(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-01-25
(45)【発行日】2024-02-02
(54)【発明の名称】磁気センサ及び検査装置
(51)【国際特許分類】
G01R 33/09 20060101AFI20240126BHJP
H10N 50/10 20230101ALI20240126BHJP
【FI】
G01R33/09
H10N50/10 B
(21)【出願番号】P 2021010239
(22)【出願日】2021-01-26
【審査請求日】2023-02-14
(73)【特許権者】
【識別番号】000003078
【氏名又は名称】株式会社東芝
(74)【代理人】
【識別番号】110004026
【氏名又は名称】弁理士法人iX
(72)【発明者】
【氏名】岩崎 仁志
(72)【発明者】
【氏名】白鳥 聡志
(72)【発明者】
【氏名】喜々津 哲
(72)【発明者】
【氏名】東 祥弘
【審査官】小川 浩史
(56)【参考文献】
【文献】特開2018-155719(JP,A)
【文献】特開2003-318460(JP,A)
【文献】特開2001-345495(JP,A)
【文献】特開2019-45496(JP,A)
【文献】特開2019-132719(JP,A)
【文献】特開2020-170838(JP,A)
【文献】特開2019-207167(JP,A)
【文献】特開2022-65866(JP,A)
【文献】特許第7316719(JP,B2)
【文献】特許第7319683(JP,B2)
【文献】特許第7284739(JP,B2)
(58)【調査した分野】(Int.Cl.,DB名)
G01R 33/00-33/26
H10N 50/00-59/00
(57)【特許請求の範囲】
【請求項1】
第1磁気素子と、
第1サイド磁性部と、
第1対向サイド磁性部と、
を含む第1センサ部と、
導電部材と、
を備え、
前記導電部材は、前記第1磁気素子に沿う第1対応部を含み、
前記第1磁気素子は、
第1磁性層と、
第1対向磁性層であって、前記第1磁性層から前記第1対向磁性層への方向は第1方向に沿う、前記第1対向磁性層と、
前記第1磁性層と前記第1対向磁性層との間に設けられた第1中間磁性層と、
を含み、
前記第1サイド磁性部は、第1サイド磁性層を含み、
前記第1対向サイド磁性部は、第1対向サイド磁性層を含み、
前記第1中間磁性層は、前記第1方向
に対して垂直な第2方向において、前記第1サイド磁性層と前記第1対向サイド磁性層と、の間にあ
り、
前記第1磁気素子は、
前記第1磁性層と前記第1中間磁性層との間に設けられた第1非磁性層と、
前記第1中間磁性層と前記第1対向磁性層との間に設けられた第1中間非磁性層と、
をさらに含み、
前記第1サイド磁性部は、第1積層サイド磁性層をさらに含み、
前記第1対向サイド磁性部は、第1対向積層サイド磁性層をさらに含み、
前記第1対向磁性層は、前記第2方向において、前記第1積層サイド磁性層と前記第1対向積層サイド磁性層との間にある、磁気センサ。
【請求項2】
前記第1センサ部は、第1磁性部材及び第1対向磁性部材をさらに含み、
前記第1磁性部材から前記第1対向磁性部材への方向は、前記第1方向及び前記第2方向を含む平面
に対して垂直な第3方向に沿い、
前記第1磁気素子は、前記第1方向において、前記第1磁性部材と前記第1対向磁性部材との間の領域と重なる、請求項
1に記載の磁気センサ。
【請求項3】
前記第1対応部は、前記第2方向
に対して垂直な方向において、前記第1磁気素子と重なる、請求項1
または2に記載の磁気センサ。
【請求項4】
前記第1磁気素子の電気抵抗は、前記第1対応部に流れる電流に対して偶関数の特性を有する、請求項
3に記載の磁気センサ。
【請求項5】
第2磁気素子を含む第2センサ部と、
第3磁気素子を含む第3センサ部と、
第4磁気素子を含む第4センサ部と、
素子電流回路と、
第1電流回路と、
をさらに備え、
前記第1磁気素子は、第1端部及び第1他端部を含み、前記第1端部から前記第1他端部への方向は、前記第2方向に沿い、
前記第2磁気素子は、第2端部及び第2他端部を含み、前記第2端部から前記第2他端部への方向は、前記第2方向に沿い、
前記第3磁気素子は、第3端部及び第3他端部を含み、前記第3端部から前記第3他端部への方向は、前記第2方向に沿い、
前記第4磁気素子は、第4端部及び第4他端部を含み、前記第4端部から前記第4他端部への方向は、前記第2方向に沿い、
前記導電部材は、
前記第2磁気素子に沿う第2対応部と、
前記第3磁気素子に沿う第3対応部と、
前記第4磁気素子に沿う第4対応部と、
を含み、
前記第1対応部は、前記第1端部に対応する第1部分と、前記第1他端部に対応する第1他部分と、を含み、
前記第2対応部は、前記第2端部に対応する第2部分と、前記第2他端部に対応する第2他部分と、を含み、
前記第3対応部は、前記第3端部に対応する第3部分と、前記第3他端部に対応する第3他部分と、を含み、
前記第4対応部は、前記第4端部に対応する第4部分と、前記第4他端部に対応する第4他部分と、を含み、
前記素子電流回路は、
前記第1磁気素子、前記第2磁気素子、前記第3磁気素子及び前記第4磁気素子
に素子電流を供給可能であり、
前記第1電流回路は、前記第1対応部、前記第2対応部、前記第3対応部及び前記第4対応部に交流成分を含む第1電流を供給可能である、請求項
3に記載の磁気センサ。
【請求項6】
前記導電部材に前記第1電流が供給されたときの第1時刻において、
前記素子電流
の一部は、前記第1端部から前記第1他端部への向きに前記第1磁気素子を流れ、
前記素子電流
の前記一部は、前記第2端部から前記第2他端部への向きに前記第2磁気素子を流れ、
前記素子電流
の別の一部は、前記第3端部から前記第3他端部への向きに前記第3磁気素子を流れ、
前記素子電流
の前記別の一部は、前記第4端部から前記第4他端部への向きに前記第4磁気素子を流れ、
前記第1電流は、前記第1他部分から前記第1部分への向きに、前記第1対応部を流れ、
前記第1電流は、前記第2部分から前記第2他部分への向きに、前記第2対応部を流
れ、
前記第1電流は、前記第3部分から前記第3他部分への向きに、前記第3対応部を流
れ、
前記第1電流は、前記第4他部分から前記第4部分への向きに、前記第4対応部を流れる、請求項
5に記載の磁気センサ。
【請求項7】
請求項1~
6のいずれか1つに記載の磁気センサと、
前記磁気センサから出力される信号を処理可能な処理部と、
を備え
、
前記磁気センサは、検査対象に流れる電流により生じる磁界を検出できる、検査装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明の実施形態は、磁気センサ及び検査装置に関する。
【背景技術】
【0002】
磁性層を用いた磁気センサがある。磁気センサを用いた検査装置がある。磁気センサにおいて、感度の向上が望まれる。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
本発明の実施形態は、感度の向上が可能な磁気センサ及び検査装置を提供する。
【課題を解決するための手段】
【0005】
本発明の実施形態によれば、磁気センサは、第1センサ部及び導電部材を含む。前記第1センサ部は、第1磁気素子と、第1サイド磁性部と、第1対向サイド磁性部と、を含む。前記導電部材は、前記第1磁気素子に沿う第1対応部を含む。前記第1磁気素子は、第1磁性層と、第1対向磁性層であって、前記第1磁性層から前記第1対向磁性層への方向は第1方向に沿う、前記第1対向磁性層と、前記第1磁性層と前記第1対向磁性層との間に設けられた第1中間磁性層と、を含む。前記第1サイド磁性部は、第1サイド磁性層を含む。前記第1対向サイド磁性部は、第1対向サイド磁性層を含む。前記第1中間磁性層は、前記第1方向と交差する第2方向において、前記第1サイド磁性層と前記第1対向サイド磁性層と、の間にある。
【図面の簡単な説明】
【0006】
【
図1】
図1(a)~
図1(c)は、第1実施形態に係る磁気センサを例示する模式図である。
【
図2】
図2は、第1実施形態に係る磁気センサを例示する模式図である。
【
図3】
図3(a)~
図3(c)は、第1実施形態に係る磁気センサを例示する模式図である。
【
図4】
図4は、第1実施形態に係る磁気センサを例示する模式図である。
【
図5】
図5(a)~
図5(c)は、第2実施形態に係る磁気センサを例示する模式図である。
【
図6】
図6(a)~
図6(c)は、第2実施形態に係る磁気センサを例示する模式図である。
【
図7】
図7(a)及び
図7(b)は、実施形態に係る磁気センサの特性を例示する模式図である。
【
図8】
図8(a)及び
図8(b)は、実施形態に係る磁気センサの特性を例示する模式図である。
【
図9】
図9(a)~
図9(c)は、実施形態に係る磁気センサの特性を例示するグラフ図である。
【
図10】
図10は、第3実施形態に係る磁気センサを例示する模式図である。
【
図11】
図11は、第3実施形態に係る磁気センサを例示する模式図である。
【
図12】
図12(a)~
図12(c)は、第3実施形態に係る磁気センサを例示する模式的断面図である。
【
図13】
図13(a)~
図13(c)は、第3実施形態に係る磁気センサを例示する模式的平面図である。
【
図14】
図14(a)~
図14(c)は、第3実施形態に係る磁気センサを例示する模式図である。
【
図15】
図15(a)及び
図15(b)は、第3実施形態に係る磁気センサを例示する模式図である。
【
図16】
図16(a)及び
図16(b)は、第3実施形態に係る磁気センサを例示する模式図である。
【
図17】
図17は、第4実施形態に係る検査装置を例示する模式図である。
【
図18】
図18は、第4実施形態に係る検査装置を例示する模式図である。
【
図19】
図19は、第4実施形態に係る検査装置を示す模式的斜視図である。
【
図20】
図20は、第4実施形態に係る検査装置を示す模式的平面図である。
【
図21】
図21は、第4実施形態に係る磁気センサ及び検査装置を示す模式図である。
【
図22】
図22は、第4実施形態に係る検査装置を示す模式図である。
【発明を実施するための形態】
【0007】
以下に、本発明の各実施の形態について図面を参照しつつ説明する。
図面は模式的または概念的なものであり、各部分の厚さと幅との関係、部分間の大きさの比率などは、必ずしも現実のものと同一とは限らない。同じ部分を表す場合であっても、図面により互いの寸法や比率が異なって表される場合もある。
本願明細書と各図において、既出の図に関して前述したものと同様の要素には同一の符号を付して詳細な説明は適宜省略する。
【0008】
(第1実施形態)
図1(a)~
図1(c)は、第1実施形態に係る磁気センサを例示する模式図である。
図1(a)は、平面図である。
図1(b)は、
図1(a)のY1-Y2線断面図である。
図1(c)は、
図1(a)のX1-X2線断面図である。
【0009】
図1(a)~
図1(c)に示すように、実施形態に係る磁気センサ110は、第1センサ部10Aを含む。
【0010】
第1センサ部10Aは、第1磁気素子11E、第1サイド磁性部11S及び第1対向サイド磁性部11SAを含む。
【0011】
図1(b)及び
図1(c)に示すように、第1磁気素子11Eは、第1磁性層11、第1対向磁性層11o、及び、第1中間磁性層11iを含む。第1磁性層11から第1対向磁性層11oへの方向は、第1方向に沿う。
【0012】
第1方向をZ軸方向とする。Z軸方向に対して垂直な1つの方向をY軸方向とする。Z軸方向及びY軸方向に対して垂直な方向をX軸方向とする。
【0013】
第1中間磁性層11iは、第1磁性層11と第1対向磁性層11oとの間に設けられる。
【0014】
この例では、第1磁気素子11Eは、第1非磁性層11n及び第1中間非磁性層11inを含む。第1非磁性層11nは、第1磁性層11と第1中間磁性層11iとの間に設けられる。第1中間非磁性層11inは、第1中間磁性層11iと第1対向磁性層11oとの間に設けられる。
【0015】
第1磁性層11、第1対向磁性層11o及び第1中間磁性層11iの少なくともいずれかは、例えば、Co、Fe及びNiよりなる群から選択された少なくとも1つを含む。これらの磁性層は、例えば、CoFe、CoFeNi、及び、NiFeよりなる群から選択された少なくとも1つを含む。これらの磁性層は、例えば強磁性層である。
【0016】
第1中間非磁性層11inは、例えば、Ruを含む。例えば、第1中間磁性層11i及び第1対向磁性層11oは、例えば、反強磁性カップリングする。
【0017】
1つの例において、第1非磁性層11nは、導電性である。第1非磁性層11nは、例えば、Cu、Au及びAgよりなる群から選択された少なくとも1つを含む。例えば、第1非磁性層11nは、Cu層である。第1磁気素子11Eは、例えば、GMR(Giant magnetic resistance)素子である。
【0018】
別の例において、第1非磁性層11nは、絶縁性である。第1非磁性層11nは、例えば、MgOを含む。この場合、第1磁気素子11Eは、例えば、TMR(Tunnel Magneto Resistance)素子である。
【0019】
図1(b)に示すように、第1サイド磁性部11Sは、第1サイド磁性層11sを含む。第1対向サイド磁性部11SAは、第1対向サイド磁性層11osを含む。第1中間磁性層11iは、第1方向と交差する第2方向において、第1サイド磁性層11sと第1対向サイド磁性層11osと、の間にある。第2方向は、例えば、Y軸方向である。
【0020】
この例では、第1サイド磁性部11Sは、第1積層サイド磁性層11ssをさらに含む。第1対向サイド磁性部11SAは、第1対向積層サイド磁性層11ossをさらに含む。第1対向磁性層11oは、第2方向(例えばY軸方向)において、第1積層サイド磁性層11ssと第1対向積層サイド磁性層11ossとの間にある。
【0021】
例えば、第1中間磁性層11iの磁化は、第1サイド磁性層11s及び第1対向サイド磁性層11osにより、均一になる。第1中間磁性層11iの磁化が、安定化する。例えば、第1中間磁性層11iのY軸方向の端部の磁化は、第1サイド磁性層11s及び第1対向サイド磁性層11osにより、均一になる。第1中間磁性層11iの磁化が安定化することで、磁気センサの感度が向上する。
【0022】
例えば、第1対向磁性層11oの磁化は、第1積層サイド磁性層11ss及び第1対向積層サイド磁性層11ossにより均一になる。第1対向磁性層11oの磁化が、安定化する。例えば、第1対向磁性層11oのY軸方向の端部の磁化は、第1積層サイド磁性層11ss及び第1対向積層サイド磁性層11ossにより、均一になる。例えば、第1対向磁性層11oの磁化が安定化することで、第1中間磁性層11iの磁化がより安定化する。実施形態によれば、感度の向上が可能な磁気センサを提供できる。
【0023】
図1(b)に示すように、第1サイド磁性部11Sは、第1サイド非磁性層11snをさらに含んでも良い。第1サイド非磁性層11snは、第1サイド磁性層11sと第1積層サイド磁性層11ssとの間に設けられる。
図1(b)に示すように、第1対向サイド磁性部11SAは、第1対向サイド非磁性層11osnをさらに含んでも良い。第1対向サイド非磁性層11osnは、第1対向サイド磁性層11osと第1対向積層サイド磁性層11ossとの間に設けられる。例えば、第1サイド非磁性層11sn及び第1対向サイド非磁性層11osnは、第1中間非磁性層11inに含まれる材料を含む。
【0024】
第1磁気素子11E、第1サイド磁性部11S及び第1対向サイド磁性部11SAの周りに絶縁部材65が設けられても良い。
【0025】
実施形態において、絶縁部材65の一部が、第1サイド磁性層11sと第1積層サイド磁性層11ssとの間、及び、第1対向サイド磁性層11osと第1対向積層サイド磁性層11ossとの間に設けられても良い。
【0026】
図1(a)に示すように、第1磁気素子11Eの第2方向(Y軸方向)に沿う長さを第1長さL1とする。第1磁気素子11Eは、第1端部11Ee及び第1他端部11Efを含む。第1端部11Eeから第1他端部11Efへの方向は、第2方向(例えばY軸方向)に沿う。第1端部11Ee及び第1他端部11Efは、第1磁気素子11EのY軸方向における2つの端部に対応する。
【0027】
図1(a)に示すように、第1磁気素子11Eの、第3方向に沿う長さを第1幅w1とする。第3方向は、第1方向及び第2方向を含む平面と交差する方向である。第3方向は、例えばX軸方向である。実施形態において、第1長さL1は、第1幅w1を超える。例えば、第1磁気素子11Eに含まれる磁性層の磁化は、例えば、Y軸方向に沿う。例えば、第1長さL1は、第1幅w1の10倍以上100倍以下である。
【0028】
例えば、第1対向磁性層11oの磁化は、第1向き及び第2向きの一方を有する。例えば、第1中間磁性層11iの磁化は、第1向き及び第2向きの他方を有する。第1向きは、第1端部11Eeから第1他端部11Efへの向きである。第2向きは、第1他端部11Efから第1端部11Eeへの向きである。
【0029】
第1サイド磁性層11sの磁化、及び、第1対向サイド磁性層11osの磁化は、例えば、第1中間磁性層11iの磁化の向きと同じである。第1積層サイド磁性層11ssの磁化、及び、第1対向積層サイド磁性層11ossの磁化は、例えば、第1対向磁性層11oの磁化の向きと同じである。
【0030】
図1(b)に示すように、第1磁気素子11Eの第1方向(Z軸方向)に沿う長さを第1厚さt1とする。第1長さL1は、第1厚さt1を超える。
【0031】
図1(b)に示すように、第1サイド磁性部11Sと第1磁気素子11Eとの間の第2方向(Y軸方向)に沿う距離を距離g1とする。距離g1は、例えば、第1長さL1の0.01倍以下である。距離g1が第1長さL1の0.01倍以下であることにより、例えば、第1サイド磁性部11Sによる、第1磁気素子11Eに含まれる磁性層の磁化の安定化が効果的に得られる。距離g1が第1長さL1の0.001倍以上であることにより、第1サイド磁性部11Sと第1磁気素子11Eとの間の電気的な絶縁が安定化する。
【0032】
図1(b)に示すように、第1対向サイド磁性部11SAと第1磁気素子11Eとの間の第2方向(Y軸方向)に沿う距離を距離g2とする。距離g2は、例えば、第1長さL1の0.01倍以下である。距離g2が第1長さL1の0.01倍以下であることにより、例えば、第1対向サイド磁性部11SAによる、第1磁気素子11Eに含まれる磁性層の磁化の安定化が効果的に得られる。距離g2が第1長さL1の0.001倍以上であることにより、第1対向サイド磁性部11SAと第1磁気素子11Eとの間の電気的な絶縁が安定化する。
【0033】
図1(a)及び
図1(c)に示すように、この例では、第1センサ部10Aは、第1磁性部材51及び第1対向磁性部材51Aをさらに含む。第1磁性部材51から第1対向磁性部材51Aへの方向は、第3方向に沿う。第3方向は、第1方向及び第2方向を含む平面と交差する。第3方向は、例えば、X軸方向である。
【0034】
図1(c)に示すように、第1磁気素子11Eは、第1方向(Z軸方向)において、第1磁性部材51と第1対向磁性部材51Aとの間の領域66aと重なる。領域66aは、例えば、絶縁部材65の一部で良い。
【0035】
図1(c)に示すように、例えば、第1磁気素子11Eの一部は、第1方向(Z軸方向)において第1磁性部材51の一部と重なる。第1磁気素子11Eの別の一部は、第1方向において第1対向磁性部材51Aの一部と重なる。
【0036】
第1磁性部材51及び第1対向磁性部材51Aにより、検出対象の磁界が集められる。集められた磁界が、第1磁気素子11Eに効率的に印加される。これにより、より高い感度が得られる。第1磁性部材51及び第1対向磁性部材51Aは、例えば、MFC(Magnetic Field Concentrator)として機能する。
【0037】
図2は、第1実施形態に係る磁気センサを例示する模式図である。
図2に示すように、磁気センサ110aは、素子電流回路75を含んでも良い。素子電流回路75は、第1磁気素子11Eに素子電流Idを供給可能である。例えば、素子電流回路75は、第1磁気素子11Eの第1端部11Eeと第1他端部11Efとの間に素子電流Idを供給可能である。素子電流回路75は、例えば、回路部70に含まれる。回路部70は、素子電流Idに基づいて、第1磁気素子11Eの電気抵抗を検出可能でも良い。第1磁気素子11Eの電気抵抗は、検出対象の磁界に応じて変化する。例えば、第1磁性層11の磁化の向きが検出対象の磁界に応じて変化する。例えば、第1磁性層11は、磁化自由層である。
【0038】
図3(a)~
図3(c)は、第1実施形態に係る磁気センサを例示する模式図である。
図3(a)は、平面図である。
図3(b)は、
図3(a)のY1-Y2線断面図である。
図3(c)は、
図3(a)のX1-X2線断面図である。
【0039】
図3(a)及び
図3(c)に示すように、実施形態に係る磁気センサ110aは、導電部材20を含む。これを除く磁気センサ110aの構成は、磁気センサ110の構成と同様で良い。
【0040】
磁気センサ110aにおいて、導電部材20は、第1対応部21を含む。第1対応部21は、第1磁気素子11Eに沿う。例えば、第1対応部21は、第2方向(Y軸方向)と交差する方向において、第1磁気素子11Eと重なる。例えば、第1対応部21は、Z軸方向において、第1磁気素子11Eと重なる。Z軸方向における第1磁気素子11E、第1対応部21、第1磁性部材51及び第1対向磁性部材51Aの位置は、任意である。第1対応部21に供給される電流に基づく磁界(電流磁界)が第1磁気素子11Eに印加される。後述するように、交流の電流磁界を用いることで、ノイズを抑制でき、より高い感度の検出が可能になる。
【0041】
図4は、第1実施形態に係る磁気センサを例示する模式図である。
図4に示すように、既に説明したように、第1磁気素子11Eは、第1端部11Ee及び第1他端部11Efを含む。第1端部11Eeから第1他端部11Efへの方向は、第2方向(Y軸方向)に沿う。第1対応部21は、第1部分21e及び第1他部分21fを含む。第1部分21eは、第1端部11Eeに対応する。第1他部分21fは、第1他端部11Efに対応する。例えば、第1部分21eは、第1方向(Z軸方向)において第1端部11Eeと重なる。例えば、第1他部分21fは、第1方向において第1他端部11Efと重なる。
【0042】
磁気センサ110aは、素子電流回路75及び第1電流回路71を含んでも良い。既に説明したように、素子電流回路75は、第1磁気素子11Eの第1端部11Eeと第1他端部11Efとの間に素子電流Idを供給可能である。第1電流回路71は、第1対応部21に交流成分を含む第1電流I1を供給可能である。第1電流回路71は、第1部分21eと第1他部分21fとの間に第1電流I1を供給可能である。第1電流回路71は、回路部70に含まれて良い。交流成分を含む第1電流I1を用いた検出の例については、後述する。
【0043】
(第2実施形態)
図5(a)~
図5(c)は、第2実施形態に係る磁気センサを例示する模式図である。
図5(a)は、平面図である。
図5(b)は、
図5(a)のY1-Y2線断面図である。
図5(c)は、
図5(a)のX1-X2線断面図である。
【0044】
図5(a)~
図5(c)に示すように、実施形態に係る磁気センサ111は、センサ部10Aを含む。
【0045】
図5(a)及び
図5(b)に示すように、磁気センサ111において、第1センサ部10Aは、第1磁気素子11E、第1積層磁性層11sL、及び、第1対向積層磁性層11osLを含む。第1積層磁性層11sL及び第1対向積層磁性層11osLは、例えば、IrMn及びPtMnよりなる群から選択された少なくとも1つを含む。
【0046】
第1磁気素子11Eは、第1磁性層11、第1対向磁性層11o、第1中間磁性層11i、第1非磁性層11n及び第1中間非磁性層11inを含む。第1磁性層11から第1対向磁性層11oへの方向は第1方向(Z軸方向)に沿う。第1中間磁性層11iは、第1磁性層11と第1対向磁性層11oとの間に設けられる。第1非磁性層11nは、第1磁性層11と第1中間磁性層11iとの間に設けられる。第1中間非磁性層11inは、第1中間磁性層11iと第1対向磁性層11oとの間に設けられる。
【0047】
第1積層磁性層11sLから第1対向積層磁性層11osLへの方向は、第1方向と交差する第2方向に沿う。第2方向は、例えば、Y軸方向である。第1対向磁性層11oの一部11opは、第1磁性層11と第1積層磁性層11sLとの間にある。例えば、第1対向磁性層11oの一部11opは、第1中間非磁性層11inと第1積層磁性層11sLとの間にある。第1対向磁性層11oの他部11oqは、第1磁性層11と第1対向積層磁性層11osLとの間にある。例えば、第1対向磁性層11oの他部11oqは、第1中間非磁性層11inと第1対向積層磁性層11osLとの間にある。
【0048】
第1積層磁性層11sL及び第1対向積層磁性層11osLにより、例えば、第1対向磁性層11oの磁化が均一になる。第1積層磁性層11sL及び第1対向積層磁性層11osLにより、例えば、第1対向磁性層11oのY軸方向の端部における磁化が制御される。第1対向磁性層11oの磁化が均一化されることで、例えば、第1中間磁性層11iの磁化が均一化される。感度の向上が可能な磁気センサを提供できる。
【0049】
例えば、第1積層磁性層11sLは、第1対向磁性層11oの一部11opと接して良い。または、第1対向磁性層11oの一部11opと第1積層磁性層11sLとの間の第1方向(Z軸方向)に沿う距離は、例えば、第1対向磁性層11oの厚さの0.1倍以下である。第1対向磁性層11oの厚さは、第1対向磁性層11oの第1方向(Z軸方向)に沿う長さである。例えば、第1対向積層磁性層11osLは、第1対向磁性層11oの他部11oqと接する。または、第1対向磁性層11oの他部11oqと第1対向積層磁性層11osLとの間の第1方向に沿う距離は、第1対向磁性層11oの厚さの0.1倍以下である。これにより、第1積層磁性層11sL及び第1対向積層磁性層11osLにより、第1対向磁性層11oの磁化が安定化し易い。
【0050】
図5(a)に示すように、第1積層磁性層11sLの第2方向(Y軸方向)に沿う長さを長さLa1とする。長さLa1は、例えば、第1磁気素子11Eの第2方向に沿う長さ(第1長さL1)の0.01倍以上0.1倍以下である。第1対向積層磁性層11osLの第2方向に沿う長さを長さLb1とする。長さLb1は、例えば、第1磁気素子11Eの第2方向に沿う長さ(第1長さL1)の0.01倍以上0.1倍以下である。このような長さLa1及び長さLb1により、例えば、第1対向磁性層11oの磁化が良好に制御される。
【0051】
磁気センサ111において、上記の磁気センサ110の構成及び材料が適用できる。例えば、磁気センサ111において、第1磁性部材51及び第1対向磁性部材51Aが設けられて良い。以下に説明するように、第2実施形態において、磁気センサ110aに関して説明した導電部材20が設けられても良い。
【0052】
図6(a)~
図6(c)は、第2実施形態に係る磁気センサを例示する模式図である。
図6(a)は、平面図である。
図6(b)は、
図6(a)のY1-Y2線断面図である。
図6(c)は、
図6(a)のX1-X2線断面図である。
【0053】
図6(a)及び
図6(c)に示すように、実施形態に係る磁気センサ111aは、導電部材20を含む。これを除く磁気センサ111aの構成は、磁気センサ111の構成と同様で良い。
【0054】
磁気センサ111aにおいて、導電部材20は、第1対応部21を含む。第1対応部21は、第1磁気素子11Eに沿う。例えば、第1対応部21は、第2方向(Y軸方向)と交差する方向において、第1磁気素子11Eと重なる。例えば、第1対応部21は、Z軸方向において、第1磁気素子11Eと重なる。Z軸方向における第1磁気素子11E、第1対応部21、第1磁性部材51及び第1対向磁性部材51Aの位置は、任意である。第1対応部21に供給される電流に基づく磁界(電流磁界)が第1磁気素子11Eに印加される。後述するように、例えば、交流の電流磁界を用いることで、ノイズを抑制でき、より高い感度の検出が可能になる。
【0055】
磁気センサ111aにおいても、素子電流回路75及び第1電流回路71が設けられても良い(
図4参照)。既に説明したように、素子電流回路75は、第1磁気素子11Eの第1端部11Eeと第1他端部11Efとの間に素子電流Idを供給可能である。第1電流回路71は、第1対応部21に交流成分を含む第1電流I1を供給可能である。第1電流回路71は、第1部分21eと第1他部分21fとの間に第1電流I1を供給可能である。以下に説明するように、第1磁気素子11Eの電気抵抗は偶関数の特性を有する。偶関数の電気抵抗と、交流成分を含む第1電流I1と、により、ノイズを抑制した検出が可能になる。
【0056】
以下、第1磁気素子11Eの特性の例について説明する。以下の説明は、第1実施形態及び第2実施形態に係る磁気センサに適用できる。
図7(a)及び
図7(b)は、実施形態に係る磁気センサの特性を例示する模式図である。
これらの図の横軸は、導電部材20(例えば第1対応部21)に流れる電流(例えば第1電流I1)の値に対応する。縦軸は、第1磁気素子11Eの電気抵抗Rxである。
図7(a)及び
図7(b)に示すように、実施形態において、電気抵抗Rxは、電流(第1電流I1)の変化に対して偶関数の特性を示す。
【0057】
例えば、第1磁気素子11Eの電気抵抗Rxは、第1対応部21に第1値電流Ia1が供給されたときに第1値R1である。電気抵抗Rxは、第1対応部21に第2値電流Ia2が供給されたときに第2値R2である。電気抵抗Rxは、第1対応部21に第3値電流Ia3が供給されたときに第3値R3である。第1値電流Ia1の絶対値は、第2値電流Ia2の絶対値よりも小さく、第3値電流Ia3の絶対値よりも小さい。第1値電流Ia1は、例えば、実質的に0で良い。第2値電流Ia2の向きは、第3値電流Ia3の向きと逆である。
【0058】
図7(a)の例では、第1値R1は、第2値R2よりも低く、第3値R3よりも低い。
図7(b)の例では、第1値R1は、第2値R2よりも高く、第3値R3よりも高い。
【0059】
例えば、第1対応部21に電流が流れないときに、電気抵抗Rxは、第4値R4である。例えば、第1値R1は、電流が流れないときの第4値R4と実質的に同じである。例えば、第1値R1と第4値R4との差の絶対値の第4値R4に対する比は、0.01以下である。比は、0.001以下でも良い。正負の電流に対して、実質的に偶関数の特性が得られる。
【0060】
このような第1電流I1と電気抵抗Rxとの間の関係は、第1電流I1による磁界が第1磁気素子11Eに印加され、第1磁気素子11Eの電気抵抗Rxが磁界の強さに応じて変化することに基づく。
【0061】
第1磁気素子11Eに外部磁界が印加されたときの電気抵抗Rxも、
図7(a)または
図7(b)に示した例と同様に偶関数の特性を示す。外部磁界は、例えば、X軸方向に沿う成分を含む。
【0062】
図8(a)及び
図8(b)は、実施形態に係る磁気センサの特性を例示する模式図である。
これらの図の横軸は、第1磁気素子11Eに印加される外部磁界Hexの強度である。縦軸は、第1磁気素子11Eの電気抵抗Rxである。これらの図は、R-H特性に対応する。
図8(a)及び
図8(b)に示すように、電気抵抗Rxは、第1磁気素子11Eに印加される外部磁界Hexに対して偶関数の特性を有する。外部磁界Hex、例えば、X軸方向の成分を含む。
【0063】
図8(a)及び
図8(b)に示すように、第1磁気素子11Eの電気抵抗Rxは、第1磁気素子11Eに第1磁界Hex1が印加されたときに第1値R1である。電気抵抗Rxは、第1磁気素子11Eに第2磁界Hex2が印加されたときに第2値R2である。電気抵抗Rxは、第1磁気素子11Eに第3磁界Hex3が印加されたときに第3値R3である。第1磁界Hex1の絶対値は、第2磁界Hex2の絶対値よりも小さく、第3磁界Hex3の絶対値よりも小さい。第2磁界Hex2の向きは、第3磁界Hex3の向きと逆である。
【0064】
図8(a)の例では、第1値R1は、第2値R2よりも低く、第3値R3よりも低い。
図8(b)の例では、第1値R1は、第2値R2よりも高く、第3値R3よりも高い。例えば、第1磁気素子11Eに外部磁界が印加されないときに、電気抵抗Rxは、第4値R4である。第1値R1は、外部磁界が印加されないときの第4値R4と実質的に同じである。例えば、第1値R1と第4値R4との差の絶対値の第4値R4に対する比は、0.01以下である。比は、0.001以下でも良い。正負の外部磁界に対して、実質的に偶関数の特性が得られる。
【0065】
このような偶関数の特性を利用して、以下のように、高感度の検出が可能である。
以下では、第1電流I1は交流電流であり、直流成分を実質的に含まない場合の例について説明する。第1対応部21に第1電流I1(交流電流)が供給され、交流電流による交流磁界が第1磁気素子11Eに印加される。このときの電気抵抗Rxの変化の例について説明する。
【0066】
図9(a)~
図9(c)は、実施形態に係る磁気センサの特性を例示するグラフ図である。
図9(a)は、第1磁気素子11Eに印加される信号磁界Hsig(外部磁界)が0のときの特性を示す。
図9(b)は、信号磁界Hsigが正のときの特性を示す。
図9(c)は、信号磁界Hsigが負のときの特性を示す。これらの図は、磁界Hと抵抗R(電気抵抗Rxに対応)との関係を示す。
【0067】
図9(a)に示すように、信号磁界Hsigが0のときは、抵抗Rは、正負の磁界Hに対して対称な特性を示す。この例では、交流磁界Hacがゼロのときに、抵抗Rは、低抵抗Roである。例えば磁化自由層の磁化が、正負の磁界Hに対して実質的に同じように回転する。このため、対称な抵抗の変化が得られる。交流磁界Hacに対する抵抗Rの変動は、正負の極性で同じ値になる。抵抗Rの変化の周期は、交流磁界Hacの周期の
1/2倍となる。抵抗Rの変化は、交流磁界Hacの周波数成分を実質的に有しない。
【0068】
図9(b)に示すように、正の信号磁界Hsigが加わると、抵抗Rの特性は、正の磁界Hの側にシフトする。正側の交流磁界Hacにおいて、例えば抵抗Rが高くなる。負側の交流磁界Hacにおいて、抵抗Rは低くなる。
【0069】
図9(c)に示すように、負の信号磁界Hsigが加わると、抵抗Rの特性は、負の磁界Hの側にシフトする。正側の交流磁界Hacにおいて、例えば、抵抗Rが低くなる。負側の交流磁界Hacにおいて、抵抗Rは高くなる。
【0070】
所定の大きさの信号磁界Hsigが加わったときに、交流磁界Hacの正負に対して、互いに異なる抵抗Rの変動が生じる。交流磁界Hacの正負に対する抵抗Rの変動の周期は、交流磁界Hacの周期と同じである。信号磁界Hsigに応じた交流周波数成分の出力電圧が発生する。
【0071】
信号磁界Hsigが時間的に変化しない場合に上記の特性が得られる。信号磁界Hsigが時間的に変化する場合は、以下となる。信号磁界Hsigの周波数を信号周波数fsigとする。交流磁界Hacの周波数を交流周波数facとする。このとき、fac±fsigの周波数において、信号磁界Hsigに応じた出力が発生する。
【0072】
信号磁界Hsigが時間的に変化する場合において、信号周波数fsigは、例えば、1kHz以下である。一方、交流周波数facは、信号周波数fsigよりも十分に高い。例えば、交流周波数facは、信号周波数fsigの10倍以上である。
【0073】
例えば、交流磁界Hacの周期(周波数)と同じ周期(周波数)の成分(交流周波数成分)の出力電圧を抽出することで、信号磁界Hsigを高い精度で検出できる。実施形態に係る磁気センサにおいては、このような特性を利用して、検出対象である外部磁界Hex(信号磁界Hsig)を高い感度で検出することができる。実施形態においては、磁性部材51により、外部磁界Hex(信号磁界Hsig)、及び、第1電流I1による交流磁界Hacを、効率良く第1磁気素子11Eに印加できる。高い感度が得られる。
【0074】
(第3実施形態)
第3実施形態においては、磁気センサは、複数の磁気素子を含む。
図10及び
図11は、第3実施形態に係る磁気センサを例示する模式図である。
図12(a)~
図12(c)は、第3実施形態に係る磁気センサを例示する模式的断面図である。
図13(a)~
図13(c)は、第3実施形態に係る磁気センサを例示する模式的平面図である。
図10に示すように、実施形態に係る磁気センサ112は、第1センサ部10Aに加えて、第2センサ部10B、第3センサ部10C及び第4センサ部10Dを含む。第2センサ部10Bは、第2磁気素子12Eを含む。第3センサ部10Cは、第3磁気素子13Eを含む。第4センサ部10Dは、第4磁気素子14Eを含む。
【0075】
第1磁気素子11Eは、第1端部11Ee及び第1他端部11Efを含む。第1端部11Eeから第1他端部11Efへの方向は、第2方向(例えばY軸方向)に沿う。第2磁気素子12Eは、第2端部12Ee及び第2他端部12Efを含む。第2端部12Eeから第2他端部12Efへの方向は、第2方向に沿う。第3磁気素子13Eは、第3端部13Ee及び第3他端部13Efを含む。第3端部13Eeから第3他端部13Efへの方向は、第2方向に沿う。第4磁気素子14Eは、第4端部14Ee及び第4他端部14Efを含む。第4端部14Eeから第4他端部14Efへの方向は、第2方向に沿う。
【0076】
例えば、第1他端部11Efは、第2端部12Eeと電気的に接続される。第1端部11Eeは、第3端部13Eeと電気的に接続される。第3他端部13Efは、第4端部14Eeと電気的に接続される。第2他端部12Efは、第4他端部14Efと電気的に接続される。例えば、第1~第4磁気素子11E~14Eは、ブリッジ接続される。
【0077】
素子電流回路75は、第1磁気素子11E、第2磁気素子12E、第3磁気素子13E及び第4磁気素子14Eに素子電流を供給可能である。この例では、素子電流回路75は、第1端部11Ee及び第3端部13Eeの第1接続点CP1と、第2他端部12Efと第4他端部14Efの第2接続点CP2と、の間に素子電流Idを供給可能である。
【0078】
図10に示すように、磁気センサ112は、検出回路73を含んでも良い。検出回路73は、回路部70に含まれても良い。検出回路73は、第1他端部11Ef及び第2端部12Eeの第3接続点CP3と、第3他端部13Ef及び第4端部14Eeの第4接続点CP4と、の間の電位の変化を検出可能である。複数の磁気素子を含むブリッジ回路を用いることで、ノイズをより抑制できる。より高い感度の検出が可能になる。
【0079】
図11に示すように、導電部材20は、第1対応部21に加えて、第2対応部22、第3対応部23及び第4対応部24を含む。第2対応部22は、第2磁気素子12Eに沿う。第3対応部23は、第3磁気素子13Eに沿う。第4対応部24は、第4磁気素子14Eに沿う。
【0080】
例えば、第2対応部22は、Z軸方向において、第2磁気素子12Eと重なる(
図12(a)参照)。例えば、第3対応部23は、Z軸方向において、第3磁気素子13Eと重なる(
図12(b)参照)。例えば、第4対応部24は、Z軸方向において、第4磁気素子14Eと重なる(
図12(c)参照)。
【0081】
図11に示すように、例えば、第1対応部21は、第1端部11Eeに対応する第1部分21eと、第1他端部11Efに対応する第1他部分21fと、を含む。例えば、第1部分21eは、Z軸方向において、第1端部11Eeと重なる。第1他部分21fは、Z軸方向において、第1他端部11Efと重なる。
【0082】
図11に示すように、例えば、第2対応部22は、第2端部12Eeに対応する第2部分22eと、第2他端部12Efに対応する第2他部分22fと、を含む。例えば、第2部分22eは、Z軸方向において、第2端部12Eeと重なる。第2他部分22fは、Z軸方向において、第2他端部12Efと重なる。
【0083】
図11に示すように、例えば、第3対応部23は、第3端部13Eeに対応する第3部分23eと、第3他端部13Efに対応する第3他部分23fと、を含む。例えば、第3部分23eは、Z軸方向において、第3端部13Eeと重なる。第3他部分23fは、Z軸方向において、第3他端部13Efと重なる。
【0084】
図11に示すように、例えば、第4対応部24は、第4端部14Eeに対応する第4部分24eと、第4他端部14Efに対応する第4他部分24fと、を含む。例えば、第4部分24eは、Z軸方向において、第4端部14Eeと重なる。第4他部分24fは、Z軸方向において、第4他端部14Efと重なる。
【0085】
第1電流回路71は、第1対応部21、第2対応部22、第3対応部23及び第4対応部24に交流成分を含む第1電流I1を供給可能である。
【0086】
この例では、第1部分21eは、第3部分23eと電気的に接続される。第1他部分21fは、第2部分22eと電気的に接続される。第3他部分23fは、第4部分24eと電気的に接続される。第2他部分22fは、第4他部分24fと電気的に接続される。この例では、第1電流回路71は、第1他部分21f及び第2部分22eの第5接続点CP5と、第3他部分23f及び第4部分24eの第6接続点CP6と、の間に、交流成分を含む第1電流I1を供給可能である。
【0087】
導電部材20に第1電流I1が供給されたときの1つの時刻を第1時刻とする。第1時刻において、素子電流Idは、第1端部11Eeから第1他端部11Efへの向きに第1磁気素子11Eを流れる。第1時刻において、素子電流Idは、第2端部12Eeから第2他端部12Efへの向きに第2磁気素子12Eを流れる。第1時刻において、素子電流Idは、第3端部13Eeから第3他端部13Efへの向きに第3磁気素子13Eを流れる。第1時刻において、素子電流Idは、第4端部14Eeから第4他端部14Efへの向きに第4磁気素子14Eを流れる。
【0088】
第1時刻において、第1電流I1は、第1他部分21fから第1部分21eへの向きに、第1対応部21を流れる。第1時刻において、第1電流I1は、第2部分22eから第2他部分22fへの向きに、第2対応部22を流れる。第1時刻において、第1電流I1は、第3部分23eから第3他部分23fへの向きに、第3対応部23を流れる。第1電流I1は、第4他部分24fから第4部分24eへの向きに、第4対応部24を流れる。
【0089】
第1対応部21を流れる第1電流I1による磁界が第1磁気素子11Eに印加される。第2対応部22を流れる第1電流I1による磁界が第2磁気素子12Eに印加される。第3対応部23を流れる第1電流I1による磁界が第3磁気素子13Eに印加される。第4対応部24を流れる第1電流I1による磁界が第4磁気素子14Eに印加される。
【0090】
例えば、第1時刻において第2磁気素子12Eを流れる素子電流Idの向きと、第1時刻において第2対応部22を流れる第1電流I1の向きと、の関係は、第1磁気素子11Eを流れる素子電流Idの向きと、第1時刻において第1対応部21を流れる第1電流I1の向きと、の関係と逆(逆位相)である。第4磁気素子14Eを流れる素子電流Idの向きと、第1時刻において第4対応部24を流れる第1電流I1の向きと、の関係は、第3磁気素子13Eを流れる素子電流Idの向きと、第1時刻において第3対応部23を流れる第1電流I1の向きと、の関係と逆(逆位相)である。
【0091】
このような電流がブリッジ接続された複数の磁気素子に流れることにより、ノイズをより抑制できる。
【0092】
図12(a)に示すように、第2磁気素子12Eは、第2磁性層12、第2対向磁性層12o、第2中間磁性層12i、第2非磁性層12n及び第2中間非磁性層12inを含む。第2磁性層12から第2対向磁性層12oへの方向は、第1方向(Z軸方向)に沿う。第2中間磁性層12iは、第2磁性層12と第2対向磁性層12oとの間に設けられる。第2非磁性層12nは、第2磁性層12と第2中間磁性層12iとの間に設けられる。第2中間非磁性層12inは、第2中間磁性層12iと第2対向磁性層12oとの間に設けられる。
【0093】
図12(b)に示すように、第3磁気素子13Eは、第3磁性層13、第3対向磁性層13o、第3中間磁性層13i、第3非磁性層13n及び第3中間非磁性層13inを含む。第3磁性層13から第3対向磁性層13oへの方向は、第1方向(Z軸方向)に沿う。第3中間磁性層13iは、第3磁性層13と第3対向磁性層13oとの間に設けられる。第3非磁性層13nは、第3磁性層13と第3中間磁性層13iとの間に設けられる。第3中間非磁性層13inは、第3中間磁性層13iと第3対向磁性層13oとの間に設けられる。
【0094】
図12(c)に示すように、第4磁気素子14Eは、第4磁性層14、第4対向磁性層14o、第4中間磁性層14i、第4非磁性層14n及び第4中間非磁性層14inを含む。第4磁性層14から第4対向磁性層14oへの方向は、第1方向(Z軸方向)に沿う。第4中間磁性層14iは、第4磁性層14と第4対向磁性層14oとの間に設けられる。第4非磁性層14nは、第4磁性層14と第4中間磁性層14iとの間に設けられる。第4中間非磁性層14inは、第4中間磁性層14iと第4対向磁性層14oとの間に設けられる。
【0095】
図12(a)に示すように、第2センサ部10Bは、第2磁性部材52及び第2対向磁性部材52Aをさらに含んでも良い。第2磁性部材52から第2対向磁性部材52Aへの方向は、第3方向(例えばX軸方向)に沿う。第2磁気素子12Eは、第1方向(Z軸方向)において、第2磁性部材52と第2対向磁性部材52Aとの間の領域66bと重なる。領域66bは、例えば、絶縁部材65の一部で良い。例えば、第2磁気素子12Eの一部は、第1方向において第2磁性部材52の一部と重なる。第2磁気素子12Eの別の一部は、第1方向において第2対向磁性部材52Aの一部と重なる。
【0096】
図12(b)に示すように、第3センサ部10Cは、第3磁性部材53及び第3対向磁性部材53Aをさらに含んでも良い。第3磁性部材53から第3対向磁性部材53Aへの方向は、第3方向(例えばX軸方向)に沿う。第3磁気素子13Eは、第1方向(Z軸方向)において、第3磁性部材53と第3対向磁性部材53Aとの間の領域66cと重なる。領域66cは、例えば、絶縁部材65の一部で良い。例えば、第3磁気素子13Eの一部は、第1方向において第3磁性部材53の一部と重なる。第3磁気素子13Eの別の一部は、第1方向において第3対向磁性部材53Aの一部と重なる。
【0097】
図12(c)に示すように、第4センサ部10Dは、第4磁性部材54及び第4対向磁性部材54Aをさらに含んでも良い。第4磁性部材54から第4対向磁性部材54Aへの方向は、第3方向(例えばX軸方向)に沿う。第4磁気素子14Eは、第1方向(Z軸方向)において、第4磁性部材54と第4対向磁性部材54Aとの間の領域66dと重なる。領域66dは、例えば、絶縁部材65の一部で良い。例えば、第4磁気素子14Eの一部は、第1方向において第4磁性部材54の一部と重なる。第4磁気素子14Eの別の一部は、第1方向において第4対向磁性部材54Aの一部と重なる。
【0098】
図13(a)に示すように、第2磁気素子12Eの第2方向(Y軸方向)に沿う長さを第2長さL2とする。第2磁気素子12Eの第3方向(例えばX軸方向)に沿う長さを第2幅w2とする。例えば、第2長さL2は、第2幅w2を超える。例えば、第2磁気素子12Eに含まれる磁性層の磁化は、例えば、Y軸方向に沿う。
【0099】
図13(b)に示すように、第3磁気素子13Eの第2方向(Y軸方向)に沿う長さを第3長さL3とする。第3磁気素子13Eの第3方向(例えばX軸方向)に沿う長さを第3幅w3とする。例えば、第3長さL3は、第3幅w3を超える。例えば、第3磁気素子13Eに含まれる磁性層の磁化は、例えば、Y軸方向に沿う。
【0100】
図13(c)に示すように、第4磁気素子14Eの第2方向(Y軸方向)に沿う長さを第4長さL4とする。第4磁気素子14Eの第3方向(例えばX軸方向)に沿う長さを第4幅w4とする。例えば、第4長さL4は、第4幅w4を超える。例えば、第4磁気素子14Eに含まれる磁性層の磁化は、例えば、Y軸方向に沿う。
【0101】
第2磁性層12、第3磁性層13及び第4磁性層14の構成(材料を含む)は、第1磁性層11の構成(材料を含む)と同様で良い。第2対向磁性層12o、第3対向磁性層13o及び第4対向磁性層14oの構成(材料を含む)は、第1対向磁性層11oの構成(材料を含む)と同様で良い。第2中間磁性層12i、第3中間磁性層13i及び第4中間磁性層14iの構成(材料を含む)は、第1中間磁性層11iの構成(材料を含む)と同様で良い。第2非磁性層12n、第3非磁性層13n及び第4非磁性層14nの構成(材料を含む)は、第1非磁性層11nの構成(材料を含む)と同様で良い。第2中間非磁性層12in、第3中間非磁性層13in及び第4中間非磁性層14inの構成(材料を含む)は、第1中間非磁性層11inの構成(材料を含む)と同様で良い。
【0102】
第2センサ部10B、第3センサ部10C及び第4センサ部10Dの少なくともいずれかは、第1センサ部10Aに関して説明した第1サイド磁性部11S及び第1対向サイド磁性部11SAと同様の磁性部を含んでも良い。第2センサ部10B、第3センサ部10C及び第4センサ部10Dの少なくともいずれかは、第1センサ部10Aに関して説明した第1積層磁性層11sL及び第1対向積層磁性層11osLと同様の積層磁性層を含んでも良い。
【0103】
図14(a)~
図14(c)は、第3実施形態に係る磁気センサを例示する模式図である。
図14(a)~
図14(c)に例示する磁気センサ112a~112cの構成が、
図10に例示する磁気センサ112の構成と組み合わされても良い。
【0104】
図14(a)に示すように、磁気センサ112aにおいて、第1部分21eは、第2他部分22fと電気的に接続される。第1他部分21fは、第4部分24eと電気的に接続される。第3部分23eは、第4他部分24fと電気的に接続される。第3他部分23fは、第2部分22eと電気的に接続される。
【0105】
磁気センサ112aにおいて、第1電流回路71は、第1部分21e及び第2他部分22fの第7接続点CP7と、第3部分23e及び第4他部分24fの第8接続点CP8と、の間に第1電流I1を供給可能である。
【0106】
磁気センサ112aにおいて、1つの時刻(第1時刻)において、第1電流I1は、第1他部分21fから第1部分21eへの向き、第2部分22eから第2他部分22fへの向き、第3部分23eから第3他部分23fへの向き、及び、第4他部分24fから第4部分24eへの向きを有する。
【0107】
図14(b)に示すように、磁気センサ112bにおいて、第1他部分21fは、第4部分24eと電気的に接続される。第3他部分23fは、第2部分22eと電気的に接続される。第2他部分22fは、第4他部分24fと電気的に接続される。
【0108】
磁気センサ112bにおいて、第1電流回路71は、第1部分21eと、第3部分23eと、の間に第1電流I1を供給可能である。
【0109】
磁気センサ112bにおいて、1つの時刻(第1時刻)において、第1電流I1は、第1他部分21fから第1部分21eへの向き、第2部分22eから第2他部分22fへの向き、第3部分23eから第3他部分23fへの向き、及び、第4他部分24fから第4部分24eへの向きを有する。
【0110】
図14(c)に示すように、磁気センサ112cにおいて、第1部分21eは、第2他部分22f、第3他部分23f及び第4部分24eと電気的に接続される。第1他部分21fは、第2部分22e、第3部分23e及び第4他部分24fと電気的に接続される。
【0111】
磁気センサ112cにおいて、第1電流回路71は、第1部分21e、第2他部分22f、第3他部分23f及び第4部分24eの第9接続点CP9と、第1他部分21f、第2部分22e、第3部分23e及び第4他部分24fの第10接続点CP10と、の間に交流を含む第1電流I1を供給可能である。
【0112】
磁気センサ112cにおいて、1つの時刻(第1時刻)において、第1電流I1は、第1他部分21fから第1部分21eへの向き、第2部分22eから第2他部分22fへの向き、第3部分23eから第3他部分23fへの向き、及び、第4他部分24fから第4部分24eへの向きを有する。
【0113】
磁気センサ112a~112cにおいても、ノイズが抑制され、高い感度の検出が可能になる。
【0114】
図15(a)及び
図15(b)は、第3実施形態に係る磁気センサを例示する模式図である。
図15(a)に示すように、実施形態に係る磁気センサ113は、第1磁気素子11E、第2磁気素子12E、第1抵抗素子11R及び第2抵抗素子12Rを含む。磁気センサ113におけるこれ以外の構成は、例えば、磁気センサ110などと同じで良い。
【0115】
第1磁気素子11Eは、第1端部11Ee及び第1他端部11Efを含む。第1端部11Eeから第1他端部11Efへの方向は、第2方向(例えばY軸方向)に沿う。第2磁気素子12Eは、第2端部12Ee及び第2他端部12Efを含む。第2端部12Eeから第2他端部12Efへの方向は、第2方向に沿う。第1抵抗素子11Rは、第3端部13Ee及び第3他端部13Efを含む。第3端部13Eeから第3他端部13Efへの方向は、第2方向に沿う。第2抵抗素子12Rは、第4端部14Ee及び第4他端部14Efを含む。第4端部14Eeから第4他端部14Efへの方向は、第2方向に沿う。
【0116】
導電部材20は、第1対応部21及び第2対応部22を含む。第1対応部21は、第1磁気素子11Eに沿う。第2対応部22は、第2磁気素子12Eに沿う。
【0117】
第1対応部21は、第1端部11Eeに対応する第1部分21eと、第1他端部11Efに対応する第1他部分21fと、を含む。第2対応部22は、第2端部12Eeに対応する第2部分22eと、第2他端部12Efに対応する第2他部分22fと、を含む。
【0118】
磁気センサ113において、第1磁気素子11Eの第1端部11Eeは、第1抵抗素子11Rの第3端部13Eeと電気的に接続される。第1磁気素子11Eの第1他端部11Efは、第2磁気素子12Eの第2端部12Eeと電気的に接続される。第1抵抗素子11Rの第3他端部13Efは、第2抵抗素子12Rの第4端部14Eeと電気的に接続される。第2磁気素子12Eの第2他端部12Efは、第2抵抗素子12Rの第4他端部14Efと電気的に接続される。
【0119】
素子電流回路75は、第1端部11Ee及び第3端部13Eeの第1接続点CP1と、第2他端部12Ef及び第4他端部14Efとの第2接続点CP2と、の間に素子電流Idを供給可能である。
【0120】
検出回路73は、第1他端部11Ef及び第2端部12Eeの第3接続点CP3と、第3他端部13Ef及び第4端部14Eeの第4接続点CP4と、の間の電位の変化を検出可能である。
【0121】
図15(b)に示すように、第1他部分21fは、第2部分22eと電気的に接続される。第1部分21eは、第2他部分22fと電気的に接続される。第1電流回路71は、第1他部分21f及び第2部分22eの第5接続点CP5と、第1部分21e及び第2他部分22fの第6接続点CP6と、の間に第1電流I1を供給可能である。磁気センサ113においても、ノイズが抑制され、高い感度の検出が可能になる。
【0122】
図16(a)及び
図16(b)は、第3実施形態に係る磁気センサを例示する模式図である。
図16(a)に示すように、実施形態に係る磁気センサ114は、第1磁気素子11E、第2磁気素子12E、第1抵抗素子11R及び第2抵抗素子12Rを含む。磁気センサ114におけるこれ以外の構成は、例えば、磁気センサ110などと同じで良い。
【0123】
図16(a)に示すように、磁気センサ114において、第1磁気素子11Eの第1端部11Eeは、第1抵抗素子11Rの第3端部13Eeと電気的に接続される。第1磁気素子11Eの第1他端部11Efは、第2抵抗素子12Rの第4端部14Eeと電気的に接続される。第1抵抗素子11Rの第3他端部13Efは、第2磁気素子12Eの第2端部12Eeと電気的に接続される。第2抵抗素子12Rの第4他端部14Efは、第2磁気素子12Eの第2他端部12Efと電気的に接続される。
【0124】
素子電流回路75は、第1端部11Ee及び第3端部13Eeの第1接続点CP1と、第4他端部14Efと第2他端部12Efの第2接続点CP2と、の間に素子電流Idを供給可能である。
【0125】
磁気センサ114は、検出回路73を含んでも良い。検出回路73は、第1他端部11Ef及び第4端部14Eeの第3接続点CP3と、第3他端部13Ef及び第2端部12Eeの第4接続点CP4と、の間の電位の変化を検出可能である。
【0126】
図16(b)に示すように、第1対応部21の第1部分21eは、第2対応部22の第2部分22eと電気的に接続される。第1対応部21の第1他部分21fは、第2対応部22の第2他部分22fと電気的に接続される。
【0127】
第1電流回路71は、第1他部分21f及び第2他部分22fの第5接続点CP5と、第1部分21e及び第2部分22eの第6接続点CP6と、の間に第1電流I1を供給可能である。
【0128】
(第4実施形態)
第4実施形態は、検査装置に係る。後述するように、検査装置は、診断装置を含んでも良い。
【0129】
図17は、第4実施形態に係る検査装置を例示する模式図である。
図17に示すように、実施形態に係る検査装置550は、実施形態に係る磁気センサ(
図17の例では、磁気センサ110)と、処理部78と、を含む。処理部78は、磁気センサ110から得られる出力信号SigXを処理する。この例では、処理部78は、センサ制御回路部75c、第1ロックインアンプ75a、及び、第2ロックインアンプ75bを含む。例えば、センサ制御回路部75cにより、第1電流回路71が制御され、第1電流回路71から、交流成分を含む第1電流I1がセンサ部10Sに供給される。第1電流I1の交流成分の周波数は、例えば、100kHz以下である。素子電流回路75から、素子電流Idがセンサ部10Sに供給される。センサ部10Sは、例えば、少なくとも1つの磁気素子を含む。検出回路73により、センサ部10Sにおける電位の変化が検出される。例えば、検出回路73の出力が、出力信号SigXとなる。
【0130】
この例では、検査装置550は、磁界印加部76Aを含む。磁界印加部76Aは、検出対象80に磁界を印加可能である。検出対象80は、例えば、検査対象である。検出対象80は、少なくとも、金属などの検査導電部材80cを含む。磁界印加部76Aによる磁界が検査導電部材80cに印加されると、例えば、検査導電部材80cにおいて渦電流が発生する。検査導電部材80cに傷などがあると、渦電流の状態が変化する。渦電流による磁界が、磁気センサ(例えば磁気センサ110など)により検出されることで、検査導電部材80cの状態(例えば傷など)が検査できる。磁界印加部76Aは、例えば、渦電流発生部である。
【0131】
この例では、磁界印加部76Aは、印加制御回路部76a、駆動アンプ76b及びコイル76cを含む。印加制御回路部76aによる制御により、駆動アンプ76bに電流が供給される。電流は、例えば、交流である。電流の周波数は、例えば、渦電流励起周波数である。渦電流励起周波数は、例えば、10Hz以上100kHz以下である。渦電流励起周波数は、例えば、100kHz未満でも良い。
【0132】
例えば、センサ制御回路部75cから、第1電流I1の交流成分の周波数に関する情報(例えば信号でも良い)が、参照波(参照信号)として、第1ロックインアンプ75aに供給される。第1ロックインアンプ75aの出力が第2ロックインアンプ75bに供給される。印加制御回路部76aから、渦電流励起周波数に関する情報(例えば信号でも良い)が、参照波(参照信号)として、第2ロックインアンプ75bに供給される。第2ロックインアンプ75bは、渦電流励起周波数に応じた信号成分を出力可能である。
【0133】
このように、例えば、処理部78は、第1ロックインアンプ75aを含む。第1ロックインアンプ75aには、磁気センサ110から得られる出力信号SigXと、第1電流I1に含まれる交流成分の周波数に対応する信号SigR1と、が入力される。第1ロックインアンプ75aは、第1電流I1に含まれる交流成分の周波数に対応する信号SigR1を参照波(参照信号)とした出力信号SigX1を出力可能である。第1ロックインアンプ75aが設けられることで、ノイズを抑制して、高感度の検出が可能になる。
【0134】
処理部78は、第2ロックインアンプ75bをさらに含んでも良い。第2ロックインアンプ75bには、第1ロックインアンプ75aの出力信号SigX1と、検出対象80(検査対象)に向けて供給される供給信号(この例では磁界印加部76Aによる磁界)の周波数(渦電流励起周波数)に対応する信号SigR2と、が入力される。第2ロックインアンプ75bは、検出対象80(検査対象)に向けて供給される供給信号の周波数に対応する信号SigR2を参照波(参照信号)とした出力信号SigX2を出力可能である。第2ロックインアンプ75bが設けられることで、ノイズをさらに抑制して、さらに高感度の検出が可能になる。
【0135】
検査装置550により、検出対象80の検査導電部材80cの傷などの異常を検査できる。
【0136】
図18は、第4実施形態に係る検査装置を例示する模式図である。
図18に示すように、実施形態に係る検査装置551は、実施形態に係る磁気センサ(例えば磁気センサ110)と、処理部78と、を含む。検査装置551における、磁気センサ及び処理部78の構成は、検査装置550におけるそれらの構成と同様で良い。この例においては、検査装置551は、検出対象駆動部76Bを含む。検出対象駆動部76Bは、検出対象80に含まれる検査導電部材80cに電流を供給可能である。検査導電部材80cは、例えば、検出対象80に含まれる配線である。検査導電部材80cに流れる電流80iによる磁界が磁気センサ110により検出される。磁気センサ110による検出結果による異常に基づいて、検査導電部材80cを検査できる。検出対象80は、例えば、半導体装置などの電子装置でも良い。検出対象80は、例えば、電池などでも良い。
【0137】
この例では、検出対象駆動部76Bは、印加制御回路部76a及び駆動アンプ76bを含む。印加制御回路部76aによる制御により、駆動アンプ76bが制御され、駆動アンプ76bから、検査導電部材80cに電流が供給される。電流は、例えば、交流である。例えば、検査導電部材80cに交流電流を供給する。交流電流の周波数は、例えば、10Hz以上100kHz以下である。周波数は、例えば、100kHz未満でも良い。この例においても、第1ロックインアンプ75a及び第2ロックインアンプ75bが設けられることで、例えば、ノイズを抑制して、高感度の検出が可能になる。検査装置551の1つの例において、複数の磁気センサ(例えば複数の磁気センサ110)が設けられても良い。複数の磁気センサは、例えば、センサアレイである。センサアレイにより、検査導電部材80cを短時間で検査できる。検査装置551の1つの例において、磁気センサ(例えば磁気センサ110)がスキャンされて、検査導電部材80cが検査されても良い。
【0138】
図19は、第4実施形態に係る検査装置を示す模式的斜視図である。
図19に示すように、実施形態に係る検査装置710は、磁気センサ150aと、処理部770と、を含む。磁気センサ150aは、第1~第3実施形態のいずれかに係る磁気センサ及びその変形で良い。処理部770は、磁気センサ150aから得られる出力信号を処理する。処理部770において、磁気センサ150aから得られた信号と、基準値と、の比較などが行われても良い。処理部770は、処理結果に基づいて、検査結果を出力可能である。
【0139】
例えば、検査装置710により、検査対象680が検査される。検査対象680は、例えば、電子装置(半導体回路などを含む)である。検査対象680は、例えば、電池610などでも良い。
【0140】
例えば、実施形態に係る磁気センサ150aは、電池610とともに用いられても良い。例えば、電池システム600は、電池610及び磁気センサ150aを含む。磁気センサ150aは、電池610に流れる電流により生じる磁界を検出できる。
【0141】
図20は、第4実施形態に係る検査装置を示す模式的平面図である。
図20に示すように、磁気センサ150aは、例えば、実施形態に係る複数の磁気センサを含む。この例では、磁気センサ150aは、複数の磁気センサ(例えば、磁気センサ110など)を含む。複数の磁気センサは、例えば、2つの方向(例えば、X軸方向及びY軸方向)に沿って並ぶ。複数の磁気センサ110は、例えば、基体の上に設けられる。
【0142】
磁気センサ150aは、検査対象680(例えば電池610でも良い)に流れる電流により生じる磁界を検出できる。例えば、電池610が異常な状態に近づくと、電池610に異常な電流が流れる場合がある。磁気センサ150aにより異常な電流を検出することで、電池610の状態の変化を知ることができる。例えば、電池610に近づけて磁気センサ150aが置かれた状態で、2つの方向のセンサ群駆動手段を用いて、電池610の全体を短時間で検査できる。磁気センサ150aは、電池610の製造における、電池610の検査に用いられても良い。
【0143】
実施形態に係る磁気センサは、例えば、診断装置などの検査装置710に応用できる。
図21は、第4実施形態に係る磁気センサ及び検査装置を示す模式図である。
図21に示すように、検査装置710の例である診断装置500は、磁気センサ150を含む。磁気センサ150は、第1~第3実施形態に関して説明した磁気センサ、及び、それらの変形を含む。
【0144】
診断装置500において、磁気センサ150は、例えば、脳磁計である。脳磁計は、脳神経が発する磁界を検出する。磁気センサ150が脳磁計に用いられる場合、磁気センサ150に含まれる磁気素子のサイズは、例えば、1mm以上10mm未満である。このサイズは、例えば、MFCを含めた長さである。
【0145】
図21に示すように、磁気センサ150(脳磁計)は、例えば、人体の頭部に装着される。磁気センサ150(脳磁計)は、センサ部301を含む。磁気センサ150(脳磁計)は、複数のセンサ部301を含んでも良い。複数のセンサ部301の数は、例えば、約100個(例えば50個以上150個以下)である。複数のセンサ部301は、柔軟性を有する基体302に設けられる。
【0146】
磁気センサ150は、例えば、差動検出などの回路を含んでも良い。磁気センサ150は、磁気センサとは別のセンサ(例えば、電位端子または加速度センサなど)を含んでも良い。
【0147】
磁気センサ150のサイズは、従来のSQUID磁気センサのサイズに比べて小さい。このため、複数のセンサ部301の設置が容易である。複数のセンサ部301と、他の回路と、の設置が容易である。複数のセンサ部301と、他のセンサと、の共存が容易である。
【0148】
基体302は、例えばシリコーン樹脂などの弾性体を含んでも良い。基体302に、例えば、複数のセンサ部301が繋がって設けられる。基体302は、例えば、頭部に密着できる。
【0149】
センサ部301の入出力コード303は、診断装置500のセンサ駆動部506及び信号入出力部504と接続される。センサ駆動部506からの電力と、信号入出力部504からの制御信号と、に基づいて、センサ部301において、磁界測定が行われる。その結果は、信号入出力部504に入力される。信号入出力部504で得た信号は、信号処理部508に供給される。信号処理部508において、例えば、ノイズの除去、フィルタリング、増幅、及び、信号演算などの処理が行われる。信号処理部508で処理された信号が、信号解析部510に供給される。信号解析部510は、例えば、脳磁計測のための特定の信号を抽出する。信号解析部510において、例えば、信号位相を整合させる信号解析が行われる。
【0150】
信号解析部510の出力(信号解析が終了したデータ)が、データ処理部512に供給される。データ処理部512では、データ解析が行われる。このデータ解析において、例えば、MRI(Magnetic Resonance Imaging)などの画像データが取り入られることが可能である。このデータ解析においては、例えば、EEG(Electroencephalogram)などの頭皮電位情報などが取り入れられることが可能である。例えば、MRIまたはEEGなどのデータ部514がデータ処理部512と接続される。データ解析により、例えば、神経発火点解析、または、逆問題解析などが行われる。
【0151】
データ解析の結果は、例えば、画像化診断部516に供給される。画像化診断部516において、画像化が行われる。画像化により、診断が支援される。
【0152】
上記の一連の動作は、例えば、制御機構502によって制御される。例えば、一次信号データ、または、データ処理途中のメタデータなどの必要なデータは、データサーバに保存される。データサーバと制御機構とは、一体化されても良い。
【0153】
実施形態に係る診断装置500は、磁気センサ150と、磁気センサ150から得られる出力信号を処理する処理部と、を含む。この処理部は、例えば、信号処理部508及びデータ処理部512の少なくともいずれかを含む。処理部は、例えば、コンピュータなどを含む。
【0154】
図21に示す磁気センサ150では、センサ部301は、人体の頭部に設置されている。センサ部301は、人体の胸部に設置されても良い。これにより、心磁測定が可能となる。例えば、センサ部301を妊婦の腹部に設置しても良い。これにより、胎児の心拍検査を行うことができる。
【0155】
被験者を含めた磁気センサ装置は、シールドルーム内に設置されるのが好ましい。これにより、例えば、地磁気または磁気ノイズの影響が抑制できる。
【0156】
例えば、人体の測定部位、または、センサ部301を局所的にシールドする機構を設けても良い。例えば、センサ部301にシールド機構を設けても良い。例えば、信号解析またはデータ処理において、実効的なシールドを行っても良い。
【0157】
実施形態において、基体302は、柔軟性を有しても良く、柔軟性を実質的に有しなくても良い。
図21に示す例では、基体302は、連続した膜を帽子状に加工したものである。基体302は、ネット状でも良い。これにより、例えば、良好な装着性が得られる。例えば、基体302の人体への密着性が向上する。基体302は、ヘルメット状で、硬質でも良い。
【0158】
図22は、第4実施形態に係る検査装置を示す模式図である。
図22は、心磁計の一例である。
図22に示す例では、平板状の硬質の基体305上にセンサ部301が設けられる。
【0159】
図22に示した例において、センサ部301から得られる信号の入出力は、
図21に関して説明した入出力と同様である。
図22に示した例において、センサ部301から得られる信号の処理は、
図21に関して説明した処理と同様である。
【0160】
生体から発生する磁界などの微弱な磁界を計測する装置として、SQUID (Superconducting Quantum Interference Device:超伝導量子干渉素子)磁気センサを用いる参考例がある。この参考例においては、超伝導を用いるため、装置が大きく、消費電力も大きい。測定対象(患者)の負担が大きい。
【0161】
実施形態によれば、装置が小型にできる。消費電力を抑制できる。測定対象(患者)の負担が軽減できる。実施形態によれば、磁界検出のSN比を向上できる。感度を向上できる。
【0162】
実施形態は、以下の構成(例えば技術案)を含んでも良い。
(構成1)
第1磁気素子と、
第1サイド磁性部と、
第1対向サイド磁性部と、
を含む第1センサ部と、
導電部材と、
を備え、
前記導電部材は、前記第1磁気素子に沿う第1対応部を含み、
前記第1磁気素子は、
第1磁性層と、
第1対向磁性層であって、前記第1磁性層から前記第1対向磁性層への方向は第1方向に沿う、前記第1対向磁性層と、
前記第1磁性層と前記第1対向磁性層との間に設けられた第1中間磁性層と、
を含み、
前記第1サイド磁性部は、第1サイド磁性層を含み、
前記第1対向サイド磁性部は、第1対向サイド磁性層を含み、
前記第1中間磁性層は、前記第1方向と交差する第2方向において、前記第1サイド磁性層と前記第1対向サイド磁性層と、の間にある、磁気センサ。
【0163】
(構成2)
前記第1サイド磁性部と前記第1磁気素子との間の前記第2方向に沿う距離は、前記第1磁気素子の前記第2方向に沿う第1長さの0.01倍以下である、構成1記載の磁気センサ。
【0164】
(構成3)
前記第1磁気素子は、
前記第1磁性層と前記第1中間磁性層との間に設けられた第1非磁性層と、
前記第1中間磁性層と前記第1対向磁性層との間に設けられた第1中間非磁性層と、
をさらに含み、
前記第1サイド磁性部は、第1積層サイド磁性層をさらに含み、
前記第1対向サイド磁性部は、第1対向積層サイド磁性層をさらに含み、
前記第1対向磁性層は、前記第2方向において、前記第1積層サイド磁性層と前記第1対向積層サイド磁性層との間にある、構成1または2に記載の磁気センサ。
【0165】
(構成4)
前記第1サイド磁性部は、前記第1サイド磁性層と前記第1積層サイド磁性層との間に設けられた第1サイド非磁性層をさらに含み、
前記第1対向サイド磁性部は、前記第1対向サイド磁性層と前記第1対向積層サイド磁性層との間に設けられた第1対向サイド非磁性層をさらに含み、
前記第1サイド非磁性層及び第1対向サイド非磁性層は、前記第1中間非磁性層に含まれる材料を含む、構成3記載の磁気センサ。
【0166】
(構成5)
第1磁気素子と、
第1積層磁性層と、
第1対向積層磁性層と、
を含む第1センサ部と、
導電部材と、
を備え、
前記導電部材は、前記第1磁気素子に沿う第1対応部を含み、
前記第1磁気素子は、
第1磁性層と、
第1対向磁性層であって、前記第1磁性層から前記第1対向磁性層への方向は第1方向に沿う、前記第1対向磁性層と、
前記第1磁性層と前記第1対向磁性層との間に設けられた第1中間磁性層と、
前記第1磁性層と前記第1中間磁性層との間に設けられた第1非磁性層と、
前記第1中間磁性層と前記第1対向磁性層との間に設けられた第1中間非磁性層と、
を含み、
前記第1積層磁性層から前記第1対向積層磁性層への方向は、前記第1方向と交差する第2方向に沿い、
前記第1対向磁性層の一部は、前記第1磁性層と前記第1積層磁性層との間にあり、
前記第1対向磁性層の他部は、前記第1磁性層と前記第1対向積層磁性層との間にある、磁気センサ。
【0167】
(構成6)
前記第1積層磁性層は、前記第1対向磁性層の前記一部と接する、または、前記第1対向磁性層の前記一部と前記第1積層磁性層との間の前記第1方向に沿う距離は、前記第1対向磁性層の厚さの0.001倍以下であり、
前記第1対向積層磁性層は、前記第1対向磁性層の前記他部と接する、または、前記第1対向磁性層の前記他部と前記第1対向積層磁性層との間の前記第1方向に沿う距離は、前記第1対向磁性層の前記厚さの0.001倍以下である、構成5記載の磁気センサ。
【0168】
(構成7)
前記第1積層磁性層の前記第2方向に沿う長さは、前記第1磁気素子の前記第2方向に沿う長さの0.01倍以上0.1倍以下であり、
前記第1対向積層磁性層の前記第2方向に沿う長さは、前記第1磁気素子の前記第2方向に沿う前記長さの0.01倍以上0.1倍以下である、構成5または6に記載の磁気センサ。
【0169】
(構成8)
前記第1磁気素子の前記第2方向に沿う第1長さは、前記第1磁気素子の、前記第1方向及び前記第2方向を含む平面と交差する方向に沿う第1幅を超える、構成1~7のいずれか1つに記載の磁気センサ。
【0170】
(構成9)
前記第1センサ部は、第1磁性部材及び第1対向磁性部材をさらに含み、
前記第1磁性部材から前記第1対向磁性部材への方向は、前記第1方向及び前記第2方向を含む平面と交差する第3方向に沿い、
前記第1磁気素子は、前記第1方向において、前記第1磁性部材と前記第1対向磁性部材との間の領域と重なる、構成1~8のいずれか1つに記載の磁気センサ。
【0171】
(構成10)
前記第1磁気素子の一部は、前記第1方向において前記第1磁性部材の一部と重なり、
前記第1磁気素子の別の一部は、前記第1方向において前記第1対向磁性部材の一部と重なる、構成9記載の磁気センサ。
【0172】
(構成11)
前記第1対応部は、前記第2方向と交差する方向において、前記第1磁気素子と重なる、構成1~10のいずれか1つに記載の磁気センサ。
【0173】
(構成12)
前記第1磁気素子は、第1端部及び第1他端部を含み、前記第1端部から前記第1他端部への方向は前記第2方向に沿い、
前記第1対応部は、第1部分及び第1他部分を含み、前記第1部分は、前記第1端部に対応し、前記第1他部分は、前記第1他端部に対応する、構成11記載の磁気センサ。
【0174】
(構成13)
前記第1部分は、前記第1方向において前記第1端部と重なり、
前記第1他部分は、前記第1方向において前記第1他端部と重なる、構成12記載の磁気センサ。
【0175】
(構成14)
前記第1磁気素子の電気抵抗は、前記第1対応部に流れる電流に対して偶関数の特性を有する、構成11~13のいずれか1つに記載の磁気センサ。
【0176】
(構成15)
前記第1磁気素子の電気抵抗は、前記第1磁気素子に印加される磁界に対して偶関数の特性を有する、構成1~7のいずれか1つに記載の磁気センサ。
【0177】
(構成16)
第2磁気素子を含む第2センサ部と、
第3磁気素子を含む第3センサ部と、
第4磁気素子を含む第4センサ部と、
素子電流回路と、
第1電流回路と、
をさらに備え、
前記第1磁気素子は、第1端部及び第1他端部を含み、前記第1端部から前記第1他端部への方向は、前記第2方向に沿い、
前記第2磁気素子は、第2端部及び第2他端部を含み、前記第2端部から前記第2他端部への方向は、前記第2方向に沿い、
前記第3磁気素子は、第3端部及び第3他端部を含み、前記第3端部から前記第3他端部への方向は、前記第2方向に沿い、
前記第4磁気素子は、第4端部及び第4他端部を含み、前記第4端部から前記第4他端部への方向は、前記第2方向に沿い、
前記導電部材は、
前記第2磁気素子に沿う第2対応部と、
前記第3磁気素子に沿う第3対応部と、
前記第4磁気素子に沿う第4対応部と、
を含み、
前記第1対応部は、前記第1端部に対応する第1部分と、前記第1他端部に対応する第1他部分と、を含み、
前記第2対応部は、前記第2端部に対応する第2部分と、前記第2他端部に対応する第2他部分と、を含み、
前記第3対応部は、前記第3端部に対応する第3部分と、前記第3他端部に対応する第3他部分と、を含み、
前記第4対応部は、前記第4端部に対応する第4部分と、前記第4他端部に対応する第4他部分と、を含み、
前記素子電流回路は、第1磁気素子、前記第2磁気素子、前記第3磁気素子及び前記第4磁気素子に前記素子電流を供給可能であり、
前記第1電流回路は、前記第1対応部、前記第2対応部、前記第3対応部及び前記第4対応部に交流成分を含む第1電流を供給可能である、構成11記載の磁気センサ。
【0178】
(構成17)
前記導電部材に前記第1電流が供給されたときの第1時刻において、
前記素子電流は、前記第1端部から前記第1他端部への向きに前記第1磁気素子を流れ、
前記素子電流は、前記第2端部から前記第2他端部への向きに前記第2磁気素子を流れ、
前記素子電流は、前記第3端部から前記第3他端部への向きに前記第3磁気素子を流れ、
前記素子電流は、前記第4端部から前記第4他端部への向きに前記第4磁気素子を流れ、
前記第1電流は、前記第1他部分から前記第1部分への向きに、前記第1対応部を流れ、
前記第1電流は、前記第2部分から前記第2他部分への向きに、前記第2対応部を流れる、
前記第1電流は、前記第3部分から前記第3他部分への向きに、前記第3対応部を流れる、
前記第1電流は、前記第4他部分から前記第4部分への向きに、前記第4対応部を流れる、構成16記載の磁気センサ。
【0179】
(構成18)
前記第1他端部は、前記第2端部と電気的に接続され、
前記第1端部は、前記第3端部と電気的に接続され、
前記第3他端部は、前記第4端部と電気的に接続され、
前記第2他端部は、前記第4他端部と電気的に接続され、
前記素子電流回路は、前記第1端部及び前記第3端部の第1接続点と、前記第2他端部と前記第4他端部の第2接続点と、の間に前記素子電流を供給可能であり、
前記第1部分は、前記第3部分と電気的に接続され、
前記第1他部分は、前記第2部分と電気的に接続され、
前記第3他部分は、前記第4部分と電気的に接続され、
前記第2他部分は、前記第4他部分と電気的に接続され、
前記第1電流回路は、前記第1他部分と前記第2部分との第5接続点と、前記第3他部分と前記第4部分との第6接続点と、の間に前記第1電流を供給可能である、構成17記載の磁気センサ。
【0180】
(構成19)
検出回路をさらに備え、
前記検出回路は、前記第1他端部及び前記第2端部の第3接続点と、前記第3他端部及び前記第4端部の第4接続点と、の間の電位の変化を検出可能である、構成17または18に記載の磁気センサ。
【0181】
(構成20)
構成1~19のいずれか1つに記載の磁気センサと、
前記磁気センサから出力される信号を処理可能な処理部と、
を備えた検査装置。
【0182】
実施形態によれば、感度の向上が可能な磁気センサ及び検査装置が提供できる。
【0183】
本願明細書において、「垂直」及び「平行」は、厳密な垂直及び厳密な平行だけではなく、例えば製造工程におけるばらつきなどを含むものであり、実質的に垂直及び実質的に平行であれば良い。
【0184】
以上、具体例を参照しつつ、本発明の実施の形態について説明した。しかし、本発明は、これらの具体例に限定されるものではない。例えば、磁気センサに含まれる磁気素子、磁性層、非磁性層、磁性部材、導電部材及び回路などの各要素の具体的な構成に関しては、当業者が公知の範囲から適宜選択することにより本発明を同様に実施し、同様の効果を得ることができる限り、本発明の範囲に包含される。
【0185】
また、各具体例のいずれか2つ以上の要素を技術的に可能な範囲で組み合わせたものも、本発明の要旨を包含する限り本発明の範囲に含まれる。
【0186】
その他、本発明の実施の形態として上述した磁気センサ及び検査装置を基にして、当業者が適宜設計変更して実施し得る全ての磁気センサ及び検査装置も、本発明の要旨を包含する限り、本発明の範囲に属する。
【0187】
その他、本発明の思想の範疇において、当業者であれば、各種の変更例及び修正例に想到し得るものであり、それら変更例及び修正例についても本発明の範囲に属するものと解される。
【0188】
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
【符号の説明】
【0189】
10A~10D…第1~第4センサ部、 10S…センサ部、 11~14…第1~第4磁性層、 11E~14E…第1~第4磁気素子、 11Ee~14Ee…第1~第4端部、 11Ef~14Ef…第1~第4他端部、 11R、12R…第1、第2抵抗素子、 11S…第1サイド磁性部、 11SA…第1対向サイド磁性部、 11i~14i…第1~第4中間磁性層、 11in~14in…第1~第4中間非磁性層、 11n~14n…第1~第4非磁性層、 11o~14o…第1~第4対向磁性層、 11op…一部、 11oq…他部、 11os…第1対向サイド磁性層、 11osL…第1対向積層磁性層、 11osn…第1対向サイド非磁性層、 11oss…第1対向積層サイド磁性層、 11s…第1サイド磁性層、 11sL…第1積層磁性層、 11sn…第1サイド非磁性層、 11ss…第1積層サイド磁性層、 20…導電部材、 21~24…第1~第4導電部材、 21e~24e…第1~第4部分、 21f~24f…第1~第4他部分、 51~54…第1~第4磁性部材、 51A~54A…第1~第4対向磁性部、 65…絶縁部材、 66a~66d…領域、 70…回路部、 71…第1電流回路、 73…検出回路、 75…素子電流回路、 75a、75b…第1、第2ロックインアンプ、 75c…センサ制御回路部、 76A…磁界印加部、 76B…検出対象駆動部、 76a…印加制御回路部、 76b…駆動アンプ、 76c…コイル、 78…処理部、 80…検出対象、 80c…検査導電部材、 80i…電流、 110、110a、111、111a、112、112a~112c、113、114、150、150a…磁気センサ、 301…センサ部、 302…基体、 303…入出力コード、 305…基体、 500…診断装置、 502…制御機構、 504…信号入出力部、 506…センサ駆動部、 508…信号処理部、 510…信号解析部、 512…データ処理部、 514…データ部、 516…画像化診断部、 550、551…検査装置、 600…電子システム、 610…電池、 680…検査対象、 710…検査装置、 770…処理部、 CP1~CP10…第1~第10接続点、 H…磁界、 Hac…交流磁界、 Hex…外部磁界、 Hex1~Hex3…第1~第3磁界、 Hsig…信号磁界、 I1…第1電流、 Ia1~Ia3…第1~第3値電流、 Id…素子電流、 L1~L4…第1~第4長さ、 La1、Lb1…長さ、 R…抵抗、 R1~R4…第1~第4抵抗値、 Ro…低抵抗、 Rx…電気抵抗、 SigR1、SigR2…信号、 SigX、SigX1、SigX2…出力信号、 g1、g2…距離、 t1…第1厚さ、 w1~w4…第1~第4幅