IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ キヤノン株式会社の特許一覧

特許7426841像ブレ補正装置及びその制御方法、プログラム、記憶媒体
<>
  • 特許-像ブレ補正装置及びその制御方法、プログラム、記憶媒体 図1
  • 特許-像ブレ補正装置及びその制御方法、プログラム、記憶媒体 図2
  • 特許-像ブレ補正装置及びその制御方法、プログラム、記憶媒体 図3
  • 特許-像ブレ補正装置及びその制御方法、プログラム、記憶媒体 図4
  • 特許-像ブレ補正装置及びその制御方法、プログラム、記憶媒体 図5
  • 特許-像ブレ補正装置及びその制御方法、プログラム、記憶媒体 図6
  • 特許-像ブレ補正装置及びその制御方法、プログラム、記憶媒体 図7
  • 特許-像ブレ補正装置及びその制御方法、プログラム、記憶媒体 図8
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-01-25
(45)【発行日】2024-02-02
(54)【発明の名称】像ブレ補正装置及びその制御方法、プログラム、記憶媒体
(51)【国際特許分類】
   G03B 5/00 20210101AFI20240126BHJP
【FI】
G03B5/00 J
【請求項の数】 15
(21)【出願番号】P 2020017232
(22)【出願日】2020-02-04
(65)【公開番号】P2021124577
(43)【公開日】2021-08-30
【審査請求日】2023-01-27
(73)【特許権者】
【識別番号】000001007
【氏名又は名称】キヤノン株式会社
(74)【代理人】
【識別番号】110003281
【氏名又は名称】弁理士法人大塚国際特許事務所
(72)【発明者】
【氏名】安田 龍一郎
【審査官】藏田 敦之
(56)【参考文献】
【文献】特開2017-092616(JP,A)
【文献】特開2018-105938(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G03B 5/00
H04N 23/68
(57)【特許請求の範囲】
【請求項1】
装置の振れを検出する振れ検出手段により検出された角速度信号を取得する第1の取得手段と、
前記角速度信号に基づいて前記振れ検出手段のオフセット値を推定する推定手段と、
時刻または前記振れ検出手段の温度の少なくとも一方の情報を取得する第2の取得手段と、
前記情報を記憶手段に記憶させる記憶制御手段と、を備え、
前記推定手段は、カルマンフィルタを用いて推定を行うとともに、推定結果の誤差分散を算出し、前記オフセット値を推定する場合に、前記第2の取得手段により取得された前記情報と、前回の前記オフセット値の推定時に前記第2の取得手段により取得され、前記記憶手段に記憶された前記情報との比較結果に基づいて、前記誤差分散の初期値を変更し、前記オフセット値を推定する場合の推定値を変化させる度合いを設定することを特徴とする像ブレ補正装置。
【請求項2】
前記記憶手段は、前記誤差分散をさらに記憶することを特徴とする請求項に記載の像ブレ補正装置。
【請求項3】
前記推定手段は、前記記憶手段に記憶された前記前回の推定時の時刻と、前記推定時に前記第2の取得手段により取得された今回の推定時の時刻の差分が第1の値の場合、当該差分が前記第1の値よりも小さい第2の値の場合よりも 前記誤差分散の初期値を大きくすることを特徴とする請求項に記載の像ブレ補正装置。
【請求項4】
前記推定手段は、前記記憶手段に記憶された前記前回の推定時の前記振れ検出手段の温度と、前記推定時に前記第2の取得手段により取得された今回の推定時の前記振れ検出手段の温度の差分が第3の値の場合、当該差分が前記第3の値よりも小さい第4の値の場合よりも前記誤差分散の初期値を大きくすることを特徴とする請求項またはに記載の像ブレ補正装置。
【請求項5】
前記推定手段は、複数の条件における前記誤差分散の初期値を重み付け加算して、最終的な誤差分散の初期値とすることを特徴とする請求項乃至のいずれか1項に記載の像ブレ補正装置。
【請求項6】
前記推定手段は、複数の条件における前記誤差分散の初期値の優先順位に基づいて、最終的な誤差分散の初期値を求めることを特徴とする請求項乃至のいずれか1項に記載の像ブレ補正装置。
【請求項7】
前記記憶手段は、前記オフセット値の推定値をさらに記憶することを特徴とする請求項1乃至のいずれか1項に記載の像ブレ補正装置。
【請求項8】
前記記憶手段は、前記推定手段が推定を停止したときに、前記情報を記憶することを特徴とする請求項1乃至のいずれか1項に記載の像ブレ補正装置。
【請求項9】
撮像素子から出力された画像のフレーム間の差分から動きベクトルを求める動きベクトル検出手段をさらに備え、前記推定手段は、前記角速度信号と、前記動きベクトルとに基づいて、前記振れ検出手段のオフセット値を推定することを特徴とする請求項1乃至のいずれか1項に記載の像ブレ補正装置。
【請求項10】
前記装置の振れに起因する像ブレを光学的に補正する補正手段と、前記補正手段の位置を示す位置信号を出力する位置検出手段と、をさらに備え、前記推定手段は、前記角速度信号と、前記動きベクトルと、前記位置信号とに基づいて、前記振れ検出手段のオフセット値を推定することを特徴とする請求項に記載の像ブレ補正装置。
【請求項11】
装置の振れを検出する振れ検出手段により検出された角速度信号を取得する第1の取得手段と、
前記角速度信号に基づいて前記振れ検出手段のオフセット値を推定する推定手段と、
時刻または前記振れ検出手段の温度の少なくとも一方の情報を取得する第2の取得手段と、
前記情報を記憶手段に記憶させる記憶制御手段と、を備え、
前記記憶手段は、前記推定手段が推定を停止したときに、前記情報を記憶し、
前記推定手段は、前記オフセット値を推定する場合に、前記第2の取得手段により取得された前記情報と、前回の前記オフセット値の推定時に前記第2の取得手段により取得され、前記記憶手段に記憶された前記情報との比較結果に基づいて、前記オフセット値を推定する場合の推定値を変化させる度合いを設定することを特徴とする像ブレ補正装置。
【請求項12】
装置の振れを検出する振れ検出手段により検出された角速度信号を取得する第1の取得工程と、
前記角速度信号に基づいて前記振れ検出手段のオフセット値を推定する推定工程と、
時刻または前記振れ検出手段の温度の少なくとも一方の情報を取得する第2の取得工程と、
前記情報を記憶手段に記憶させる記憶制御工程と、を有し、
前記推定工程では、カルマンフィルタを用いて推定を行うとともに、推定結果の誤差分散を算出し、前記オフセット値を推定する場合に、該推定の開始時に前記第2の取得工程において取得された前記情報と、前回の前記オフセット値の推定時に前記第2の取得工程において取得され、前記記憶手段に記憶された前記情報との比較結果に基づいて、前記誤差分散の初期値を変更し、前記オフセット値を推定する場合の推定値を変化させる度合いを設定することを特徴とする像ブレ補正装置の制御方法。
【請求項13】
装置の振れを検出する振れ検出手段により検出された角速度信号を取得する第1の取得工程と、
前記角速度信号に基づいて前記振れ検出手段のオフセット値を推定する推定工程と、
時刻または前記振れ検出手段の温度の少なくとも一方の情報を取得する第2の取得工程と、
前記情報を記憶手段に記憶させる記憶制御工程と、を有し、
前記記憶手段は、前記推定工程が推定を停止したときに、前記情報を記憶し、
前記推定工程では、前記オフセット値を推定する場合に、前記第2の取得工程において取得された前記情報と、前回の前記オフセット値の推定時に前記第2の取得工程において取得され、前記記憶手段に記憶された前記情報との比較結果に基づいて、前記オフセット値を推定する場合の推定値を変化させる度合いを設定することを特徴とする像ブレ補正装置の制御方法。
【請求項14】
コンピュータを、請求項1乃至11のいずれか1項に記載の像ブレ補正装置の各手段として機能させるためのプログラム。
【請求項15】
コンピュータを、請求項1乃至11のいずれか1項に記載の像ブレ補正装置の各手段として機能させるためのプログラムを記憶したコンピュータが読み取り可能な記憶媒体。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、カメラの振れに起因する像ブレを補正する技術に関するものである。
【背景技術】
【0002】
デジタルカメラなどの撮像装置において、CMOSセンサなどの撮像素子や撮影光学系の一部の光学素子を光軸と直交する方向に移動させることにより、装置に加わる振れに起因する像ブレを補正する技術が多く提案されている。このような像ブレ補正機能を有する撮像装置は、一般的には、装置に加わる振れをジャイロセンサ(角速度センサ)により検出している。
【0003】
ジャイロセンサは、装置に加わる振れのうち、回転振れを角速度の状態で検出可能なセンサであり、近年その性能向上は著しい。しかし、像ブレ補正性能に対する要求も大幅に増大してきているため、ジャイロセンサの検出精度を向上させることは非常に重要である。ジャイロセンサの検出精度を向上させる上での1つの重要な課題は、ジャイロセンサが持つオフセット成分をいかにして除去するかということである。
【0004】
ジャイロセンサの信号をオフセット成分の除去なしに使用すると、ジャイロセンサの出力信号を積分して角度として取り扱う際、積分誤差として順次積みあがっていく所謂ドリフトを生じることとなり、正確な像ブレ補正が行えなくなってしまう。
【0005】
特許文献1には、角速度センサの出力と、画像のフレーム間の差分による動きベクトルと、ブレ補正部材の速度を入力として、カルマンフィルタや逐次最小二乗法を用いてオフセットを推定し、推定結果を基にオフセット成分を除去する手法が開示されている。
【先行技術文献】
【特許文献】
【0006】
【文献】特開2017-92616号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
オフセット推定値の初期値は未知の真のオフセットに近いことが望ましく、例えば、前回推定停止時のオフセット推定値を初期値とすることが考えられる。しかし、オフセットの揺らぎの大きいジャイロセンサの場合、前回推定停止時のオフセット推定値が今回の未知の真のオフセット値に必ずしも近いとは限らない。そのため、前回推定停止時のオフセット推定値と今回の未知の真のオフセット値がどれだけ近いかを条件に応じて推測し、オフセット推定値を修正する度合いを変化させる必要がある。オフセット推定値を修正する度合いを変化させるには、例えば、誤差分散初期値を設定することが考えられる。
【0008】
誤差分散初期値を大きくすると修正する度合いが大きくなり、オフセットの推定は進むが、観測値のノイズの影響を受けて変動しやすくなる。一方、誤差分散初期値を小さくすると、修正する度合いが小さくなり、観測値のノイズの影響を受けにくくなるが、オフセットの推定が遅くなる。そのため、適切な誤差分散初期値を設定しないと、早く正しくオフセット値を推定できない。
【0009】
特許文献1のカルマンフィルタを用いた手法では、オフセット推定値を修正する度合いを司るパラメータについての決定方法が示されていない。また、オフセット推定初期値についても示されていない。
【0010】
本発明は上述した課題に鑑みてなされたものであり、その目的は、角速度センサのオフセットを推定する場合に、オフセット推定値の変動を抑えつつ、早く正しいオフセット推定値を得られるようにすることである。
【課題を解決するための手段】
【0011】
本発明に係わる像ブレ補正装置は、装置の振れを検出する振れ検出手段により検出された角速度信号を取得する第1の取得手段と、前記角速度信号に基づいて前記振れ検出手段のオフセット値を推定する推定手段と、時刻または前記振れ検出手段の温度の少なくとも一方の情報を取得する第2の取得手段と、前記情報を記憶手段に記憶させる記憶制御手段と、を備え、前記推定手段は、カルマンフィルタを用いて推定を行うとともに、推定結果の誤差分散を算出し、前記オフセット値を推定する場合に、前記第2の取得手段により取得された前記情報と、前回の前記オフセット値の推定時に前記第2の取得手段により取得され、前記記憶手段に記憶された前記情報との比較結果に基づいて、前記誤差分散の初期値を変更し、前記オフセット値を推定する場合の推定値を変化させる度合いを設定することを特徴とする。
【発明の効果】
【0012】
本発明によれば、角速度センサのオフセットを推定する場合に、オフセット推定値の変動を抑えつつ、早く正しいオフセット推定値を得ることが可能となる。
【図面の簡単な説明】
【0013】
図1】本発明の第1の実施形態に係わるレンズ交換式の一眼レフタイプのカメラシステムの構成を示す図。
図2】第1の実施形態における像ブレ補正装置の構成を示すブロック図。
図3】第1の実施形態における像ブレ補正処理の動作を示すフローチャート。
図4】第1の実施形態における誤差分散値と、時間、温度の関係を示す図。
図5】オフセット推定初期値が正しいオフセット値と離れている場合のオフセット推定値の時間推移を示す図。
図6】オフセット推定初期値が正しいオフセット値と近い場合のオフセット推定値の時間推移を示す図。
図7】第2の実施形態における像ブレ補正装置の構成を示すブロック図。
図8】第2の実施形態における像ブレ補正処理の動作を示すフローチャート。
【発明を実施するための形態】
【0014】
以下、添付図面を参照して実施形態を詳しく説明する。尚、以下の実施形態は特許請求の範囲に係る発明を限定するものではない。実施形態には複数の特徴が記載されているが、これらの複数の特徴の全てが発明に必須のものとは限らず、また、複数の特徴は任意に組み合わせられてもよい。さらに、添付図面においては、同一若しくは同様の構成に同一の参照番号を付し、重複した説明は省略する。
【0015】
(第1の実施形態)
<カメラシステムの構成>
図1は、本発明の第1の実施形態に係わるレンズ交換式の一眼レフタイプのカメラシステム(撮像システム)100の構成を示す図である。図1(a)は第1の実施形態におけるカメラシステムの中央断面図であり、図1(b)はカメラシステム100の電気的構成を示すブロック図である。
【0016】
図1(a)において、カメラシステム100はカメラ本体1と、カメラ本体1に着脱可能に装着されるレンズユニット2とを備える。レンズユニット2は、光軸4を軸とする複数のレンズからなる撮影光学系3を備え、その撮影光学系3の一部に、画像の振れを光学的に補正する振れ補正ユニット19が設けられている。振れ補正ユニット19は、光軸をシフトさせることが可能なユニットであり、例えば、シフトレンズで構成することができる。また、カメラ本体1は、撮像素子ユニット6、背面表示部10aを備える。カメラ本体1とレンズユニット2の間には、カメラ本体1とレンズユニット2を電気的に接続する電気接点14が配置されている。
【0017】
図1(b)において、レンズユニット2は、電気的な構成として、レンズシステム制御部15、レンズ側操作部16、レンズ側振れ検出部17、レンズ側振れ補正駆動部18、焦点距離変更部22を備える。レンズシステム制御部15は、レンズユニット2の全体を制御する。レンズ側操作部16は、ユーザーの操作を受け付ける。レンズ側振れ検出部17は、角速度センサなどを備え、カメラシステム100の振れ量(検出結果)を検出する。レンズ側振れ補正駆動部18は、振れ補正ユニット19を駆動して像ブレを補正する。レンズ位置検出部20は、振れ補正ユニット19の位置を検出する。焦点距離変更部22は、撮影光学系3の焦点距離を変更する。
【0018】
また、カメラ本体1は、電気的な構成として、カメラシステム制御部5、撮像素子ユニット6、画像処理部7、メモリ8、カメラ側操作部9、背面表示部10aを含む表示部10、カメラ側振れ検出部12、カメラ側振れ補正駆動部13を備える。カメラシステム制御部5は、カメラシステム100の全体を制御する。撮像素子ユニット6は、被写体像を光電変換し画像信号を出力する撮像素子と、撮像素子を、光軸に垂直な方向において移動またはチルトさせる、圧電素子、ボイスコイルモータなどからなる駆動機構とを有する。画像処理部7は、撮像素子ユニット6の撮像素子から出力された画像信号に必要な画像処理を行う。メモリ8は、画像データを一時記憶する。カメラ側操作部9は、ユーザーの操作を受け付ける。表示部10は、撮影された画像やカメラの状態を示す情報などを表示する。カメラ側振れ検出部12は、角速度センサなどを備え、カメラシステム100の振れ量を検出する。カメラ側振れ補正駆動部13は、撮像素子ユニット6を駆動して撮像素子を光軸4と垂直な面内で移動させ、像ブレ補正を行う。撮像素子位置検出部21は、撮像ユニット6内の撮像素子の位置を検出する。
【0019】
また、機能的な面から見ると、カメラ本体1およびレンズユニット2からなるカメラシステム100は、撮像手段、画像処理手段、記録再生手段、制御手段を有する。
【0020】
撮像手段は、撮影光学系3 、撮像素子ユニット6を含み、画像処理手段は、画像処理部7を含む。また、記録再生手段は、メモリ8、表示部10を含む。なお、表示部10は、背面表示部10a、カメラ本体1の上面に設けられた撮影情報を表示する不図示の小型表示パネル、EVFとも呼ばれる不図示の電子ビューファインダーを包含する。制御手段は、カメラシステム制御部5、カメラ側操作部9、カメラ側振れ検出部12、カメラ側振れ補正駆動部13、レンズシステム制御部15、レンズ側操作部16、レンズ側振れ検出部17、レンズ側振れ補正駆動部18、レンズ位置検出部20、撮像素子位置検出部21、焦点距離変更部22を含む。なお、レンズシステム制御部15は、振れ補正ユニット19の他に、不図示のフォーカスレンズ、絞り、ズームなどの駆動も行う。
【0021】
カメラ側振れ検出部12、レンズ側振れ検出部17は、カメラシステム100に加わる光軸4に対する回転振れを検知可能であり、例えば振動ジャイロなどが用いられる。カメラ側振れ補正駆動部13は撮像素子ユニット6内の撮像素子を、レンズ側振れ補正駆動部18は振れ補正ユニット19を、それぞれ光軸4に垂直な平面上でシフトもしくはチルト駆動させる。各駆動部(13,18)が、各ユニット(6,19)を光軸4に平行な方向においてもシフトさせてもよいが、本実施形態では、光軸4に平行な方向における各ユニットの移動を加味しないものとする。
【0022】
上述した撮像手段は、物体からの光を、撮影光学系3を介して撮像素子の撮像面に結像させる光学処理系である。撮像素子からピント評価量/適切な露光量の情報が得られるため、この情報に基づいて撮影光学系3が調整される。これにより、適切な光量の物体光を、撮像素子上にピントが合った状態で露光させることができる。
【0023】
画像処理部7は、内部にA/D変換器、ホワイトバランス調整回路、ガンマ補正回路、補間演算回路等を有しており、記録用の画像を生成する。色補間処理部はこの画像処理部7に備えられており、ベイヤ配列の信号から色補間(デモザイキング)処理を施してカラー画像を生成する。また、画像処理部7は、予め定められた方法を用いて静止画、動画、音声などの圧縮を行う。さらには、画像処理部7は撮像素子から得られた複数の画像間の比較に基づいて振れ検知信号を生成することも可能であるため、撮像素子と画像処理部7とでカメラ側振れ検出部12を構成してもよい。
【0024】
メモリ8は実際の記憶部を備えている。カメラシステム制御部5により、メモリ8の記憶部へ画像データの出力を行うとともに、表示部10にユーザーに提示する像を表示する。
【0025】
カメラシステム制御部5は撮像の際のタイミング信号などを生成して出力する。外部操作に応じて撮像系、画像処理系、記録再生系をそれぞれ制御する。例えば、シャッターレリーズボタン(不図示)の押下をカメラシステム制御部5が検出して、撮像素子ユニット6内の撮像素子の駆動、画像処理部7の動作、圧縮処理などを制御する。さらに情報表示を行う表示部10の各セグメントの状態を制御する。また、背面表示部10aはタッチパネルを有し、表示部10とカメラ側操作部9の役割を兼ねていてもよい。
【0026】
<像ブレ補正装置の構成>
次に、図2は、本実施形態におけるカメラシステム100が備える像ブレ補正装置200のブロック構成を示す図である。図2に示す像ブレ補正装置200の各ブロックとカメラシステム100の各ブロックとの対応関係については、後に詳しく説明する。なお、像ブレ補正軸として、カメラシステム100のPitch方向、Yaw方向については同じ構成であるため、これらのうち1軸についてのみ説明する。
【0027】
振れ検出部201は、像ブレ補正装置200を備えるカメラシステム100に生じている振れを検出する。この振れは、例えば手振れ等であり、例えばジャイロセンサなどを用いて検出する。振れ検出部201は、カメラシステム100の振れ情報の検出信号を、オフセット推定部202および減算器205に出力する。
【0028】
オフセット推定部202は、振れ検出部201の出力信号および、カメラ情報取得部203の出力データとカメラ情報保持部204の保存データ(記憶値)に基づき、振れ検出部201の出力信号のオフセットを推定する。オフセット推定部202で推定されたオフセットは減算器205に出力される。また、オフセット推定部202で算出された誤差分散はカメラ情報保持部204に出力される。
【0029】
カメラ情報取得部203は、振れ検出部201の温度と現在時刻(あるいはその少なくとも一方)を取得する。カメラ情報取得部203の出力データは、オフセット推定部202およびカメラ情報保持部204に出力される。
【0030】
カメラ情報保持部204は、カメラ情報取得部203から出力された振れ検出部201の温度と現在時刻、およびオフセット推定部202から出力されたオフセット推定値とその誤差分散を保存する(記憶制御)。カメラ情報保持部204で保存されたデータはオフセット推定部202に出力される。
【0031】
減算器205は、振れ検出部201の出力信号からオフセット推定部202のオフセット推定値を減算する。減算器205の出力信号は積分器206に出力される。
【0032】
積分器206は、減算器205の出力信号に積分処理を施す。積分器206の出力信号は像ブレ補正部207に出力される。
【0033】
像ブレ補正部207は、積分器206の出力値を補正目標値に変換し、手振れ等の動きを打ち消すようにブレ補正部材を制御する。ブレ補正部材の例としては、撮像光学系を構成するシフトレンズ等の補正レンズや、撮像素子を移動可能に支持する駆動機構部などである。あるいは、撮像装置からの指令により駆動制御可能なジンバル機構や自動制御可能な電動雲台等が挙げられる。
【0034】
ここで、図2に示す像ブレ補正装置200の各ブロックとカメラシステム100の各ブロックとの対応関係について説明する。例えば本実施形態では、振れ検出部201はレンズ側振れ検出部17に対応し、像ブレ補正部207はレンズ側振れ補正駆動部18に対応するものとする。さらに、オフセット推定部202、カメラ情報取得部203、カメラ情報保存部204、積分器206は、レンズシステム制御部15により実現されるものとする。つまり、像ブレ補正装置200の各構成ブロックが全てレンズユニット2に配置されているものとして説明する。
【0035】
しかしながら、それとは逆に、振れ検出部201はカメラ側振れ検出部12に対応し、像ブレ補正部207はカメラ側振れ補正駆動部13に対応するものとしてもよい。さらに、オフセット推定部202、カメラ情報取得部203、カメラ情報保存部204、積分器206は、カメラシステム制御部5により実現されるものとしてもよい。つまり、像ブレ補正装置200の各構成ブロックが全てカメラ本体1に配置されているものとしてもよい。
【0036】
このように、図2に示す像ブレ補正装置200は、全ての構成がレンズユニット2に配置されていてもよいし、カメラ本体1に配置されていてもよい。さらには、像ブレ補正装置200を構成する各ブロックがカメラ本体1とレンズユニット2の間の電気接点14で接続されると考えれば、像ブレ補正装置200の任意のブロックをレンズユニット2に配置し、残りのブロックをカメラ本体1に配置してもよい。像ブレ補正装置200のどのブロックをレンズユニット2に配置し、どのブロックをカメラ本体1に配置するかは、設計の都合に合わせて自由に選択することができる。
【0037】
<カルマンフィルタの説明>
次に、オフセット推定部202による振れ検出部201のオフセット推定処理の方法について数式を用いて説明する。本実施形態のオフセット推定部202を公知の線形カルマンフィルタで構成する場合、線形カルマンフィルタの一般的な式は以下の式(1)~式(7)で表すことができる。
【0038】
t=Axt-1+But+εt …式(1)
t=Cxt+δt …式(2)
ここで、式(1)は状態空間表現での動作モデルを表し、式(2)は観測モデルを表す。Aは動作モデルでのシステムマトリクス、Bは入力マトリクスを表す。またCは観測モデルでの出力マトリクスを表し、それぞれは行列式で表現される。またεtはプロセスノイズ、δtは観測ノイズ、tは離散的な時間を表す。
【0039】
【数1】
【0040】
ここで、式(3)は予測ステップにおける事前推定値、式(4)は事前誤差共分散を表す。またΣxは、動作モデルのノイズの分散を表す。
【0041】
【数2】
【0042】
ここで、式(5)はフィルタリングステップにおけるカルマンゲインの算出式を表し、添え字のTは転置行列を表している。さらに式(6)はカルマンフィルタによる事後推定値、式(7)は事後誤差共分散を表す。またΣzは、観測モデルのノイズの分散を表す。
【0043】
本実施形態では、振れ検出部201のオフセットを推定するため、オフセットをxtとし、観測された振れ量から求められるオフセットをzt、εtをプロセスノイズ、δtを観測ノイズとする。すると、オフセットのモデルは式(1)における入力項uがなく、式(1)および式(2)でA=C=1となる以下の1次線形モデルで表すことができる。
【0044】
t=xt-1+εt …式(8)
t=xt+δt …式(9)
ここで、式(4)における動作モデルのノイズの分散Σxをシステムノイズの分散σx 2で表し、式(5)における観測モデルのノイズの分散Σzを観測ノイズの分散σz 2で表す。時刻tにおけるオフセット事前推定値をx^t -、事後誤差分散をσx^t 2、カルマンゲインをkt、観測ノイズ分散をσzt 2、振れ検出部201によって観測されたオフセットをztとすると、以下の式でカルマンフィルタを構成することができる。
【0045】
【数3】
【0046】
オフセット推定部202は、上記の式(10)から式(14)までの演算式で構成され、推定演算の更新周期の時間t-1でのオフセット推定値x^t-1とシステムノイズの分散σx 2、時間t-1での事後誤差分散σx^t-1 2により、オフセット事前推定値x^-および事前誤差分散σx^t- 2が算出される。そして事前誤差分散σx^t- 2および、観測ノイズ分散σzt 2を基にカルマンゲインktが算出される。そして式(13)によって、観測されたオフセットztとオフセット事前推定値x^-との誤差にカルマンゲインktを乗じた値によってオフセット事前推定値x^-が修正され、オフセット推定値x^tが算出される。また式(14)により事前誤差分散σx^t- 2が修正されて事後誤差分散σx^t 2が算出される。これらの演算によって事前推定値の更新と修正を演算周期ごとに繰り返すことで、オフセット推定値が算出される。
【0047】
<誤差分散とオフセット推定値を修正する度合いの関係>
以上のように構成されたカルマンフィルタについて、事前誤差分散σx^t- 2の大きさが変化することによるカルマンフィルタによるオフセット推定値を修正する度合いの変化について、式(12)、式(13)を用いて説明する。
【0048】
まず、事前誤差分散σx^t- 2が大きい場合、オフセット推定値x^tの変動は大きくなる。式(12)によって、カルマンゲインkt=1に近い値となり、この場合、式(13)の右辺第2項の値は、観測されたオフセット値ztとオフセット事前推定値x^-との誤差そのままの値に近く、オフセット事前推定値x^-を修正する度合いが大きくなるためである。
【0049】
反対に、事前誤差分散σx^t- 2が小さい場合、オフセット推定値x^tの変動は大きくなる。式(12)によって、カルマンゲインkt=0に近い値となり、式(13)の右辺第2項の値も0に近い値となる。よって、オフセット事前推定値x^-を修正する度合いが小さくなるためである。
【0050】
よって、事前誤差分散初期値σx^0- 2を設定することによって、オフセット推定開始直後の修正する度合いを調整できる。
【0051】
また、カルマンゲインktは、事前誤差分散σx^t- 2と観測ノイズ分散σzt 2の比で決定されるため、観測ノイズ分散σzt 2の大きさを変化させることでもオフセット推定値を修正する度合いは変化させられる。観測ノイズ分散σzt 2が小さい場合は、オフセット推定値x^tの変動は大きくなり、観測ノイズ分散σzt 2が大きい場合は、オフセット推定値x^tの変動は小さくなる。
【0052】
<フローチャートの説明>
次に、上記のように構成される像ブレ補正装置200におけるブレ補正目標値の演算処理について、図3のフローチャートを参照して説明する。
【0053】
S301では、カメラ情報保持部204は、保存していたカメラ情報(前回のオフセット推定停止時(推定時)の時刻、温度、オフセット推定値、誤差分散)を読み出す。
【0054】
S302では、カメラ情報取得部203は、現在のカメラ情報(今回のオフセット推定開始時の時刻、温度)を取得する。
【0055】
S303では、オフセット推定部202は、現在のカメラ情報とカメラ情報の保存値を比較し、その比較結果に基づき、誤差分散初期値σx^0- 2を算出する。誤差分散初期値の算出方法は後述する。
【0056】
S304では、振れ検出部201は、カメラシステム100に生じている動きを検出して振れ信号を出力する。振れ検出部201は、例えばジャイロセンサを備え、その場合の振れ信号は角速度信号である。
【0057】
S305では、オフセット推定部202は、前述のカルマンフィルタを用いてジャイロセンサのオフセットを推定する。オフセット推定初期値は、カメラ情報保持部204で保存していたオフセット推定値とする。
【0058】
S306では、減算器205は、振れ検出部201から出力される振れ信号からオフセット推定部202から出力されるオフセット推定値を減算する。
【0059】
S307では、積分器206は、オフセットの除去された振れ信号に積分処理を施し、像ブレ補正部207に出力する。
【0060】
S308では、像ブレ補正部207は、積分器206の出力値をブレ補正目標値に変換し、手振れ等の動きを打ち消すようにブレ補正部材を制御する。
【0061】
S309では、オフセット推定部202が推定を停止したか否かを判定し、停止していればS310へ進み、停止していなければS304へ戻る。オフセット推定部202が推定を停止するタイミングは、例えば、カメラ本体1の電源が切られたときなどである。
【0062】
S310では、カメラ情報保持部204は、カメラ情報を保存する。ここでのカメラ情報とは、オフセット推定部202が推定を停止したときの、振れ検出部201の温度、時刻、誤差分散のことである。
【0063】
ここで、図4を参照して、誤差分散初期値σx^0- 2の算出方法について説明する。
【0064】
<時間による誤差分散初期値の算出>
図4(a)は、横軸が時間を、縦軸が誤差分散値を表し、前回のオフセット推定停止時から今回のオフセット推定開始時までの時間経過が長いほど誤差分散初期値を線形に大きくすることを表している。誤差分散初期値は大きくしすぎると変動が大きくなってしまうため、時間405以上経過した場合は、誤差分散初期値401以上にならないようにし、誤差分散初期値として設定し得る最大値を予め決めておく。また、誤差分散値403は、誤差分散保存値(前回のオフセット推定停止時の誤差分散値)である。この誤差分散初期値の最大値401と誤差分散保存値403の間で、前回のオフセット推定停止時から今回のオフセット推定開始時までの時間404に従って、誤差分散初期値402を算出する。図4(a)では、誤差分散初期値を線形に大きくする例を示しているが、この例に限らず非線形に大きくするようにしてもよい。
【0065】
<温度による誤差分散初期値の算出>
図4(b)は、横軸が温度差を、縦軸が誤差分散値を表し、前回のオフセット推定停止時の温度と今回のオフセット推定開始時の温度差が大きいほど誤差分散初期値を線形に大きくすることを表している。誤差分散初期値は大きくしすぎると変動が大きくなってしまうため、温度差410以上であった場合は、誤差分散初期値406以上にならないようにし、誤差分散初期値として設定し得る最大値を予め決めておく。また、誤差分散値408は、誤差分散保存値(前回オフセット推定停止時の誤差分散値)である。この誤差分散初期値の最大値406と誤差分散保存値408の間で、前回のオフセット推定停止時の温度と今回のオフセット推定開始時の温度差409に従って誤差分散初期値407を算出する。図4(b)では、誤差分散初期値を線形に大きくする例を示しているが、この例に限らず非線形に大きくするようにしてもよい。
【0066】
<重み付け加算による誤差分散初期値の設定>
時間によって算出された誤差分散初期値と、温度差によって算出された誤差分散初期値(複数の条件に基づいて算出された誤差分散初期値)とから、それらの重み付け加算によって最終的な誤差分散初期値を設定する。時間による誤差分散初期値と温度差による誤差分散初期値を、それぞれσx^0-_time 2、σx^0-_temp 2と表記し、それぞれの重みをW_time、W_tempと表記する。すると、誤差分散初期値の設定値σx^0- 2は、下記の式(15)により算出される。
【0067】
【数4】
【0068】
ただし、Wtime+Wtemp=1である。
【0069】
重みについては、例えば、各誤差分散初期値に対応する情報源の確からしさに基づいて設定される。各情報源の確からしさが同一であるか、または不明である場合には、全ての重みを同じにすればよい。
【0070】
<優先順位による誤差分散初期値の設定>
また、時間によって算出された誤差分散初期値と温度差によって算出された誤差分散初期値の優先順位を判定する方法もある。優先順位に基づく方法では、取得される各情報またはそれらに対応する誤差分散初期値に優先順位を付け、優先順位の高い誤差分散初期値が採用される。例えば、涼しい室内でオフセット推定を停止し、炎天下の屋外へカメラシステム100を移動させてからオフセット推定を開始させた場合、時間経過は短いが温度差が大きくなり、オフセットが大きく変動すると考えられる。この場合は温度差による誤差分散初期値の優先度を高くする。
【0071】
オフセット推定値について適切な誤差分散初期値を設定したときのオフセット推定値の時間推移を、図5及び図6に示す。
【0072】
図5は、オフセット推定初期値501が正しいオフセット値502と離れていた場合を示している。誤差分散初期値が小さい場合のオフセット推定の破線波形503は正しいオフセット値502に近づくのに時間が掛かっている。これに対し、誤差分散初期値が大きい場合のオフセット推定の実線波形504は、変動が大きいものの、正しいオフセット値502に早く近づいている。
【0073】
また、図6はオフセット推定初期値601が正しいオフセット値602と近い場合を示している。誤差分散初期値が大きい場合のオフセット推定の破線波形603は、オフセット推定値が大きく変動しているのに対し、誤差分散初期値が小さい場合のオフセット推定の実線波形604はオフセット推定値の変動が小さい。
【0074】
以上説明したように、第1の実施形態によれば、前回のオフセット推定停止時と今回のオフセット推定開始時の、温度および時刻を比較することにより、オフセット初期値を推定するにあたり、適切な誤差分散初期値を設定できる。それにより、オフセット推定初期値の変動を抑制しつつ、早く正しいオフセット値を得ることができる。
【0075】
(第2の実施形態)
<像ブレ補正装置の構成>
次に、図7は、第2の実施形態におけるカメラシステム100が備える像ブレ補正装置700のブロック構成を示す図である。図7においては、第1の実施形態を示す図2と共通な部分については、同じ符号を付して説明を省略する。
【0076】
第2の実施形態では、振れ検出部701から出力された振れ信号の他に、動きベクトルとブレ補正部材の速度も用いてオフセット推定を行う。なお、第1の実施形態と同じく、像ブレ補正軸として、カメラシステム100のPitch方向、Yaw方向については同じ構成であるため、これらのうち1軸についてのみ説明する。
【0077】
また、この第2の実施形態では、動きベクトル検出部702はカメラ本体1に配置されるが、像ブレ補正装置700のその他のブロックは、第1の実施形態と同様に、レンズユニット2に配置されてもよいし、カメラ本体1に配置されてもよい。
【0078】
振れ検出部701は、像ブレ補正装置700を備えるカメラシステム100に生じている振れを検出する。振れ検出部701はカメラシステム100の振れ情報の検出信号を減算器706および減算器205に出力する。
【0079】
動きベクトル検出部702は、撮像素子から得られた複数の画像間の比較に基づいて動きベクトルを検出する。動きベクトル検出部702は検出した動きベクトルを減算器706に出力する。
【0080】
ブレ補正部材位置検出部703は、ブレ補正部材の位置を検出する。ブレ補正部材位置検出部703の出力信号は微分器704に出力される。
【0081】
微分器704はブレ補正部材位置検出部703の出力信号に微分処理を施す。微分器704の出力信号は加算器705に出力される。
【0082】
加算器705は、動きベクトル検出部702により検出された動きベクトルと微分器704の出力信号を加算する。加算器705の出力信号は減算器706に出力される。
【0083】
減算器706は、振れ検出部701の出力信号から加算器705の出力信号を減算する。減算器706の出力信号はオフセット推定部202に出力される。
【0084】
<フローチャートの説明>
次に、上記のように構成される像ブレ補正装置700によるブレ補正目標値の演算処理について、図8のフローチャートを参照して説明する。なお、第1の実施形態の動作を示す図3と同様の処理のステップについては、同じステップ番号を付して、説明を省略する。
【0085】
S801では、動きベクトル検出部702は、動きベクトルを検出する。
【0086】
S802では、ブレ補正部材位置検出部703は、ブレ補正部材の位置を検出する。
【0087】
S803では、微分器704は、ブレ補正部材位置検出部703の出力信号であるブレ補正部材の位置信号に微分処理を施し、ブレ補正部材の移動速度を算出する。
【0088】
S804では、加算器705は、動きベクトル検出部702により検出された動きベクトルと微分器704の出力信号であるブレ補正部材の移動速度を加算する。
【0089】
S805では、減算器706は、振れ検出部701から出力された振れ信号から加算器705の出力信号を減算する。
【0090】
以上説明したように、第2の実施形態によれば、動きベクトルとブレ補正部材の移動速度を加算した信号と振れ信号の差分をオフセットの観測値としてオフセット推定を行うこともできる。
【0091】
また、像ブレ補正機能がOFFされて、ブレ補正部材が固定されている場合、微分器704の出力は0となる。この場合は、動きベクトルと振れ信号の差分をオフセットの観測値としてオフセット推定を行うことができる。
【0092】
(他の実施形態)
また本発明は、上述の実施形態の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサーがプログラムを読み出し実行する処理でも実現できる。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現できる。
【0093】
発明は上記実施形態に制限されるものではなく、発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、発明の範囲を公にするために請求項を添付する。
【符号の説明】
【0094】
1:カメラ本体、2:レンズユニット、3:撮影光学系、5:カメラシステム制御部、6:撮像素子ユニット、12:カメラ側振れ検出部、13:カメラ側振れ補正駆動部、15:レンズシステム制御部、17:レンズ側振れ検出部、18:レンズ側振れ補正駆動部、19:振れ補正ユニット、20:レンズ位置検出部、21:撮像素子位置検出部、200:像ブレ補正装置、202:オフセット推定部、203:カメラ情報取得部、204:カメラ情報保存部
図1
図2
図3
図4
図5
図6
図7
図8