(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-01-25
(45)【発行日】2024-02-02
(54)【発明の名称】樹脂組成物、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板及びプリント配線板
(51)【国際特許分類】
C08G 59/40 20060101AFI20240126BHJP
C08G 59/62 20060101ALI20240126BHJP
C08J 5/24 20060101ALI20240126BHJP
C08K 3/36 20060101ALI20240126BHJP
C08L 39/04 20060101ALI20240126BHJP
C08L 63/00 20060101ALI20240126BHJP
H05K 1/03 20060101ALI20240126BHJP
【FI】
C08G59/40
C08G59/62
C08J5/24 CFC
C08K3/36
C08L39/04
C08L63/00 A
H05K1/03 610K
H05K1/03 610L
H05K1/03 610N
H05K1/03 630H
(21)【出願番号】P 2020559863
(86)(22)【出願日】2019-11-15
(86)【国際出願番号】 JP2019044794
(87)【国際公開番号】W WO2020121734
(87)【国際公開日】2020-06-18
【審査請求日】2022-07-08
(31)【優先権主張番号】P 2018232828
(32)【優先日】2018-12-12
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】314012076
【氏名又は名称】パナソニックIPマネジメント株式会社
(74)【代理人】
【識別番号】110002527
【氏名又は名称】弁理士法人北斗特許事務所
(72)【発明者】
【氏名】六車 智
(72)【発明者】
【氏名】高橋 龍史
(72)【発明者】
【氏名】小畑 心平
(72)【発明者】
【氏名】安部 泰則
【審査官】佐藤 貴浩
(56)【参考文献】
【文献】特開2016-044208(JP,A)
【文献】国際公開第2017/183621(WO,A1)
【文献】特開2014-037485(JP,A)
【文献】特開2016-190928(JP,A)
【文献】特開2015-063040(JP,A)
【文献】特開2016-074849(JP,A)
【文献】特開2018-053092(JP,A)
【文献】特開平06-097324(JP,A)
【文献】特開2009-001783(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
C08G59/00- 59/72
C08L 1/00-101/14
C08K 3/00- 13/08
H05K 1/03
(57)【特許請求の範囲】
【請求項1】
エポキシ化合物と、N-フェニルマレイミド構造を有するマレイミド化合物と、フェノール化合物と、コアシェルゴムと、無機充填材と、を含有し、
前記マレイミド化合物の含有量が、前記エポキシ化合物、前記マレイミド化合物及び前記フェノール化合物の合計100質量部に対して、10質量部以上40質量部未満の範囲内であ
り、
前記マレイミド化合物が、ビフェニル構造を更に有するマレイミド化合物を含む、
樹脂組成物。
【請求項2】
前記マレイミド化合物が、下記式(1)で表される化合物を含む、
請求項
1に記載の樹脂組成物。
【化1】
【請求項3】
前記マレイミド化合物が、下記式(2)で表される化合物を含む、
請求項1
又は2に記載の樹脂組成物。
【化2】
【請求項4】
前記エポキシ化合物が、ナフタレン骨格及びビフェニル骨格の少なくともいずれかの骨格を有するエポキシ化合物を含む、
請求項1~
3のいずれか1項に記載の樹脂組成物。
【請求項5】
前記フェノール化合物が、ナフタレン骨格及びビフェニル骨格の少なくともいずれかの骨格を有するフェノール化合物を含む、
請求項1~
4のいずれか1項に記載の樹脂組成物。
【請求項6】
前記フェノール化合物の含有量が、前記エポキシ化合物、前記マレイミド化合物及び前記フェノール化合物の合計100質量部に対して、10質量部以上30質量部以下の範囲内である、
請求項1~
5のいずれか1項に記載の樹脂組成物。
【請求項7】
前記コアシェルゴムが、コアと、前記コアを被覆するシェルと、を有し、
前記コアが、(メタ)アクリル酸の重合体、(メタ)アクリル酸エステルの重合体、オレフィン化合物の重合体、ポリブタジエン及びシリコーンからなる群より選ばれた1種以上の物質を含み、
前記シェルが、スチレンアクリロニトリル共重合体、(メタ)アクリル酸の重合体、ポリブタジエン及びシリコーンからなる群より選ばれた1種以上の物質を含む、
請求項1~
6のいずれか1項に記載の樹脂組成物。
【請求項8】
前記コアシェルゴムの平均粒子径が1μm未満である、
請求項1~
7のいずれか1項に記載の樹脂組成物。
【請求項9】
前記無機充填材が、シリカ、タルク、ベーマイト、水酸化マグネシウム及び水酸化アルミニウムからなる群より選ばれた1種以上の化合物を含む、
請求項1~
8のいずれか1項に記載の樹脂組成物。
【請求項10】
基材と、前記基材に含浸された請求項1~
9のいずれか1項に記載の樹脂組成物の半硬化物で形成された樹脂層と、を備える、
プリプレグ。
【請求項11】
請求項1~
9のいずれか1項に記載の樹脂組成物の半硬化物で形成された樹脂層と、前記樹脂層を支持する支持フィルムと、を備える、
樹脂付きフィルム。
【請求項12】
請求項1~
9のいずれか1項に記載の樹脂組成物の半硬化物で形成された樹脂層と、前記樹脂層が接着された金属箔と、を備える、
樹脂付き金属箔。
【請求項13】
請求項1~
9のいずれか1項に記載の樹脂組成物の硬化物又は請求項
10に記載のプリプレグの硬化物で形成された絶縁層と、前記絶縁層の片面又は両面に形成された金属層と、を備える、
金属張積層板。
【請求項14】
請求項1~
9のいずれか1項に記載の樹脂組成物の硬化物又は請求項
10に記載のプリプレグの硬化物で形成された絶縁層と、前記絶縁層の片面又は両面に形成された導体配線と、を備える、
プリント配線板。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、一般に樹脂組成物、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板及びプリント配線板に関する。より詳細には本開示は、エポキシ化合物を含有する樹脂組成物、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板及びプリント配線板に関する。
【背景技術】
【0002】
プリント配線板は、電子機器、通信機器、計算機など、各種の分野において広く使用されている。近年、特に携帯通信端末及びノート型PC等の小型携帯機器の多機能化、高性能化、薄型化及び小型化が急速に進んでいる。これに伴い、これらの製品に用いられるプリント配線板においても、導体配線の微細化、導体配線層の多層化、薄型化、及び機械特性等の高性能化が要求されている。特にプリント配線板の薄型化が進むにつれ、プリント配線板に半導体チップを搭載した半導体パッケージ(半導体装置)に反りが発生し、実装不良が発生しやすくなる。
【0003】
特許文献1には、プリント配線基板に半導体素子を搭載してなる半導体装置が開示されている。プリント配線基板は、金属張積層板を回路加工してなる。金属張積層板は、エポキシ樹脂組成物と繊維基材とを含む絶縁層の両面に金属箔を有する。エポキシ樹脂組成物は、エポキシ樹脂、ビスマレイミド化合物、及び無機充填材を含有する。そして、30℃から260℃の範囲における金属張積層板の寸法変化のヒステリシスの度合いが所定範囲内である。このようにして特許文献1では、金属張積層板の反りを低減するようにしている。
【0004】
しかしながら、特許文献1に記載の金属張積層板では、半導体パッケージの反りを十分に抑制できない。
【0005】
本発明者らは、半導体パッケージの反りを低減するために、プリント配線板の熱膨張係数及びガラス転移温度(Tg)に着目した。
【0006】
さらにプリント配線板において、異なる層の導体配線同士の層間接続を行うために、ドリル加工又はレーザ加工による穴あけが行われている。この穴あけの際に穴の内壁に樹脂スミアが発生する。そのため、このような樹脂スミアを除去するためのデスミア処理が必要である。デスミア処理は、例えば、過マンガン酸カリウム等の過マンガン酸塩を用いて行われている。
【0007】
しかしながら、デスミア処理で除去される樹脂スミアの量(デスミアエッチング量)が多いと、穴の変形又は銅箔の剥がれなどが発生し、プリント配線板の導通信頼性が低下するおそれがある。そのため、デスミアエッチング量を少なくすること、すなわちデスミア耐性に優れることも求められている。
【先行技術文献】
【特許文献】
【0008】
【発明の概要】
【0009】
本開示の目的は、熱膨張係数が低く、ガラス転移温度(Tg)が高く、デスミア耐性の良好な基板を得ることができる樹脂組成物、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板及びプリント配線板を提供することにある。
【0010】
本開示の一態様に係る樹脂組成物は、エポキシ化合物と、フェノール化合物と、マレイミド化合物と、コアシェルゴムと、無機充填材と、を含有する。前記マレイミド化合物が、N-フェニルマレイミド構造を有する。前記マレイミド化合物の含有量が、前記エポキシ化合物、前記マレイミド化合物及び前記フェノール化合物の合計100質量部に対して、10質量部以上40質量部未満の範囲内である。
【0011】
本開示の一態様に係るプリプレグは、基材と、前記基材に含浸された前記樹脂組成物の半硬化物で形成された樹脂層と、を備える。
【0012】
本開示の一態様に係る樹脂付きフィルムは、前記樹脂組成物の半硬化物で形成された樹脂層と、前記樹脂層を支持する支持フィルムと、を備える。
【0013】
本開示の一態様に係る樹脂付き金属箔は、前記樹脂組成物の半硬化物で形成された樹脂層と、前記樹脂層が接着された金属箔と、を備える。
【0014】
本開示の一態様に係る金属張積層板は、前記樹脂組成物の硬化物又は前記プリプレグの硬化物で形成された絶縁層と、前記絶縁層の片面又は両面に形成された金属層と、を備える。
【0015】
本開示の一態様に係るプリント配線板は、前記樹脂組成物の硬化物又は前記プリプレグの硬化物で形成された絶縁層と、前記絶縁層の片面又は両面に形成された導体配線と、を備える。
【図面の簡単な説明】
【0016】
【
図1】
図1は、本開示の一実施形態に係るプリプレグの概略断面図である。
【
図2】
図2Aは、本開示の一実施形態に係る樹脂付きフィルム(保護フィルムなし)の概略断面図である。
図2Bは、本開示の一実施形態に係る樹脂付きフィルム(保護フィルムあり)の概略断面図である。
【
図3】
図3は、本開示の一実施形態に係る樹脂付き金属箔の概略断面図である。
【
図4】
図4は、本開示の一実施形態に係る金属張積層板の概略断面図である。
【
図5】
図5は、本開示の一実施形態に係るプリント配線板の概略断面図である。
【発明を実施するための形態】
【0017】
(1)概要
本実施形態に係る樹脂組成物は、エポキシ化合物と、フェノール化合物と、マレイミド化合物と、コアシェルゴムと、無機充填材と、を含有する。マレイミド化合物は、N-フェニルマレイミド構造を有する。マレイミド化合物の含有量は、エポキシ化合物、マレイミド化合物及びフェノール化合物の合計100質量部に対して、10質量部以上40質量部未満の範囲内である。
【0018】
上記のように樹脂組成物が特定のマレイミド化合物を特定量含有することで、ガラス転移温度(Tg)が高く、デスミア耐性の良好な基板を得ることができる。ガラス転移温度(Tg)が高いと、耐熱性が向上し得る。またデスミア耐性が良好であれば、デスミア処理前のビア径とデスミア処理後のビア径との変化が小さくなる。そのため、ビア径をより細くすることが可能となり、さらに複数のビアを密集させても、電気的絶縁性を確保することも可能となる。したがって、より微細な導体配線を形成し得る。
【0019】
さらに樹脂組成物がコアシェルゴムと無機充填材とを含有することで、熱膨張係数が低い基板を得ることができる。
【0020】
すなわち、本実施形態によれば、熱膨張係数が低く、ガラス転移温度(Tg)が高く、デスミア耐性の良好な基板を得ることができる。したがって、このようにして得られた基板をパッケージ基板として使用すれば、半導体パッケージの反りの低減に有効であると考えられる。
【0021】
(2)詳細
(2.1)樹脂組成物
本実施形態に係る樹脂組成物は、基板材料として使用可能である。基板材料の具体例として、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板及びプリント配線板が挙げられるが、特にこれらに限定されない。
【0022】
樹脂組成物は、エポキシ化合物と、フェノール化合物と、マレイミド化合物と、コアシェルゴムと、無機充填材と、を含有する。そのため、樹脂組成物は、熱硬化性を有し得る。樹脂組成物は、硬化促進剤を更に含有してもよい。樹脂組成物は、添加剤を更に含有してもよい。
【0023】
樹脂組成物は、例えば、次のようにして調製される。すなわち、エポキシ化合物、フェノール化合物、マレイミド化合物、コアシェルゴム及び無機充填材を配合し、適当な溶媒で希釈し、これを撹拌及び混合して均一化する。
【0024】
以下、樹脂組成物の構成成分について説明する。
【0025】
(2.1.1)エポキシ化合物
エポキシ化合物は、プレポリマーであり、分子内に少なくとも2つ以上のエポキシ基を持つ化合物である。ところで、一般に「樹脂」という用語には、架橋反応前の材料としての樹脂(例えばエポキシ化合物など)と、架橋反応後の生成物(製品)としての樹脂との2つの意味がある。本明細書において「樹脂」とは、基本的には前者を意味する。
【0026】
エポキシ化合物の具体例として、ビスフェノール型エポキシ樹脂、ノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、キシリレン型エポキシ樹脂、アリールアルキレン型エポキシ樹脂、ナフタレン型エポキシ樹脂、ナフタレン骨格変性エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、アントラセン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ノルボルネン型エポキシ樹脂、フルオレン型エポキシ樹脂、及び上記エポキシ樹脂をハロゲン化した難燃化エポキシ樹脂などが挙げられるが、特にこれらに限定されない。樹脂組成物に含有されるエポキシ化合物は、1種のみでも2種以上でもよい。
【0027】
ビスフェノール型エポキシ樹脂の具体例として、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、及びビスフェノールS型エポキシ樹脂などが挙げられるが、特にこれらに限定されない。
【0028】
ノボラック型エポキシ樹脂の具体例として、フェノールノボラック型エポキシ樹脂、及びクレゾールノボラック型エポキシ樹脂などが挙げられるが、特にこれらに限定されない。
【0029】
アリールアルキレン型エポキシ樹脂の具体例として、フェノールアラルキル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂、ビフェニルジメチレン型エポキシ樹脂、トリスフェノールメタンノボラック型エポキシ樹脂、及びテトラメチルビフェニル型エポキシ樹脂などが挙げられるが、特にこれらに限定されない。
【0030】
ナフタレン骨格変性エポキシ樹脂の具体例として、ナフタレン骨格変性クレゾールノボラック型エポキシ樹脂、ナフタレンジオールアラルキル型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、メトキシナフタレン変性クレゾールノボラック型エポキシ樹脂、及びメトキシナフタレンジメチレン型エポキシ樹脂などが挙げられるが、特にこれらに限定されない。
【0031】
好ましくは、エポキシ化合物は、ナフタレン骨格及びビフェニル骨格の少なくともいずれかの骨格を有するエポキシ化合物を含む。
【0032】
ナフタレン骨格を有するエポキシ化合物は、耐熱性、耐湿性及び難燃性に優れた特性を有し得る。したがって、これらの特性に優れた樹脂組成物を得ることができる。なお、耐熱性に優れているとは、ガラス転移温度(Tg)が高いことを意味する。
【0033】
ビフェニル骨格を有するエポキシ化合物は、常温で結晶性状を持ち得る。このようなエポキシ化合物は、固形樹脂でありながらも、溶融時には液状樹脂並みの低粘度になり得る。したがって、樹脂組成物に無機充填材を高充填化しても、溶融時に優れた流動性を保ち得る。
【0034】
さらにビフェニル骨格を有するエポキシ化合物は、難燃性、耐熱性及び接着性に優れた特性を有し得る。したがって、これらの特性に優れた樹脂組成物を得ることができる。
【0035】
エポキシ化合物のエポキシ当量は、好ましくは150g/eq以上350g/eq以下の範囲内である。
【0036】
(2.1.2)フェノール化合物
フェノール化合物は、エポキシ化合物と反応し得るプレポリマーである。フェノール化合物は、フェノール類とアルデヒド類との縮合反応生成物である。
【0037】
フェノール化合物の具体例として、ビフェニルアラルキル型フェノール樹脂、フェニルアラルキル型フェノール樹脂、ノボラック型フェノール樹脂、クレゾールノボラック型フェノール樹脂、ビスフェノールAノボラック型フェノール樹脂、ナフタレン型フェノール樹脂、テトラキスフェノール型フェノール樹脂、及びリン変性フェノール樹脂などが挙げられるが、特にこれらに限定されない。樹脂組成物に含有されるフェノール化合物は、1種のみでも2種以上でもよい。
【0038】
好ましくは、フェノール化合物は、ナフタレン骨格及びビフェニル骨格の少なくともいずれかの骨格を有するフェノール化合物を含む。
【0039】
ナフタレン骨格を有するフェノール化合物は、ナフタレン骨格を有するエポキシ化合物と同様の性質を有し得る。したがって、耐熱性、耐湿性及び難燃性に優れた樹脂組成物を得ることができる。
【0040】
ビフェニル骨格を有するフェノール化合物は、ビフェニル骨格を有するエポキシ化合物と同様の性質を有し得る。したがって、樹脂組成物に無機充填材を高充填化しても、溶融時に優れた流動性を保ち得る。
【0041】
さらにビフェニル骨格を有するフェノール化合物は、難燃性、耐熱性及び接着性に優れた特性を有し得る。したがって、これらの特性に優れた樹脂組成物を得ることができる。
【0042】
好ましくは、フェノール化合物は、リン含有フェノール化合物である。リン含有フェノール化合物は、リンを含有し、難燃剤として機能し得る。すなわち、リンは、炎にさらされると、リン酸、メタリン酸、ポリメタリン酸と順に分解し、生成したリン酸層が不揮発性の保護層を形成して空気を遮断し得る。さらに生成したポリメタリン酸が強力な脱水作用によって有機物を炭化させ、炭化膜が空気を遮断し得る。したがって、難燃性に優れた樹脂組成物を得ることができる。
【0043】
一般に難燃剤は、添加型と反応型とに分類することができるが、上記のリン含有フェノール化合物は、添加型ではなく、反応型である。すなわち、上記のリン含有フェノール化合物は、例えばヒドロキシ基などの官能基を有し、化学反応によってエポキシ化合物と化学的に結合する。したがって、樹脂組成物に難燃性だけでなく、デスミア耐性も付与することができる。添加型の難燃剤は、デスミア耐性を低下させるおそれがあるので、樹脂組成物に含有されていないことが好ましい。
【0044】
リン含有フェノール化合物は、特に限定されないが、分子内に下記式(4)で表される構造を有することが好ましい。さらにリン含有フェノール化合物は、分子内にビスフェノールA型構造を有することが好ましい。なお、下記式(4)で表される構造及びビスフェノールA型構造を有するリン含有フェノール化合物の一例として、ダウ・ケミカル日本株式会社製の商品名「XZ92741.00」が挙げられる。
【0045】
【0046】
フェノール化合物の含有量は、エポキシ化合物、マレイミド化合物及びフェノール化合物の合計100質量部に対して、好ましくは10質量部以上30質量部以下の範囲内である。フェノール化合物の含有量が10質量部以上であることで、ガラス転移温度(Tg)が低下しにくくなり、硬化不良となりにくくなる。したがって、未反応樹脂が少なくなり、デスミア耐性の低下を抑制することができる。一方、フェノール化合物の含有量が30質量部以下であることで、ヒドロキシ基などの極性基の増加が抑えられ、デスミア耐性の低下を抑制することができる。
【0047】
樹脂組成物は、リン含有フェノール化合物と、リンを含有しないリン不含有フェノール化合物との両方を含有し得る。両方を含有する場合、両者の質量比(リン含有フェノール化合物/リン不含有フェノール化合物)は、15/100以上50/100以下の範囲内であることが好ましい。
【0048】
(2.1.3)N-フェニルマレイミド構造を有するマレイミド化合物
N-フェニルマレイミド構造を有するマレイミド化合物は、エポキシ化合物及びフェノール化合物と反応し得る化合物である。N-フェニルマレイミド構造を有するマレイミド化合物は、少なくとも1つ以上のN-フェニルマレイミド構造を有する。以下、特に断らない限り、「N-フェニルマレイミド構造を有するマレイミド化合物」を単に「マレイミド化合物」という場合がある。N-フェニルマレイミド構造は、下記式(3)で表される。マレイミド化合物は、樹脂組成物の硬化物の高Tg化に有効である。
【0049】
【0050】
なお、式(3)中のRが表すアルキル基の炭素数は特に限定されない。アルキル基は、直鎖でも分岐鎖でもよい。Rが表すアルキル基の具体例として、炭素数1~3のアルキル基が挙げられる。
【0051】
好ましくは、マレイミド化合物は、少なくとも1つ以上のビフェニル構造を更に有する。ビフェニル構造を有するマレイミド化合物は、ビフェニル骨格を有するエポキシ化合物と同様の性質を有し得る。したがって、樹脂組成物に無機充填材を高充填化しても、溶融時に優れた流動性を保ち得る。さらに難燃性等に優れた樹脂組成物を得ることができる。
【0052】
好ましくは、マレイミド化合物は、下記式(1)で表される化合物を含む。このマレイミド化合物は、ビフェニル骨格を有しているので、樹脂組成物に無機充填材を高充填化しても、溶融時に優れた流動性を保ち得る。さらに難燃性等に優れた樹脂組成物を得ることができる。
【0053】
【0054】
なお、式(1)中のRが表すアルキル基の炭素数は特に限定されない。アルキル基は、直鎖でも分岐鎖でもよい。Rが表すアルキル基の具体例として、炭素数1~3のアルキル基が挙げられる。
【0055】
マレイミド化合物は、下記式(2)で表される化合物を含む。このマレイミド化合物によれば、樹脂組成物の硬化物が高Tg化し、耐熱性が向上し得る。樹脂組成物の硬化物の弾性率も高くなり得る。
【0056】
【0057】
なお、式(2)中のRが表すアルキル基の炭素数は特に限定されない。アルキル基は、直鎖でも分岐鎖でもよい。Rが表すアルキル基の具体例として、炭素数1~2のアルキル基が挙げられる。
【0058】
樹脂組成物に含有されるN-フェニルマレイミド構造を有するマレイミド化合物は、1種のみでも2種以上でもよい。マレイミド化合物の具体例として、フェニルメタンマレイミド、4,4'-ジフェニルメタンビスマレイミド、m-フェニレンビスマレイミド、ビスフェノールAジフェニルエーテルビスマレイミド、3,3'-ジメチル-5,5'-ジエチル-4,4'-ジフェニルメタンビスマレイミド、4-メチル-1,3-フェニレンビスマレイミドなどが挙げられるが、特にこれらに限定されない。さらにマレイミド化合物は、分子内の一部がアミン変性及び/又はシリコーン変性されていてもよい。
【0059】
N-フェニルマレイミド構造を有するマレイミド化合物の含有量は、エポキシ化合物、マレイミド化合物及びフェノール化合物の合計100質量部に対して、10質量部以上40質量部未満の範囲内である。マレイミド化合物の含有量が10質量部未満であると、ガラス転移温度(Tg)が低下するおそれがある。マレイミド化合物の含有量が40質量部以上であると、デスミア耐性が低下するおそれがある。
【0060】
(2.1.4)コアシェルゴム
コアシェルゴムは、耐衝撃改質剤として機能し得る。コアシェルゴムは、無機充填材と協働して、樹脂組成物の硬化物を低熱膨張化し得る。コアシェルゴムは、コアと、シェルと、を有する。コアは、粒子状のゴムである。シェルは、グラフト層であり、コアを被覆している。
【0061】
好ましくは、コアは、(メタ)アクリル酸の重合体、(メタ)アクリル酸エステルの重合体、オレフィン化合物の重合体、ポリブタジエン及びシリコーンからなる群より選ばれた1種以上の物質を含む。好ましくは、シェルは、スチレンアクリロニトリル共重合体、(メタ)アクリル酸の重合体、ポリブタジエン及びシリコーンからなる群より選ばれた1種以上の物質を含む。このようなコアシェルゴムであれば、樹脂組成物の硬化物に耐熱性及び低温耐衝撃性を付与し得る。このようなコアシェルゴムの一例として、シリコーン・アクリル複合ゴムが挙げられる。シリコーン・アクリル複合ゴムは、コアがシリコーン/アクリル重合体であり、シェルがスチレンアクリロニトリル共重合体である。なお、本明細書において「(メタ)アクリル酸」とは、アクリル酸及びメタクリル酸のうちの少なくとも一方を意味する。
【0062】
コアシェルゴムの具体例として、三菱ケミカル株式会社製の商品名「S-2001」、「S-2006」、「S-2501」、「S-2030」、「S-2100」、「S-2200」、「SRK200A」、「SX-006」、「SX-005」;アイカ工業株式会社製の商品名「AC3816」、「AC3816N」、「AC3832」、「AC4030」、「AC3364」、「IM101」;株式会社カネカ製の商品名「MX-217」、「MX-153」、「MX-960」、「MR-01」、「M-511」、「M-521」;ダウ・ケミカル日本株式会社製の商品名「EXL-2655」、「TMS-2670J」、「TMS-2670S」;日信化学工業株式会社製の商品名「R-200」、「R-170S」などが挙げられるが、特にこれらに限定されない。
【0063】
好ましくは、コアシェルゴムの平均粒子径は1μm未満である。このようなコアシェルゴムが好ましい理由は、以下のとおりである。すなわち、プリント配線板の導体配線が形成された面に、樹脂組成物を用いて絶縁層を形成する場合がある。この場合、上記のように平均粒子径の小さいコアシェルゴムが樹脂組成物に含有されていると、隣り合う導体配線間を充填しやすくなる。特に微細な導体配線(いわゆるファインパターン)が高密度にプリント配線板に形成されている場合に有効である。樹脂組成物の形のみならず、プリプレグ、樹脂付きフィルム又は樹脂付き金属箔の形で絶縁層を形成する場合も同様である。なお、コアシェルゴムの平均粒子径の下限値は特に限定されないが、例えば0.1μmである。本明細書において「平均粒子径」とは、レーザ回折・散乱法によって求めた粒度分布における積算値50%での粒径を意味する。
【0064】
コアシェルゴムの含有量は、エポキシ化合物、マレイミド化合物及びフェノール化合物の合計100質量部に対して、好ましくは10質量部以上50質量部以下の範囲内であり、より好ましくは17.5質量部以上40質量部以下の範囲内である。コアシェルゴムの含有量が10質量部以上であることで、熱膨張係数を低下させることができる。コアシェルゴムの含有量が50質量部以下であることで、デスミア耐性が低下しにくくなり、ガラス転移温度(Tg)も低下しにくくなり、金属箔(特に銅箔)との密着性も低下しにくくなり、難燃性も低下しにくくなる。
【0065】
(2.1.5)無機充填材
無機充填材は、コアシェルゴムと協働して、樹脂組成物の硬化物を低熱膨張化し得る。
【0066】
無機充填材の具体例として、溶融シリカ及び結晶シリカ等のシリカ、タルク、ベーマイト、水酸化マグネシウム、水酸化アルミニウム、水酸化マグネシウム、ケイ酸アルミニウム、ケイ酸マグネシウム、クレー並びにマイカが挙げられるが、特にこれらに限定されない。樹脂組成物に含有される無機充填材は、1種のみでも2種以上でもよい。
【0067】
好ましくは、無機充填材は、シリカ、タルク、ベーマイト、水酸化マグネシウム及び水酸化アルミニウムからなる群より選ばれた1種以上の化合物を含む。これらの無機充填材は、樹脂組成物の硬化物の低熱膨張化に特に有効である。好ましくは、樹脂組成物は、無機充填材として、シリカ及び水酸化マグネシウムを含有する。
【0068】
無機充填材の平均粒子径は、好ましくは0.1μm以上3.0μm以下の範囲内であり、より好ましくは0.5μm以上1.5μm以下の範囲内である。
【0069】
無機充填材の含有量は、エポキシ化合物、フェノール化合物及びマレイミド化合物の合計100質量部に対して、好ましくは25質量部以上200質量部以下の範囲内であり、より好ましくは50質量部以上150質量部以下の範囲内である。
【0070】
樹脂組成物が無機充填材としてシリカ及び水酸化マグネシウムを含有する場合、シリカと水酸化マグネシウムとの質量比(シリカ/水酸化マグネシウム)は50/2.5以上150/2.5以下の範囲内であることが好ましい。
【0071】
(2.1.6)硬化促進剤
本実施形態の効果を損なわなければ、硬化促進剤及びその添加量は、特に限定されない。硬化促進剤の具体例として、2-エチル-4-メチルイミダゾール等のイミダゾール化合物、アミン系化合物、チオール化合物、金属石鹸等の有機酸金属塩が挙げられるが、特にこれらに限定されない。
【0072】
(2.1.7)添加剤
本実施形態の効果を損なわなければ、添加剤及びその添加量は、特に限定されない。添加剤の具体例として、熱可塑性樹脂、難燃剤、着色剤及びカップリング剤が挙げられるが、特にこれらに限定されない。
【0073】
(2.2)プリプレグ
図1に本実施形態に係るプリプレグ1を示す。プリプレグ1は、全体としてシート状又はフィルム状である。プリプレグ1は、金属張積層板4の材料、プリント配線板5の材料、及びプリント配線板5の多層化(ビルドアップ法)などに利用される。
【0074】
プリプレグ1は、基材11と、樹脂層10と、を備える。樹脂層10は、基材11に含浸された樹脂組成物の半硬化物で形成されている。
【0075】
1枚のプリプレグ1は、少なくとも1枚の基材11を備える。基材11の厚さは、特に限定されないが、例えば、8μm以上100μm以下の範囲内である。基材11の具体例として、織布及び不織布が挙げられる。織布の具体例として、ガラスクロスが挙げられるが、特にこれに限定されない。不織布の具体例として、ガラス不織布が挙げられるが、特にこれに限定されない。ガラスクロス及びガラス不織布は、ガラス繊維で形成されているが、ガラス繊維以外の強化繊維で形成されていてもよい。ガラス繊維を構成するガラスの種類としては、特に限定されないが、例えば、Eガラス、Tガラス、Sガラス、Qガラス、UTガラス、NEガラス及びLガラスが挙げられる。強化繊維の具体例として、芳香族ポリアミド繊維、液晶ポリエステル繊維、ポリ(パラフェニレンベンゾビスオキサゾール)(PBO)繊維、及び、ポリフェニレンサルファイド(PPS)樹脂繊維が挙げられるが、特にこれらに限定されない。
【0076】
半硬化物は、樹脂組成物の半硬化状態のものである。ここで、半硬化状態とは、硬化反応の中間段階(Bステージ)の状態を意味する。中間段階は、ワニス状態の段階(Aステージ)と、硬化状態の段階(Cステージ)との間の段階である。プリプレグ1は加熱されると一度溶融した後、完全に硬化して硬化状態となる。プリプレグ1の硬化物は、基板の絶縁層を形成し得る。
【0077】
プリプレグ1の厚さは、特に限定されないが、好ましくは120μm以下、より好ましくは100μm以下、さらに好ましくは60μm以下、さらにより好ましくは40μm以下である。これにより絶縁層の厚さを薄くすることができ、基板の薄型化を実現することができる。プリプレグ1の厚さは10μm以上であることが好ましい。
【0078】
プリプレグ1の樹脂層10は、本実施形態に係る樹脂組成物で形成されているので、熱膨張係数が低く、ガラス転移温度(Tg)が高く、デスミア耐性の良好な基板を得ることができる。
【0079】
(2.3)樹脂付きフィルム
図2Aに本実施形態に係る樹脂付きフィルム2を示す。樹脂付きフィルム2は、全体としてフィルム状又はシート状である。樹脂付きフィルム2は、樹脂層20と、支持フィルム21と、を備える。樹脂付きフィルム2は、プリント配線板5の多層化(ビルドアップ法)などに利用される。
【0080】
樹脂層20は、樹脂組成物の半硬化物で形成されている。半硬化物は、加熱されることにより、硬化物となり得る。このようにして樹脂層20は、絶縁層を形成し得る。
【0081】
樹脂層20の厚さは、特に限定されないが、好ましくは120μm以下、より好ましくは100μm以下、さらに好ましくは60μm以下、さらにより好ましくは40μm以下である。これにより絶縁層の厚さを薄くすることができ、基板の薄型化を実現することができる。樹脂層20の厚さは10μm以上であることが好ましい。
【0082】
支持フィルム21は、樹脂層20を支持している。このように支持することで、樹脂層20を扱いやすくなる。
【0083】
支持フィルム21は、例えば電気絶縁性フィルムであるが、特にこれに限定されない。支持フィルム21の具体例として、ポリエチレンテレフタレート(PET)フィルム、ポリイミドフィルム、ポリエステルフィルム、ポリパラバン酸フィルム、ポリエーテルエーテルケトンフィルム、ポリフェニレンスルフィドフィルム、アラミドフィルム、ポリカーボネートフィルム、及びポリアリレートフィルム等が挙げられる。支持フィルム21は、これらのフィルムに限定されない。
【0084】
支持フィルム21の樹脂層20を支持する面には離型剤層(不図示)が設けられていてもよい。離型剤層によって、支持フィルム21は、必要に応じて樹脂層20から剥離可能である。好ましくは、樹脂層20を硬化させて絶縁層を形成した後に、この絶縁層から支持フィルム21が剥離される。
【0085】
図2Aでは、樹脂層20の一方の面を支持フィルム21が被覆しているが、
図2Bに示すように、樹脂層20の他方の面を保護フィルム22で被覆してもよい。このように樹脂層20の両面を被覆することで、樹脂層20を更に扱いやすくなる。また異物が樹脂層20に付着することを抑制することができる。
【0086】
保護フィルム22は、例えば電気絶縁性フィルムであるが、特にこれに限定されない。保護フィルム22の具体例として、ポリエチレンテレフタレート(PET)フィルム、ポリオレフィンフィルム、ポリエステルフィルム、及びポリメチルペンテンフィルム等が挙げられる。保護フィルム22は、これらのフィルムに限定されない。
【0087】
保護フィルム22の樹脂層20に重ねられている面には離型剤層(不図示)が設けられていてもよい。離型剤層によって、保護フィルム22は、必要に応じて樹脂層20から剥離可能である。
【0088】
樹脂付きフィルム2の樹脂層20は、本実施形態に係る樹脂組成物で形成されているので、熱膨張係数が低く、ガラス転移温度(Tg)が高く、デスミア耐性の良好な基板を得ることができる。
【0089】
(2.4)樹脂付き金属箔
図3に本実施形態に係る樹脂付き金属箔3を示す。樹脂付き金属箔3は、全体としてフィルム状又はシート状である。樹脂付き金属箔3は、樹脂層30と、金属箔31と、を備える。樹脂付き金属箔3は、プリント配線板5の多層化(ビルドアップ法)などに利用される。
【0090】
樹脂層30は、樹脂組成物の半硬化物で形成されている。半硬化物は、加熱されることにより、硬化物となり得る。このようにして樹脂層30は、絶縁層を形成し得る。
【0091】
樹脂層30の厚さは、特に限定されないが、好ましくは120μm以下、より好ましくは100μm以下、さらに好ましくは60μm以下、さらにより好ましくは40μm以下である。これにより、樹脂層30が硬化して形成される絶縁層の厚さを薄くすることができ、基板の薄型化を実現することができる。樹脂層30の厚さは10μm以上であることが好ましい。
【0092】
金属箔31は、樹脂層30が接着されている。金属箔31の具体例として、銅箔が挙げられるが、特にこれに限定されない。金属箔31は、サブトラクティブ法などにおいて不要部分がエッチングにより除去されることで、導体配線を形成し得る。
【0093】
金属箔31の厚さは、特に限定されないが、好ましくは35μm以下、より好ましくは18μm以下である。金属箔31の厚さは5μm以上であることが好ましい。
【0094】
ところで、金属箔31は、いわゆるキャリア付き極薄金属箔(図示省略)の極薄金属箔(例えば極薄銅箔)で構成されてもよい。キャリア付き極薄金属箔は3層構造である。すなわち、キャリア付き極薄金属箔は、キャリアと、キャリアの表面に設けられた剥離層と、剥離層の表面に設けられた極薄金属箔と、を備えている。極薄金属箔は、単独では取り扱うのが難しいほど極薄であり、もちろんキャリアよりも薄い。キャリアは、極薄金属箔を保護し支持する役割を有する金属箔(例えば銅箔)である。キャリア付き極薄金属箔は、ある程度の厚さを有しているので取り扱いやすい。極薄金属箔及びキャリアの厚さは特に限定されないが、例えば、極薄金属箔の厚さは1μm以上10μm以下の範囲内であり、キャリアの厚さは18μm以上35μm以下の範囲内である。極薄金属箔は、必要に応じてキャリアから剥離可能である。
【0095】
キャリア付き極薄金属箔を使用する場合には、次のようにして樹脂付き金属箔3を製造することができる。すなわち、キャリア付き極薄金属箔の極薄金属箔の表面に樹脂組成物を塗布し、加熱して、樹脂層30を形成する。その後、極薄金属箔からキャリアを剥離する。極薄金属箔は、樹脂層30の表面に金属箔31として接着されている。剥離層は、キャリアと共に剥離されて、極薄金属箔の表面に残らないことが好ましいが、残っていたとしても容易に除去可能である。樹脂層30の表面に接着している極薄金属箔は、モディファイドセミアディティブ法(MSAP:Modified Semi Additive Process)におけるシード層として利用可能であり、このシード層に電解めっき処理を行って導体配線を形成することができる。
【0096】
樹脂付き金属箔3の樹脂層30は、本実施形態に係る樹脂組成物で形成されているので、熱膨張係数が低く、ガラス転移温度(Tg)が高く、デスミア耐性の良好な基板を得ることができる。
【0097】
(2.5)金属張積層板
図4に本実施形態に係る金属張積層板4を示す。金属張積層板4は、絶縁層40と、金属層41と、を備える。金属張積層板4は、プリント配線板5の材料などに利用される。
【0098】
絶縁層40は、樹脂組成物の硬化物又はプリプレグ1の硬化物で形成されている。
図4では、絶縁層40は、1枚の基材42を有しているが、2枚以上の基材42を有していてもよい。
【0099】
絶縁層40の厚さは、特に限定されない。絶縁層40の厚さが薄ければ基板の薄型化に有効である。絶縁層40の厚さは、好ましくは120μm以下、より好ましくは100μm以下、さらに好ましくは60μm以下、さらにより好ましくは40μm以下である。絶縁層40の厚さは10μm以上であることが好ましく、15μm以上であることがより好ましい。
【0100】
金属層41は、絶縁層40の片面又は両面に形成されている。金属層41としては、特に限定されないが、例えば金属箔が挙げられる。金属箔としては、特に限定されないが、例えば銅箔が挙げられる。
図4では、絶縁層40の両面に金属層41が形成されているが、絶縁層40の片面のみに金属層41が形成されていてもよい。絶縁層40の両面に金属層41が形成されている金属張積層板4は、両面金属張積層板である。絶縁層40の片面のみに金属層41が形成されている金属張積層板4は、片面金属張積層板である。
【0101】
金属層41の厚さは、特に限定されないが、好ましくは35μm以下、より好ましくは18μm以下である。金属層41の厚さは5μm以上であることが好ましい。
【0102】
ところで、金属層41は、上述のキャリア付き極薄金属箔の極薄金属箔で構成されてもよい。キャリア付き極薄金属箔を使用する場合には、次のようにして金属張積層板4を製造することができる。すなわち、1枚のプリプレグ1の片面又は両面にキャリア付き極薄金属箔を積層して成形してもよいし、複数枚のプリプレグ1を重ね、この片面又は両面にキャリア付き極薄金属箔を積層して成形してもよい。この場合、プリプレグ1の表面には、キャリア付き極薄金属箔の極薄金属箔を重ねる。積層成形後に、極薄金属箔からキャリアを剥離する。極薄金属箔は、プリプレグ1の硬化物である絶縁層40の表面に金属層41として接着されている。剥離層は、キャリアと共に剥離されて、極薄金属箔の表面に残らないことが好ましいが、残っていたとしても容易に除去可能である。絶縁層40の表面に接着している極薄金属箔は、モディファイドセミアディティブ法(MSAP:Modified Semi Additive Process)におけるシード層として利用可能であり、このシード層に電解めっき処理を行って導体配線を形成することができる。
【0103】
金属張積層板4の絶縁層40は、本実施形態に係る樹脂組成物で形成されているので、熱膨張係数が低く、ガラス転移温度(Tg)が高く、デスミア耐性の良好な基板を得ることができる。熱膨張係数は、好ましくは10ppm/K以下である。ガラス転移温度(Tg)は、好ましくは250℃以上であり、より好ましくは260℃以上である。
【0104】
(2.6)プリント配線板
図5に本実施形態に係るプリント配線板5を示す。プリント配線板5は、絶縁層50と、導体配線51と、を備える。本明細書において「プリント配線板」とは、電子部品がはんだ付けされておらず、配線だけの状態のものを意味する。
【0105】
絶縁層50は、樹脂組成物の硬化物又はプリプレグ1の硬化物で形成されている。絶縁層50は、上述の金属張積層板4の絶縁層40と同様である。
【0106】
導体配線51は、絶縁層50の片面又は両面に形成されている。
図5では、絶縁層50の両面に導体配線51が形成されているが、絶縁層50の片面のみに導体配線51が形成されていてもよい。導体配線51の形成方法としては、特に限定されないが、例えば、サブトラクティブ法、セミアディティブ法(SAP:Semi Additive Process)、モディファイドセミアディティブ法(MSAP:Modified Semi Additive Process)などが挙げられる。
【0107】
プリント配線板5の絶縁層50は、本実施形態に係る樹脂組成物で形成されているので、熱膨張係数が低く、ガラス転移温度(Tg)が高く、デスミア耐性の良好な基板を得ることができる。したがって、プリント配線板5をパッケージ基板として使用すれば、半導体パッケージの反りの低減に有効であると考えられる。
【0108】
(3)まとめ
上記実施形態から明らかなように、本開示は、下記の態様を含む。以下では、実施形態との対応関係を明示するためだけに、符号を括弧付きで付している。
【0109】
第1の態様に係る樹脂組成物は、エポキシ化合物と、マレイミド化合物と、フェノール化合物と、コアシェルゴムと、無機充填材と、を含有する。前記マレイミド化合物が、N-フェニルマレイミド構造を有する。前記マレイミド化合物の含有量が、前記エポキシ化合物、前記マレイミド化合物及び前記フェノール化合物の合計100質量部に対して、10質量部以上40質量部未満の範囲内である。
【0110】
この態様によれば、熱膨張係数が低く、ガラス転移温度(Tg)が高く、デスミア耐性の良好な基板を得ることができる。
【0111】
第2の態様に係る樹脂組成物は、第1の態様において、前記マレイミド化合物が、ビフェニル構造を更に有するマレイミド化合物を含む。
【0112】
この態様によれば、樹脂組成物に無機充填材を高充填化しても、溶融時に優れた流動性を保ち得る。さらに難燃性等に優れた樹脂組成物を得ることができる。
【0113】
第3の態様に係る樹脂組成物は、第2の態様において、前記マレイミド化合物が、下記式(1)で表される化合物を含む。
【0114】
【0115】
この態様によれば、樹脂組成物に無機充填材を高充填化しても、溶融時に優れた流動性を保ち得る。さらに難燃性等に優れた樹脂組成物を得ることができる。
【0116】
第4の態様に係る樹脂組成物は、第1の態様において、前記マレイミド化合物が、下記式(2)で表される化合物を含む。
【0117】
【0118】
この態様によれば、樹脂組成物の硬化物が高Tg化し、耐熱性が向上し得る。
【0119】
第5の態様に係る樹脂組成物は、第1~4のいずれかの態様において、前記エポキシ化合物が、ナフタレン骨格及びビフェニル骨格の少なくともいずれかの骨格を有するエポキシ化合物を含む。
【0120】
この態様によれば、樹脂組成物が、ナフタレン骨格を有するエポキシ化合物を含む場合には、耐熱性、耐湿性及び難燃性に優れた樹脂組成物を得ることができる。樹脂組成物が、ビフェニル骨格を有するエポキシ化合物を含む場合には、樹脂組成物に無機充填材を高充填化しても、溶融時に優れた流動性を保ち得る。さらに難燃性等に優れた樹脂組成物を得ることができる。
【0121】
第6の態様に係る樹脂組成物は、第1~5のいずれかの態様において、前記フェノール化合物が、ナフタレン骨格及びビフェニル骨格の少なくともいずれかの骨格を有するフェノール化合物を含む。
【0122】
この態様によれば、樹脂組成物が、ナフタレン骨格を有するフェノール化合物を含む場合には、耐熱性、耐湿性及び難燃性に優れた樹脂組成物を得ることができる。樹脂組成物が、ビフェニル骨格を有するフェノール化合物を含む場合には、樹脂組成物に無機充填材を高充填化しても、溶融時に優れた流動性を保ち得る。さらに難燃性等に優れた樹脂組成物を得ることができる。
【0123】
第7の態様に係る樹脂組成物は、第1~6のいずれかの態様において、前記フェノール化合物の含有量が、前記エポキシ化合物、前記マレイミド化合物及び前記フェノール化合物の合計100質量部に対して、10質量部以上30質量部以下の範囲内である。
【0124】
この態様によれば、フェノール化合物の含有量が10質量部以上であることで、ガラス転移温度(Tg)の低下、及びデスミア耐性の低下を抑制することができる。フェノール化合物の含有量が30質量部以下であることで、デスミア耐性の低下を抑制することができる。
【0125】
第8の態様に係る樹脂組成物は、第1~7のいずれかの態様において、前記コアシェルゴムが、コアと、前記コアを被覆するシェルと、を有する。前記コアが、(メタ)アクリル酸の重合体、(メタ)アクリル酸エステルの重合体、オレフィン化合物の重合体、ポリブタジエン及びシリコーンからなる群より選ばれた1種以上の物質を含み。前記シェルが、スチレンアクリロニトリル共重合体、(メタ)アクリル酸の重合体、ポリブタジエン及びシリコーンからなる群より選ばれた1種以上の物質を含む。
【0126】
この態様によれば、樹脂組成物の硬化物に耐熱性及び低温耐衝撃性を付与し得る。
【0127】
第9の態様に係る樹脂組成物は、第1~8のいずれかの態様において、前記コアシェルゴムの平均粒子径が1μm未満である。
【0128】
この態様によれば、プリント配線板の導体配線が形成された面に、樹脂組成物を用いて絶縁層を形成する場合に、隣り合う導体配線間を充填しやすくなる。特に微細な導体配線(いわゆるファインパターン)が高密度にプリント配線板に形成されている場合に有効である。
【0129】
第10の態様に係る樹脂組成物は、第1~9のいずれかの態様において、前記無機充填材が、シリカ、タルク、ベーマイト、水酸化マグネシウム及び水酸化アルミニウムからなる群より選ばれた1種以上の化合物を含む。
【0130】
この態様によれば、樹脂組成物の硬化物の低熱膨張化に特に有効である。
【0131】
第11の態様に係るプリプレグ(1)は、基材(11)と、前記基材(11)に含浸された第1~10のいずれかの態様に係る樹脂組成物の半硬化物で形成された樹脂層(10)と、を備える。
【0132】
この態様によれば、熱膨張係数が低く、ガラス転移温度(Tg)が高く、デスミア耐性の良好な基板を得ることができる。
【0133】
第12の態様に係る樹脂付きフィルム(2)は、第1~10のいずれかの態様に係る樹脂組成物の半硬化物で形成された樹脂層(20)と、前記樹脂層(20)を支持する支持フィルム(21)と、を備える。
【0134】
この態様によれば、熱膨張係数が低く、ガラス転移温度(Tg)が高く、デスミア耐性の良好な基板を得ることができる。
【0135】
第13の態様に係る樹脂付き金属箔(3)は、第1~10のいずれかの態様に係る樹脂組成物の半硬化物で形成された樹脂層(30)と、前記樹脂層(30)が接着された金属箔(31)と、を備える。
【0136】
この態様によれば、熱膨張係数が低く、ガラス転移温度(Tg)が高く、デスミア耐性の良好な基板を得ることができる。
【0137】
第14の態様に係る金属張積層板(4)は、第1~10のいずれかの態様に係る樹脂組成物の硬化物又は第11の態様に係るプリプレグ(1)の硬化物で形成された絶縁層(40)と、前記絶縁層(40)の片面又は両面に形成された金属層(41)と、を備える。
【0138】
この態様によれば、熱膨張係数が低く、ガラス転移温度(Tg)が高く、デスミア耐性の良好な基板を得ることができる。
【0139】
第15の態様に係るプリント配線板(5)は、第1~10のいずれかの態様に係る樹脂組成物の硬化物又は第11の態様に係るプリプレグ(1)の硬化物で形成された絶縁層(50)と、前記絶縁層(50)の片面又は両面に形成された導体配線(51)と、を備える。
【0140】
この態様によれば、熱膨張係数が低く、ガラス転移温度(Tg)が高く、デスミア耐性の良好な基板を得ることができる。
【実施例】
【0141】
以下、本開示を実施例によって具体的に説明する。ただし、本開示は、実施例に限定されない。
【0142】
(1)樹脂組成物
樹脂組成物の原料として、以下のものを用意した。そして、エポキシ化合物、フェノール化合物、マレイミド化合物、コアシェルゴム、無機充填材及び硬化促進剤を表1~表3に示す配合量で配合し、溶媒(メチルエチルケトン)で希釈し、これを撹拌及び混合して均一化することにより、樹脂組成物を調製した。
【0143】
(1.1)エポキシ化合物
・ビフェニルアラルキル型エポキシ樹脂(日本化薬株式会社製、商品名「NC-3500」、エポキシ当量:209g/eq)
・ナフタレン型エポキシ樹脂(DIC株式会社製、商品名「HP-9500」、エポキシ当量:230g/eq)
・トリフェニルメタン骨格含有エポキシ樹脂(日本化薬株式会社製、商品名「EPPN-502H」、エポキシ当量:158~178g/eq)
・ナフタレン型エポキシ樹脂(DIC株式会社製、商品名「HP-4710」、エポキシ当量:170g/eq)
・ビフェニルアラルキル型エポキシ樹脂(日本化薬株式会社製、商品名「NC-3000-H」、エポキシ当量:280~300g/eq)。
【0144】
(1.2)フェノール化合物
・ナフタレン型フェノール樹脂(DIC株式会社製、商品名「HPC9500P-53M」、水酸基当量:153g/eq)
・ビフェニルアラルキル型フェノール樹脂(明和化成株式会社製、商品名「MEHC-7403H」、水酸基当量:132g/eq)
・リン含有フェノール化合物(ダウ・ケミカル日本株式会社製、商品名「XZ92741.00」、水酸基当量:550g/eq)。
【0145】
(1.3)マレイミド化合物
・フェニルメタンマレイミド(大和化成工業株式会社製、商品名「BMI-2300」)
・ビフェニルアラルキル型マレイミド樹脂(日本化薬株式会社製、商品名「MIR-3000 70MT」)。
【0146】
(1.4)コアシェルゴム
・メチルメタクリレートブタジエンスチレンコアシェルゴム(ダウ・ケミカル日本株式会社製、商品名「TMS-2670J」、コア:メタクリル酸メチル/ブタジエン/スチレン共重合体、シェル:メタクリル酸メチル重合体、平均粒子径:0.151μm)
・アクリルゴム(アイカ工業株式会社製、商品名「AC3816N」、コア:架橋アクリル重合体、シェル:メタクリル酸メチル重合体、平均粒子径:0.3μm)
・シリコーン・アクリル複合ゴム(三菱ケミカル株式会社製、商品名「SRK200A」、コア:シリコーン/アクリル重合体、シェル:スチレンアクリロニトリル共重合体、平均粒子径:0.15μm)。
【0147】
(1.5)無機充填材
・シリカ(株式会社アドマテックス製、商品名「SC-2050MTX」、平均粒子径:0.5μm)
・シリカ(株式会社アドマテックス製、商品名「SC-2050MNU」、平均粒子径:0.5μm)
・水酸化アルミニウム(河合石灰工業株式会社製、商品名「ALH-F」、平均粒子径:5.2μm)
・水酸化マグネシウム(協和化学工業株式会社製、商品名「KISUMA 8SN」、平均粒子径:1.48μm)。
【0148】
(1.6)硬化促進剤
・2-エチル-4-メチルイミダゾール(四国化成工業株式会社製、商品名「2E4MZ」)。
【0149】
(2)プリプレグ
ガラスクロス(日東紡績株式会社製の♯2118タイプ、WEA2118T-107-S199、Eガラス)を用意した。このガラスクロスは、縦糸及び横糸がほぼ直交するように織られた織布からなる。このガラスクロスに、プリプレグの硬化物の厚さが100μmとなるように、樹脂組成物を含浸させた。ガラスクロスに含浸された樹脂組成物を半硬化状態となるまで非接触タイプの加熱ユニットによって加熱乾燥した。加熱温度は120~130℃であった。これにより、樹脂組成物中の溶媒を除去し、ガラスクロスと、このガラスクロスに含浸された樹脂組成物の半硬化物とを備えるプリプレグを製造した。プリプレグのレジンコンテント(樹脂量)は、プリプレグ100質量部に対して41質量部であった。
【0150】
(3)金属張積層板
上記のプリプレグを2枚重ねて積層物を得、得られた積層物の両面に金属箔として銅箔(厚さ12μm)を重ねて、銅箔付きの積層物を得た。この銅箔付きの積層物を、加熱加圧成形することによって、厚さ0.2mmの両面金属張積層板を製造した。加熱加圧成形の条件は、220℃、2MPa、90分間であった。
【0151】
(4)試験
(4.1)熱膨張係数(CTE)
両面金属張積層板の両面に接着された銅箔をエッチングにより除去し、アンクラッド板を得た。このアンクラッド板を試料として、50~260℃の温度範囲における厚み方向と直交する方向の熱膨張係数(CTE)を測定した。測定は、IPC TM650 2.4.41に基づき、TMA法(Thermal mechanical analysis method)により行った。
【0152】
(4.2)ガラス転移温度(Tg)
両面金属張積層板の両面に接着された銅箔をエッチングにより除去し、アンクラッド板を得た。このアンクラッド板を、ガラスクロスの縦糸又は横糸に対して斜め45°方向(バイアス方向)に切断して、50mm×5mmの大きさの試料を作製した。
【0153】
上記試料について、動的粘弾性測定装置(エスアイアイ・ナノテクノロジー株式会社製「DMS6100」)を用い、5℃/分の昇温条件(DMA法)でtanδを測定し、そのピーク温度をガラス転移温度(Tg)とした。
【0154】
(4.3)デスミア耐性
デスミア耐性は、下記の試験片をデスミア処理する前の処理前試験片の質量と、下記の試験片を過マンガン酸塩でデスミア処理した後の処理済み試験片の質量との差からデスミアエッチング量を計算し、その計算値から評価した。
【0155】
具体的には、5cm×5cmの大きさの両面金属張積層板に接着された銅箔をエッチングにより除去し、試験片を得た。得られた試験片をデスミア処理する前の処理前試験片の質量(初期質量)と、得られた試験片を以下の条件でデスミア処理した後の処理済み試験片の質量との差(単位はmg/cm2)からデスミアエッチング量を計算した。
【0156】
処理前試験片の初期質量の測定は、試験片を130℃で30分乾燥させた後、デシケータ内で2時間空冷してから行った。
【0157】
処理済み試験片の質量の測定は、次のようにして行った。
【0158】
(a)膨潤工程
まず初期質量を測定した後の処理前試験片をアトテック社製「スウェリングディップセキュリガントP(500ml/L)」及び水酸化ナトリウム水溶液(40g/L)で5分間膨潤させる。
【0159】
(b)デスミア工程
次にアトテック社製「コンセントレコンパクトCP(580ml/L)」及び水酸化ナトリウム水溶液(40g/L)で10分間マイクロエッチング処理する。
【0160】
(c)中和工程
次にアトテック社製「リダクションソリューションセキュリガントP500(70ml/L)」及び硫酸(98%、50ml/L)で5分間中和する。
【0161】
(d)乾燥工程
次に130℃で30分乾燥させる。
【0162】
そして、以下のようにデスミア耐性を1パス(1pass)及び2パス(2pass)に分けて評価した。
【0163】
1パスでは、上記の(a)~(d)の一連の工程を1回経た後、デシケータ内で2時間空冷してから処理済み試験片の質量を測定した。このようにして1パスのデスミアエッチング量を測定した。
【0164】
2パスでは、上記の(a)~(c)の一連の工程を2回繰り返し、さらに(d)の工程を経た後、デシケータ内で2時間空冷してから処理済み試験片の質量を測定した。このようにして2パスのデスミアエッチング量を測定した。
【0165】
デスミアエッチング量が、1パスで0.3mg/cm2以下、2パスで0.5mg/cm2以下である場合、デスミア耐性に優れると評価した。
【0166】
【0167】
【0168】
【符号の説明】
【0169】
1 プリプレグ
10 樹脂層
11 基材
2 樹脂付きフィルム
20 樹脂層
21 支持フィルム
3 樹脂付き金属箔
30 樹脂層
31 金属箔
4 金属張積層板
40 絶縁層
41 金属層
5 プリント配線板
50 絶縁層
51 導体配線