜をエアーガンまたはホットプレートを用いて乾燥することができる。
【0114】
以上のようにして、基板の金属膜上に、メッキ造形物を形成するための型となるレジストパターン膜を形成することができる。
レジストパターン膜の厚さは、通常、1~100μm、好ましくは5~80μmである。レジストパターン膜における開口部(例えばポジ型の場合、現像で除去された部分)の直径は、通常、0.5~10000μm、好ましくは0.8~1000μmである。
【0115】
レジストパターン膜の開口部の形状としては、メッキ造形物の種類に即した形状を選択することができる。メッキ造形物が配線の場合、パターンの形状は例えばラインアンドスペースパターンであり、メッキ造形物がバンプの場合、前記開口部の形状は例えば立方体形状のホールパターンである。
【0116】
[工程(4)]
工程(4)において酸素含有ガスを用いたプラズマ処理(前記基板の表面処理)を行うことにより、金属膜表面とメッキ液との親和性を高めることができる。工程(4)では、例えば、レジストパターン膜を金属膜上に有する基板を真空状態にした装置内に入れ、酸素のプラズマを放出させて、前記基板の表面処理を行う。プラズマ処理条件は、電源出力が通常、50~300Wであり、酸素含有ガスの流量が通常、20~150mLであり、装置内圧力が通常、10~30Paであり、処理時間が通常、0.5~30分である。酸素含有ガスは、酸素の他、例えば水素、アルゴンおよび四フッ化メタンから選ばれる1種または2種以上を含有することができる。前記プラズマ処理により表面処理された基板を水等により洗浄することができる。
【0117】
工程(4)において酸素含有ガスを用いたプラズマ処理を行うことにより、金属膜表面とメッキ液との親和性を高めることができるのは以下の理由によるものと推測される。
メッキ処理前に金属膜表面に付着した有機物を除去する処理としては、例えば過マンガン酸カリウム水溶液や、硫酸水溶液等を用いたウェット処理、酸素含有ガスを用いたプラズマ処理や、オゾンと紫外線を用いた処理等のドライ処理が挙げられる。ところで化合物(C)含有膜は疎水性膜であり、また、化合物(C)は疎水性であると考えられることから、過マンガン酸カリウム水溶液や、硫酸水溶液等の水溶液は、化合物(C)含有膜や化合物(C)とは充分にはなじまず、その結果、ウェット処理では化合物(C)含有膜を良好に除去することができず、金属膜表面とメッキ液との親和性を高めることができなかったと推定される。
【0118】
また、ドライ処理の中でもオゾンと紫外線を用いた処理の場合、オゾンは膜の奥深くでの反応が主反応となるため、薄膜で金属膜表面にある化合物(C)含有膜と良好に反応できなかったものと推定される。
【0119】
一方、酸素含有ガスを用いたプラズマ処理は、膜表面での反応が主反応となるため、薄膜で金属膜表面にある化合物(C)含有膜と効率的に反応し、化合物(C)含有膜を良好に除去でき、その結果、金属膜表面とメッキ液との親和性を高めることができたものと推定される。
【0120】
なお、以上の説明は推測であって、本発明を何ら限定するものではない。
[工程(5)]
工程(5)では、前記プラズマ処理後、前記レジストパターン膜を型として、前記レジストパターン膜によって画定される開口部(例えばポジ型の場合、現像で除去された部分)に、メッキ処理によりメッキ造形物を形成する。
【0121】
メッキ造形物としては、例えば、バンプ、配線が挙げられる。メッキ造形物は、例えば、銅、金、ニッケル等の導体からなる。メッキ造形物の厚さは、その用途によって異なるが、例えば、バンプの場合、通常、5~100μm、好ましくは10~80μm、更に好ましくは20~60μmであり、配線の場合、通常、1~30μm、好ましくは3~20μm、更に好ましくは5~15μmである。
【0122】
メッキ処理は、例えば、メッキ液を用いたメッキ液処理が挙げられる。メッキ液としては、例えば、銅メッキ液、金メッキ液、ニッケルメッキ液、はんだメッキ液が挙げられ、具体的には、硫酸銅またはピロリン酸銅等を含む銅メッキ液、シアン化金カリウムを含む金メッキ液、硫酸ニッケルまたは炭酸ニッケルを含むニッケルメッキ液が挙げられる。これらの中でも、銅メッキ液が好ましい。メッキ液は、通常、水およびアルコール等の親水性溶剤を含有する。
【0123】
メッキ処理としては、具体的には、電解メッキ処理、無電解メッキ処理、溶融メッキ処理等の湿式メッキ処理が挙げられる。ウエハーレベルでの加工におけるバンプや配線を形成する場合、通常、電解メッキ処理により行われる。
【0124】
電解メッキ処理の場合、スパッタ法または無電解メッキ処理によりレジストパターン膜の内壁に形成したメッキ膜をシード層として用いることができ、また、基板上の前記金属膜をシード層として用いることもできる。また、シード層を形成する前にバリア層を形成してもよく、シード層をバリア層として用いることもできる。
【0125】
電解メッキ処理の条件は、メッキ液の種類等により適宜選択できる。銅メッキ液の場合、温度が、通常、10~90℃、好ましくは20~70℃であり、電流密度が、通常、0.3~30A/dm2、好ましくは0.5~20A/dm2である。ニッケルメッキ液の場合、温度が、通常、20~90℃、好ましくは40~70℃であり、電流密度が、通常、0.3~30A/dm2、好ましくは0.5~20A/dm2である。
【0126】
メッキ処理は、異なるメッキ処理を順次行うことができる。例えば、はじめに銅メッキ処理を行った後、ニッケルメッキ処理を行い、次に溶融はんだメッキ処理を行うことで、はんだ銅ピラーバンプを形成することができる。
【0127】
[他の工程]
本発明のメッキ造形物の製造方法は、工程(4)の後、工程(5)の前に、デスミア処理を行う工程を有することができる。前記デスミア処理としては、酸素含有ガスを用いたプラズマ処理を除く公知のデスミア処理が挙げられる。前記デスミア処理としては、例えば、過マンガン酸カリウム水溶液、硫酸水溶液等の酸性水溶液、水酸化ナトリウム水溶液、水酸化テトラメチルアンモニウム水溶液等のアルカリ性水溶液を用いたウェット処理、すなわちこれらの水溶液を用いた洗浄や、オゾンと紫外線を用いたドライ処理が挙げられる。化合物(C)は金属膜表面との親和性が高く、ポジ型組成物の組成や各成分の含有量、プラズマ処理の条件等によってはごく微量の化合物(C)が金属膜表面に残存する可能性がある。その様な場合には本工程を行うことにより、メッキ造形物の密着強度の向上や、メッキ液の汚染の抑制が期待できるなど、本発明の効果を向上させることができる場合がある。プラズマ処理後に残存したごく微量の化合物(C)であれば、上述した水溶液が化合物(C)とは充分にはなじまないという点は顕在化しないと考えられる。
【0128】
本発明のメッキ造形物の製造方法は、工程(5)の後に、前記レジストパターン膜を除去する工程をさらに有することができる。この工程は、具体的には、残存するレジストパターン膜を剥離して除去する工程であり、例えば、レジストパターン膜およびメッキ造形物を有する基板を剥離液に浸漬する方法が挙げられる。剥離液の温度および浸漬時間は、通常、20~80℃で1~10分間である。
【0129】
剥離液としては、例えば、テトラメチルアンモニウムハイドロオキサイド、ジメチルスルホキシドおよびN,N-ジメチルホルムアミドから選ばれる少なくとも1種を含有する剥離液が挙げられる。
【0130】
本発明のメッキ造形物の製造方法は、メッキ造形物を形成した領域以外の前記金属膜を、例えば、ウェットエッチング法等の方法により除去する工程をさらに有することができる。
【実施例
【0131】
以下、本発明を実施例に基づいてさらに具体的に説明するが、本発明はこれら実施例に限定されない。
<重合体の重量平均分子量(Mw)>
下記条件下でゲルパーミエーションクロマトグラフィー法にて重合体の重量平均分子量(Mw)を測定した。
・GPC装置:東ソー株式会社製、装置名「HLC-8220-GPC」
・カラム:東ソー株式会社製カラムのTSK-MおよびTSK2500を直列に接続
・溶媒:テトラヒドロフラン
・温度:40℃
・検出方法:屈折率法
・標準物質:ポリスチレン
[合成例1および2]
2,2'-アゾビス(イソ酪酸メチル)をラジカル重合開始剤として用いたラジカル重合により、表1に示す構造単位およびその含有割合を有する重合体(A-1)および(A-2)を製造した。表1中に示す構造単位の詳細を下記式(a1-1)~(a1-4)、(a2-1)~(a2-2)、(a3-1)~(a3-2)に示す。なお、表1中のa1-1~a3-2欄の数値の単位はモル%である。各構造単位の含有割合は、1H-NMRにより測定した。
【0132】
【化11】
【0133】
【表1】
【0134】
<感光性樹脂組成物の製造>
[製造例1~11]感光性樹脂組成物の製造
下記表2に示す種類および量の各成分を均一に混合することにより、製造例1~11の感光性樹脂組成物を製造した。重合体成分以外の各成分の詳細は以下のとおりである。なお、表2中の数値の単位は質量部である。
B-1:下記式(B-1)に示す化合物
B-2:下記式(B-2)に示す化合物
【0135】
【化12】
【0136】
C-1:ジメチルトリスルフィド
C-2:4,4'-チオビスベンゼンチオール
C-3:下記式(C-3)に示す化合物
C-4:下記式(C-4)に示す化合物
C-5:下記式(C-5)に示す化合物
【0137】
【化13】
【0138】
D-1:下記式(D-1)に示す化合物
D-2:下記式(D-2)に示す化合物
【0139】
【化14】
【0140】
E-1:フッ素系界面活性剤
(商品名「NBX-15」、ネオス株式会社製)
F-1:γ-ブチロラクトン
F-2:シクロヘキサノン
F-3:プロピレングリコールモノメチルエーテルアセテート
【0141】
【表2】
【0142】
<メッキ造形物の製造>
[実施例1A~11A、実施例1D、比較例1B~5B、比較例1C~11C]
銅スパッタ膜を備えてなるシリコンウエハ基板の銅スパッタ膜上にスピンコーターを用いて、製造例1~11の感光性樹脂組成物を塗布し、120℃で60秒間加熱し、膜厚6μmの塗膜を形成した。前記塗膜を、ステッパー(ニコン社製、型式「NSR-i10D」)を用い、パターンマスクを介して、露光した。露光後の塗膜を、90℃で60秒間加熱し、次いで、2.38質量%のテトラメチルアンモニウムハイドロオキサイド水溶液に180秒間浸漬して現像した。その後、流水洗浄し、窒素ブローして、基板の銅スパッタ膜上にレジストパターン膜(ライン幅:2μm、ライン幅/スペース幅=1/1)を形成した。このレジストパターン膜を形成した基板を、「パターニング基板」という。
【0143】
得られたパターニング基板について、レジストパターン膜と銅スパッタ膜との界面の状態を観察した。得られた線幅2μmの1L(ライン)1S(スペース)の断面を、走査型電子顕微鏡を用いて観察し、図1に示す幅Lcと幅Ldを測定して、下記基準で評価した。なお図1において、パターンの裾部は実際より誇張されている。
Lc/Ld<0.005:「フッティング」が「◎」
0.005≦Lc/Ld<0.05:「フッティング」が「〇」
0.05≦Lc/Ld<0.1:「フッティング」が「△」
0.1≦Lc/Ld :「フッティング」が「×」
評価結果を表3に示す。
【0144】
前記レジストパターン膜を型として、電解メッキ処理を行い、メッキ造形物を製造した。電解メッキ処理の前処理として、下記に示す前処理A~Dの処理を行った。前処理後のパターニング基板を銅メッキ液(製品名「MICROFAB SC-40」、マクダーミッド・パフォーマンス・ソリューションズ・ジャパン株式会社製)1L中に浸漬し、メッキ浴温度25℃、電流密度8.5A/dm2に設定して、2分10秒間電界メッキ処理を行い、メッキ造形物を製造した。
【0145】
前処理A:酸素プラズマによる処理(出力100W、酸素流量100ミリリットル、処理時間60秒間)を行い、次いで水洗処理。
前処理B:10質量%硫酸水溶液に23℃で60秒間浸漬し、次いで水洗処理。
【0146】
前処理C:前処理なし。
前処理D:酸素プラズマによる処理(出力100W、酸素流量100ミリリットル、処理時間60秒間)を行い、次いで1質量%硫酸水溶液に23℃で120秒間浸漬した後、水洗処理。
製造したメッキ造形物の状態を電子顕微鏡で観察し下記評価基準にて評価した。評価結果を下記表3に示す。
【0147】
AA:剥がれがなく、矩形なメッキ造形物を形成した。
A :メッキ造形物の金属表面界面における形状が細くなっていたが、
剥がれはない。
B :矩形なメッキ造形物が形成されたが、
50%未満の領域で剥がれが起こっている。
BB:メッキ造形物が、その50%以上が基板から剥がれている。
【0148】
【表3】
【0149】
[メッキ液汚染]
実施例1Aおよび実施例1Dについて、銅メッキ液を2つ用意し、<メッキ造形物の製造>に従い、実施例1Aおよび実施例1Dと同様の条件でそれぞれ50枚のパターニング基板にメッキ造形物を繰り返し形成した。
2つの銅メッキ液について、メッキを行う前と、50枚目のメッキ終了後のメッキ液について、以下の基準で、メッキ液の汚染性を評価した。なお、めっき液の伝導度は、(株)堀場製作所製、ポータブル型 電気伝導率計 ES-71で測定した。
【0150】
・実施例1Dの方法:メッキ前後のメッキ液の伝導度変化が10%未満
(メッキ汚染なし)
・実施例1Aの方法:メッキ前後のメッキ液の伝導度変化が10%以上
(メッキ汚染あり)
【符号の説明】
【0151】
10…金属膜を有する基板
20…レジストパターン膜
30…フッティング
図1